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1 Severity, Frequency, and Aggregate Loss

Let’s define those terms in the section headers first.

Severity is the average size of a loss .

Frequency is the average number of claims per time period usually per year.

Aggregate loss is the total loss paid per time period, usually per year.

Pure Premium is the expected aggregate loss per policyholder per time period, usually
per year.

1.1 Basic Probability

In the previous SOA EXAM P, it covers the basic knowledge of continuous, discrete and
mixed random variable. Here I will provide some simple review and for those distributions
you can find it through SOA website which I won’t cover.

nth raw moment µ′n = E[Xn]

nth central moment µn = E[(X − µ)n]

Skewness γ1 = µ3
σ3

Kurtoisis γ2 = µ4
σ4

Coefficient of variations σ
µ

Variance V ar(X) = E[X2]− E[X]2

Covariance Cov(X,Y ) = E[XY ]− E[X]E[Y ]

Percentile F (πp) = p. A very important criteria is Pr(X ≤ πp) ≥ p and Pr(X < πp) ≤ p

Conditional Mean Formula EX [X] = EY [EX [X|Y ]] or E[X [g(X)] = EY [EX [g(X)|Y ]]

Moment generating function M(t) = E[etX ]

Probability generating function P (z) = E[zX ] = M(ln z) where pn = p(n)(0)
n!

1.2 Parametric Distribution

A parametric distribution is one that is defined by a fixed number of parameters.
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1.2.1 Scaling

If the distribution is parametrized in this fashion, so that the only parameter of cX having
a different value from X is θ, and the value of θ for cX is c times the value of θ for X, then
θ is called a scale parameter.

There are couple of rules below for parametric distribution scaling:

• Scaling for lognormal distribution: X ∼ LOGNOM(µ, σ) will be transformed into
Y ∼ LOGNOM(µ+ ln c, σ)

• One use of scaling is in handling inflation.

1.2.2 Transformations

fY (y) = fX(g−1(y))|dg
−1(y)

dy
|

There are a few transformations that are used to create distributions:

1. Y = Xτ where τ > 0 - transformed

2. Y = X−1 - Inverse

3. Y = Xτ where τ < 0 - inverse transformed

4. Y = eX - log

1.3 Mixture and Splices

1.3.1 Discrete Mixtures

A (finite) mixture distribution is a random variable X whose distribution function can be
expressed as a weighted average of n distribution functions of random variable Xi, i =
1, · · · , n. In other words,

FX(x) =

n∑
i=1

wiFXi(x)

fX(x) =
n∑
i=1

wifXi(x)

1.3.2 Continuous Mixtures

Continuous mixtures means that the distribution function of the mixture is an integral of
parametric distribution functions of random variables, and a parameter varies according
to a distribution function.
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1.3.3 Frailty models

A specific type of continuous mixtures is a frailty model. These models can be used to
model loss sizes or survival times.

Suppose that hazard rate for each individual is h(x|Λ) = Λa(x), where a(x) is some
continuous function and the multiplier Λ varies by individual. thus the shape of the hazard
rate function curve does not vary by individual. If you are given that A’s hazard rate is
twice B’s at time 1, that implies Λ for A is twice Λ for B. That in turn implies that A’s
hazard rate is twice B’s hazard rate at all times.

Let H(x) =
∫ x

0 h(t)dt and A(x) =
∫ x

0 a(t)dt.

S(x|Λ) = e−H(x|Λ) = e−(x)

By the Law of Total Probability,

S(x) = Pr(X > x) =

∫ ∞
0

Pr(X > x|λ)f(λ)dλ = EΛ[Pr(X > x|Λ)] = E[S(x|Λ) = MΛ(−A(x))

1.3.4 Conditional Variance

V arX(X) = V arI(EX [X|I]) + EI [V arX(X|I)]

1.3.5 Splices

Another way of creating distribution is by splicing them. This means using different prob-
ability distributions on different intervals in such a way that the total probability adds up
to 1.

1.4 Policy Limit

To model insurance payments, define the limited loss variable

X ∧ u =

{
X X < u

u X ≥ u

The expected value of X ∧ u is called the limited expiated value.

E[X ∧ u] =

∫ u

0
xf(x)dx+ u(1− F (u)) =

∫ u

0
S(x)dx

E[Xk] =

∫ ∞
0

kxk−1S(x)dx

E[(X ∧ u)k] =

∫ u

0
kk−1S(x)dx =

∫ u

0
xkf(x)dx+ uk(1− F (u))
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E[Y ∧ u] = (1 + r)E[X ∧ u

1 + r
]

where Y = (1 + r)X.

1.5 Deductibles

1.5.1 Ordinary and franchise deductibles

• A policy with an ordinary deductible of d is one that pays the greater of 0 and X−d
for a loss of X.

• A policy with a franchise deductible of d is one that pays nothing if the loss is no
greater than d, and pays the full amount of the loss if it is greater than d.

1.5.2 Payment per loss with deductible

Let X be the random variable for loss size. The random variable for the payment per loss
with a deductible d is Y L = (X − d)+. The symbol (X − d)+ means the positive part of
X − d: in other words, max(0, X − d).

E[(X − d)+] =

∫ ∞
d

(x− d)f(x)dx =

∫ ∞
d

S(x)dx

The random variable (X−d)+ is said to be shifted by d and censored. Censored means
that you have some but incomplete, information about certain losers. IN this case, you are
aware of losses below d, but don’t know the amounts of such losses.

If you combine a policy with ordinary deductible d and a policy with policy limit d,
the combination covers every loss entirely. In other words:

E[X] = E[X ∧ d] + E[(X − d)+]

1.5.3 Payment per payment with deductible

The random variable for payment per payment on an insurance with an ordinary deductible
is the payment per loss random variable conditioned on X > d, or Y p = (X − d)+|X > d

FY p =
FX(x+ d)− FX(d)

1− FX(d)

SY p(x) =
SX(x+ d)

SX(d)

The expected value of Y p is E[(X − d)+]/S(d). It is called the mean excess loss and
is denoted by eX(d). In life contingency, it is called mean residual life or the complete life
expectancy.

Special Case
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Exponential An exponential distribution has no memory. This means that Y phas the
same distribution as X: it is exponential with mean θ.

Uniform If X has a uniform distribution on (0, θ], then (X − d)+|X > d has a uniform
distribution on (0, θ − d].

Beta e(d) = θ−d
1+b d < θ

Two-parameter Pareto e(d) = θ+d
α−1

Single-parameter Pareto e(d) =

{
d

α−1 d ≥ θ
α(θ−d)+d
α−1 d ≤ θ

1.6 Loss Elimination Ratio

The Loss Elimination Ratio is defined as the proportion of the expected loss which the
insurer doesn’t pay as a result of an ordinary deductible. In other words, for an ordinary
deductible of d, it is

LER(d) =
E[X ∧ d]

E[X]

1.7 Risk Measures and Tail Weight

A risk measure is a real-valued function of a random variable. We use the letter ρ for a
risk measure; ρ is the risk measure of X. You can probably think of several real-valued
functions of random variables:

• Moments E[X], V ar(X), etc.

• Percentiles.

• Premium principles.
ρ(X) = µX + cσX

with a suitable c may qualify as such a risk measure.

1.7.1 Coherent risk measures

Translation invariance
ρ(X + c) = ρ(X) + c

Positive homogeneity
ρ(cX) = c(x)
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Subadditivity
ρ(X + Y ) ≤ ρ(X) + ρ(Y )

Monotonicity
ρ(X) ≤ ρ(Y ) if Pr(X ≤ Y ) = 1

1.7.2 Value-at-Risk (VaR)

Definition. The Value-at-Risk at security level p for a random variable X, denoted V aRp(X),
is the 100pth percentile of X:

V aRp(X) = πp = F−1
X (p)

1.7.3 Tail-Value-at-Risk (TVaR)

Definition. The tail-value-at-risk of a continuous random variable X at security level p,
denoted TV aRp(X), is the expectation of the variable given that it is above its 100pth
percentile:

TV aRp(X) = E[X|X > V aRp(X)]

This measures is also called Conditional Tail Expectation (CTE), Tail Conditional
Expectation (TCE), and Expected Shortfall (ES).

TV aRp(X) =

∫∞
V aRp(X) xf(x)dx

1− F (V aRp(X))
=

∫ 1
p V aRy(X)dy

1− p
= V aRp(X) + eX(V aRp(X))

= V aRp(X) +
E[X]− E[X ∧ V aRp(X)]

1− p

Distribution V aRp(X) TV aRp(X)

Exponential −θ ln(1− p) θ(1− ln(1− p))
Pareto θ(1− α√1−p)

α√1−p E[X](1 + α(1− α√1−p)
α√1−p )

Normal µ+ zpσ µ+ σ
φ(zp)
1−p

Lognormal eµ+σzp E[X](
φ(σ−zp)

1−p )

Note:

1. TVaR is coherent

2. TV aR0(X) = E[X]

3. TV aRp(X) ≥ V aRp(X) with equality holding only if V aRp(X) = max(X)
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1.7.4 Tail Weight

Parametric distributions are often used to model loss size. Parametric distributions vary in
the degree to which they allow for very large claims. Tail weight describes how much weight
is placed on the tail of the distribution. The bigger the tail weight of the distribution, the
more provision for high claims.

The following quantitative measures of tail weight are available:

1. The more positive raw or central moments exist, the less the tail weight.

2. To compare two distributions, the limits of the ratios of the survival functions, or
equivalently the ratios of the density functions, can be examined as x → ∞. The
ratio going to infinity implies the function in the numerator has heavier tail weight.

3. An increasing hazard rate function means a lighter tail and a decreasing one means
a heavier tail.

4. An increasing mean excess loss function means a heavier tail and vice versa.

1.8 Other Topics in Severity Coverage Modifications

A coverage may have both a policy limit and a deductible, and we then need to specify
the order of the modifications. We distinguish the policy limit from the maximum covered
loss:

Policy limit is the maximum amount that the coverage will pay . In the presence of a
deductible or other modifications, perform the other modifications, then the policy
limit.

Maximum covered loss is the stipulated amount considered in calculating the payment.
Apply this limit first, and then deductible.

The payment per loss random variable in the presence of a maximum covered loss of
u and an ordinary deductible of d is Y L = X ∧ u −X ∧ d. The payment per payment is
Y L|X > d.

Coinsurance of α means that a portion, α, of each loss is reimbursed by insurance. The
expected payment er loss if there is α coinsurance, d deductible, u maximum covered loss,
and inflation rate r is

E[Y L] = α(1 + r)(E(X ∧ u

1 + r
)− E(X ∧ d

1 + r
))

(we set r to zero for the non-inflation formula).
The following is for calculating the variance of payment per loss and payment per

payment in the presence of an ordinary deductible.

(Y L)2 = (X ∧ u−X ∧ d)2 = (X ∧ u)2 − (X ∧ d)2 + 2(X ∧ d)(X ∧ d−X ∧ u)
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E[(Y L)2] = E[(X ∧ u)2]− E[(X ∧ d)2]− 2d(E[X ∧ u]− E[X ∧ d])

1.9 Discrete Distributions

1.9.1 The (a, b, 0) class

Discrete distributions are useful for modelling frequency. Three basic distributions are
Poisson, negative binomial, and binomial.

1. A Poisson distribution with parameter λ > 0 is defined by

pn = e−λ
λn

n!
λ > 0

where the mean and variance are λ. A sum of n independent Poisson random variables
N1, · · · , Nn with parameters λ1, · · · , λ2 has a Poisson distribution whose parameters
is
∑n

i=1 λi.

2. A negative binomial distribution with parameters r and β is denied by

pn =

(
n− 1 + r

n

)
(

1

1 + β
)r(

β

1 + β
)n β > 0, r > 0

where the mean is rβ and the variance is rβ(1 + β).

3. Binomial distribution

pn =

(
m

n

)
qn(1− q)m−n m a positive integer,0 < q < 1

where the mean is mq and variance is mq(1− q).

Above three distributions form a set of (a, b, 0) distribution with property

pk
pk−1

= a+
b

k

1.9.2 The (a, b, 1) class

The (a,b,1) class consists of distributions for which p0 is arbitrary, but the (a, b, 0) rela-
tionship holds above 1; in other words

pk
pk−1

= a+
b

k
for k = 2, 3, 4, · · ·

.
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zero-truncated distributions Let pTn be the probabilities of the new distribution. We
let pT0 = 0 and make the rest be 1. In other words,

pTn =
pn

1− p0
for n > 0

zero-modified distributions Let pMn be the probabilities of the new distributions. We
give pM0 = c. Then multiply pn by c

1−p0 so that they add up to 1.

pMn = (1− pM0 )pTn n > 0

is the general relationship between zero-modified and zero-truncated distributions.
Note: for a zero-truncated geometric distribution, its mean is 1 more than the mean of

an unmodified distribution, or 1 + β.

1.9.3 Summary

E[N ] = cm

V ar(N) = V ar(E[N |I]) + E[V ar(N |I)] = V ar(0,m) + E[0, v] = c(1− c)m2 + cv

where

• c is 1− pM0

• m is the mean of the corresponding zero-truncated distribution.

• v is the variance of the corresponding zero-truncated distribution.

1.10 Frequency Distributions: Exposure& Coverage Modification

Exposure and Coverage Modifications

Model Original Parameters Exposure Modification Coverage Modification

Exposure n1, F (0) = 1 Exposure n2, F (0) = 1 Exposure n1, F (0) = v

Poisson λ (n2/n1)λ vλ

Binomial m, q (n2/n1)m, q m, vq

Negative Binomial r, β (n2/n1)r, β r, vβ

These adjustments work for (a, b, 1) distributions as well as (a, b, 0) distributions. For
(a, b, 1) distributions, pM0 is adjusted as follows:

1− pM∗0 = (1− pM0 )(
1− p∗0
1− p0

)
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1.11 Aggregate Loss Models

1.11.1 Introduction

Aggregate losses S can be expressed as

S =
N∑
i=1

Xi

where N is the number of claims and Xi is the size of each claim. Xi are iid and independent
of N.

This model is called the collective risk model. S is a compound distribution: a distri-
bution formed by summing up a rondo number of identical random variables. N is called
the primary distribution and X is called the secondary distribution.

Alternatively, we have another model is called the individual risk model.

S =
n∑
i=1

Xi

where Xi’s are independent, but not necessarily identically distributed random variables.
Different insureds could have different distributions of aggregate losses. Typically, Pr(Xi =
0) > 0, since an insured may not submit any claims. This is unlike the collective risk model
where Xi is a claim and therefore not equal to 0. THere is no random variable N. Instead,
n is a fixed number, the size of the group.

V ar(S) = E[N ]V ar(X) + V ar(N)E[X]2

1.11.2 Approximating Distribution

If severity is discrete, then the aggregate loss distribution is discrete, and a continuity
correction is required. When we evaluate between a and b, then we do the mid point. For
example, if we evaluate Pr(X > a) and Pr(X > b), then we do Pr(X > (a+ b)/2).

1.11.3 The Recursive Formula

We will use the following notations for the probability functions of the three distributions
- frequency, severity, aggregate loss.

pn = Pr(N = n) = fN (n)

fn = Pr(X = N) = fX(n)

gn = Pr(S = n) = fS(n)
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Then FS(x) =
∑

n≤x gn.

gn =
∞∑
k=0

pk
∑

i1+···+ik=n

fi1fi2 · · · fik

The product of the fit ’s is called the k-fold convolution of the f’s, or f∗k.
For the (a, b, 0) class, the formula is given:

gk =
1

1− af0

k∑
j=1

(a+
bj

k
)fjgk−j k = 1, 2, 3, · · ·

For the (a, b, 1) class, the formula is:

gk =
(p1 − (a+ b)p0)fk +

∑k
j=1(a+ bj/k)fjgk−j

1− af0
k = 1, 2, 3, · · ·

1.11.4 Aggregate Deductible

If frequency and severity are independent, then E[S] = E[N ]E[X]. The expected value of
aggregate losses above the deductible is called the net-stop-loss premium.

We will assume that for some h, Pr(S = n) is nonzero only for n a multiple of h.
Since E[(S − d)+] = E[S]− E[S ∧ d], our first step is to calculate E[S ∧ d].

Using the definition of E[S ∧ d]:

E[S ∧ d] =
u∑
j=0

hjghj + dPr(S ≥ d)

where u = dd/he − 1.

Calculating E[S ∧ d] by integrating the survival function:

E[S ∧ d] =
u−1∑
j=0

hS(hj) + (d− hu)S(hu)

Proceeding backwards

13



1.11.5 Miscellaneous Topics

Coverage Modifications If you are calculating expected annual aggregate payments,
you may use either of the following two formulas:

Expected payment per loss× Expected number of losses per year

OR

Expected payment per payment× Expected number of payments per year

Exact Calculation of Aggregate Loss Distribution • Normal distribution. If Xi

are normal with mean µ and variance σ2, their som is normal.

• Exponential or gamma distribution. If Xi are exponential or gamma, their sum
has a gamma distribution.

2 Empirical Models

2.1 Review of Mathematical Statistics

We define θ̂ to be the estimator, θ̂n to be the estimator based on n observations, and θ to
be the parameter being estimated.

Bias is the excess of the expected value of the estimator over its true value.

biasθ̂(θ) = E[θ̂|θ]− θ

An estimator is unbiased if biasθ̂(θ) = 0. Even if an estimator is biased, it may be
asymptotically unbiased,

limn→∞biasθ̂(θ) = 0

An estimator is consistent if it is, with probability 1, arbitrarily close to the true
value if the sample is large enough. In other words, ∀δ > 0, limn→∞ Pr(|θ̂n − θ| < δ) = 1.
This is sometimes called weak consistency. A sufficient but not necessary condition for
consistency is that the estimator be asymptotically unbiased and that its variance goes to
zero asymptotically as the sample size goes to infinity.

Mean square error is the average square difference between the estimator and the
true value of the parameter, or

MSEθ̂(θ) = E[(θ̂ − θ)2|θ]

The lower the MSE, the better the estimator.
An estimator is called a uniformly minimum variance unbiased estimator (UMVUE) if

it is unbiased and if there is no other unbiased estimator with a smaller variance for any
true value θ.

An important relationship:

MSEθ̂(θ) = V ar(θ̂) + (biasθ̂(θ))
2
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2.1.1 Hypothesis Testing

To decide on a hypothesis, we set up two hypothesis: a null hypothesis, one that we will
believe unless proved otherwise, and an alternative hypothesis. A boundary point is called
the critical value such that, let the point be c, then we reject H0 if X < c. The set of
values for which we reject H0 is called the critical region. The lower we make c, the more
likely we will accept H0; vise versa.

Rejecting H0 when it is true is called a Type I error. The probability of a type I
error, assuming H0 is true is the significance level of the test. We use α to represent the
significance level. The precise probability of getting the observed statistic given that the
null hypothesis is true is called the p-value.

If we reject H1 when it is true, it is a Type II error. The power of a test is the probability
of rejecting H0 when it is false. A uniformly most powerful test gives us the most power
for a fixed significance level.

The last thing to mention is confidence intervals.

1− α = Pr(−zα/2 ≤
θ̂ − θ√
v(θ)

≤ zα/2)

where 1− α is the confidence level and zα is the 100(1− α)th percentile.

2.2 The Empirical Distribution for Complete Data

Complete data for a study means that every relevant observation is available and the exact
value of every observation is known.

2.2.1 Individual Data

Fn(x) is the empirical cumulative distribution function, fn(x) is the empirical probability
or probability density function, and so on. Since the empirical distribution for individual
data is discrete, fn(x) would be the probability of x, and would equal k/n, where k is
the number of xi in the sample equal to x. The empirical cumulative hazard function is
Hn(x) = − lnSn(x). Grouped data Suppose we have grouped data that has a set of intervals
and the number of losses in each interval. Then to generate the cumulative distribution
function for all points, we connect the dots. We interpolate linearly between endpoints of
intervals. The resulting distribution function is denoted by Fn(x) and is called the ogive.

The derivative of the ogive is denoted by fn(x). It is the density function corresponding
to the ogive, and is called the histogram.

fn(x) =
nj

n(cj − cj−1)

where x is in the interval [cj−1, cj), there are nj points in the interval, and n points alto-
gether.
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2.3 Variance of Empirical Estimators with Complete Data

2.3.1 Individual data

If the empirical distribution is being used as the model with individual data, then Sn(x) is
the proportion of observation above x. Since the probability of an observation being above
x is S(x), Sn(x) is a binomial proportion random variable with parameters m = n and
q = S(x); its variance is therefore

V ar(Sn(x)) =
S(x)(1− S(x))

n

Since we don’t know S(x), we estimate the variance using Sn(x) :

ˆV ar(Sn(x)) =
Sn(x)(1− Sn(x))

n

If nx is the observed number of survivors past time x, then Sn(x) = nx/n. Hence

ˆV ar(Sn(x)) =
nx(n− nx)

n3

2.3.2 Grouped data

Let Z be the number of observations in the interval (cj−1, cj ], then

ˆV ar(Sn(x)) =
ˆV ar(Y )(cj − cj−1)2 + ˆV ar(Z)(x− cj−1)2 + 2 ˆCov(Y,Z)(cj − cj−1)(x− cj−1)

n2(cj − cj−1)2

and

ˆV ar(fn(x)) =
ˆV ar(Z)

n2(cj − cj−1)2

where

ˆV ar(Y ) =
Y (n− Y )

n

ˆV ar(Z) =
Z(n− Z)

n

ˆCov(Y, Z) = −Y Z
n
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2.4 Kaplan-Merier and Nelson-Åalen Estimators

Two scenarios such that data may be incomplete:

1. No information at all is provided for certain ranges of data. The data are not provided
for a range, the data is said to be truncated. (deductible is truncated below)

2. The exact data point is not provided; instead, a range is provided. When a range of
values rather than an exact value is provided, the data is said to be censored. (policy
limit is censored from above)

2.4.1 Kaplan-Meier Product Limit Estimator

Sn(t) =

j−1∏
i=1

(1− si
ri

), yj−1 ≤ t < yi

where ri is called the risk set at time yi.

2.4.2 Nelson-Åalen Estimator

Ĥ(t) =

j−1∑
i=1

si
ri
, yi−1 ≤ t < yi

2.4.3 Exponential Extrapolation

Ŝ(t) = Ŝ(t0)t/t0 , t > t0

2.5 Estimation of Related Quantities

2.5.1 Complete data

When using the empirical distribution as the model, do not divide by n-1 when calculating
the variance. When the distribution is estimated from grouped data, moments are cal-
culated using the ogive or histogram. The mean can be calculated as the average of the
averages-sum up the averages of the groups, weighted by the probability of being in the
group. Higher moments may require integration.

2.5.2 Incomplete data

When data are incomplete due to censoring or truncation, the product limit estimator or
the Nelson-Åalen estimator is used. You can estimate S(x) to obtain:

E[X] =

∫ ∞
0

S(x)dx
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E[X ∧ d] =

∫ d

0
S(x)dx

In fact, S(x) is estimated. Hence∫ ∞
0

Ŝ(x)dx =

∞∑
j=0

Ŝ(yjt)(yj+1 − yj)

2.5.3 Deductibles and limits

For a deductible of d and a maximum covered claim of u, the average payment per loss is

E[X ∧ u]− E[X ∧ d]

and the average payment per payment is

E[X ∧ u]− E[X ∧ d]

1− F (d)

2.6 Variance of Kaplan-Meier and Nelson-Åalen Estimators

The Kaplan-Meier estimator is an unbiased estimator of the survival function. Greenwood’s
approximation of the variance is:

ˆV ar(Ŝ(t)) = Ŝ(t)2
∑
yi≤t

sj
rj(rj − sj)

A useful fact to remember is that if there is complete data-no censoring or truncation-the
Greenwood approximation is identical to the empirical approximation of the variance.

The approximation variance of the Nelson-Åalen estimator is

ˆV ar(Ĥ(t)) =
∑
yj≤t

sj
r2
j

2.7 Kernel Smoothing

The kernel-smoothed distribution is also an equally weighted mixture of n distributions.
The kernel-smoothed distribution consisting of selecting a distribution used for each sample
point xi. Let Kxi(x) be the cumulative distribution function of the distribution used for
the point xi, evaluated at x. Let kxi(x) be the probability density function. Then the
kernel-smoothed distribution function is

F̂ (x) =

n∑
i=1

(
1

n
)Kxi(x)
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and the kernel-smoothed density function is

f̂(x) =
n∑
i=1

(
1

n
)kxi(x)

2.8 Approximations for Large Data Sets

dj is the number of left truncated observations in the interval [cj , cj+1).

uj is the number of right censored observations in the interval (cj , cj+1]

xj is the number of events in the interval (cj , cj+1]

rj is the risk set to use for calculating the conditional mortality rate in the interval (cj , cj+1]

q′j is the decrement rate in the interval (cj , cj+1], and is computed as q′j = xj/rj

The sample size n can be expressed as
∑k−1

j=0 dj or as
∑k−1

j=0(uj + xj). Let Pj be the
population at time cj . Hence

Pj =

j−1∑
i=0

(di − ui − xi)

3 Parametric Models

4 Credibility

4.1 Limited Fluctuation Credibility: Poisson Frequency

4.1.1 The Algorithm

1. You make assumption for the mean and variance of claim size and claim frequency.
Often claim frequency is assumed to be Poisson.

2. You establish credibility standards based on two parameters: the probability of being
in a certain interval, which is something like a confidence level, and the size of the
interval you want to be in, which expressed as a percentage of the mean.

3. You determine how many exposures, or claims, or aggregate claim amounts, you
would need to satisfy this standard and grant full credibility.

4. If full credibility cannot be granted, you determine what percentage of credibility can
be granted.
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4.1.2 The formula

Let eF be the exposure needed for full credibility, µ be the expected aggregate claims per
exposure, σ be the standard deviation per exposure, yp be the coefficient from the standard
normal distribution for the confidence interval which you desire, k be the maximum fluc-
tuation you will accept. Sometimes, confidence level p is called the probability parameter
and k is called the range parameter. Hence

yp

√
eFσ2

eFµ
= k

eF = n0(
σ

µ
)2 = n0CV

2

There are three things we can calculate credibility for:

1. Number of claims. This means we want to number of claims to be within k of expected
p of the time.

2. Claim sizes. This means we want the size of each claim to be within k of expected p
of the time

3. Aggregate losses or pure premium. This means we want aggregate losses (or pure
premium, which is aggregate losses per exposure) to be within k of expected p of that
time.

4.2 Bayesian Estimation and Credibility-Discrete Prior

5 Simulation

5.1 Simulation-Inversion Method

5.2
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