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1 Probability Models (Stochastic Process and Sur-

vival Methods)

1.1 Poisson Processes

Learning Objectives

Understand and apply the properties of Poisson processes:

• For increments in the homogeneous case

• For interval times in the homogeneous case

• For increments in the non-homogeneous case

• Resulting from special types of events in the Poisson process

• Resulting from sums of independent Poisson processes

1.1.1 Background

Definition 1.1. A Poisson random variable X with mean λ is a random variable
with the following probability mass function:

f(x) =
e−λλx

x!

where x ∈ N and V ar(X) = E[X] = λ.

Definition 1.2. An Exponential random variable X with mean 1/λ is a random
variable with the following probability density function:

f(x) =

{
λe−xλ x ≥ 0

0 x < 0

The cumulative function of X can be easily derived as:

F (x) =

{
1− e−λx x ≥ 0

0 x < 0

Definition 1.3. A random variable X is said to be without memory, or memory-
less, if

P (X > s+ t|X > t) = P (X > s), ∀s, t ≥ 0
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Here, both Poisson and Exponential random variables have the memoryless prop-
erty. In other words, F̃ (t+ s) = F̃ (t)F̃ (s).

Definition 1.4. A Gamma random variable X with parameters (n, λ) is a ran-
dom variable with the following probability density function

f(x) =

{
λe−λx (λx)n−1

(n−1)!
t ≥ 0

0 O.W.

Proposition 1.1. The sum of n independent exponential random variables, each
having parameter λ is a gamma random variable with parameters (n, λ).

1.1.2 Definition of Poisson Process

Definition 1.5. A stochastic process {N(t), t ≥ 0} is said to be a counting process
if N(t) represents the total number of “events” that occur by time t. Intuitively,
counting process has the following properties:

1. N(t) ∈ N

2. If s < t, then N(s) ≤ N(t)

3. For s < t, N(t)−N(s) = N{(s, t]}.

A counting process is said to possess independent increments if the numbers
of events that occur in disjoint time intervals are independent.

A counting process is said to possess stationary increments if the distribution
of the number of events that occur in any interval of time depends only on the length
of the time interval.

The final ingredient for a definition of a Poisson process is the rate at which
events are, on average, occurring. The rate (or intensity) function λ gives the
rate as λ(t) at time t.

Definition 1.6. A Poisson process N with rate function λ has the following prop-
erties:

1. N is a counting process where N(0) = 0, and for t > 0, N(t) is non-decreasing
and takes on natural numbers.

2. N has independent increments.
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3. ∀t ≥ 0 and h > 0, the increment N(t+h)−N(t) is a Poisson Random variable

with mean λ =
∫ t+h
t

λ(z)dz.

4. the function m defined by m(t) =
∫ t

0
λ(z)dz is called the mean-value function,

since E[N(t)] = m(t). m is often called the operational time.

5. If the rate function is in fact a constant, then N is called a homogenous Poisson
process1; otherwise, non-homogeneous.

1.1.3 Homogenous Poisson Process

First, let’s suppose function f(.) is said to be o(h) if limh→0 f(h)/h = 0. Note
N(h) = N(t+ h)−N(t) ∼ Poisson(λh). Hence

P{N(h) = n} = e−λh(λh)n/n!, n ∈ N.

Then from definition 1.6, we can derive the following:

• P [N(h) = 1] = λh+ o(h) (Taylor expansion)

• P (N(h) ≥ 2] = o(h) (Easy; just expand)

1.2 Inter-arrival and Waiting Distribution Associated with
the Poisson Process

Learning Objectives

For any Poisson process and inter-arrival and waiting distributions associated with
the Poisson process, calculate:

• Expected Values

• Variance

• Probability

1In the context, only Poisson process is mentioned. One shall regard it as the homogenous
Poisson process
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1.2.1 Interarrival and Waiting Time Distribution

Consider a Poisson process, and let us denote the time of the first event by T1.
Further, for n > 1, let Tn denote the elapsed time between the (n− 1)st and the nth
event. The sequence {Tn, n = 1, 2, · · · } is called the sequence of inter-arrival times.

Proposition 1.2. Tn, n = 1, 2, · · · are independent identically distributed exponen-
tial random variables having mean 1/λ.

The assumption of stationary and independent increments is basically equivalent
to asserting that, at any point in time, the process probabilistically restarts itself.
That is, the process from any point on is independent of all that has previously
occurred and also has the same distribution as the original process. In other wards,
the process has no memory. Hence exponential is expected.

In general, the probability that T1 is at least x can be expressed as the following:

FT1(x) = 1− e−1
∫ x
0 λ(t)dt

Anther quantity of interest is Sn, the arrival time of the nth event, also called
the waiting time until the nth event. It is easily seen that

Sn =
n∑
i=1

Ti, n ≥ 1

Hence Sn ∼ Gamma(n, λ) by Prop. 1.2 and Prop. 1.1

1.2.2 Further Properties of Poisson Processes

Let N1(t) and N2(t) denote respectively the number of type I and type II events
occurring in [0, t], Note N(t) = N1(t) +N2(t).

Proposition 1.3. {N1(t), t ≥ 0} and {N2(t), t ≥ 0} are both Poisson processes hav-
ing respective rates λp and λ(1−p). Furthermore, the two processes are independent.

Proposition 1.4. Suppose we are given two Poisson processes with rates λ1 and
λ2. Then the probability that an event from the first process occurs before an event
from the second process is

λ1

λ1 + λ2

9



To calculate the probability that k1 events from process 1 occur before k2 events
from process 2, calculate the probability that at least k1 of the next k1 +k2−1 events
are from process 1. The probability that an event is from process 1 is λ1/(λ1 + λ2),
so the probability at least k1 out of k1 + k2 − 1 vents are from process 1 is a sum of
binomial probabilities of k1, k1 + 1, · · · , k1 + k2 − 1. The parameters of the binomial
distribution of k1 + k2 − 1 and λ1/(λ1 + λ2).

1.2.3 Conditional Distribution of the Arrival Times

Suppose we are told that exactly one event of a Poisson process has taken place
by time t, and we are asked to determine the distribution of the time at which the
event occurred. Now, since a Poisson process possesses stationary and independent
increments it seems reasonable that each interval in [0, t] of equal length should have
the same probability of containing the event. In other words, the time of the events
should be uniformly distributed over [0, t]. We can generalize this result but before
doing so, we will introduce the concept of order statistics.

Let Y1, Y2, · · · , Yn be n random variables. We say that Y(1), Y(2), · · · , Y(n) are the
order statistics corresponding Y1, Y2, · · · , Yn if Y(k) is the kth smallest value among
Y1, · · · , Yn, k = 1, 2, · · · , n. If the Yi, i = 1, · · · , n are independent identically dis-
tributed continuous random variables with probability density f, then the joint den-
sity of the order statistics is given by

f(y1, y2, · · · , yn) = n!
n∏
i=1

f(yi), y1 < y2 < · · · < yn

The preceding follows since

1. (Y(1), Y(2), · · · , Y(n)) will equal (y1, y2, · · · , yn) if (Y1, Y2, · · · , Yn) is equal to any
of the n! permutations of (y1, y2, · · · , yn);

2. The probability density th

at (Y1, Y2, · · · , Yn) is equal to yi1 , · · · , yin is
∏n

j=1 f(yij) =
∏n

j=1 f(yi) when
i1, · · · , in is a permutation of 1, 2, · · · , n. If Yi are uniformly distributed over
(0, t), then f(y1, y2, · · · , yn) = n!

tn
.

Theorem 1.1. Given that N(t) = n, the n arrival times S1, · · · , Sn have the same
distribution as the order statistics corresponding to n independent random variables
uniformly distributed on the interval (0, t).
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Proposition 1.5. If Ni(t), i = 1, · · · , k, represents the number of type i events oc-
curring by time t then Ni(t), i = 1, · · · , k, are independent Poisson random variables
having means

E[Ni(t)] = λ

∫ t

0

Pi(s)ds

where Pi(s) is the probability that ith event occurs during (0, s).

Hence, the expected value of the jth variable is jt/(k + 1) where t is the waiting
time and k is the number of Poisson events.

Proposition 1.6. Given that Sn = t, the set S1, · · · , Sn−1 has the distribution of a
set of n− 1 independent uniform (0, t) random variables.

1.2.4 Greedy algorithms

Greedy algorithms can be analyzed by considering the density function of the min-
imum of a collection of exponential random variables (provided the costs are inde-
pendent and exponentially distributed). Note that

P (min(Xi) > x) =
∏

1≤i≤n

P (Xi > x)

= exp

(
−x

∑
1≤i≤n

µi

)
.

In other words, the distribution of the minimum is also exponential, and the rate is
obtained as the sum of the rates of the individual variables.

This can be applied to determine the expected cost of the result of a Greedy
Algorithms by:

1. Considering the number of options available at each step.

2. If all job-worker pairs are considered at each stage, add the expected value of the
preceding choices (accounting for the memoryless property of the exponential
distribution).

1.2.5 Generalizations of Poisson Process

As we discussed above, the non-homogeneous Poisson process does not have constant
intensity functions λ(t). Now let’s look at some generalized properties below
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Proposition 1.7. Let {N(t), t ≥ 0} and {M(t), t ≥ 0}, be independent non homo-
geneous Poisson processes, with respective intensity function λ(t) and µ(t), and let
N∗(t) = N(t) +M(t), Then, the followings are true

• {N∗(t), t ≥ 0} is a non homogeneous Poisson process with intensity function
λ(t) + µ(t).

• Given that an event of the {N∗(t)} process occurs at time t then, independent
of what occurred prior to t, the event at t was from the {N(t)} process with

probability λ(t)
λ(t)+µ(t)

.

1.3 Compound Poisson Processes

Learning Objectives: For a compound Poisson process, calculate the moments
associated with the value of the process at a given time.

A compound Poisson process S is of the form

S(t) =
∑

1≤j≤N(t)

Xj,

where N(t) is a Poisson process, and the set {Xj} are independent and identically
distributed random variables.

The expected value of a compound Poisson process can be calculated as follows:

E[S(t)] =
∑
n≥1

P (N(t) = n)E[
∑

1≤j≤n

Xj]

=
∑
n≥1

e−λt
(λt)n

n!
nE[X1]

= λtE[X1]e−λt
∑
n≥1

(λt)n−1

(n− 1)!

= λtE[X1].

The variance can be determined using the conditional variance formula as follows:

Var(S(t)) = E(Var(S(t)|N(t))) + Var(E[S(t)|N(t)])

=
∑
n≥1

P (N(t) = n)nVar(X1) + Var(N(t)E[X1])

= (E[X2
1 ]− E[X1]2)

∑
n≥1

e−λt
(λt)n

(n− 1)!
+ λtE[X1]2

= λtE[X2
1 ].
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1.4 Hazard Functions

Learning Objectives: Apply Poisson Process concepts to calculate the hazard
function and related survival model concepts:

• Relationship between hazard rate, probability density function, and cumulative
distribution function

• Effect of memoryless nature of Poisson distribution on survival time estimation

Suppose that X is a random variable representing the “failure time” of some
object. Let f(x) be its density function, and F (x) =

∫ x
0
f(t)dt be its cumulative

distribution function. The hazard rate function is the density function λ(t) of the
failure time, conditional on the object having survived up to time t. In symbols,

λ(t) =
f(t)

1− F (t)
=
f(t)

F (t)
.

Note that if the failure time is exponentially distributed with θ = 1/λ, then

λ(t) =
λe−λt

1− (1− e−λt)
= λ,

consistent with the memoryless property of the exponential distribution.
The hazard rate function is also called the failure rate function. The system has

increasing (decreasing) failure rate if λ(t) is an increasing (decreasing) function of t.
By integrating the hazard rate function, we obtain:∫ t

0

λ(s)ds =

∫ t

0

F ′(s)

1− F (s)
ds = − log(F (t)).

This means that
F (t) = e−Λ(t),

where

Λ(t) =

∫ t

0

λ(s)ds.

The function Λ is called the hazard function for F .
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1.4.1 Failure time random variables

For a failure time random variable in which the failure rate does not change over
time, use the exponential distribution. If there are multiple parts that can fail,
with distinct rates λ1, . . . , λn, then use a hypoexponential distribution (which is a
convolution of the denstiy functions for each component). This has density function

f(t) =
∑

1≤i≤n

Ciλie
−λit,

where

Ci =
∏
j 6=i

λi
λj − λi

.

A key property of the hypoexponential distribution is that

lim
t→∞

r(t) = min(λ1, . . . , λn).

In other words, for large t, the failure rate approaches the failure rate of the longest-
lived component.

1.4.2 Cumulative distribution functions

Given a hazard rate function

r(t) =
d
dt
F (t)

1− F (t)
,

we can determine F (t) by integrating both sides:∫ t

0

r(s)ds = − log(1− F (t)) + log(1− F (0)).

Simplifying,

F (t) = 1− exp

(
−
∫ t

0

r(s)ds

)
.

1.4.3 Probability density functions

Given a hazard rate function, the corresponding density function can be obtained by
differentiating the cumulative distribution function:

f(x) = r(t) exp

(
−
∫ t

0

r(s)ds

)
.
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1.4.4 Hazard functions and relationship to Exponential distribution

A hazard rate function is constant if and only if it corresponds to an exponential
distribution. In this case, the mean of the exponential distribution is θ = 1

r
.

1.5 Reliability Theory

Learning Objectives: Given the joint distribution of more than one source of
failure in a system (or life) and using Poisson Process assumptions:

• Calculate probabilities and moments associated with functions of these random
variables.

• Understand difference between a series system (joint life) and parallel system
(last survivor) when calculating expected time to failure or probability of failure
by a certain time.

• Understand the effect of multiple sources of failure (mulitple decrement) on
expected time to failure (expected lifetime).

For a system with n components, we use the binary variable xi to specify whether
component i is functioning or not. Let x = (x1, . . . , xn) be the state vector of the
system. Associated with each system is a structure function, φ(x), which is equal to
1 if the system is functioning, and 0 otherwise. Note that a structure function must
be monotonic, i.e. if y ≤ x, then φ(y) ≤ φ(x).

A series structure functions if and only if all of its components are functioning;
in other words,

φ(x) =
∏

1≤i≤n

xi.

A parallel structure functions if and only if at least one of its components is func-
tioning. In this case,

φ(x) = 1−
∏

1≤i≤n

(1− xi).

Terminology that is used to analyze system reliability is as follows:

• If φ(x) = 1, then x is a path vector.

• If x is a path vector and φ(y) = 0 for all y < x, then x is a minimal path
vector.

• If x is a minimal path vector, then A = {i : xi = 1} is a minimal path set.
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• If φ(x) = 0, then x is a cut vector.

• If x is a cut vector, and φ(y) = 1 for all y > x, then x is a minimal cut vector.

• If x is a minimal cut vector, then C = {i : xi = 0} is a minimal cut set.

Minimal path sets and minimal cut sets can be used to express an arbitrary system as
a parallel arrangement of series systems, or a series arrangement of parallel systems,
respectively:

φ(x) = 1−
∏
j

1−
∏
i∈Aj

xi

 =
∏
j

1−
∏
i∈Cj

(1− xi)

 .

If we assume that the components are independent, and that component i is
functioning with probability pi, let r(p) denote the probability that the system is
functioning; this is called a reliability function. Key facts about the reliability func-
tion include:

• r(p) = E[φ(X)]. (This is due to the fact that the expected value of a binary
random variable is equal to the probability that the variable is one.)

• r(p) is an increasing function of p.

For a random variable X with density function f and cumulative distribution
function F , its tail distribution function is

F (t) = P (X > t) = 1− F (t) =

∫ ∞
t

f(s)ds.

When studying the failure time of a system, we assume that once one of its compo-
nents has failed, it remains in that state. (Note that the event “lifetime is greater
than t” is equivalent to “system is functioning at time t.”) Let F i be the tail distri-
bution for component i, and let F be the tail distribution for the whole system. We
can determine F by using the reliability function:

F (t) = r(F 1(t), . . . , F n(t)).

An important result that facilitates calculation of expected failure time is

E[X] =

∫ ∞
0

F (t)dt.
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The reason for this is:

E[X] =

∫ ∞
0

yf(y)dy

=

∫ ∞
0

∫ y

0

f(y)dxdy

=

∫ ∞
0

∫ ∞
x

f(y)dxdy

=

∫ ∞
0

F (y)dy.

1.5.1 Probabilities and moments

For the case of independent components, given the probability pi that component i
is functioning, the probability that the system is functioning can be determined as
follows:

1. Determine the structure function for the system.

2. Determine the expected value of φ(X1, . . . , Xn). When doing this, first express
the structure function as a linear combination of monomials, using X2

i = Xi to
simplify.

The minimum path sets can be used to derive an upper bound on the probability
that the system functions. To do this, determine the probability that at least one
component fails in each of the minimum path sets. Their product is a lower bound
on the failure probability, and hence an upper bound on the probability that the
system functions.

1.5.2 Time until failure of the system (life)

To determine the distribution of a system:

1. Determine the structure function φ(x) of the system.

2. Determine the reliability function as r(p) = E[φ(X)].

3. Evaluate the reliability function at the tail distribution functions for each in-
dividual component.

4. If the density function is needed, differentiate the result and multiply by −1.
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1.5.3 Time until failure of the system (life) for parallel or series systems
with multiple components

For a series system,

F (t) =
∏

1≤i≤n

F i(t).

For a parallel system,

F (t) = 1−
∏

1≤i≤n

(1− F i(t)) = 1−
∏

1≤i≤n

Fi(t).

1.5.4 Paths that lead to parallel or series system failure for systems with
multiple components

For a system in which k out of n components must function, a simple way to construct
the structure function is to begin with the monomials corresponding to the k-subsets,
then subtracting the duplicate (k + 1)-subsets, adding back in the (k + 2)-subsets,
as appropriate. (We want each subset to be represented exactly once.)

1.5.5 Random graphs and defining path to failure

For a random graph with n vertices, we can interpret each potential edge as a com-
ponent. Suppose we are interested in determining the probability that the graph
is connected. The minimal cut sets consist of edges with one end in each side of a
partition of the form (X,Xc), so there are 2n−1 − 1 minimal cut sets. The minimal
path sets are spanning trees, so there are nn−2 minimal path sets.

1.5.6 Method of inclusion and exclusion as applied to failure time esti-
mates

The principal of inclusion-exclusion can be used determine bounds on the reliability
function by considering the minimal path sets Ai. If Ei is the event in which all
components of Ai function, then

r(p) = P
(⋃

Ei

)
≤
∑
i

P (Ei).

Subtracting the two-way intersection terms reverses the inequality, adding the three-
way intersection terms reverses the inequality again, etc.

The second way for obtaining upper and lower bounds for the reliability function
is to express the probability of functioning or failure as an intersection of events.
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The system will fail if every minimal path fail. Let Di be the event that at least one
component of a minimal path set A1 fails. Then

1− r(p) = Pr(D1)Pr(D2|D1)Pr(D3|D1 ∩D2) · · ·

However, Pr(D2) is close than Pr(D2|D1). If we are giving D1, then some com-
ponent of A1 failed, and this component may be a component of A2 as well. So the
failure of D1 increases the probability of failure of D2. The same can be said about
the conditions of the later factors. If s is the number of minimal path sets, then

r(p) ≤ 1−
s∏
i=1

(1−
∏
l∈Ai

pl)

The system will function if every minimal cut set has a functioning component. Let Ui
be the event that minimal cut set Ci has a functioning component. The probability
that a set is functioning given that a component of another set is functioning is
greater than the unconditional probability that a set is functioning. Therefore, if
there are r minimal cut sets,

r(p) ≥
r∏
i=1

(1−
∏
l∈Ci

(1− pl))

1.5.7 Expected system lifetime as a function of component lifetime and
properties of expected lifetime estimates

To determine the expected lifetime of a system,

1. Determine the reliability function r of the system.

2. Determine F (t) by evaluating r at the tail distributions for the component
parts.

3. Integrate F (t) from 0 to ∞ to determine the expected failure time.

1.6 Markov Chains

Learning Objectives: for discrete and continuous Markov Chains under both ho-
mogeneous and non-homogeneous states:

• Definition of a Markov Chain
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• Chapman-Kolmogorov Equations for n-step transition calculations

• Accessible states

• Ergodic Markov Chains and limiting probabilities

• Markov Chain Monte Carlo Methods

A Markov Chain is a stochastic process {Xn}n≥0 in which each Xn takes on
a countable number of states, {0, 1, 2, 3, . . .}, and the probability that Xn+1 = j
depends only on the state of Xn, and P (Xn+1 = j|Xn = i) = Pij. These will be
analyzed using the matrix

P = [Pij].

(Note that the rows of this matrix correspond to the state before the transition, and
the columns correspond to the state after the transition.) Note that the interpretation
of Pij as a probability means that all entries of this matrix are non-negative, and the
sum of each row is 1. By interpreting P as an adjacency matrix, we can think of a
Markov Chain as a directed graph with edge weights.

The n-step transition probabilities, denoted by P n
ij, are the probabilities that a

process, starting in state i, is in state j after exactly n steps. This probability can
be calculated as the i, j-entry of Pn. (It’s just a random walk on the corresponding
graph.)

Terminology used to identify special states is as follows:

• An absorbing state is a state that is never left after it is entered. This cor-
responds to a row of the matrix having a 1 in the diagonal entry, and zeroes
elsewhere. Graphically, the vertex for this state has no outgoing edges. (One
application of an absorbing state is to calculate the probability that a set of
states A is reached at some point – add a single absorbing state to take the
place of the states in A.)

• A state j is accessible from state i if P n
ij > 0 for some n. Graphically, this

means there is a directed path from i to j.

• Two states i and j are said to communicate if i is accessible from j, and
j is accessible from i. Note that communication in a Markov chain is an
equivalence relation, so communication partitions the states into equivalence
classes. Graphically, the classes are the strongly connected components of the
graph.
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• A Markov Chain is irreducible if there is only one class. In this case, the
corresponding graph is strongly connected.

• A state is recurrent if the probability of eventually re-entering state i, having
started in state i, is 1. The state is transient if the probability is strictly less
than 1. A recurrent state will be entered infinitely often, but the expected
number of times a transient state will be entered is finite. Both recurrence and
transience are class properties.

For an irreducible, aperiodic Markov chain, limn→∞ P
n
ij exists. This quantity is

independent of i, so we will let πj = limn→∞ P
n
ij; these are referred to as the stationary

probabilities. πj can be determined by finding the stochastic principal left eigenvector
of P:

π = πP,

where π1 + · · ·+ πk = 1.
Beginning with a stationary Markov chain with stationary probabilities πj, we

can reverse the process of to get a sequence of states Xn, Xn−1, . . . , X0. This is also
a Markov chain with transition probabilities

Qij = P (Xn = j|Xn+1 = i) =
πjPji
πi

.

The Markov chain is time reversible if Qij = Pij, or, in other words, if

πjPji = πiPij.

The intuition behind this equation is that, in the long run, the probability of seeing
a move from i to j is the same as the probability of seeing a move from j to i.

A continuous-time Markov Chain is a stochastic process with the property that
X(t+s) depends only on X(s), and not on X(u) for u < s. The time that a variable
spends in any one state must therefore be exponentially distributed. Such a process
is defined by two sets of parameters:

1. The mean time spent in state i before making a transition, 1/vi.

2. The probability that the process enters state j after leaving state i, denoted
by Pij.

The instantaneous transition rate, qij = viPij, is the rate at which the process makes
a transition into state j, given that it starts in state i. These quantities must satisfy
the Kolmogorov Backward Equations

P ′ij(t) =
∑
k 6=i

qikPkj(t)− viPij(t),
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as well as the Kolmogorov Forward Equations

P ′ij(t) =
∑
k 6=j

qkjPik(t)− vjPij(t).

Note the Chapman-Kolmogorov Equation is the following

P t
ij =

∑
k=1

P µ
ikP

t−µ
kj

The limiting probability is as follow:∑
k 6=i

Pjkqkj = Pivj

In other words, the probability of transitioning out is the same as the probability of
transitioning in.

1.6.1 Random Walk

A random walk is a Markov Chain in which the states are integers, and there is a
fixed probability p such that

Pi,i+1 = p = 1− Pi,i−1.

In other words, the state moves up one unit with probability p, and down with
probability 1− p. If p = 1

2
, then the walk is symmetric.

1.6.2 Classification of states and classes of states (absorbing, accessible,
transition, irreducible, and recurrent)

To determine which states communicate with each other, construct the directed
graph associated with the Markov chain. The classes will correspond to the strongly
connected components of this graph.

1.6.3 Transition step probabilities

To determine the n-step transition probabilities, compute Pn and take the i, j entry.
This process may be made more efficient by applying the square-and-multiply algo-
rithm if n is large. Alternately, rather than multiplying matrices, left-multiply by a
state vector corresponding to the initial state and repeat. (In other words, multiply
a vector and a matrix, rather than two matrices.)
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An important example involves analysis of system in which there areN states, and
from state j, the chain moves to one of the lower j− 1 states with equal probability.
In other words,

Pij =
1

i− 1

when j < i and i > 1, with P11 = 1. We will analyze the number of transitions Ti to
get from state i to state 1. To analyze this variable, let

Ij =

{
1 if the process ever enters j,

0 otherwise.

Note that TN =
∑

1≤j≤N−1 Ij. Using the fact that P (Ij = 1) = 1/j, E[Tn] and
Var(TN) can be determined.

By conditioning on the first transition, we obtain

E[Ti] = 1 +
1

i− 1

∑
1≤j≤i−1

E[Tj].

Let Ni be the number of transition until the sate recur. Then E[Ni] = mi. When
mi =∞, it is called null recurrent; if it is finite, then we call it positive recurrent.

1.6.4 Stationary probabilities

To determine the stationary probabilities, solve

π = πP,

along with π1 + · · ·+ πk = 1.
Determining stationary probabilities is the first step in finding a reverse-time

Markov chain, since
πiPij = πjQji.

Note that the left side of this equation has a useful interpretation: it is the long-term
probability of seeing a transition from state i to state j.

1.6.5 Recurrent vs. transient states

When identifying recurrent vs. transient states, recall that these are both class
properties, so the determination only needs to be made for one vertex in each strongly
connected component of the graph.
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The matrix
S = (I−PT )−1 =

∑
n≥0

Pn
T

can be used to determine the expected time sij in a transient state j, starting in
state i, where PT is the submatrix of P corresponding to the transient states.

The probability fij that a transition into state j occurs, given that the initial
state is i, can be determined by using the conditional formula for sij:

sij = (δij + sjj)fij + δij(1− fij)
= δij + fijsjj.

where

δij =

{
1 i = j

0 i 6= j

1.6.6 Gambler’s ruin problem

In the Gambler’s ruin problem, the gambler wins one dollar with probability p, and
loses it with probability q = 1− p. If the gambler quits playing upon reaching state
N , this can be modelled as a Markov chain with two absorbing states, 0 and N .
To analyze this problem, let Pi denote the probability of reaching N , if the gambler
currently has i dollars. Then

Pi = pPi+1 + qPi−1,

so
Pi+1 − Pi =

q

p
(Pi − Pi−1).

Applying this recursively, and using the fact that P0 = 0,

Pi+1 − Pi =

(
q

p

)i
P1.

We can simply this system of equations as a telescoping sum:

Pi =
∑

0≤j≤i−1

(
q

p

)j
P1.

The analysis now differs depending on whether q = p = 1
2

or not. In either case,
determine P1 by setting i = N and using the fact that PN = 1.

In short,

Pi =
1− (q/p)i

1− (q/p)N
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1.6.7 Branching Processes

In a branching process, we study a population in which each individual produces j
offspring with probability Pj. This is a Markov chain in which state i is the number
of individuals in generation i. Problems are generally concerned with determining
the probability that the population will eventually die out. Let

µ =
∑
j≥0

jPj.

Let π0 denote the probability that the population will eventually die out, assuming
X0 = 1. If µ < 1, then

P (Xn ≥ 1) =
∑
j≥1

P (Xn = j) ≤ E[Xn] = µn,

so P (Xn ≥ 1)← 0 as n→∞.
When µ > 1, the probability that the population dies out can be determined

by conditioning on the number of individuals in generation 1. This produces a
polynomial for π0 that can be solved:

π0 =
∑
j≥0

Pjπ
j
0.

The idea behind this formula is that if j individuals are born in the first generation,
we think of this as j subpopulations that must all die out in order for the population
to go to zero.

Let Xn denote the size of the population in the nth generation. Let µ be the mean
number of offspring produced by each individual, and let σ2 denote its variance. The
expectation and variance of Xn can be calculated by conditioning on Xn−1:

E[Xn] = E[E[Xn|Xn−1]]

= E[µXn−1]

= µE[Xn−1]

= µn,

and

Var(Xn) = Var(E[Xn|Xn−1]) + E[Var(Xn|Xn−1)]

= Var(µXn−1) + E[σ2Xn−1]

= µ2Var(Xn−1) + σ2µn−1.
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Applying this repeatedly, we obtain:

Var(Xn) = σ2µn−1 + µ2Var(Xn−1)

= σ2µn−1 + σ2µn + µ4Var(Xn−2)

= σ2µn−1 + σ2µn + σ2µn+1 + µ6Var(Xn−3) + · · ·

=

{
σ2(µ

n−1−µ2n−1

1−µ ) µ 6= 1

nσ2 µ = 1

1.6.8 Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm is used to produce a time-reversible Markov chain
with specified stationary probabilities, starting from a given Markov chain with tran-
sition probabilities Qij. The process is:

1. Compute

αij = min

(
1,
πjQji

πiQij

)
.

2. For i 6= j, determine Pij = Qijαij.

3. Determine Pii such that the rows sum to 1.

1.6.9 Gibbs sampler

The Gibbs sampler is a modification of the Metropolis-Hastings algorithm. It uses a
Markov chain in which state changes are defined as follows: (1) select a component
of the vector, uniformly at random, then (2) select a new value for that component,
uniformly at random, conditional on all the other components. This implies that
αij = 1 for all i.

1.6.10 Birth-Death process

In a birth and death process, the states are the number of people currently in the
system, n. New arrivals enter at an exponential rate λn, and leave at an exponential
rate µn. In this case, the Markov chain parameters are:

• v0 = λ0

• vi = λi + µi

• P01 = 1
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• Pi,i+1 = λi
λi+µi

• Pi,i−1 = µi
λi+µi

Let Ti denote the amount of time, starting from state i, that it takes for the process
to enter state i+1. We can determine Ti recursively through the following argument.
Clearly, E[T0] = 1

λ0
. Conditioning on whether the first transition from i is to i + 1

or i− 1, we obtain

E[Ti] =
λi

(λi + µi)2
+

µi
(λi + µi)2

+
E[Ti−1] + E[Ti]

λi + µi

This can be simplified algebraically to

E[Ti] =
1

λi
+
µi
λi
E[Ti−1].

Note that the expected time to enter state j for the first time can be determined by
summing Ti for i < j.

We use Pij(t) to denote the probability that the Markov chain X(t) is in state j
at time t, provided that it was in state i at time 0. For a pure birth process, Pi,i+1(t)
can be determined as follows. Note that X(t) < i+ 1 if and only if Ti > t, so

P (X(t) < i+ 1|X(0) = i) = P (Ti > t)

= e−λit,

and

P (X(t) < i+ 2|X(0) = i) = P (Ti + Ti+1 > t)

=
λi+1

λi+1 − λi
e−λit +

λi
λi − λi+1

e−λi+1t.

Therefore,

P (X(t) = i : X(0) = i) =
λi

λi+1 − λi
(e−λit − e−λi+1t).

1.6.11 Homogeneous transition probabilities

1.6.12 Memoryless property of Markov Chains

1.6.13 Limiting probabilities

Limiting probabilities for continuous-time Markov Chains can be derived by taking
the limit of the Kolmogorov Forward Equation, and observing that limt→∞ Pij(t) = 0,
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to obtain
viPj =

∑
k 6=j

qkjPk

for all states j. Along with the fact that
∑

j Pj = 1, these equations can be used
to determine Pi. Note that the left side can be interpreted as the long-run rate of
leaving state j, and the right side can be interpreted as the long-run rate of entering
state j. For birth and death processes, these equations simplify to

λ0P0 = µ1P1

µjPj + λjPj = µj+1Pj+1 + λj−1Pj−1.

Substituting the first equation into the second gives

Pj+1 =
λj
µj+1

Pj,

which can be used to determine Pj, along with the restriction
∑

j≥0 Pj = 1.

1.7 Life Contingencies

Learning Objectives: Solve Life Contingency problems using a life table in a
spreadsheet as the combined result of discount, probability of payment, and amount
of payment vectors. Understand the linkage between the life table and the corre-
sponding probability models.

• Calculate annuities for discrete time

• Calculate life insurance single net premiums (or property/casualty pure premi-
ums) for discrete time

• Solve for net level premiums (not including fractional lives)

Life contingency problems involve tables containing the following information:

• x, representing the year / age. The notation (x) refers to an individual whose
exact age is x.

• `x, the number of individuals alive at the beginning of year x

• dx = `x − `x+1, the number of individuals who die in year x
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• qx = dx/`x, known as the mortality. This is the probability that a person of
age x dies before reaching age x+ 1.

• px = `x+1/`x is the probability that a person of age x survives to age x+ 1.

• The notation npx is the probability that a person of age x survives to age x+n.
Note that

npx = pxpx+1 · · · px+n =
`x+n

`x
.

In life contingency problems, we are typically concerned with calculating the actuarial
present value of a future payment that is contingent on the death of an individual.
In term life insurance, the length of the contract is fixed, and a payment is made at
the end of the year in which the individual dies, provided it is within the term of the
contract. Life insurance contracts with unlimited term are called whole life policies.
An endowment insurance policy is similar to term life insurance, except that it pays
$1 at expiration of the term. A pure endowment policy is a policy that pays $1 if the
insured survives to the end of the term; it is the difference between an endowment
policy and a term policy. In the sample tables, the value of a pure endowment of
duration n for an individual of age x is denoted by nEx. These types of policies are
related: a term insurance policy is equivalent to the difference between a whole life
policy and a deferred whole life policy for someone of an older age:

Ax − nExAx+n.

Let Ax denote the actuarial present value of a whole life insurance policy which
pays $1 at the end of the year in which an individual of age x dies. Let v = 1/(1 + i)
be the present value of $1 payable in one year. Then

Ax = vqx + vpxAx+1,

by conditioning on whether the individual lives or dies, and by noting that if the
individual lives, then the value of the policy in one year is Ax+1. Applying this
formula recursively, we obtain

Ax =
∑
n≥0

vn+1
npxqx+n =

∑
n≥0

vn+1dx+n

`x
.

A similar argument can be used to determine the curtate life expectancy, which is the
expected number of whole years of life remaining for an individual of age x. Denote
this by ex. Then

ex = px(1 + ex+1).
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The premiums are assumed to be paid at the beginning of the year, so they form
an annuity-due and their actuarial present value is denoted by by äx. If the payments
are made at the end of the year, they form an annuity-immediate, and their actuarial
present value is denoted by ax. Life annuities differ from ordinary annuities in that
their duration is not known – payments cease when an individual dies. Therefore,

äx = 1 + vpxäx+1.

Applying this formula recursively,

äx =
∑
n≥0

vn npx.

1.7.1 Discounted cash flow

The term actuarial present value refers to the expected present value of a stream of
cash flows that depends on the value of a random variable. We assume that yield
curves are level for simplicity.

1.7.2 Relationship between annuity values and insurance premiums

Insurance premiums can be determined through an arbitrage argument: an investor is
ambivalent between receiving $1 today, and receiving interest on that dollar annually
until the insured dies, receiving $1 at the end of that year. Therefore,

1 = däx + Ax,

where d = 1 − v is the rate of discount. This can be solved to determine äx. From
this, the premium P can be determined by requiring that

Ax = P äx.

Premiums for more complicated contracts can be determined by constructing a repli-
cating portfolio, for example, an n-year annuity-certain and a life annuity, deliverable
in n years, replicates a workers’ compensation policy that pays for a minimum of n
years, until the insured returns to work.

1.7.3 Life table linkage to probability models

The life tables can be used to determine the probability that an individual of age
x dies in the given year (qx) and the probability that they survive (px). Let Xi be
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an indicator variable equal to 1 if and only if individual i survives. Since this is an
indicator random variable, then

E[Xi] = px,

and
Var(Xi) = E[X2

i ]− E[Xi]
2 = px − p2

x = pxqx.

In the sample tables, 2Ax is the expectation of the square of the present value, and
it can be used to determine the variance of the value of the life insurance policy.

1.7.4 Equivalence property
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2 Statistics

2.1 Parameter Estimation

Learning Objectives: Perform point estimation of statistical parameters using
Maximum likelihood estimation (”MLE”). Apply criteria to the estimates such as:

• Consistency

• Unbiasedness

• Sufficiency

• Efficiency

• Minimum variance

• Mean square error

2.1.1 Background

Suppose we have a n samples, X1, . . . , Xn, from a collection of independent and
identically distributed random variables whose probability density function f(x; θ)
depends on an unknown parameter θ ∈ Ω. The likelihood function is

L(θ; x) =
∏

1≤i≤n

f(xi; θ).

In many applications, it is more useful to work with the log-likelihood function,

`(θ) = log(L(θ)) =
∑

1≤i≤n

log(f(xi; θ)).

The maximum likelihood estimator θ̂ the function of x1, . . . , xn that maximizes L(θ),
or equivalently, `(θ). We will use the notation θ0 to denote the true value of θ.

The quantity ∂ log f(x;θ)
∂θ

is called the score function – the estimating equations
for the MLE are sums of score functions. Define the Fisher information to be the
expectation of the square of the score function, namely,

I(θ) = E

[(
∂ log f(X; θ)

∂θ

)2
]

= −E
[
∂2 log f(X; θ)

∂θ2

]
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It can be shown that the expectation of the score function is zero, which means that
Fisher information is the variance of the score function.

The quality of statistics that are used to estimate unknown parameters is evalu-
ated using a variety of criteria:

• Consistency: A statistic Tn is a consistent estimator of θ if Tn converges in
probability to θ; that is, limn→∞ P (|Tn − θ| < ε) = 1 for any ε > 0.

• Unbiased: If T is a statistic based on the values of n independent and identi-
cally distributed random variables, then we say that T is an unbiased estimator
of θ if E[T ] = θ. If an estimator is biased, we define B(θ̂) = E(θ̂)− θ to be the
bias.

• Mean Square Error: For an estimator θ̂, define

MSE(θ̂) = E[(θ̂ − θ)2] = Var(θ̂) +B(θ̂)
2
.

• Efficiency: an unbiased estimator Y is an efficient estimator if and only if
Var(Y ) = 1

nI(θ)
; in other words, if the Rao-Cramer bound is achieved. The

ratio of the Rao-Cramer bound to the actual variance of an unbiased estimator
is called the efficiency of the estimator.

• Sufficiency: a statistic Y = u(X1, . . . , Xn) is sufficient if the probability of
observing X1, . . . , Xn, given that

(X1, . . . , Xn) ∈ {(x1, . . . , xn) : u(x1, . . . , xn) = y}

does not depend on θ. Intuitively, Y exhausts all the information about θ, and
given Y = y, no other statistic can draw any inference about θ. If fY is the
density function of Y , then Y is a sufficient statistic for θ if and only if the
ratio

f(x1; θ) · · · f(xn; θ)

fY (u(x1, . . . , xn); θ)

does not depend on θ.

A statistic Y is called a minimum variance unbiased estimator (MVUE) of θ if it is
unbiased and the variance of Y is less than or equal to the variance of every other
unbiased estimator of θ.

Theorems about the MLE are stated in terms of several regularity conditions:

(R0) If θ 6= θ′ then f(xi; θ) 6= f(xi; θ
′).
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(R1) The density functions have common support for all θ.

(R2) The point θ0 is an interior point of Ω.

(R3) f(x; θ) is twice-differentiable as a function of θ.

(R4)
∫
f(x; θ)dx can be differentiated twice, under the integral sign, as a function

of θ.

Facts about the MLE include:

1. If (R0) and (R1) hold, then the likelihood function is asymptotically maximized
at θ0.

2. If η = g(θ) is a parameter, then g(θ̂) is the minimum likelihood estimator of η.

3. If regularity conditions (R0) through (R4) hold, and Y is an estimator for θ
based on n sample points, with E[Y ] = k(θ), then

Var(Y ) ≥ [k′(θ)]2

nI(θ)
.

This is called the Rao-Cramer bound. In particular, if Y is an unbiased esti-
mator of θ, then Var(Y ) ≥ 1

nI(θ)
.

2.1.2 Equations for MLE of mean, variance from a sample

2.1.3 Estimation of mean and variance based on a sample

The sample mean is defined by

X :=
1

n

∑
1≤i≤n

Xi.

Note that E[X] = µ and Var(X) = σ2

n
. The sample variance is

S2 =
1

n− 1

∑
1≤i≤n

(Xi −X)2 =
1

n− 1

( ∑
1≤i≤n

X2
i − nX

2

)
,

and E[S2] = σ2.
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2.1.4 General equations for MLE of parameters

To find a MLE, solve the equation

∂`(θ)

∂θ
= 0.

One application of MLE estimation is to determine the parameter θ for expo-
nentially distributed claims, when observed losses are censored. Suppose that claims
are capped at C. Then the probability distribution of a claim X is a hybrid dis-
crete/continuous distribution. With probability e−C/θ, X = C. Otherwise, the
distribution is continuous with density function 1

θ
e−x/θ for 0 ≤ x ≤ C. Using this

function allows us to determine the MLE for θ — it should be equal to the total
claim amount, divided by the number of claims that were not subject to a cap.

2.1.5 Recognition of consistency property of estimators and alternative
measures of consistency

Some methods of identifying consistent estimators include:

• The sample mean and sample variance converge in probability to µ and σ,
respectively. Consequently, any continuous function of these estimators will
also be consistent.

• If θ̂ is unbiased and limn→∞Var(θ̂n) = 0, then θ̂ is consistent.

• If regularity conditions (R0), (R1), and (R2) are satisfied, then the maximum
likelihood estimator is consistent.

2.1.6 Application of criteria for measurement when estimating parame-
ters through minimization of variance, mean square error

2.1.7 Definition of statistical bias and recognition of estimators that are
unbiased or biased

If E[T ] = λθ for value λ 6= 1, then the biased estimator T can be converted into an
unbiased estimator for θ, T ′ = 1

λ
T .

2.1.8 Application of Rao-Cramer Lower Bound and Efficiency

To calculate efficiency of an unbiased estimator, first calculate

I(θ) = −E
[
∂2f(x; θ)

∂θ2

]
.
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Efficiency is equal to
1

nI(θ)Var(Y )
.

If this equal to 1, then Y is an efficient estimator.

2.1.9 Relationship between Sufficiency and Minimum Variance

The Rao-Blackwell Theorem tells us that if Y1 is a sufficient statistic for θ, and Y2

is an unbiased estimator of θ that is not a function of Y1 alone, then the function
φ(y1) = E(Y2|y1) is an unbiased estimator of θ whose variance is less than or equal
to that of Y2. In other words, when searching for a MVUE, we can limit our search
to functions of Y1 alone.

For a complete family of density functions, if Y is a sufficient statistic for θ, then
a function of Y that is an unbiased estimator of θ is the unique MVUE of θ.

2.1.10 Develop and estimate a sufficient statistic for a distribution

A sufficient statistic can often be determined from inspection: look at f(x1; θ) · · · f(xn; θ),
and select Y so that it can be written as k1(Y, θ)k2(x1, . . . , xn).

2.1.11 Factorization Criterion for sufficiency

When determining the density function for a statistic that is a linear combination of
the observations, it may be useful to multiply the moment generating functions.

The need to find the density function of the estimator can be avoided by using
the factorization theorem: Y is a sufficient statistic for θ if and only if there exist
two non-negative functions, k1 and k2, such that

f(x1; θ) · · · f(xn; θ) = k1(Y ; θ)k2(x1, . . . , xn),

where k2(x1, . . . , xn) does not depend on θ. (Be careful to check that the domain of
k2 does not depend on θ.)

2.1.12 Application of Rao-Cramer Lower Bound and Fisher Information

Fisher information can be used to determine the asymptotic variance of the maximum
likelihood estimator, as 1

nI(θ)
.
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2.1.13 Application of MVUE for the exponential class of distributions

The regular exponential class of probability density functions has a density / mass
function of the form

f(x; θ) =

{
exp(p(θ)K(x) +H(x) + q(θ)) if x ∈ S
0 otherwise,

where

• γ < θ < δ

• S does not depend on θ

• p(θ) is a nontrivial continuous function

• If X is continuous, then K ′(x) 6≡ 0 and H(x) is continuous. If X is discrete,
then K(x) is a nontrivial function of x ∈ S.

Key facts about this class include:

• Y =
∑

1≤i≤nK(xi) is a complete sufficient statistic for θ.

• The density function for Y is of the form

R(y) exp(p(θ)y + nq(θ)),

where R(y) is some function that does not depend on θ.

• E[Y ] = −np
′(θ)
q′(θ)

.

• Var(Y ) = n
p′(θ)3

(p′′(θ)q′(θ)− q′′(θ)p′(θ))

2.2 Hypothesis Testing

Learning Objectives:

• Test statistical hypotheses including Type I and Type II errors using:

– Neyman-Pearson lemma

– Likelihood ratio tests

– First principles

• Apply Neyman-Pearson lemma to construct likelihood ratio equation

• Use critical values from a sampling distribution to test means and variances.
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2.2.1 Background

Let X be a random variable with density function f(x; θ), where θ ∈ Ω. Given a
partition (ω0, ω1) of Ω, we consider two hypotheses: the null hypothesis, denoted by
H0, in which θ ∈ ω0, and the alternative hypothesis, denoted by H1, in which θ ∈ ω1.
We test the hypotheses by taking a random sample X1, . . . , Xn by specifying a subset
C of the sample space, called the critical region, with the following decision rule:

• Reject H0 (accept H1) if (X1, . . . , Xn) ∈ C

• Retain H0 (reject H1) if (X1, . . . , Xn) 6∈ C.

A typical strategy is to select critical regions that bound the probability of Type I
error, and among these regions, select the one that minimizes the probability of a
Type II error. The size of a critical region (also called the significance of the test)
is defined to be

α := max
θ∈ω0

Pθ((X1, . . . , Xn) ∈ C).

Note that Pθ((X1, . . . , Xn) ∈ C) is the probability of not making a Type II error.
This is called the power of the test at θ. The power function of a critical region is

γC(θ) = Pθ((X1, . . . , Xn) ∈ C))

for θ ∈ ω1.

Theorem 2.1. Let Xi, i = 1, · · · , n be a random sample from a normal distribution
with mean µ and variance σ2. Let Q =

∑n
i=1(Xi − µ)2. Then Q/σ2 has a χ2(n)

distribution.

Theorem 2.2. Let Xi, i = 1, · · · , n, n ≥ 2 be a random sample from a normal
distribution with variance σ2. Let X̄ be the sample mean. Let W =

∑n
i=1(Xi − X̄)2.

Then W/σ2 has a χ2(n− 1) distribution. Moreover, W and X̄ are independent.

In a likelihood ratio test, to test the hypothesis θ = θ0, we use the test statistic

Λ =
L(θ0)

L(θ̂)
,

where L is the likelihood function and θ̂ is the maximum likelihood estimator. We use
decision rules of the form “Reject H0 in favour of H1 if Λ < c.” When the underlying
distribution is normal, −2 log Λ is χ2(1), and in general, for any distribution, −2 log Λ
is asymptotically χ2(1). The Neyman-Pearson Theorem states that a critical region
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C defined by Λ ≤ k will be a best critical region of size α = PH0(x ∈ C) when H0

and H1 are both simple. (Compound H1 can be handled by considering each simple
sub-hypothesis; if they all provide a consistent result, then we have a uniformly most
powerful critical region.)

More generally, the likelihood ratio test can be used to compare distributional as-
sumptions: the numerator is the likelihood function under a null hypothesis that the
density function is f , and the denominator is the likelihood function under the alter-
native hypothesis that the distribution is a generalization of f . Sample problem:
Exam 4-21

Similar tests include:

• In a Wald-type test, the test statistic is

χ2
W = nI(θ̂)(θ̂ − θ0)2,

which is asymptotically χ2(1).

• In Rao’s score test, the test statistic is

χ2
R =

`′(θ0)2

nI(θ − 0)
,

which is also asymptotically χ2(1).

When testing a simple hypothesis H0 : θ = θ′ against H1 : θ = θ′′, a best critical
region of size α is a critical region such that Pθ′(X ∈ C) = α, and for every subset A
of the sample space such that Pθ′(X ∈ A), we have Pθ′′(X ∈ C) ≥ Pθ′′(X ∈ A). The
Neyman-Pearson Theorem may be used to construct best critical regions as follows:
x ∈ C if and only if

L(θ′;x)

L(θ′′;x)
≤ k,

where k is selected such that Pθ′(X ∈ C) = α. A critical region is uniformly most
powerful for testing a simple hypothesis H0 against a composite hypothesis H1 if it
is a best critical region for every simple hypothesis in H1.

2.2.2 Presentation of fundamental inequalities based on general assump-
tions and normal assumptions

Given a random variable X with mean µ and finite variance σ2, suppose we are
testing the hypothesis

H0 : µ = µ0 versus H1 : µ > µ0.
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Without a distributional assumption, we can use the Central Limit Theorem to

conclude that X−µ0
S/
√
n
∼ N(0, 1). We will develop a test in which we accept H0 if

and only if X < L, for some value of L to be determined. To develop a test with
significance α, we want to find a value L such that

P (X ≥ L) = α.

This is equivalent to

P (
X − µ0

S/
√
n
≥ L− µ
S/
√
n

) = α,

so we want
L− µ
S/
√
n

= Φ−1(1− α) = zα

In other words, we accept H0 if and only if

X − µ0

S/
√
n
< zα.

The power function for this test is given by

γ(µ) = P (X > µ0 + σzα/
√
n)

= P (
X − µ
σ/
√
n
> (µ0 − µ)

√
n/σ + zα)

2.2.3 Definition of Type I and Type II errors

Type I error: occurs when we decide θ ∈ ω1 when in fact θ ∈ ω0. In other words,
we reject the null hypotheses when it is correct. To determine the probability of a
Type I error, assume H0 is true, then calculate the probability that the test rejects
H0.

Type II error: occurs when we decide θ ∈ ω0 when in fact θ ∈ ω1. In other
words, we accept the null hypothesis when it is incorrect.

2.2.4 Significance levels

An observed significance level, also called a p-value, is the probability of observing a
statistic at least as extreme as the actual value that was observed.
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2.2.5 One-sided versus two-sided tests

In a one-sided test, H1 is of the form µ > µ0 or µ < µ0. In a two-sided test, H1 is
of the form µ 6= µ0. In the two-sided case, we use a rule of the form “Reject H0 in
favour of H1 if either X ≤ h or X ≥ k.” Then the probability of a Type 1 error is

P (X ≤ h) + P (X ≥ k).

There is flexibility in terms of how much of α to assign to each term in this expression,
but typically α/2 is used for each, especially if the distribution of X is symmetric.

2.2.6 Definition and measurement of likelihood ratio tests

1. Calculate the maximum likelihood as a function of the observations under H0.
If H0 is simple, there is only one likelihood for each test statistic.

2. Calculate the maximum likelihood as a function of the observations under
H1. If H1 is composite, this means finding the simple sub-hypothesis which
maximizes the likelihood.

3. The critical region is the set of observations for which the ratio of the first
expression over the second expression is below a constant k.

2.2.7 Recognizing when to apply likelihood ratio tests versus chi-square
or other goodness of fit tests

In a goodness-of-fit test, we want to test whether a given discrete distribution is
appropriate. Specifically, if f is the probability mass function that we want to test,
H0 is f(i) = pi0 for 1 ≤ i ≤ k. When H0 is true, the random variable

Qk−1 =
∑

1≤i≤k

(Xi − npi0)2

npi0

is χ2(k − 1).

2.2.8 Test for difference in variance under Normal distribution between
two samples through application of F -test

Suppose we have two sets of samples, X1, . . . , Xn and Y1, . . . , Ym, from normal dis-
tributions and we want to test H0 : σX = σY against H1 : σX 6= σY . The likelihood
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ratio is a function of the statistic

F =
(m− 1)

∑
1≤i≤n(Xi −X)2

(n− 1)
∑

1≤j≤m(Yj − Y )2
.

This has an F -distirbution with (n− 1) and (m− 1) degrees of freedom, so we can
select constants c1 and c2 such that

P (F ≤ c1) = P (F ≥ c2) =
α

2
.

2.2.9 Test for significance of means under Normal distribution assump-
tion in both large and small sample cases

Given random variables X and Y that are normally distributed with the same vari-
ance, when testing the hypothesis H0 : µ1 = µ2 against H1 : µ1 6= µ2:

• Calculate X, Y , and the pooled estimator of the variance:

S2
p =

1

(n− 2)
((n1 − 1)S2

1 + (n2 − 1)S2
2).

• Use the t-distribution with n− 2 degrees of freedom to construct a confidence

interval around X − Y . (Remember that instead of using
√

1/n,
√

1
n1

+ 1
n2

is

used.)

• Accept H0 if and only if 0 lies in the confidence interval.

2.2.10 Test for significance of difference in proportions between two sam-
ples under Binomial distribution assumption in both large and
small sample case

Testing a binomial distribution proceeds similarly to testing under the assumption
of normality. In this case, the estimate of the variance can either be p̂(1 − p̂) or
p0(1− p0) (if H0 is of the form p = p0).

For small sample sizes, use the fact that

Y =
X − np√
np(1− p)

is such that Y 2 ∼ χ2(1).
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2.2.11 Application of contingency tables to test independence between
effects

Suppose we are observing two discrete variables, the first of which has a levels and the
second of which has b levels. Let pij denote the probability that an observation is at
level i in the first variable, and level j in the second; let Xij denote the corresponding
observed frequencies.

Qab−1 =
∑

1≤j≤b

∑
1≤i≤a

(Xij − npij)2

npij

is approximately χ2(ab − 1) when n is large. To test independence, we are testing
the hypothesis pij = pipj. If we replace pi and pj with the observed frequencies, then
this variable becomes χ2((a− 1)(b− 1)).

2.2.12 Application of Neyman-Pearson lemma to Uniformly Most Pow-
erful hypothesis tests

Lemma 2.1. The Neyman-Pearson lemma states that for tests of one simple hy-
pothesis against another, a best critical region exists for each significance level and
that selecting all points below a fixed likelihood ratio determines the region.

2.2.13 Equivalence between critical regions and confidence intervals

A two-sided test can be rephrased as: “Accept H0 if and only if µ0 is in a (1 − α)
confidence interval around X.’

2.3 Non-parametric Statistics

Learning Objectives: Calculate the order statistics of a sample for a given distri-
bution and use non-parametric statistics to describe a data set.

2.3.1 Background

Given a sample X1, . . . , Xn of a continuous random variable X with support [a, b],
the order statistics are Y1 < Y2 < . . . < Yn, where Yi is the ith smallest element of
{X1, . . . , Xn}. If f(x) is the density function of X, then the density function of the
order statistics is

g(y1, . . . , yn) =

{
n!
∏

1≤i≤n f(yi) if a < y1 < y2 < . . . yn < b,

0 otherwise.
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The density functions of individual order statistics can be obtained by integrating to
obtain a marginal density function. This process can be simplified by using the fact
that ∫ x

a

F (w)α−1f(w)dw =
1

α
F (x)α,

and ∫ b

y

(1− F (w))β−1f(w)dw =
1

β
(1− F (w))β,

where F is the cumulative distribution function of X. In particular, the density
function of the kth order statistic is:

gk(yk) =

{
n!

(k−1)!(n−k)!
F (yk)

k−1(1− F (yk))
n−kf(yk) if a < yk < b,

0 otherwise.

For 0 < p < 1, the pth quantile of X is ξp = F−1(p). The median is the 0.5
quantile. It can be shown that

E(F (Yk)) =
k

n+ 1
≈ p,

where k = bp(n + 1)c. Therefore, Yk is a reasonable estimator of ξp, called the pth
sample quantile, or the 100pth percentile of the sample.

For a random variable Z with known cumulative distribution function F (z), let
X = bZ + a, where a and b are parameters to be estimated — then the distribution
function of X is of the form F ((x − a)/b). In this case, if ξX,p and ξZ,p are the
quantiles of X and Z, respectively, then ξX,p = bξZ,p + a. If Y1 < . . . < Yn are the
order statistics of a random sample of X, and pk = k/(n + 1), then a plot of Yk
versus ξZ,pk is called a q-q plot. If the plot is linear, then in indicates that the the
distribution function of X is of the form F ((x− a)/b).

Given a random sample X1, . . . , Xn where Xi = θ + εi, where εi are independent
and identically distributed with median 0, define the sign statistic S(θ0) to be the
number of observations greater than θ0. This can be used to test a null hypothesis
of the form H0 : θ = θ0 against the alternative hypothesis H1 : θ > θ0. The test is:

Reject H0 if S(θ0) ≥ c,

where c is selected to achieve a desired significance level. Note that when the null
hypothesis is true, S(θ0) has a binomial distribution with p = 1

2
. For large n, the

normal approximation may be used. Confidence intervals for the median θ can be
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determined by selecting c1 such that P (S(θ) ≤ c1) = α
2
. (This may be determined

either using the binomial distribution or normal approximation). Then [Yc1+1, Yn−c1)
is a (1− α)-confidence interval.

If we assume that the density function for εi is even, then we can use a signed-
rank Wilcoxon test. Without loss of generality, we work with a null hypothesis of
the form H0 : θ = 0, against H1 : θ > 0. (If the null hypothesis is θ = θ0, subtract θ0

from all observations.) Define

T =
∑

1≤i≤n

sgn(Xi)R|Xi|,

where R|Xi| is the rank of Xi among |X1|, . . . , |Xn|. The decision rule is of the form

Reject H0 if T ≥ c.

By re-ordering the summation, we can determine the moment generating function
for T :

E[exp(sT )] =
∏

1≤j≤n

E[exp(sjsgn(Xij)]

=
∏

1≤j≤n

(
1

2
e−sj +

1

2
esj
)

=
1

2n

∏
1≤j≤n

(e−sj + esj).

Note that T has mean zero, and variance
∑

1≤i≤n i
2 = n(n+1)(2n+1)

6
(since Var(sgn(X)) =

1).
The Mann-Whitney-Wilcoxon Procedure involves two random samples, X1, . . . , Xn1

and Y1, . . . , Yn2 , with cumulative distribution functions F (x) and G(x), respectively.
We assume that G(x) = F (x−∆), and consider a null hypothesis H0 : ∆ = 0 against
H1 : ∆ > 0. Rank the combined sample of Xi and Yi, and calculate

W =
∑

1≤j≤n2

R(Yj).

The decision rule is of the form

Reject H0 if W ≥ c.
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Under the null hypothesis, the ranks are uniformly distributed on {1, 2, . . . , n}, so

E(W ) =
n2(n+ 1)

2

and

Var(W ) =
n1n2(n+ 1)

12
.

The test statistic can also be written as

W = U +
n2(n2 + 1)

2
,

where
U = |{(i, j) : Yj > Xi}|.

Given two pairs of samples, (X1, Y1) and (X2, Y2), we say that the pairs are
concordant if sgn(X1 −X2)(Y1 − Y2) = 1, and discordant if the sign is -1. Kendall’s
τ is

τ = P (concordant)− P (discordant).

If τ = 0, then X and Y are independent. We can develop a test for the hypothesis
H0 : τ = 0 against H1 : τ 6= 0 by using the test statistic:

K =

(
n

2

)−1

(c− d),

where c is the number of concordant pairs in the sample, and d is the number of
discordant pairs. Spearman’s ρ is another measure of correlation that is obtained by
replacing observations with their ranks in the usual correlation coefficient formula:

ρ =

∑
1≤i≤n(R(Xi)− n+1

2
)(R(Yi)− n+1

2
)

n(n2 − 1)/12
.

If X and Y are independent, then E[ρ] = 0.

Summary of Non-parametric Statistical Tests
In the following, the null hypothesis is that X and Y have the same distribution; in

particular, they have the same median and P (X > Y ) = 1
2
.
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Name of
test

Context Test statistic Determining p-
value

Sign test Matched
pairs of
samples
(Xi, Yi).
Taking Yi
equal to
the median
is a special
case.

Number of i such
that Xi > Yi.
Remove ties from
sample.

Binomial distribu-
tion or normal ap-
proximation

Wilcoxon
Signed-
Rank “T”
Test

Matched
pairs of
samples
(Xi, Yi)

Remove ties and
rank |Xi − Yi|.
Two-sided test
statistic T is the
smaller of the sum
of positive ranks
and the sum of
negative ranks.
Reject H0 when T
is small.

Tables or nor-
mal approxima-
tion, µ = n(n+1)

4
,

σ2 = µ2n+1
6

Wilcoxon
Rank-Sum
“W” Test

Independent
(non-
paired)
samples of
size n1 and
n2

Combine samples
and rank. Sum the
ranks of the second
sample.

Normal ap-
proximation,
µ = n2(n1+n2+1)

2
,

σ2 = µn1

6
.

Mann-
Whitney
“U” Test

Independent
(non-
paired)
samples of
size n1 and
n2

Combine and order
the samples. For
each point from
the second sample,
count the number
of first-sample
points that precede
it, and sum the
results to get U .

Tables provided.
Reject if U is very
large (population 1
too small) or very
small (population 1
too large). Normal
approximation
uses µ = n1n2

2
,

σ2 = µn1+n2+1
6

.
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2.3.2 Application to a given distributional form

If the density and cumulative distribution function are known, then the density
function

n!

(k − 1)!(n− k)!
[F (y)]k−1[1− F (y)]n−kf(y)

can be used to answer questions about the kth order statistic in a sample of n.
Confidence intervals for order statistics can be determined by using the binomial

distribution, and the fact that each observation is less than the pth quantile with
probability p. In this case, P (Yi < ξp < Yj) is equal to the probability that at least i
observations, and at most j − 1, fall below the pth quantile. A similar approach can
be used to calculate P (Yi < t), using p = F (t).

2.3.3 Calculate Spearman’s Rho and Kendall’s Tau and understand how
those correlation measures differ from the Pearson correlation co-
efficient

An easy way to calculate Kendall’s Tau is to convert all observations into their rank,
sort the xi values in ascending order, and use a table indicating how many concordant
and discordant pairs are accounted for by each row. In order to count concordant /
discordant pairs, it suffices to look at the values in the y column below the current
row.

Spearman’s ρ

2.3.4 Apply rank order statistics using Sign-Rank Wilcoxon for matched
pair tests

To apply the Signed-Rank Wilcoxon test to the hypothesis H0 : θ = θ0:

1. Subtract θ0 from each observation.

2. Compute T =
∑

1≤i≤n sgn(Xi)R|Xi|.

3. Determine the variance of T , n(n+1)(2n+1)
6

.

4. The variable T/
√

Var(T ) is approximately normally distributed. Use this to
determine the probability that the T value is greater than / less than the
observed.
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2.3.5 Apply rank order statistics using Sign Test for matched pairs and
comparison of distributions with or without Normal approximation

To determine a confidence interval for the median, the key idea is that the probability
that the median is between Yi and Yi+1 is equal to the probability that i samples are
below the median, and that the probability of a sample being below the median is
0.5.

1. Find a confidence interval around the mean of S(θ). This can be done either us-
ing the binomial distribution or normal approximation. Expand to an integral
interval, [a, b].

2. Convert this to a confidence interval for the median, [Ya, Yb+1].

Given a sample of n pairs (xi, yi), we can test the hypothesis that xi and yi have
the same median by testing that di := xi − yi has a median of zero.

2.3.6 Apply rank order statistics using Mann-Whitney-Wilcoxon proce-
dure

To test a hypothesis that two samples come from the same distribution using a
U -test:

1. By convention, assume that the “second sample” is the one with more obser-
vations.

2. Calculate U : write all observations in order, then for each observation in the
“second sample,” add the number of first-sample observations less than it.

3. Use the tables to look up P (U ≤ U0). If P (U ≥ U0) is needed, use the fact
that U is symmetric around its mean n1n2/2.

Some questions may require the use of expressions for the expectation and vari-
ance of W and U :

E[W ] =
n2(n+ 1)

2

Var(W ) =
n1n2(n+ 1)

12

E[U ] =
n1n2

2

Var(U) =
n1n2(n+ 1)

12
.
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Instead of using the U -statistic tables, the normal approximation to W can be
used.

2.3.7 Application of QQ plots to evaluate goodness of fit

Given a set of n observations, to determine the x coordinate corresponding to the
kth order statistic, do the following:

1. If needed, estimate any unknown parameters in the fitted distribution.

2. Calculate F−1(k/(n + 1)), where F (x) is the cumulative distribution function
of the fitted distribution.

To analyze a normal q-q plot, use the fact that ξZ = ξX−µ
σ

, where X is the fitted
(x-axis) and Z is the variable being sampled (y-axis). Note that:

1. If the plot is a line, then the normal distribution is a good fit.

2. If the y-intercept is negative, then µ > 0, so the observed mean is smaller than
the fitted mean.

3. If the slope is greater than 1, then σ < 1, so the observed mean has greater
variance than the fitted mean.

2.4 Bayesian Parameter Estimation

Learning Objectives: Bayesian Statistics parameter estimation for conjugate prior
and posterior distributions:

• Beta-Binomial

• Normal-Normal

• Gamma-Poisson

2.4.1 Background

Recall that Bayes’ Theorem states that

P (A|B) =
P (B|A)P (A)

P (B)
=
P (A ∩B)

P (B)
.
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In Bayesian statistics, we treat the parameter θ as a random variable Θ with density
function h(θ), called the prior density function of θ. We will regard the density
function of a random variable X as a conditional density function, f(x|θ), given
Θ = θ. Given a sample X1, . . . , Xn, we use the following functions:

• the joint conditional density function of X, is L(x|θ) =
∏

1≤i≤n f(xi|θ),

• the joint density function of X and Θ, g(x, θ) = L(x|θ)h(θ),

• and the marginal density function of X, g1(x) =
∫∞
−∞ g(x, θ)dθ.

Then the posterior density function is

k(θ|x) =
L(x|θ)h(θ)

g1(x)
.

A shortcut for deriving the posterior density function can be derived based on
the observation that g1(x) does not depend on θ, so we can write

k(θ|x) = c(x)s(x|θ) ∝ s(x|θ),

where c(x) is whatever is needed to make k into a density function. The function
s(x|θ) can be obtained from L(x|θ)h(θ) by dropping any factors depending only on
x. This approach can be strengthened if we have a sufficient statistic Y for θ, because
then

L(x|θ) = g(y|θ)h(x),

so
k(θ|y) ∝ g(y|θ)h(θ).

The posterior distributions are obtained by modifying the original parameters as
follows:

• Gamma-Poisson: α∗ = α +
∑

1≤i≤n xi and β∗ = β/(nβ + 1).

• Normal-Normal: for y = 1
n

∑
1≤i≤n xi, prior distribution N(θ0, σ

2
0), and

known variance σ2, the posterior distribution has parameters:

θ∗ =

(
σ2

0

σ2
0 + (σ2/n)

)
y +

(
σ2/n

σ2
0 + (σ2/n)

)
θ0,

and

σ∗ =
σ2σ2

0/n

σ2
0 + (σ2/n)

.
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• Beta-Binomial: α∗ = α +
∑

1≤i≤n xi and β∗ = β + n−
∑

1≤i≤n xi.

These are all examples of conjugate families of distributions, since the posterior
distribution is part of the same family as the prior.

Point estimation of parameters is done relative to a decision function δ(x) and a
loss function L(θ, δ(x)). A Bayes estimate is a decision function δ that minimizes

E[L(Θ, δ(x)|X = x] =

∫ ∞
−∞
L(θ, δ(x))k(θ|x)dθ.

For the loss function L(θ, δ(x)) = (θ−δ(x))2, note that δ(x) = E[Θ|x], since E[(W−
b)2] is minimized when b = E[W ]. This is called a square-error loss function.

In addition, there are two other type of loss functions.

1. zero-one loss function L(θ, δ(x)) =

{
0 if δ(x) = θ

1 ow
. δ(x) is the mode.

2. Abosulte value loss function L(θ, δ(x)) = |θ − δ(x)|. δ(x) is median.

2.4.2 Calculate Bayesian Point Estimates for the three conjugate prior
distributions listed on the Learning Objective

1. Determine the parameters of the posterior distribution. To simplify this, use
k(θ|x) = L(x|θ)h(θ), dropping any factors that do not involve θ.

2. If a minimum square error estimate is desired, use the mean from the posterior
distribution as the estimate.

As a special case, if the prior distribution is uniform on [0, 1], then this can be
regarded as a beta distribution with parameters α = 1, β = 1.

2.4.3 Calculate Bayesian Interval estimates for the Normal-Normal dis-
tribution and special cases of the other conjugate prior distribu-
tions listed on the Learning Objective

To determine an Bayesian credible interval estimate, determine u() and v(x) such
that ∫ v

u

k(θ|x)dθ

is large, e.g. 0.95.
For the Normal-Normal case, this is just a matter of finding the usual confidence

interval for the mean of the posterior distribution.
The Gamma-Poisson case can be handled by using the fact that Γ(n, 2) = χ2(2n).
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2.4.4 Posterior mean as weighted average of posterior distribution and
observations

Normal-normal: (
σ2

0

σ2
0 + (σ2/n)

)
y +

(
σ2/n

σ2
0 + (σ2/n)

)
θ0
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3 Extended Linear Models

3.1 Introduction of the Generalized Linear Models

Learning Objectives

Understand the assumptions behind different forms of the Generalized Linear Model
under the exponential family assuming independent and identically distributed ob-
servations and be able to select the appropriate model from list below:

• Ordinary Least Squares

• Generalized Linear Model

• ANOVA

Background

Generalized linear modeling is a methodology for modeling relationships between
variables. It generalizes the classical normal linear model, by relaxing some of its
restrictive assumptions, and provides methods for the analysis of non-normal data.
With the GLM, the variability in one variable is explained by the changes in one
or more other variables. The variable being explained is called the dependent or re-
sponse variable, while the variables that are doing the explaining are the explanatory
variables. In some contexts these are called risk factors or drivers of risk. The model
explains the connection between the response and the explanatory variables.

3.1.1 Classical Linear Model

Classical linear modeling details explicitly with the approximation involved in by
assuming

E(y|x) = β0 + β1x1 + · · ·+ βpxp (1)

In other words, it is expected value that is being explained by a linear combination
of the explanatory variables. Any particular observation on y will deviate from this
average. The formulation emphasizes y is regarded as random whereas the x’s are
considered given or fixed.

One can rewrite Equation (1) as follow:

y = β0 + β1x1 + · · ·+ βpxp + εE(ε) = 0 (2)
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Here ε is called the error term. In econometrics the term “disturbance” is used.
Equation (2) emphasizes y is viewed as determined by the x’s, with an error ε serving
to mask or “disturb” the relationship.

Further assumptions are imposed

• Homoskedastic: The variance of ε is finite and does not vary with x variables,
at least over the considered range: V ar(ε) = σ2.

• Normal: The distribution of ε is normal.

• Uncorrelated: Each observation on y is uncorrelated with all the other obser-
vations.

Addition assumptions are summarized in matrix notation:

y = Xβ + ε, ε ∼ N(0, σ2I)

where ε = (ε1, · · · , εn)′, I is the n × n identity matrix, σ2I is the covariance matrix
of ε, and the distribution of ε is multivariate normal. An equivalent way of stating
it is in terms of the conditional distribution of y, given X:

y|X ∼ N(Xβ, σ2I)

Least squares properties under the classical linear model

Under the assumption of the classical linear model,

β̂ ∼ N{β, σ2(X ′X)−1}

This statement summarizes the following properties:

• Unbiased. E(β̂) = β.

• Maximum likelihood. This states β̂ is the MLE of β.

• Minimum variance, invariance, consistency.

Here are some formulas for β:

• Single Variable linear model:

β̂0 = ȳ − β̂1x̄

β̂1 =

∑
(xi − x̄)(yi − ȳ)∑

(xi − x̄)2

β̂1 = rxy
sy
sx
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• Multiple variable linear model

β̂ = (X ′X)−1X ′y

Weighted Least Squares

In regression certain observation may be less precise than others, and in a fit it
is reasonable to assign them less weight. Weighting cases according to their preci-
sion leads to weighted least squares. The precision wi of case i is signaled through
V ar(εi) = σ2/wi. Thus wi → 0 indicates no precision and wi → ∞ indicates com-
plete precision. Multiplying case i by

√
wi yields

y∗i = β0

√
wi + β1x

∗
i1 + · · · βpx∗ip + ε∗i

where y∗i ≡
√
wiyi, x

∗
ij ≡
√
wixij, ε

∗
i ≡
√
wiεi Thus we can get

β̂∗ = (X∗′X∗)−1X∗′y∗ = (X ′WX)−1X ′Wy

where W is the diagonal matrix with diagonal entries wi. The estimator β̂∗ is called
the weighted least squares estimator. Hence it follows

β̂∗ ∼ N{β, σ2(X ′WX)−1}

If V ar(y) = φE[y]p, the following transformation g(y) stablizes the variance:

g(y) =

{
y1−p/2 p 6= 2

ln y p = 2

This is known as Box-Cox transformation. To obtain the above, one can simply use
the first order taylor expansion to approximate g(y) and then find the function g(y)
to eliminate the effect of E[y]p.

3.1.2 General Linear models

Generalized linear models are important in the analysis of insurance data. With
insurance data, the assumption of the normal model are frequently not applicable.
For example, claim sizes, claim frequencies and the occurrence of a claim on a sin-
gle policy are all outcomes which are not normal. Also, the relationship between
outcomes and drivers of risk is often multiplicative rather than additive.
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Given a response y, the generalized linear model (GLM) is

f(y) = c(y, φ)exp{yθ − a(θ)

φ
}, g(µ) = x′β

The equation for f(y) specifies that the distribution of the response is in the ex-
ponential family. The second equation specifies that a transformation of the mean,
g(µ), is linearly related to explanatory variables contained in x.

• The choice of a(θ) determines the response distribution. Note, E[y] = a′(θ)
and V ar(y) = φa′′(θ). Here φ is called dispersion parameter since varying it
allows varying the relationship of the variance to the mean.

• The choice of g(µ), called the link, determines how the mean is related to the
explanatory variables x. Note g is a monotonic differentiable function, such as
log or square root.

• Given x, µ is determined through g(µ) . Given µ, θ is determined through
a′(θ) = µ. Finally given θ, y is determined as a draw from the exponential
density specified in a(θ).

• Observations on y are assumed to be independent.

Steps in generalized linear modeling

1. Choose a response distribution f(y) and hence choose a(θ). The response
distribution is tailored to the given situation.

2. Choose a link g(µ). This choice is sometimes simplified by choosing the so
called “canonical” link corresponding to each response distribution.

3. Choose explanatory variable x in terms of which g(µ) is to be modeled.

4. Collect observations y1, · · · , yn on the response y and corresponding values
x1, · · · , xn on the explanatory variables x. Successive observations are assumed
to be independent.

5. Fit the model by estimating β and, if unknown, φ.

6. Given the estimate of β, generate predictions of y for different settings of x
and examine how well the model fits by examining the departure of the fitted
values from actual values, as well as other model diagnostics.
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Link Functions

If g(µ) = θ then g is called the canonical link corresponding to a(θ). In this case,
θ = x′β.

The list are commonly used canonical links.

Link Function g(µ) Canonical link for
identity µ normal
log lnµ Poisson
power µp gamma (p = −1); inverse Gaussian (p = −2)
Square root

√
µ

logit ln µ
1−µ binomial

Modeling counts such as the number of claims or deaths in a risk group requires
correction for the number n exposed to risk. If µ is the mean of the count y, then
the occurrence rate µ/n of interest and

g(µ/n) = x′β

When g is the log function, this becomes

ln(µ/n) = x′β =⇒ lnµ = lnn+ x′β

The variable n is called the exposure and lnn is called an “offset”. An offset is
effectively another x variable in the regression with a β coefficient equal to one.
Offsets are used to correct for group size or differing time periods of observations.

Exponential Family

Parameters of commonly used exponential family distributions: (In all cases, E[y] =
µ)

Distribution θ µ a(θ) φ V (µ) = a′′(θ)

Binomial ln µ
n−µ

neθ

1+eθ
n ln(1 + eθ) 1 µ(1− µ/n)

Binomial in terms of π ln π
1−π nπ n ln(1 + eθ) 1 nπ(1− π)

Poisson lnµ eθ eθ 1 µ

Negative binomial ln κµ
1+κµ

eθ

(1−eθ)
− 1
k

ln(1− eθ) 1 µ(1 + κµ)

Normal mu θ 1
2
θ2 σ2 1

Gamma − 1
µ

−1
θ

− ln(−θ) 1
ν

µ2

Inverse Gaussian − 1
2µ2

1√
−2θ

−
√
−2θ σ2 µ3
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Tweedie Distribution

Suppose
y = z1 + · · ·+ zc

with y = 0 if c = 0.
If c is Poisson and the zj are independent gamma random variables then y has

the Tweedie distribution. The distribution has a non-zero probability at y = 0 equal
to the Poisson probability of no claims. The rest of the distribution is similar to
the gamma. The Tweedie distribution is a member of the exponential family and
V ar(y)φµp where 1 < p < 2. it is similar to the zero-adjusted inverse Gaussian
distribution.

3.2 Model Evaluation

3.2.1 Standard Error of regression

Let’s look at a simple linear model. Suppose y is the response variable, ŷ is the
estimate and ȳ is the mean. Then We can express the difference between yi and the
sample mean into

yi − ȳ = (yi − ŷi) + (ŷi − ȳ)

Squarng both sides and adding up over all i, we get

n∑
i=1

(yi − ȳ)2 =
n∑
i=1

(yi − ŷi)2 +
n∑
i=1

(ŷi − ȳ)2

where the total sum of squares consists of two parts, the first term on the right hand
side is called error sum of squares and the second term is regression sum of squares.

The sum of squares information can be summarized in an analysis of variance
(ANOVA) table. The table looks like this:

Source Sum of Squares df Mean square
Regression SSR p SSR/p
Error SSE n− (p+ 1) SSE/(n− (p+ 1))
Total SST n− 1 SST/(n− 1)

The F statistic, which tests the significance of the entire regression, is the quotient
of the mean square of the regression over the mean square error:

Fp,n−(p+1) =
SSR/p

SSE/(n− (p+ 1))
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It tests whether the model as a whole is significant. In other words, the null hy-
pothesis for the F test is H0 : β1 = β2 = · · · = 0. In a 1-variable model, the F1,n−2

statistic is the square of the tn−2 statistic for β1.

3.2.2 R2:the coefficient of determination

R2 =
SSR

SST
= 1− SSE

SST

where is the positive square root of R2 is called the multiple correlation coefficient
and it is the square of the correlation coefficient of y and ŷ.

3.2.3 t statistics

β̂ is an unbiased estimator of β and has the minimum variance of all unbiased esti-
mators. Its covariance matrix is

V ar(β̂) = σ2(X ′X)−1

Since σ2 is unknown, we will use the standard errors of regression s2. Hence the
variance of β̂ is estimated as s2

βi
= s2ψi where ψi is the it diagonal element of

(X ′X)−1. The square root of the it component of the estimated variance of β̂ is
called the standard error of βi. To test the null hypothesis that β̂i = 0, we use the t
statistic βi/sβ, which has n− (p+ 1) degrees of freedom. More generally, to test the
null hypothesis that i = β∗, we use

tn−(p+1) =
β̂i − β∗

sβi

A 100p% confidence interval for βi may be constructed as β̂i ± tsβ, where t is the
100(1 + p)/2 percentile of a t-distribution with the appropriate number of degrees of
freedom.

3.2.4 Confidence Internal

Given values of the explanatory variables x, the estimated value of the mean of
y is µ̂ where g(µ̂) = x′β̂. A confidence interval around the estimate is used to
indicate precision. The computation of the confidence interval requires the sampling
distribution of µ̂. The variance of the linear predictor x′β is

V ar(x′β̂) = φx′(X ′WX)−1x
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Thus an approximate confidence interval for the mean is (µl, µu) where

g(µl) = x′β̂ − z
√
φx′(X ′WX)−1x

and µu similarly defined with a plus sign. Hence z is the appropriate point on the
N(0, 1) distribution. The dispersion φ is replaced by an estimate.

The estimate µ̂ is unbiased when using an identity link. For other links it is
biased.

3.2.5 Goodness of Fit

Deviance

One way of assessing the fit of a given model is to compare it to the model with
the best possible fit. The best fit will obtain when there are as many parameters
as observations: this is called a saturated model. The saturated model will ensure
there is complete flexibility in fitting θi. Since

∂l

∂θi
=
yi − µi
φ

=
yi − a′(θi)

φ
,

the MLE of θi under the saturated model is θ̌i, where a′(θ̌i) = yi. Thus each fitted
value is equal to the observation and the saturated model fits perfectly.

The value of the saturated log-likelihood is

ľ ≡
n∑
i=1

{ln c(yi, φ) +
yiθ̌ − a(θ̌)

φ
}

which is the maximum possible log-likelihood for y given the response distribution
specified by a(θ). This value is compared to l̂, the value of the maximum of the log-
likelihood based on y and the given explanatory variables. The “deviance” denoted
as ∆, is defined as a measure of distance between the saturated and fitted models:

∆ = 2(ľ − l̂)

• The smaller, the better fit

• The size of ∆ is assessed relative to the χ2
n−p distribution.

• A direct calculation shows that for the exponential family

∆ = 2
n∑
i=1

{yi(θ̌i − θ̂i)− a(θ̌i) + a(θ̂i)

φ
}

where θ̌i and θ̂i are such that a′(θ̌i) = yi and g{a′(θ̂i)} = x′iβ̂, respectively.
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• When φ is unknown and estimated, then the χ2
n−p distribution for the deviance

is compromised. In case of the Poisson, φ = 1 and the χ2 approximation is
useful. When it is normal and σ2 is known, then χ2 is exact; however, if σ2

is estimated, then it is not reliable. Some paper shows deviance is useful for
testing the significance of explanatory variables in nested models.

Distribution deviance
Normal 1

σ2

∑n
i=1(yi − µ̂i)2

Poisson 2
∑n

i=1{yi ln(yi/µ̂i)− (yi − µ̂i)}
Binomial 2

∑n
i=1 ni{yi ln(yi/µ̂i) + (ni − yi) ln(ni−yi

1−µ̂i )}
Gamma 2ν

∑n
i=1{− ln(yi/µ̂i) + yi−µ̂i

µ̂i
}

Inverse Gaussian 1/σ2
∑n

i=1
(yi−µ̂i)2
µ̂2i yi

Negative binomial 2
∑n

i=1{yi ln(yi/µ̂i − (yi + 1/κ) ln( yi+1/κ
µ̂i+1/κ

)}

AIC Akaike Information Criterion: The penalty is 2 for each parameter. AIC =
−2l + 2q, where p is number of parameters.

BIC Bayesian Information Criterion: The penalty varies with the number of obser-
vations and is lnn for each parameter. The formula is BIC = −2l + q lnn.

3.2.6 Model Validation

In the classical linear model setup, let’s define hat matrix as

H = X(X ′X)−1X ′

. Then ŷ = Hy. Since y − ŷ = ε̂, it follows that ε̂ = (I − H)y). Let M = I − H,
then ε̂ = My. Note H and M are self-adjoint. Hence it follows that

V ar(ε̂) = M2σ2

This is the covariance matrix for ε̂. The variance ε̂i is estimated by (1−hii)s2, where
hii is the it diagonal element of the H matrix. The standardized or studentized
residuals are ε̂i/(s

√
1− hii).

The classical linear model makes the following assumptions:

• linearity: To construct an added variable plot, also known as a partial regres-
sion or partial leverage plot, first regress y and xk on the other variables. The
added variable plot plots the residuals of the y regression on the residuals of
the xj regression. If these are more or less linear with nonzero slope, then xj
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should be in the model. If the slope is 0, then xj should not be in the model.
If the plot isn’t linear, perhaps xj should be transformed.

To construct a partial residual plot, add β̂jxj to ε̂. The partial residuals ε̂∗i are
defined by

ε̂∗i = ε̂i + β̂jxij

where the regression has all variables including xj. Plot the partial residuals

against xij. The plot will have slope β̂j, but if the plot is not close to a line, a
nonlinear relationship is indicated.

• Normal: To check normality, construct a pp-plot or a qq-plot of the studentized
residuals against a standard normal distribution. Closeness to the 45 line
indicated normality.

• constant variance: To check that the variance is constant, construct a scatter
plot of the residuals or studentized residuals against each explanatory variable
xj, or against y. A random scatter indicates homoskedasticity. A non-linear
pater may indicate that the relationship between the explanatory variable and
the output variable is not linear

• independence: plot the εi in the order for which correlation is expected, such as
order of occurrence. Alternatively, examine M. Correlations between residuals
are indicated by off-diagonal numbers, which should be small.

Influence points

If some points having unusually high residuals, they are outliers. If the model is
valid, with residual is normally distribution with mean 0 and variance s2(1− hii) =,
Here hii are called leverage. They must be between 1/n and 1, and sum up to p+ 1.
Thus on average they are (p+1)/n. If leverage is more than 2 or 3 times the average
oval, the data should be reviewed.

Cook’s distance combines outliers and high-leverage points into a single measure-
ment. Let ŷj(i) be the fitted value of yj if the it observation is removed from data
set. Let Di be Cook’s distance for the it variable. Then

Di =

∑n
j=1(ŷj − ŷj(i))2

(p+ 1)s2
= (

ε̂i
se(ε̂i)

)2 hii
(p+ 1)(1− hii)

where se(ε̂i) is the standard error of ε̂i. The first factor of the last expression measures
how much of an outlier the it point is. The second factor measures leverage. Rules
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of thumb for determined whether Di is too high are Di > 1, Di > 4/(n − (p + 1))
and Di > 4/n.

Predictive accuracy of model

SSPE =
n∑

i=n1+1

(yi − ŷi)2

PRESS =
n∑
i=1

(yi − ŷ(i))
2 =

n∑
i=1

(
ε̂i

1− hii
)2

3.2.7 Testing the significance of explanatory variables

As before, hypotheses are written as Cβ = r where C is known matrix - sometimes
called the hypothesis matrix - and r is a set of given values.

There are three main approaches to testing hypotheses of the form Cβ = r.
Each of these approaches considers the likelihood or log-likelihood. Write β̂ as the
unrestricted MLE of β, and let β̃ denote the MLE of β when l is maximized subject
to the restrictions Cβ = r. Further, write l̂ as the value of l at β̂, and l̃ the value of
l at β̃. Obviously, l̂ ≥ l̃. Also let q be the number of rows of C.

Likelihood ratio test Let l̂ be the log likelihood of the unconstrained model and l̃
the loglikelihood of the constrained model. Then the likelihood ratio statistic

2(l̂ − l̃)

has a chi-square distribution with q degrees of freedom. Often the dispersion
parameter φ has to be estimated, but as long as it is estimated consistently in
the two models the statistic should be valid. The likelihood ratio statistic may
also be computed as the difference of the deviances of the two models as long
as the same estimate for φ is used in both log-likelihoods.

Wald Test This measures how far Cβ̂ is from r, with a large difference Cβ̂ − r
providing evidence against the restrictions. The estimate β̂ is required, but
not β̃. If Cβ = r then since β̂ ∼ N{β, φ(X ′WX)−1 it follows that

Cβ̂ − r ∼ N{0, φC(X ′WX)−1C ′}

This leads to the Wald statistic for testing Cβ = r:

(Cβ̂ − r)′{φC(X ′WX)−1C ′}−1(Cβ̂ − r) ∼ χ2
q
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For testing a single coefficient βj = 0, the Wald statistic reduces to

(β̂j − r)2

φψj
∼ χ2

1

where ψj is the j + 1 st diagonal entry in the matrix φ(X ′WX)−1.

One can use normal approximation as

β̂j − r√
φψj

Score Test This test only requires β̃ but not β̂. It checks whether the slope of
the log likelihood at β̃ is high; if it is, it is an indication that additional vari-
ables should be added to the model. “Score” is a term that refers to the first
derivative of the log likelihood. The score statistic is

l̇′(β̃)(V ar(l̇(β))−1l̇(β̃) ∼ χ2
q

with l̇(β̃) = φ−1X ′WG(y − µ̃), V ar(l̇(β)) = φ−1(X ′WX).

When the identity link is used, the statistic reduces to

φ−1(β̂ − β̃)′(X ′WX)(β̂ − β̃)

Additional Information Type I tests are sequential tests. We start off with no
variables and add them in one by one, or several at a time if necessary, as with
categorical variables. Each variable is tested assuming the previously added
variables are in the model. This testing procedure deepens on the order the
variables are added to the model.

Type II tests are tests on variables or sets of variables that assume that all other
variables are present in the model. This testing procedure does not depend on
the order the variables are added to the model. Walk tests are type II by
their very nature; they test the significance of a variable or group of variables
assuming that all the other variables are in the model. Likelihood ratio test
may be Type I or Type III.

Likelihood ratio tests are superior statistically to Wald tests, so when the two
lead to opposite conclusions, the likelihood ratio test result should be preferred.
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3.2.8 Other Diagnostic Tools

Deviance Residuals

δ2
i =

√
2(yi(θ̌i − θ̂i)− a(θ̌i) + a(θ̂i))

φ

The sign on the square root is taken as the sign of yi − µ̂i.

Anscombe residuals
h(yi)− h(ŷi)

ḣ(ŷi)
√
V (ŷi)

where ḣ(y) = V (y)−1/3

Checking the link Plot g(µ̂i) + ġ(µ̂i)(yi − µ̂i) against x′iβ. It should be a straight
line.

Added Variable Partial residual plots Added value plot is similar to classic lin-
ear case. For the partial residual plot, plot (yi − ŷi)ġ(ŷi) + xijβ̂j against xij.

Leverage Leverage is based on diagonal elements of the hat matrix, which for GLM
is defined by

H = W 1/2X(X ′WX)−1X ′W 1/2

For 1 variable regression: it can be simplified as hii = 1
n

+ (x−x̄)2∑
(xj−x̄)2

3.3 Model Estimation

3.3.1 Maximum Likelihood

The MLE of β and θ are derived by maximizing the log-likelihood, defined as

l(β, φ) =
n∑
i=1

ln f(yi; β, φ) =
n∑
i=1

{ln c(yi, φ) +
yiθi − a(θi)

φ
}

which assumes independent exponential family responses yi.
Consider the MLE for βj. To find the maximum, l(β, φ) is differentiated with

respect to βj:

∂l

∂βj
=

n∑
i=1

∂l

∂θi

∂θi
∂βj
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where
∂l

∂θi
=
yi − a′(θi)

φ
=
yi − µi
φ

,
∂θi
∂βj

=
∂θi
∂ηi

∂ηi
∂βj

=
∂θi
∂ηi

xij

Here ηi = x′iβ and xij is component i of xj. Setting ∂l/∂βj = 0 yields the first
order conditions for likelihood maximization:

n∑
i=1

∂θi
∂ηi

xij(yi − µi) = 0 ⇐⇒ X ′D(y − µ) = 0

where D is the diagonal matrix with diagonal entries ∂θi/∂ηi = {g′(µi)V (µi)}−1.
Hence, for β, the resulting formula is

X ′WG(y − µ) = 0

where

• µ = g−1(X ′β).

• W is the diagonal matrix with entries (g′(µi)
2V (µi))

−1.

• G is the diagonal matrix with entries g′(µi).

If we use a Taylor series approximation, then g(yi)g(µi) + g′(µi)(yi − µi) =⇒
g(y)g(µ) + g′(µ)(y − µ) where g(y) is a vector with entries g(yi) and similarly for
g(µ). We can then conclude that

β̂ ≈ (X ′WX)−1X ′Wg(y)

3.3.2 Fisher Scoring

Usually, X ′WG(y − µ) = 0 is difficult to solve except for cases such as the normal
with the identity link. Recall, Newton assumes that the first and second derivatives
of the function to be maximized can be easily evaluated at each point. Using these
derivatives, a quadratic approximation is made to the function at this point and it
is the quadratic that is maximized. The resulting maximizer is then used to derive a
new quadratic which in turn is maximized. This sequence of approximate maximizers
is often found to converge quickly to the actual maximum.

To simplify this discussion, suppose φ is known and so write l(β) to denote the
log-likelihood as a function of the unknown parameter vector β. If β contains a single
parameter then the quadratic Taylor series approximation at any point β is

l(β + δ) ≈ l(β) + l′(β)δ +
δ2

2
l′′(β)
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Differentiating the right hand side as a function of δ and equating to zero yields

l′(β) + δl′′(β) = 0 =⇒ δ = −{l′′(β)}−1l′(β)

With β given and δ as specified, a higher point thus appears to be β − l′(β)/l′′(β).
Denoting β(m) as the value for β at the iteration m, the update equation is

β(m+1) = β(m) − {l′′(β(m))}−1l′(β(m))

For a maximum l′′(β) < 0. Iteration of this equation, each time revising β, leads
to a sequence which, as stated above, often rapidly converges. This procedure is
called Newton-Raphson iteration. Note, −l′′(β) is non-negative definite to achieve
maximum and l′(β) is called score vector.

Well, as for Fisher scoring, we can replace l′′(β) by its expectation E{l′′(β)}.
The matrix −E{l′′(β)} is called the “Fisher information” matrix. For GLMs the
information matrix is

E{l′′(β)} = φ−1X ′WX

Hence we can write

β(m+1) = β(m) + (X ′WX)−1X ′WG(y − µ)

This equation often is rewritten as the following

β(m+1) = (X ′WX)−1X ′W{Xβ(m) +G(y − µ)}

where the expression in the curly brackets on the right is called the “local dependent
variable”. The local dependent variable is computed by replacing µ by the estimate
µ(m) where g(µ(m)) = Xβ(m). Computing β(m+1), requires V (µ), the variance function
of the distribution and g′(µ), the derivative of the link. The dispersion parameter φ
os mpg required.

The inverse of the Fisher information matrix is approximately, for late n, the
covariance matrix of β̂. Also MLEs are asymptotically unbiased and, again for large
samples, approximately normal. Hence

β̂ ∼ N{β, φ(X ′WX)−1}

3.3.3 Quasi-Likelihood

For every exponential family response, V ar(y) = φV (µ). However, many combina-
tions of φ and V (µ) do not correspond to an exponential family response. Hence for
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such combinations of and V (µ) the following expression

φ−1X ′D(y − µ) =
n∑
i=1

∂µi
∂β

yi − µi
φV (µi)

is not the derivative of an exponential family log-likelihood. A solution to this prob-
lem is to maximize the “quasi-likelihood”. A quasi-likelihood Q(β) is any function of
β which has derivatives Q′(β) as the same as above equation. With quasi-likelihood
estimation. It is Q(β) which is maximized with respect to β. Obviously, the quasi-
likelihood estimate of β coincides with β̂ in those cases where corresponds to the
derivative of a likelihood. Similar to the proper maximum likelihood situation, the
covariance matrix of β̂ is determined from the second derivatives of Q(β).

Hence, we can see that quasi-likelihood produces the same β estimation but in
some cases, it inflates the standard error of the estimators.

In case of Poisson, we can use
√
φ as a multiplier for the standard error of β,

where φ can be estimated as
√

∆
n−p−1

.

3.3.4 collinearity

We can assess the importance of including one or more candidate explanatory vari-
ables in the model with the t and F tests. It is also good practice to check for
collinearity among the explanatory variables themselves. Collinearity occurs when
one explanatory variable is a linear combination of other explanatory variables. High
correlation among the explanatory variables results in high variances of the corre-
sponding regression parameter estimators. The variance inflation factor is useful
statistic in measuring the degree of collinearity present among the explanatory vari-
ables. The VIF for the nth explanatory variable is found by regressing this variable
against the other explanatory variables in the model. The V IFj = (1−R2

j )
−1, where

R2
j is the coefficient of determination for this linear model.
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4 Time Series with Constant Variance

4.1 Use Time Series to Model Trends

Learning Objectives

• Estimation, data analysis and forecasting

• Forecast errors and confidence intervals2

4.1.1 Background

Notation

Let’s denote a time series of length n by {xt : t = 1, · · · , n} = {xt} and x̂t+k|t is a
forecast made at time t for a future value at time t + k. A forecast is a predicted
future value, and the number of time steps into the future is the lead time (k).

Models

• Additive decomposition model: xt = mt + st + zt where, at time t, xt is the
observed series, mt is the trend, st is the seasonal effect, and zt is an error term
that is, in general, a sequence of correlated random variables with mean zero.

• Multiplicative model: xt = mt · st + zt. If the random variation is modelled by
a multiplicative factor and the variable is positive, an additive decomposition
model for log(xt) can be used: log(xt) = mt + st + zt. Some care is required
when the exponential function is applied to the predicted mean of log(xt) to
obtain a prediction for the mean value xt, as the effect is usually to bias the
predictions. If the random series zt are normally distributed with mean 0 and
variance σ2, then the predicted mean value at time t is given by x̂t = emt+ste

1
2
σ2

.

Estimating trends and seasonal effects

There are various ways to estimate the trend mt at time t, but a relatively simple
procedure is to calculate a moving average entered on xt. A moving average is an
average of a specified number of time series values around each value in the time
series, with the exception of the first few and last few terms. For example, we use

2Assume you know R. Here we only discuss univariate time-series.
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the following for monthly moving average:

m̂t =
1
2
xt−6 + xt−5 + · · ·+ xt−1 + xt + xt+1 + · · ·+ xt+5 + 1

2
xt+6

12

In particular, this formula is derived from average two moving averages, that is, the
average from Feb to Jan next year, and Jan to Dec. This process is called centering.
Hence we can obtain the seasonal affection by removing m̂t (subtract if additive
model; divide if multiplicative model). In other words, ŝt = xt − m̂t for additive
and ŝt = xt/m̂t for multiplicative. Then we will average ŝt for each month to obtain
tentative seasonal adjustment factors. Then this effect will be removed from the
seasonal factors to reach final seasonal adjustment factors.

Smoothing

The centred moving average is an example of a smoothing procedure that is applied
retrospectively to a time series with objective of identifying an underlying signal or
trend.

A second smoothing algorithm offered by R is stl. This uses a locally weighted
regression technique known as loess. The regression, which can be a line or higher
polynomial, is referred to as local because it uses only some relatively small number
of points on either side of the point at which the smoothed estimate is required. The
weighting recedes the influence of outlying points and is an example of robust regres-
sion. The term filtering is also used for smoothing, particularly in the engineering
literature.

Correlation

The mean function of a time series model is

µ(t) = E(xt)

and, in general, is a function of t. The expectation in this definition is an aver-
age taken across the ensemble of all the possible time series that might have been
produced by the time series model.

If the mean function is constant, we say that the time series model is stationary
in the mean where the sample estimate of the population mean, µ, is the sample
mean, x̄:

x̄ =
n∑
t=1

xt/n
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Above equation does rely on an assumption that a sufficiently long time series char-
acterizes the hypothetical model. Such models are known as ergodic. A time series
model that is stationary in the mean is ergodic in the mean if the time average
for a single time series tends to the ensemble mean as the length of the time series
increases:

lim
n→∞

∑
xt
n

= µ

Consider a time series model that is stationary in the mean and the variance.
The variables may be correlated, and the model is second order stationary if the
correlation between variables depends only on the number of time steps separating
them. The number of time steps between the variables is known as the lag. A
correlation of a variable with itself at different times is known as autocorrelation or
serial correlation. If a time series model is second-order stationary, we can define an
auto covariance function (acvf), γk, as a function of the lag k:

γk = E[(xt − µ)(xt+k − µ)]

. The lag autocorrelation function (acf), ρk, is defined by

ρk =
γk
σ2

. The sample acvf, ck, is calculated as

ck =
1

n

n−k∑
t=1

(xt − x̄)(xt+k − x̄)

and the sample acf is defined as

rk =
ck
c0

By default, the acf function from R produces a plot of rk against k, which is called
the correlogram. Dashed lines are drawn at y = − 1

n
± 2√

n
. Assume that ρk = 0 for

all k, these are bounds for the values of rk at 5% significant. In addition, the linear
effect of one variable on another is proportionate to the square of the correlation.
An autocorrelation of 0.1 indicates only a 1% linear effect.

Cross-correlation

Suppose we have time series models for variables x and y that are stationary in
the mean and the variance. The variables may each be serially correlated, and
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correlated with each other at different time lags. The combined model is second-
order stationary if all these correlations depend only on the lag, and then we can
define the cross covariance function (ccvf), γk(x, y), as a function of the lag, k:

γk(x, y) = E[(xt+k − µx)(yt − µy)]

The cross-correlation function (ccf), ρk(x, y), is defined by

ρk(x, y) =
γk(x, y)

σxσy

Note γk(x, y) = γ−k(y, x) and similarly for ρk(x, y). We estimate ccvc and ccc from
the sample using ck(x, y) and rk(x, y) respectively, which are defined by

ck(x, y) =

∑n−k
t=1 (xt+k − x̄)(yt − ȳ)

n

rk(x, y) =
ck(x, y)√

c0(x, x)c0(y, y)

4.1.2 Bass Model

The Bass formula for the number of people, Nt, who have bought a product at time
t depends on three parameters: the total number of people who eventually buy the
product, m; the coefficient of innovation, p; and the coefficient of imitation, q. The
Bass formula is

Nt+1 = Nt + p(m−Nt) + qNt(m−Nt)/m

According to the model, the increase in sales, Nt+1 −Nt, over the next time period
is equal to the sum of a fixed proportion p and a time varying proportion qNt

m
, of

people who will eventually buy the product but have not yet done so. The rationale
for the model is that initial sales will be to people who are interested in the novelty
of the product, whereas later sales will be to people who are drawn to the product
after seeing their friends and acquaintances use it.

Let f(t), F (t) and h(t) be the density, cumulative distribution function and haz-
ard of the distribution of time until purchase. The definition of the hazard is

h(t) =
f(t)

1− F (t)

The interpretation of the hazard is that if it is multiplied by a small time increment
it gives the probability that a random purchaser who has not yet made the purchase
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will do so in the next small time increment. Then the continuous time model of the
Bass formula can be expressed in terms of the hazard:

h(t) = p+ qF (t)

The solution of this equation will be

F (t) =
1− e−(p+q)t

1 + (q/p)e−(p+q)t

Two special cases of the distribution are the exponential distribution and logistic
distribution, which arise when q = 0 and p = 0. Hence, we can get the solution for
the Bass formula is just

Nt = m(
1− e−(p+q)t

1 + (q/p)e−(p+q)t

Also note to maximize S(t) = mf(t), we can get the peak sales in the continuous-time
model occur at

tpeak =
ln q − ln p

p+ q

4.1.3 Exponential Smoothing and Holt-Winters Methods

Exponential Smoothing

Our objective is to predict some future value xn+k given a past history {x1, x2, · · · , xn}
of observations up to time n. A typical application is forecasting sales of a well-
established product in a stable market. The model is

xt = µt + wt

where µt is the non-stationary mean of the process at time t and wt are independent
random derivations with a mean of 0 and a standard deviation σ. Given that there is
no systematic trend, an intuitively reasonable estimate of the time at time t is given
by a weighted average of our observation at time t and our estimate of the time at
time t− 1:

at = αxt + (1− α)at−1, 0 < α < 1 (3)

The at is the exponentially weighted moving average (EWMA) at time t. The value
of α determines the amount of smoothing, and it is referred to as the smoothing
parameter. Since we have assumed that there is no systematic trend and that there
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are no seasonal effects, forecasts made at time n for any lead time are just the
estimated mean at time n. The forecasting equation is

x̂n+k|n = an, k = 1, 2, · · ·

Furthermore, we can rewrite Equation (3) as

at = α(xt − at−1) + at−1

By repeated back substitution we obtain

at = αxt +
∞∑
k=1

α(1− α)kxt−k

When written in this form, we see that at is a linear combination of the current
and past observations, with more weight given to the more recent observations. The
one-step-ahead prediction errors, et, are given by

et = xt − x̂t|t−1 = xt − at−1

By minimizing the same of squared one-step-ahead prediction errors, we can obtain
a value for the smoothing parameter α.

Holt-Winters Method

We will refer to the change in level from one time period to the next as the slope and
seasonally adjusted mean as level. The Holt-Winters method generalizes Equation
(3) and the additive seasonal form of their updating equations for a series {xt} with
period p is 

at = α(xt − st−p) + (1− α)(at−1 + bt−1)

bt = β(at − at−1) + (1− β)bt−1

st = γ(xt − at) + (1− γ)st−p

where at, bt and st are the estimated level, slope and seasonal effect at time t, and α, β
and γ are the smoothing parameters. The first updating equation takes a weighted
average of our latest observation, with our existing estimate of the appropriate sea-
sonal effect subtracted, and our forecast of the level made one time step ago. The
one-step-ahead forecast of the level is the sum of the estimated of the level and slope
at the time of forecast. The second equation takes a weighted average of our previous
estimate and latest estimate of the slope, which is the difference in the estimated
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level at time t and the estimated level at time t − 1. Finally, we have another es-
timate of the seasonal effect, from the difference between the observation and the
estimate of the level, and we take a weighted average of this and the last estimate of
the seasonal effect for this season, which was made at time t− p.

The forecasting equation for xn+k made after the observation at time n is

x̂n+k|n = an + kbn + sn+k−p, k ≤ p

where an is the estimated level and bn is the estimated slope, so an + kbn is the
expected level at time n+k and sn+k−p is the exponentially weighted estimate of the
seasonal effect made at time n = k − p.

The Holt-Winters algorithm with multiplicative seasonal is
an = α( xn

sn−p
) + (1− α)(an−1 + bn−1)

bn = β(an − an−1) + (1− β)bn−1

sn = γ(xn
an

) + (1− γ)sn−p

The forecasting equation for xn+k made after the observation at time n becomes

x̂n+k|n = (an + kbn)sn+k−p

4.1.4 White Noise and Random Walks

A residual error is the difference between the observed value and the model predicted
value at time t. If we suppose the model is defined for the variable yt and ŷt is the
value predicted by the model, the residual error xt is

xt = yt − ŷt

. We know that features of the historical series, such as the trend or seasonal vari-
ation, are reflected in the correlogram. Thus if a model has accounted for all the
serial correlation in the data, the residual series would exhibit no obvious patterns.
Hence we can get the following definition.

Definition 4.1. A time series {wt : t = 1, 2, · · · , n} is discrete white noise if the
variables w1, w2, · · · , wn are independent and identically distributed with a mean of
zero. This implies that the variables all have the same variance σ2 and Cor(wi, wj) =
0,∀i 6= j. If, in addition, the variables also follow a normal distribution the series is
called Gaussian white noise.
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Note the second-order properties of a white noise series are assumed by the def-
inition. Simulated white noise data will not have autocorrelations that are exactly
zero because sampling variation.

Definition 4.2. Let {xt} be a time series. Then {xt} is a random walk if

xt = xt−1 + wt

where {wt} is a white noise series. Substituting xt−1 = xt−2 + wt−1 and then substi-
tuting for xt−2, followed by xt−3 and so on gives:

xt = wt + wt−1 + wt−2 + · · ·

In practice, the series above will not be infinite but will start at some time t = 1.
Hence

xt = w1 + w2 + · · ·+ wt

Back substitution is used to define more complex time series models and also to
derive second-order properties.

Definition 4.3. The backward shift operator B is defined by

Bxt = xt−1

The backward shift operator is sometimes called the ‘lag operator’. By repeatedly
applying B, it follows that

Bnxt = xt−n

The second-order properties of a random walk follow as{
µx = 0

γk(t) = Cov(xt, xt+k) = tσ2

The covariance is a function of time, so the process is non-stationary. In particular,
the variance is tσ2 and so it increases without limit as t increases. It follows that a
random walk is only suitable for short term predictions.

The time-varying autocorrelation function for k > 0 is:

ρk(t) =
Cov(xt, xt+k)√
V ar(xt)V ar(xt+k)

= − tσ2√
tσ2(t+ k)σ2

=
1√

1 + k/t

so that, for large t with k considerably less than t, ρk is nearly 1. Hence, the
correlogram for a random walk is characterized by positive autocorrelations that
decay very slowly down from unity.
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Definition 4.4. The difference operator ∇ is defined by

∇xt = xt − xt−1

Note that ∇xt = (1−B)xt, so that ∇ can be expressed in terms of the backward shift
operator B. In general, higher order differencing can be expressed as

∇n = (1−B)n

Note differencing can be very useful for “filtering”.
A random walk with drift is a process with xt = xt−1 + δ + wt. The mean is

µ(t) = tδ and the autocorrelations are the same as for a random walk without drift.
The drift has no effect on variance or autocorrelation.

4.2 Model relationships of current and past values of a statis-
tic/metric

Learning Objectives

• Estimation, data analysis and forecasting

• Forecast errors and confidence intervals

4.2.1 Autoregressive Models

Definition 4.5. The series {xt} is an autoregressive process of order p, abbreviated
to AR(p), if

xt = αxt−1 + α2xt−2 + · · ·+ αpxt−p + wt

where {wt} is white noise and the αi are the model parameters with αp 6= 0 for order
p process. Above equation can be expressed as a polynomial of order p in terms of
the backward shift operator:

θp(B)xt = (1− α1B− α2B
2 − · · · − αpBp)xt = wt

The equation θp(B) = 0, where B is formally treated as a number, is called the
characteristic equation. The roots of the characteristic equation must all exceed
unity in absolute value for the process to be stationary.
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Properties of an AR(1) model

The AR(1) process is given by

xt = αxt−1 + wt

where {xt} is a white noise series with mean zero and variance σ2. It can be shown
that the second-order properties follow as{

µx = 0

γk = αkσ2/(1− α2)

The autocorrelation function follows as

ρk = αk, (k ≥ 0)

where |α| < 1. Thus the correlogram decays to zero more rapidly for small α.
The partial autocorrelation at lag k is the correlation that results after removing

the effect of any correlations due to the terms at shorter lags. In general the partial
autocorrelation at lag k is the kith coefficient of a fitted AR(k) model; if the under-
lying process is AR(p), then the coefficients αk will be zero for all k > p. Thus an
AR(p) process has a correlogram of partial autocorrelations that is zero after lag p.

To forecast values in an AR(p) model, express them in terms of the known values
recursively, omitting the wt term.

Definition 4.6. A time series model {xt} is strictly stationary if the joint statistical
distribution xt1 , · · · , xtn is the same as the joint distribution of xt1+m, · · · , xtn+m for
all t1, · · · , tn and m, so that the distribution is unchanged after an arbitrary time
shift. Note that strict stationarity implies that the mean and variance are constant
in time and that the auto-covariance Cov(xt, xs) only depends on lag k = |t− s| and
can be written γ(k). If a series is not strictly stationary but the mean and variance
are constant in time and auto covariance only depends on the lag, then the series is
called second-order stationary.

4.2.2 Moving Average Models

Definition 4.7. A moving average (MA) process of order q is a linear combination
of the current white noise term and the q most recent past white noise terms and is
defined by

xt = wt + β1wt−1 + · · ·+ βqwt−q (4)
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where {wt} is white noise with zero mean and variance σ2
w. Above equation can be

rewritten in terms of the backward shift operator B

xt = (1 + β1B + β2B + · · ·+ βqB
q)wt = φq(B)wt

where φq is a polynomial of order q. Because MA process consist of a finite sum of
stationary white noise terms, they are stationary and hence have a time-invariant
mean and auto covariance.

The mean is zero and variance is σ2
w(1 + β2

1 + · · · + β2
q ). The autocorrelation

function, for k ≥ 0, is given by

ρ(k) =


1 k = 0∑q−k

i=0 βiβi+k/
∑q

i=0 β
2
i k = 1, · · · , q

0 k > q

where β0 is unity.
An MA process is invertible if it can be expressed as a stationary autoregressive

process of infinite order without an error term. In general, an MA(q) process is
invertible when the roots of φq(B) all exceed unity in absolute value. The auto-
covariance function only identifies a unique MA(q) process if the condition that the
process be invertible is imposed.

A description of the conditional sum of squares algorithm for fitting an MA(q)
process follows. For any choice of parameters, the same of squared residuals can be
calculated iteratively by rearranging Equation (4) and replacing the errors, wt, with
their estimates, which are denoted by ŵt:

S(β̂1, · · · , β̂q) =
n∑
t=1

ŵ2
t =

n∑
t=1

{xt − (β̂1ŵt−1 + · · ·+ β̂qŵt−q)}2

conditional on ŵ0, · · · , ŵt−q being taken as 0 to start the iteration. A numerical
search is used to find the parameter values that minimize this conditional sum of
squares.

To forecast terms in an MA(q) process apply the model recursively to known
residuals. xn+1|n = β1ŵn + β2ŵn−1 + · · ·+ βqŵn−q+1.

4.2.3 Mixed Models: The ARMA process

Definition 4.8. A time series {xt} follows an autoregressive moving average (ARMA)
process of order (p, q), denoted ARMA(p, q) when

xt = α1xt−1 + α2xt−2 + · · ·+ αpxt−p + wt + β1wt−1 + β2wt−2 + · · ·+ βqwt−q
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where {wt} is white noise. Above equation may be represented in terms of the back-
ward shift operator B and rearranged in the more concise polynomial form

θp(B)xt = φq(B)wt

Parameter parsimony. When fitting to data, an ARMA model will often be more
parameter efficient than a single MA or AR model.

Parameter redundancy. When θ and φ share a common factor, a stationary model
can be simplified.

Note ρk = αρk−1 for AMRA(1, 1) process.

4.3 Understand Forecast Produced by ARIMA

Definition 4.9. A series {xt} is integrated of order d, denoted as I(d), if the dth
difference of {xt} is white noise {wt}. Since ∇d ≡ (1−B)d, where B is the backward
shift operator, a series {xt} is integrated of order d if

(1−B)dxt = wt

Definition 4.10. A time series {xt} follows an ARIMA(p, d, q) process if the dth
differences of the {xt} series are an ARMA(p, q) process. If we introduce yt =
(1 − B)dxt, then θp(B)yt = φq(B)wt. We can now substitute for yt to obtain the
more succinct form of an ARIMA(p, d, q) process as

θp(B)(1−B)dxt = φq(B)wt

where θp and φq are polynomials of orders p and q, respectively.

Definition 4.11. A seasonal ARIMA model uses differencing at a lag equal to the
number of seasons to remove additive seasonal effects. As with lag 1 differencing
to remove a trend, the lag s differencing introduces a moving average term. The
seasonal ARIMA model includes autoregressive and moving average terms at lag s.
The seasonal ARIMA(p, d, q)(P,D,Q)s model can be most succinctly expressed using
the backward shift operator

ΘP (Bs)θp(B)(1−Bs)D(1−B)dxt = ΦQ(Bs)φq(B)wt

where ΘP , θp,ΦQ and φq are polynomials of orders P, p,Q and q, respectively. In
general, the model is non-stationary, although if D = d = 0 and the roots of the
characteristic equation all exceed unity in absolute value, the resulting model would
be stationary.
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