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1 Put-Call Parity

1.1 Review

1.1.1 Forwards

Definition. A forward is an agreement to buy something at a future date for a certain
price.

We will use the notation Ft,T to indicate the price to be paid at time T in a forward
agreement made at time t to buy an item at time T . Notice that no payment is made at
time t; the only payment made is at time T . If you purchase a forward on a stock at time
t, you will pay Ft,T at time T and receive the stock.

Denote the price of the stock at time T as ST .
Denote the continuously compounded risk-free interest rate as r.

Definition. An arbitrage is a set of transactions which when combined have no cost, no
possibility of loss and at least some possibility of profit.

Here are assumptions over the entire review notes :

1. It is impossible to borrow or lend any amount of money at the risk-free rate

2. There are no transaction charges or taxes

3. Arbitrage is impossible

Forwards on stock

We will consider 3 possibilities for the stock :

1. The stock pays no dividends

2. The stock pays discrete dividends

3. The stock pays continuous dividends

Forwards on non-dividend paying stock a) Method #1 : Buy stock at time t and
hold it to time T b) Method #2 : Buy forward on stock at time t and hold it to time
T

Ft,T = Ste
r(T−t)

Forwards on a stock with discrete dividends a) Method #1 : Buy stock index at
time t and hold it to time T b) Method #2 : Buy eδT forwards on stock index at
time t and hold it to time T

Ft,T = Ste
r(T−t) − CumV alue(Div)
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, where CumV alue(Div) is the accumulated value at time T of dividends from time
t to time T .

Forwards on a stock index with continuous dividends a) Method #1 : Buy stock
index at time t and hold it to time T b) Method #2 : Buy eδT forwards on stock
index at time t and hold it to time T

Ft,T = Ste
(r−δ)(T−t)

.

Forwards on currency For forwards on currency, it is assumed that each currency has
its own risk-free interest rate. The risk-free interest rate for the foreign currency
plays the role of a continuously compounded dividend on a stock.

Ft,T = xte
(rd−rf )(T−t)

1.1.2 Call and put options

Call option 1. premium : C(K,T ) where K is the strike price at expiration T .

2. the purchaser’s payoff : max(0, ST −K)

Put option 1. premium : P (K,T )

2. the purchaser’s payoff : max(0,K − ST )

European options only exercise at expiration

American options exercise at any time up to expiration

1.1.3 *Combinations of options

When we buy X, we are said to be long X, and when we sell X, we are said to be short
X.

Spreads : buying an option and selling another option of the same kind

Bull spreads A bull spread pays off if the stock moves up in price, but subject to a
limit. To create a bull spread with calls, buy a K1−strike call and sell a K2−strike
call, K2 > K1. To create a bull spread with puts, buy a K1−strike put and sell a
K2 − strike put, K2 > K1.

Bear spreads A bear spread pays off if the stock moves down in price, but subject to a
limit. To create a bear spread with calls, buy a K1−strike call and sell a K2−strike
call, K2 < K1. To create a bull spread with puts, buy a K1−strike put and sell a
K2 − strike put, K2 < K1.
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Ratio spreads A ratio spread involves buying n of one-option and selling m of another
option of the same kind, where m 6= n. It is possible to make the net initial cost of
this strategy zero.

Box spreads A box spread is a four option strategy consisting of buying a bull spread
of calls with strikes K2 and K1 (K2 > K1) and buying a bear spread of puts with
strikes K2 and K1. It has a definite profit K2 −K1.

Butterfly spreads A butterfly spread is a there-option strategy, all options of the same
type, consisting of buying n bull spreads with strike prices K1 and K2 > K1 and
selling m bull spreads with strike prices K2 and K3 > K2, with m and n selected so
that if the stock price ST at expiry is greater than K1, the payoffs net to zero.

Calendar spreads Calendar spreads involve buying and selling options of the same kind
with different expiry dates.

Collars : buying one option and selling an option of the other kind

In a collar you sell a call with strike K2 and buy a put with strike K1 < K2.

Straddles : buying two options of different kinds

In a straddle, you buy a call and a put, both of them at-the-money (K = S0). To lower
the initial cost, you can buy a put with strike price K1 and buy a call with strike price
K2 > K1; then this strategy is called a strangle.

1.2 Put-call parity

assumption Buy a European call option and sell a European put option, both having the
same underlying asset, the same strike, and the same time to expiry.

C(K,T )− P (K,T ) = e−rT (F0,T −K)

1.2.1 Stock put-call parity

non-dividend paying stock

C(K,T )− P (K,T ) = S0 −Ke−rT

prepaid forward
C(K,T )− P (K,T ) = FP0,T −Ke−rT
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dividend paying stock a) discrete dividend

C(K,T )− P (K,T ) = S0 − PV0,T (Divs)−Ke−rT

b) continuous dividend

C(K,T )− P (K,T ) = S0e
−δT −Ke−rT

1.2.2 Synthetic stocks and Treasuries

Note : Creating a synthetic Treasury is called a conversion. Selling a synthetic Treasury
by shorting the stock, buying a call and selling a put, is called a reverse conversion.

Create an investment equivalent to a stock with continuous dividend rate of r
Buy eδT call options and sell eδT put options, and buy a treasury for Ke(δ−r)T .

Create an investment equivalent to a stock with discrete dividend Buy a call, sell
a put and lend PV (dividends) +Ke−rT .

Create a synthetic Treasury in continuous dividend case Buy e−δT shares of the
stock and buy a put and sell a call. The treasuries’ maturity value is K.

Create a synthetic Treasury in discrete case Buy a stock and a put and sell a call.
The treasuries’ maturity value is K + CumV alue(dividends).

1.2.3 Synthetic Options

Situation There exists some misplace for options. Suppose the price of a European call
based on put-call parity is C, but the price it is actually selling at is C ′ < C

Consequence Buy the underpriced call option and sell a synthesized call option

C(S,K, t) = Se−δt −Ke−rt + P (S,K, t)

. Well, you can pay C(S,K, t) for the option and keep the rest.

1.2.4 Exchange options

Strike asset Qt

Underlying asset St

C(St, Qt, T − t)− P (St, Qt, T − t) = FPt,T (S)− FPt,T (Q)

or

C(St, Qt, T − t)− C(Qt, St, T − t) = FPt,T (S)− FPt,T (Q)
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1.2.5 Currency options

C(x0,K, T )− P (x0,K, T ) = x0e
−rfT −Ke−rdT

How to change a call option to purchase pounds with dollars to a put to sell dollars for
pounds?

Here is one for the general case :

KPd(
1

x0
,

1

K
,T ) = Cd(x0,K, T )

or

Kx0Pf (
1

x0
,

1

K
,T ) = Cd(x0,K, T )

Remark. Doing exchange options or currency options, you have to be clear about what is
strike asset and underlying asset. For instance, in dollar-denominated exchange, dollar is
strike asset and the foreign currency is underlying asset; in buying stock A in exchange for
stock B, Stock A is underlying asset and Stock B is strike asset.

While calculating premium for options, you need to normalize it to one unit.

2 Comparing Options

2.1 Bounds for Option Prices

S ≥ CAmer(S,K, T ) ≥ CEur(S,K, T ) ≥ max(0, FP0,T (S)−Ke−rT )

K ≥ PAmer(S,K, T ) ≥ PEur(S,K, T ) ≥ max(0,Ke−rT − FP0,T (S))

2.2 Early exercise of American options

implicit options Every call option has an implicit put option built in it and similarly
every put option has an implicit call option built in it.

Call options on non dividend paying stocks Early exercising will have couple of dis-
advantage : you lose protection against the price of the stock going below the strike
price; you must pay K earlier and lose interest on the strike price. Hence early
excessing is not rational.

Consider the following :

CEur(St,K, T − t) = PEur(St,K, T − t) + (St −K) +K(1− e−r(T−t)) ≥ St −K

Above means the value of the option is greater than the exercise value.
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Call options on dividend paying stock

CEur(St,K, T − t) = PEur(St,K, T − t) + (St −K) +K(1− e−r(T−t))− PVt,T (Div)

The put must be worth at least zero. Early exercise will not be rational if PVt,T (Div) <
K(1− e−r(T−t)).
We can have a similar decomposition for put option :

PEur(St,K, T − t) = CEur(St,K, T − t) + (St −K)−K(1− e−r(T−t)) + PVt,T (Div)

The second term is exercise value. If the other terms add up to a negative, it may
be rational to exercise early.

To summarize : For Stocks without dividends :

• An American call option is worth the same as a European call option

• An American put option may be worth more than a European option.

2.3 Time to expiry

For two European call options on a non-dividend-paying stock, the one with the longer
time to expiry must be worth at least as much as the other one. Well, we can make a
similar statement for American call options : a longer-lived American call option with a
strike price increasing at the risk-free rate must be worth at least as much as a shorted
lived option. Similar for European put options with non-dividend-paying stock.

Here is a summary of relationships of option prices and time to expiry

1. An American option with expiry T and strike price K must cost at least as much as
one with expiry t and strike price K.

2. A European call option on a non-dividend paying stock with expiry T and strike
price K must cost at least as much as one with expiry t and strike price K.

3. A European option on a non-dividend paying stock with expiry T and strike price
Ke−r(T−t) must cost at least as much as one with expiry t and strike price K.

2.4 Different strike prices

2.4.1 Three inequalities

Two ways to create an arbitrage :

1. Create a position which results in maximal immediate gain, and which cannot possi-
bly lose as much as the initial gain in the future.
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2. Create a position which results in minimal immediate gain, but which has the possi-
bility of future gain.

Direction For a call option, the higher the strike price, the lower the premium. For a put
option, the higher the strike price, the higher the premium. Algebraically, it is easy
to see that ∂C(S,K,T )

∂K ≤ 0 and ∂P (S,K,T )
∂K ≥ 0.

To create the first arbitrage, sell one K2 option and buy one K1 option. To create
the second one, sell one K2-strike option and buy C(S,K2, T )/C(S,K1, T ) K1-strike
calls.

Slope The premium for a call option decreases more slowly than the strike price increases.
The premium for a put option increases more slowly than the strike price increases.
Algebraically, it means ∂C(S,K,T )

∂K ≥ −1 and ∂P (S,K,T )
∂K ≤ 1.

Convexity The rate of decrease in call premiums as a function of K decreases. The rate
of increase in put premiums as a function of K increases. Algebraically, it means
∂2C(S,K,T )

∂K2 ≥ 0 and ∂2P (S,K,T )
∂K2 ≥ 0.

2.4.2 Options in the money

An option is in the money if it would have a positive payout if it could be exercised. A
call option is in the money if the strike price is less than the underlying asset price. A put
option is in the money if the strike price is more than the underlying asset price.

An option is out of money if the price of the underlying asset is different from the strike
price in such a way that the option doesn’t pay off.

An option is at the money if the strike price equals the underlying asset’s price.
Given two American call options with the same expiry in the money, C(S,K2, T ) and

C(S,K1, T ), with K2 > K1, if exercising C(S,K2, T ) is optimal, then so is exercising
C(S,K1, T ), an option is even more in the money. The same holds true for puts.

3 Binomial Trees - Stock, One Period

∆ = (
Cu − Cd
S(u− d)

)e−δh

B = e−rh(
uCd − dCu
u− d

)

The option premium is ∆S +B.
Risk-neutral probabilities

p∗ =
e(r−δ)h − d
u− d
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Volatility

u = e(r−δ)h+σ
√
h, d = e(r−δ)h−σ

√
h

p∗ =
1

1 + eσ
√
h

4 Binomial Trees - General

Algorithm to get the option price for American or European call option.

1. Build the tree to the last period

2. Use the formula in previous chapter to calculate the value of the nodes in previous
period. If it is American option, we use the max of the price and the maximum
payoff; if it is European option, we use the max of the price and 0.

3. Eventually we will get the price for the option.

5 Risk-neutral Pricing and Utility

Here I will introduce couple of notations

• Ui denotes the current value of $1 paid at the end of one year when the price of the
stock is in state i, i = H,L. UH ≤ UL because of declining marginal utility. Since
risk-neutral, UH = UL = 1

1+r

• Ci denotes the cash flow of the stock at the end of one year in state i, i = H,L.

• Qi denotes the current value of $1 paid at the end of one year only if the price of the
stock is Ci, i = H,L, 0 otherwise.

Let’s denote p be the true probability of state H. QH = pUH , QL = (1p)UL.
QH +QL = 1

1+r .
C0 = pUHCH + (1− p)ULCL = QHCH +QLCL = QHCH +QLCL
Let’s consider α is the rate of return. It is easy to get from the above formula.
p∗ = QH

QH+QL
= QH(1 + r) = pUH(1 + r)

6 Lognormality and Alternative Tree

Alternative trees:

1. Cox-Ross-Rubinstein tree: u = eσ
√
h, d = e−σ

√
h
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2. Lognormal tree: u = e(r−δ−0.5σ2)h+σ
√
h, d = e(r−δ−0.5σ2)h−σ

√
h (Jarrow-Rudd)

3. Normal: u = e(r−δ)h+σ
√
h, d = e(r−δ)h−σ

√
h

All three tress have ln(u/d) = 2σ
√
h

Estimating volatility

σ̂ =
√
p

√
n

n− 1
(

∑n
i=1 x

2
i

n
− x̄2)

7 Modelling Stock Price with the Lognormal Distribution

For a stock whose price St follows a lognormal model:

• The expected value is E[St|S0] = S0e
(µ+0.5σ2)t

• d̂1 and d̂2 are defined by d̂1 = ln(S0/K)+(α−δ+0.5σ2)t

σ
√
t

d̂2 = d̂1 − σ
√
t

• Probabilities of payoffs and partial expectation of stock prices are.

Pr(St < K) = N(−d̂2)

Pr(St > K) = N(d̂2)

PE[St|St < K] = S0e
∗(α−δ)tN(−d̂1)

E[St|St < K] =
S0e
∗(α−δ)tN(−d̂1)

N(−d̂2)

PE[St|St > K] = S0e
∗(α−δ)tN(d̂1)

E[St|St > K] =
S0e
∗(α−δ)tN(d̂1)

N(d̂2)

• Expected option payoffs are

-call :
E[max(0, St −K)] = S0e

∗(α−δ)tN(d̂1)−KN(d̂2)

-put :
E[max(0,K − St)] = −S0e

∗(α−δ)tN(−d̂1) +KN(−d̂2)
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8 The Black-Scholes Formula

C(S,K, σ, r, T, δ) = FP (S)N(d1)− FP (K)N(d2)

where

d1 =
ln(FP (S)/FP (K)) + 1

2σ
2T

σ
√
T

d2 = d1 − σ
√
t

This is couple of assumptions of the Black-Scholes formula

1. Continuously compounded returns on the stock are normally distributed and inde-
pendent over time

2. Continuously compounded returns on the strike asset are known and constant

3. Volatility is known and constant.

4. Dividends are known and constant

5. There are no transaction costs or taxes

6. It is possible to short-sell any amount of stock and to borrow any amount of money
at the risk-free rate.

9 Application of Black-Scholes Formula and Greeks

Delta ∆ = ∂C
∂S S shaped

Gamma Γ = ∂2C
∂S2 Symmetric hump, peak to left of strike price, further left with higher t.

Vega 0.01∂C∂σ Asymmetric hump, peak similar to Γ

Theta θ = ∂C
365∂t Upside-down hump for short lives, gradual decrease for long lives, unless

δ is high. Almost always negative for calls, usually negative for puts unless far in-
the-money.

Rho ρ = 0.01∂C∂r increasing curve

Psi ψ = 0.01∂C∂δ decreasing curve

∆call = e−δTN(d1)

∆put = ∆call − e−δT = −e−δTN(−d1)
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9.1 Elasticity

Ω = S∆
C

9.2 Sharpe ratio

σoption = σstock|Ω|
γ − r
σoption

=
α− r
σstock

9.3 Last Notes

Greek for portfolio = sum of the Greeks

Elasticity for portfolio = weighted average of the elasticities

Note: The volatility calculated by Black-Scholes formula is called implied volatility;
the volatility calculated by history data is called historical volatility. We use the difference
of the price of an option at date t2 and the future value of an option of date t1 at date t2
to get the profit of an option overtime.

10 Delta Hedging

10.1 Overnight profit on a delta-hedge portfolio

Three components

1. The change in the value of the option

2. ∆ times the change in the price of the stock

3. Interest on the borrowed money

1 and 2 is called mark-to-market.

Profit = C(S0)− C(S1) + ∆(S1 − S0)− (er/365 − 1)(∆S0 − C(S0))

10.2 The delta-gamma-theta approximation

C(S1) = C(S0) + ∆ε+
1

2
Γε2 + hθ

Market Maker Profit = −(
1

2
Γε2 + θh+ rh(∆S − C(S))− δh∆S)

We’ll plug
ε = ±σS

√
h

and set the profit to be zero. Hence we will get the Black-Sholes equation.

14



10.3 Greeks for binomial trees

∆(‘S, 0) = (
Cu − Cd
S(u− d)

)e−δh

Γ(S, 0) ≈ Γ(S, h) =
∆(Su, h)−∆(Sd, h)

Su− Sd

C(Sud, 2h) = C(S, 0) + ∆(S, 0)ε+ 0.5Γ(S, 0)ε2 + 2hθ(S, 0)

10.4 Rehedging

Boyle-Emanuel formula

Rh,i =
1

2
S2σ2(x2

i − 1)Γh

V ar(Rh,i) =
1

2
(S2σ2Γh)2

11 Other Options

11.1 Asian Options

Denote A(S), G(S) as arithmetic mean of stock price overtime and geometric mean of stock
price overtime.

1. Call with strike price C = max(0, A(S)−K)

2. Put with strike price P = max(0,K −A(S))

3. Strike call C = max(0, St −A(S))

4. Strike put P = max(0, A(S)− St)

G(S) has similar option.

11.2 Barrier options

Knock-out : reach barrier, the option doesn’t exercise. (down-and-out, up-and-out)
Knock-in : reach barrier, the option does exercise. (down-and-in, up-and-in)

Rebate option

Pay a little amount when hit the barrier.

Knock-in option + Knock-out option = Ordinary option

15



11.3 Maxima and Minima

max(S,K) = S +max(0,K − S) = K +max(S −K, 0)

max(cS, cK) = cmax(S,K), c > 0

max(−S,−K) = −min(S,K)

min(S,K) +max(S,K) = S +K

11.4 Compound options

CallOnCall(S,K, x, σ, r, t1, T, δ)−PutOnCall(S,K, x, σ, r, t1, T, δ) = C(S,K, σ, r, T, δ)−xe−rt1

CallOnPut(S,K, x, σ, r, t1, T, δ)−PutOnPut(S,K, x, σ, r, t1, T, δ) = P (S,K, σ, r, T, δ)−xe−rt1

11.5 American options on stocks with one discrete dividend

It is not rational to exercise early for American call options.

ex-dividend After the dividend is paid

cum-dividend Including the dividend; before the dividend is paid

Suppose we have one discrete dividend for the stock. Then at time t1, the value of the
option is

max(St1 +D −K,C(St1 ,K, T − t1))

Applying the maxima and minima, we will get

CAmerican(S,K, T ) = S0 −Ke−rt1 + CallOnPut(S,K,D − (K(1− e−r(T−t1)), t1, T )

It is optimal to exercise if the value of the put is less than D −K(1− e−r(T−t1))

11.6 Bermudan options

Exercise at specified date. Similar pricing strategy as American option with one discrete
dividend payment.

16



11.7 All-or-nothing options

1. asset-or-nothing call option S|S > K

S0e
−δTN(d1)

∆ = e−δTN(d1) + e−δT
e−d

2
1/2

σ
√

2πT

2. asset-or-nothing put option S|S < K

S0e
−δTN(−d1)

∆ = e−δTN(−d1)− e−δT e−d
2
1/2

σ
√

2πT

3. cash-or-nothing call option c|S > K

ce−rTN(d2)

∆ = e−rT
e−d

2
2/2

Sσ
√

2πT

4. cash-or-nothing put option c|S < K

ce−rTN(−d2)

∆ = −e−rT e−d
2
2/2

Sσ
√

2πT

An ordinary option is the asset-or-nothing option and cash(-K)-or-nothing option.

11.8 Gap option

Put trigger to activate the exercise of the option.
A gap call option is S|S > K2−K1|S > K2 and a gap put option is K1|S < K2−S|S <

K2

11.9 Exchange option

σ2 = σ2
S + σ2

Q − 2ρσSσQ

For the option price, we replace δ by δS and r by δQ.
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11.10 Chooser options

A chooser options allow you to choose at time t ≤ T to take either a call or put option
expiring at time T, both with the same strike price K.

At time t, the option worth V = C(S,K, T ) + P (S,K, T ) if t = T .
If t < T , Vt = max(C(S,K, T − t), P (S,K, T − t)). By put-call parity and maxima and

minima, we get
V = C(S,K, T ) + e−δ(T−t)P (S,Ke−(r−δ)(T−t), t)

11.11 Forward start options

This is basically a forward contract on an option.
If you can purchase a call option with strike price cSt, at time t expiring at time T,

then the value of the forward start option is

V = Se−δTN(d1)− cSe−r(T−t)−δtN(d2)

12 Monte Carlo Valuation

12.1 Generating Lognormal random numbers

Three steps:

1. Generate a standard normal random number zj

(a) Method 1: add up twelve ui’s and subtract 6. In other words,

zj =

12∑
i=1

ui − 6

(b) Method 2: the inversion method. In other words,

zj = N−1(uj)

2. Generate an N(µ, σ2) random number nj

nj = µ+ σzj

3. Generate the desired lognormal random number xj

xj = enj

18



• the true distribution of the growth in stock prices over one year is lognormal with
annual parameters µ = α− µ− 0.5σ2

• the risk-neutral distribution of the growth in stock prices over one year is lognormal
with annual parameters µ = r − µ− 0.5σ2

12.2 Control Variate Method

X∗ = X̄ + (E[Y ]− Ȳ )

V ar(X∗) = V ar(X̄) + V ar(Ȳ )− 2Cov(X̄, Ȳ )

For Boyle modification, we add β.

β =
Cov(X̄, Ȳ )

V ar(Ȳ )

The minimum variance possible using a control variate is the variance of the naive
estimate times the complement of the square of the correlation coefficient.

12.3 Other variance reduction techniques

Antithetic Variates The antithetic variate method uses, for every uniform number ui,
the uniform number 1− ui as well.

Stratified sampling Stratified sampling means breaking the sampling space into strata
and then scaling the uniform numbers to be in these strata. Rather than picking
uniform numbers randomly, you guarantee that each stratum has an appropriate
amount of random numbers.

13 Brownian Motion

Properties

1. Memoryless : Given X(t) = k, the probability that X(t+µ) = 1 given that X(t) = k
is the same as Pr(X(µ) = l − k)

Pr(X(t+ µ) = l|X(t) = k) = Pr(X(µ) = l − k)

2. X(t) is random but the distance traversed is not random.
∑

movement2 = t.

3. 1
2(X(t) + t) ∼ BIN(t, 1

2)

Let Z(t) be Brownian Motion

19



• Z(0) = 0

• Z(t+ s)|Z(t) ∼ N(µ = Z(t), σ2 = S)

• Increments are independent; Z(t+ s1)− Z(t) is independent of Z(t)− Z(t− s2)

• Z(t) is continuous at t.

13.1 Arithmetic Brownian Motion

X(t) = X(0) + αt+ σdZ(t)

X(t+ s)−X(t) = st+ σ(Z(t+ s)− Z(t)) ∼ N(s, σ2s)

X(t+ s)|X(t) ∼ N(X(t) + αs, σ2s)

13.2 Geometric Brownian Motion

ln(X(t)/X(0)) ∼ N(µt, σ2t)

X(t)/X(0) ∼ LOGNORM(eµt+0.5σ2t, e2µt+σ2t(eσ
2t − 1))

From Geometric Brownian Motion to the associated arithmetic Brownian motion, sub-
tract 0.5σ2

m = (α− δ − 0.5σ2)t, v = σ
√
t

13.3 Covariance

Arithmetic
Cov(X(t), X(µ)) = σ2min(t, µ)

Geometric
Cov(X(t), X(µ)) = X(0)2e(α−δ)(t+µ)(etσ

2 − 1)

13.4 Additional Terms

Definition. A diffusion process is a continuous process in which the absolute value of the
random variable tends to get larger.

Definition. A martingale is a process X(t) for which E[X(t + s)|X(t)] = X(t). For
Brownian motion, this follows from the second property above.
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14 Differentials

d(lnX(t)) = (ξ − 0.5σ2)dt+ σdZ(t)

15 Itô’s Lemma

dC = CSdS + 0.5CSS(dS)2 + Ctdt

15.1 Multiplication Rules

dt× dt = dt× dZ = 0

dZ × dZ = dt

dZ × dZ ′ = ρdt

15.2 Ornstein-Uhlenbeck Process

dX(t) = λ(α−X(t))dt+ σdZ(t)

X(t) = X(0)e−λt + α(1− e−λt) + σ

∫ t

0
eλ(s−t)dZ(s)

16 The Black-Scholes Equation

0.5S2σ2CSS + CSS(r − δ) + Ct = rC

or
∆S(r − δ) + 0.5ΓS2σ2 + θ = rC

17 Sharpe Ratio

φ(t, S(t)) =
α(t, S(t))− r
σ(t, S(t))

The Sharpe Ratio may vary with time (t), with the risk-free rate r(t) which itself may
vary with time, or with the Brownian motion Z(t) that is part of the S(t). However at any
time t, for two Itô processes depending on the same Z(t) the Sharpe ratios are equal.
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17.1 Risk-free Portfolio

If two assets with prices X1(t) and X2(t) follow

X1(t)

X1(t)
= (α1 − δ1)dt+ σ1dZ(t)

X2(t)

X2(t)
= (α2 − δ2)dt+ σ2dZ(t)

and the continuously compounded risk-free rate is r, a risk-free portfolio may be created
by buying c1 shares of X1 and c2 shares of X2. (A negative sign on ci implies shares are
sold.) c1 and c2 may be determined in either of the following ways:

1. Set
c1X1(0)σ1 + c2X2(0)σ2 = 0

2. Set
c1X1(0)α1 + c2X2(0)α2

c1X1(0) + c2X2(0)
= r

17.2 CAPM

The Capital Asset Pricing Model says that the return αi on any asset is equal to the
risk-free return plus βi times the risk premium of the market.

αi = r + βi(αM − r)

βi =
ρi,Mσi
σM

φi = ρi,MφM

18 Risk-Neutral Pricing and Proportional Portfolios

We can translate a true Itô process into a risk neutral process. Simply change dZ(t) to
dZ̃(t).

dZ̃(t) = dZ(t) + ηdt

where η is Sharpe ratio.
η measures drift of the motion so if you want to get Z(t), it is −η × t
Notes: risk-neutral pricing is used for those that do not satisfy geometric Brownian

motion.

22



18.1 Proportional portofolio

Let’s analyze a portfolio consisting of a risky asset and a risk-free asset in which the risky
asset is a constant proportion, ϕ, of the portfolio. This implies continuous rehanging. Let’s
call the process followed by the blended portfolio, W (t)

d lnW (t) = (ϕα+ (1− ϕ)r)dt+ σdZ(t)

Solving this we will get

W (t) = W (0)(
S(t)

S(0)
)ϕe[(1−ϕ)(r+0.5ϕσ2]t

if there are no dividends

W (t) = W (0)(
S(t)

S(0)
)ϕe[ϕδS−δw+(1−ϕ)(r+0.5ϕσ2]t

if there are dividends

19 Sa

19.1 Valuing a forward on Sa

E[S(T )a] = S(0)ae[a(α−δ)+0.5a(a−1)σ2]T

Therefore
F0,T (Sa) = S(0)ae[a(r−δ)+0.5a(a−1)σ2]T

FP0,T (Sa) = e−rTS(0)ae[a(r−δ)+0.5a(a−1)σ2]T

19.2 The Itô’s process for Sa

dC

C
= (a(α− δ) + 0.5a(a− 1)σ2)dt+ aσdZ(t)

γ = a(α− r) + r
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20 Stochastic Integration

20.1 integration ∫ a

0
dZ(t) = lim

n→∞

n∑
i=1

(Z(
ia

n
)− Z(

(i− 1)a

n
))

∫ b

a
d(X(t)) = X(b)−X(a)

d(

∫ t

0
X(s)dZ(s)) = X(t)dZ(t)

(This is the an example, so when you see this similar expression, simply replace s by t)
Note: To solve Stochastic integral, we can get the integral by ordinary calculus and

then apply Itô lemma.

20.2 Quadratic Variation

Quadratic variation

lim
n→∞

n∑
i=1

(X(
iT

n
)−X(

(i− 1)T

n
))2

Total variation

lim
n→∞

n∑
i=1

|X(
iT

n
)−X(

(i− 1)T

n
)|

Conclusion for Brownian motion: In any finite interval, the path crosses its starting
point infinitely often with probability 1.

21 Binomial Tree Models for Interest Rates

Pt(T, T + s) will be the notation for the price, to be paid at time T, for an agreement at
time t to purchase a zero-coupon bond for 1 issued at time T maturing at time T+s, t ≤ T .
Let Ft,T (P (T, T + s)) be the forward price at time t for an agreement to buy a bond at
time T maturing at time T + s. Above represent the same stuff.

Ft,T (P (T, T + s)) =
P (t, T + s)

P (t, T )
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21.1 The Black-Derman-Toy model

σh =
ln(rh1/rh2)

2
√
h

For cap, the cap pays Lmax(0, RT−KR
1+RT

)

22 The Black Formula for Bond Options

C(F, P (0, T ), σ, T ) = P (0, T )(FN(d1)−KN(d2))

P (F, P (0, T ), σ, T ) = P (0, T )(−FN(−d1) +KN(−d2))

where

d1 =
ln(F/K) + 0.5σ2T

σ
√
T

d2 = d1 − σ
√
T

and σ is the volatility of the T-year forward price oof the bond.
Black formula for caplets: each caplet is 1 +KR puts with strike 1

1+KR

23 Equilibrium Interest Rate Models: Vasicek and Cox-
Ingersoll-Ross

R(t, T ) =
ln(1/P (t, T ))

T − t
the continuously compounded interest rate for zero coupon bond. Let r(t) = limT→tR(t, T )
be the short rate. Hence r satisfies the Itô process

dr(t) = a(r)dt+ σ(t)dZ(t)

.

23.1 Hedging formulas

Duration hedging bond 1 with bond 2:

N = −(T1 − t)P (t, T1)

(T2 − t)P (t, T2)

Delta hedging bond 1 with bond 2:

N = −Pr(r, t, T1)

Pr(r, t, T2)
= −B(t, T1)P (r, t, T1)

B(t, T2)P (r, t, T2)

for Vasicek and Cox-Ingersoll-Ross
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23.2 Differential equation for bond prices

If the interest rate process is

dr(t) = a(r)dt+ σ(t)dZ(t)

, then
dP

P
= α(r, t, T )dt− q(r, t, T )dZ(t)

where

α(r, t, T ) =
a(r)Pr + 0.5σ(r)2Prr + Pt

P

q(r, t, T ) = −Prσ(r)

P

in general

α(r, t, T ) = −a(b− r)B(r, T ) + 0.5σ(r)2B(t, T )2 +
Pt
P

q(r, t, T ) = B(t, T )σ(r)

for Vasicek and Cox-Ingersoll-Ross

23.3 Black-Scholes equation analog for bond prices

0.5σ(r)2Prr + (a(r) + σ(r)φ(r, t))Pr + Pt − rP = 0

23.4 Sharpe Ratio

General

φ(r, t) =
α(r, t, T )− r
q(r, t, T )

Vasicek
φ(r, t) = φ

Cox-Ingersoll-Ross
φ(r, t) = φ̄

√
r/σ̄

σ̄ = σ(r)/
√
r
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23.5 Definition of interest rate models

General
dr(t) = a(r)dt+ σ(t)dZ(t)

Rendleman-Bartter
dr(t) = ardt+ σtdZ(t)

Vasicek
dr(t) = a(b− r)dt+ σdZ(t)

Cox-Ingersoll-Ross
dr(t) = a(b− r)dt+ σ̄

√
rdZ(t)

23.6 Risk-neutral version of interest rate models

General
dr = (a(r) + φ(r, t)σ(r))dt+ σ(r)dZ̃(t)

Vasicek
dr = ã(b̃− r)dt+ σdZ̃(t)

with
ã = a, b̃ = b+ σφ/a

Cox-Ingersoll-Ross
dr = ã(b̃− r)dt+ σ̃

√
rdZ̃(t)

with
ã = a− φ, b̃ = ba/(a− φ̄)

23.7 Bond price in Vasicek and CIR models

P (r, t, T ) = A(t, T )e−B(t,T )r(t)

In Vasicek model, B(t, T ) = 1−e−a(T−t)

a

23.8 Yield-to-maturity on infinitely-lived bond

Vasicek
r̄ = b+ σφ/a− 0.5σ2/a2

Cox-Ingersoll-Ross
r̄ = 2ab/(a− φ̄+ γ)

where γ =
√

(a− φ̄)2 + 2σ̄2
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24 Additional Resources

Lognormal

E[Xk] = ekm+0.5k2v2
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