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1 Introduction

Let T be an index set. The sequence of random variables {Xt, t ∈ T} is a stochastic process
if Xt is a random variable for all t ∈ T . If T is a set of time points, then {Xt} is a time series.
In this courses we will assume that T shows time points. If T is a discrete (continuous) set.
then the time series {Xt} is said to be discrete time (continuous time). The main focus of
this course is to develop models for discrete time time series. For example, x5 = 10 implies
the value of X at time 5 is equal to 10.

There are couple of time series models: zero-mean models (i.i.d. noise, random walk
and white noise) and models with trend & seasonality.

1.1 Time Series Models

Our interest lies in modeling and the analysis of data collected over time (time series).
Ideally, given the random variables X1, X2, X3, · · · one would like to specify all of joint
distributions of the vectors (X1, X2, · · · , Xn) for all n, i.e.,

P (X1 ≤ x1, · · · , Xn ≤ xn),−∞ < x1, · · · , xn <∞,∀n = 1, 2, 3, · · ·

In real world applications, this is usually not possible because enough information to fully
specify the joint distributions is not available. The good news is that in most applications,
most of the information about the joint distributions are provided in the first two moments
and the covariances between pairs of random variables. In other words, E(Xt), E(X2

t ) and
E(XtXt∗),∀t, t∗ summarizes most of the information content about the process.

If the joint distribution is multi-variate normal, then the three expectation E(Xt), E(X2
t ),

E(Xt, Xt∗), ∀t,∀t∗ fully specify the joint distribution. Recall that the multivariate normal
distribution is written as Np(µ̃,Σ) where p is the dimension (number of Xi’s) and µ is the
mean vector (p× 1) and Σ is the variance-covariance matrix (p× p)

µ̃ =

E(X1)
...

E(Xp)

 ,Σ =


σ2

1 σ12 · · · σ1p

σ12 σ2
2 · · · σ2p

...
. . .

. . .
...

σnn · · · · · · σ2
n


where σ2

i = V ar(Xi), σij = Cov(Xi, Xj). Therefore, given E(Xt), E(X2
t ), E(Xt, Xt∗), the

joint multivariate normal distribution is fully specified. We can see that E(Xt), E(X2
t ),

E(Xt, Xt∗) contains a fair amount of information. Therefore, rather than working with
joint distributions, we will work with time series models which mostly employ these 3
quantities.

Definition. A time series model for observe data {xt} is a specification of the joint dis-
tributions (or possibly only the means, variances and covariances) of a sequence of random
variables {Xt} of which {xt} is postulated to be a realization. X → random variate and
x→ realization.
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For example, y = β0 +β1t+β2t
2 +β3t

3 + ε and E(Y |t) = β0 +β1t+β2t
2 +β3t

3. Hence
X = (t, t2, t3).

1.2 Some zero-mean models

1. i.i.d noise: If X1, X2, X3, · · · , Xn are i.i.d. (independent identically distributed) ran-
dom variables, then Pr(X1 ≤ x1, · · · , Xn ≤ xn) =indep. Pr(X1 ≤ x1)Pr(X2 ≤
x2) · · ·Pr(Xn ≤ xn) =identical Pr(X1 ≤ x1) · · ·Pr(X1 ≤ xn) =

∏n
i=1 Pr(X1 ≤ xi) so

the joint distribution is defined by one marginal distribution.

Observation: using independence assumption, we see that

Pr(Xn+h ≤ x|X1 ≤ x1, · · · , Xn ≤ xn) =
Pr(Xn+h ≤ x,Xr ≤ x1, · · · , Xn ≤ xn)

Pr(X1 ≤ x1, · · · , Xn ≤ xn)
= Pr(Xn+h ≤ x)

Therefore, independence implies that the history (X1, · · · , Xn) has no value of pre-
dicting the future (Xn+h). If the sequence X1, · · · , Xn above has the property of
E(Xi) = 0, ∀i then X1, · · · , Xn are called i.i.d. noise.

2. Random walk: let St = X1 +X2 +X3 + · · ·+Xt where Xt(t = 1, 2, · · · ) is i.i.d. noise.
Then {St, t = 0, 1, 2, · · · } starting at S0 = 0 is called a random walk. Notice that
E[St] = E[

∑t
i=1Xi] = 0.

3. White noise (a.k.a. zero-mean white noise): Another class of zero-mean time se-
ries models is which is a sequence of uncorrelated random variables (not neces-
sarily independent), each with mean 0 and variance σ2, we show such sequence
as {Xt} ∼ WN(0, σ2). Independence: Pr(X1 ≤ x1, · · · , Xn ≤ xn) = Pr(X1 ≤
x1) · · ·Pr(Xn ≤ xn). Uncorrelated: E(XiXj) = E(Xi)E(Xj) and Cov(Xi, Xj) =
E(XiXj)− E(Xi)E(Xj) = 0.

1.3 Models with Trend

Consider the models Xt = mt+Yt where mt is a slowly changing function, called the trend,
and Yt has zero mean i.e E(Yt) = 0,∀t. We have

E(Xt) = E(mt) + E(Yt) = mt∀t

Notice that mt is a non-random function of time (t).
Examples: m(t) = α0 + α1t =⇒ linear trend, m(t) = α0 + α1t + α2t

2 =⇒
quadratic trend.

Example 1: Consider Xt = mt + Yt where mt = 2 + t and Yt ∼ N(0, 1). Then the
time series will be exactly a graph of y = mt + Yt and then we can compare this with
linear regression. Use this example to motivate the use of regression in time series (trend
estimation).
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1.4 Models with Seasonal Component

In a similar setup to the previous case (models with trend) we can write Xt = St + Yt
where E(Yt) = 0, ∀t, and St is a periodic function with period d i.e., St = St+d,∀t. In a
sense, St is a particular type of trend. Same examples: St = α0 +α1 cos(α2t) =⇒ used in
signal processing.

St =

{
1 if month is January

0 o.w.

Used for monthly collected data (e.g. Danish Birth Data).
In both models Xt = mt + Yt and Xt = St + Yt, the parameters α0, α1, α2, · · · are

usually estimated by maximum likelihood or least squares methods.
Note that in a general case, any may look at the model Xt = mt + St + Yt (model

with both trend and seasonal component). This is called classical decomposition (trend,
seasonality, noise) and will be frequently referred to in this course, we can use regression
models to estimate mt and St. (talk about binary variates (indicator a seasonality modeling
in regression).

1.5 Indicator Variables and Modeling Seasonal Behavior

Example: average seasonal temperature over many years

Z1, Z2, Z3, · · · =⇒ {Xt : t = 1, 2, · · · , 20}

Suppose we want to fit a model of the form:

Xt = mt + St + Yt

where mt = β0 + β1t+ β2t
2 + · · ·+ βpt

p

X1 X2 X3

spring 1 0 0
summer 0 1 0
fall 0 0 1
winter 0 0 0

X1 =

{
1 if season is spring

0 O.W.

X2 =

{
1 if season is summer

0 O.W.

X3 =

{
1 if season is fall

0 O.W.
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Zt = β0 + β1t+ · · ·+ βpt
p + α1X1 + α2X2 + α3X − 3 + Yt

where Yt is just the random component and St =


α1 spring

α2 summer

α3 fall

0 winter

Rule:
If a periodic trend with period d is being modeled through regression analysis, d − 1

binary variates (indicator variables) should be introduced to the model. Suppose p =
1 =⇒ zt = β0 + β1t+ St + Yt.

1.5.1 Air Passengers Data

Let Yt shows the total number of international passengers at time t.
Then log |Xt| = mt + St + Yt =⇒ iidN(0, σ2).

1. Left: log(Yt) = β0 + β1t+Rt

2. Right: log(Yt) = β0 + β1X1 + · · ·+ β11X11 +Rt

1.5.2 Model Checking

Residuals have no trend and points randomly scattered about 0.
Example 2: sees slides and R code online. In this example, we fitted the following

model
log(Yt) = β0 + β1t+ β2t

2 + β3x
1 + β3x2 + · · ·+ β13x11 +Rt

where the first three terms are trend mt and following terms, seasonal component, is St
and Rt is random component. Therefore, if interest lies in forecasting, this model fails. To
be able to check the independence of residuals, as well as to introduce a new class of time
series models, the concept of stationarity should be introduced.

1.6 Stationary Models and the Autocorrelation Function

Definition. The time series {Xt : t ∈ T} is called strictly (strongly) stationary if the
joint distribution of Xt1 , Xt2 , · · · , Xtn is the same as that of Xt1−k, Xt2−k, · · · , Xtn−k for
all n, t1, · · · , tn, k. In other words, {Xt} is strictly stationary of all its statistical properties
remain the same under the shift.

In practice, strict stationarity is too limiting of an assumption and rarely holds true. We
mentioned earlier that a lot of the information about the joint distributions are provided
on the moment E[Xt], E[X2

t ] and E[XtXt∗ ], t1, t
∗.
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This motivates introducing a type of stationarity based on these lower order moments
(will be called weak stationarity).

To introduce weak stationarity we need some definitions first.

Definition. Let {Xt} be a time series with E[X2
t ] < ∞. This means function of {Xt} is

µx(t) = µt = E[Xt] as a function of t.
The covariance function {Xt} is γX(r, s),= Cov(Xr, Xs) and E[(Xr − µX(r))(XS −

µX(s))],∀r, s =⇒ function of r and s (function of time)

Definition. The time series {X − t} with E[X2
t ] <∞ is said to be weakly stationary if

1. µX(t) = E[Xt] is indepedent of t

2. γX(t, t + h) = Cov(Xt, Xt+h) is independent of t for all h =⇒ covariance only
deadens on the distance between Xt and Xt+h.

Notice that E[X2
t ] <∞ is one of the conditions for weak stationarity (A total of three

conditions should hold true)

Exercise: If E[X2
t ] <∞, show that strict stationarity implies weak stationarity E[X2

t ] <
∞ strictly stationary.

Convention: whenever we refer to a stationary time series, we mean weakly stationary
unless otherwise.

In view of condition ii of the weak stationarity definition, whenever we use the term
“covariance function” with reference to a stationary time series {Xt} we shall mean the
function γX of one variable, defined by

γX(h) := γX(h, 0) = γX(t, t+ h) = γX(t+ h, t)

Last equality is because covariance is symmetric.
The function γX(·) will be referred to as the auto covariance function and γX(h) as its

value at lagh.

Definition. Let {Xt} be a stationary time series. The auto covariance function (ACVf)
of {Xt} at lagh is γX(h) = Cov(Xt+h, Xt) The autocorrelation function (ACF) of {Xt} at
lagh is

ρX(h) =
γX(h)

γX(0)
= Corr(Xt+h, Xt)

where

Corr(Xt, Xt+h) =
Cov(Xt, Xt+h)√
V ar(Xt)V ar(Xt+h)

=
γX(h)√

Cov(Xt, Xt)Cov(Xt+h, Xt+h)
=
γX(h)

γX(0)
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Example 3

inverstigae the stationarity of white noise. Let {Xt} be white noise {Xt} ∼ WN(0, σ2).
σ2 <∞ =⇒ V ar(X) <∞ (this is equivalent to E[X2

t ] <∞)
E[Xt] = 0 does not depend on t.

Cov(Xt, Xt+h) =

{
Variance of Xt if h = 0 independent of t for all h

0 O. W.

White noise is stationary.

Example 4

Investigate the stationarity of random walk. Let {Xt} be a sequence of i.i.d. noise.
Define St = X1 + · · ·+Xt, Then {St, t ≥ 0} is random walk in which S0 = 0

Cov(St, St)γS(t, tt0) = V ar(St) = V ar(
t∑
i=1

Xi) =
t∑
i=1

V ar(Xi) + 2
t∑
i=1

t∑
j=1,j 6=i

Cov(Xi, Xj)

Therefore, V ar(St) =
∑t

i=1 σ
2 = tσ2. This depends on t, therefore random walk is not

stationary.

Example 5

Consider the process Xt = Zt + θZt−1 where t = 0,±1,±2, · · · where {zt} ∼ WN(0, σ2).
This process is called the first order moving average [MA(1)]. Show that {Xt} is stationary.

V ar(Xt) = V ar(Zt + θZt−1) = V ar(Zt) + θ2V ar(Zt−1) + 0 = σ2(1 + θ2) <∞

E(Xt) = E(Zt + θZt−1) = E(Zt) + θE(Zt−1) = 0 implies independent of time

γ(h) = Cov(Xt, Xt+h) = Cov(Zt + θZt−1, Zt+h + θZt+h−1)

= Cov(Zt, Zt+h) + θCov(Zt, Zt+h−1) + θCov(Zt+1, Zt+h) + θ2Cov(Zt−1, Zt+h−1)

=


if h = 0 =⇒ σ2 + 0 + 0 + θ2σ2

if |h| = 1 =⇒ θσ2independent of t ∀h
if |h| > 1 =⇒ 0

8



This implies Xt is a stationary process. We can derive the auto-correlation function
(ACf) of Xt.

f(h) =
γ(h)

γ(0)
=


σ2(1+θ2)
σ2(1+θ2)

h = 0
θσ2

σ2(1+θ2)
|h| = 1

0 |h| > 1

=


1 h = 0
θ

1+θ2
|h| = 1

0 |h| > 1

Scratch: Covariance is symmetric so

Cov(Xt, Xt+h) = Cov(Xt+h, Xt)

γ(h) = γ(−h)

Therefore, γ(h) (hence ρ(h)) are even functions of h =⇒ symmetric about y axis.

Example 6

Let {Xt} be a stationary time series, satisfying the equation Xt = φXt−1 + Zt, t =
0,±1,±2, · · · , where |φ| < 1 and {Zt} ∼ WN(0, σ2), Also, let Zt and Xs be uncorrelated
for each s < t. The time series {xt} is called autoregressive process of order 1 [AR(1)].
Derive autocorrelation function (acf) of Xt.

E(Xt) = E(φXt−1 + Z − t) = φE(Xt−1)

where {Xt} is stationary =⇒ E(Xt) = µ for all t. Therefore, µ = φµ =⇒ φ 6=0µ =
0 =⇒ E(Xt) = 0, ∀t. Now, let us derive the auto covariance function of Xt. If h = 0,
then γ(h) = V ar(Xt) and

γ(0) = Cov(Xt, Xt) = V ar(Xt) = V ar(φXt−1 + Zt)

= φ2V ar(Xt−1) + V ar(Zt) + 2φCov(Xt−1, Zt)

= φ2V ar(Xt−1) + V ar(Zt)

= φ2γ(0) + σ2

Hence γ(0) = σ2

1−φ2
If h > 0, multiply both sides of Xt = φXt−1 + Zt by Xt−h and take expectation:

E[XtXt−h] = φE[Xt−hXt−1] + E[Xt−hZt]

Cov(Xt, Xt−h) = φCov(Xt−h, Xt−1) + 0

Hence γ(h) = φγ(h− 1), h = 1, 2, 3, · · · .

γ(1) = φγ(0) = φ
σ2

1− φ2

9



γ(2) = φγ(1) = φ2γ(0) = φ2 σ2

1− φ2

...

(induction) =⇒ γ(h) = φh
σ2

1− φ2
, h = 1, 2, 3, · · ·

For h < 0, do the trick above by multiplying both sides of Xt = φXt−1 + Zt by Xt+h and
take expectation. Doing so, you will get

γ(h) = φ−h
σ2

1− φ2
, h = −1,−2,−3, · · ·

This implies

γ(h) = φ|h|
σ2

1− φ2
, h = 0,±1,±2,±3, · · ·

Therefore, the acf is

ρ(h) =
γ(h)

γ(0)
= φ|h|, h = 0,±1,±2,±3, · · ·

Example 7

Sample auto-correlation function


Point estimation

confidence interval

Usual trends in the acf plot

Linear regression =⇒

if time allowed.
Show that Xt = 5 + 2t+Zt where {Zt} ∼WN(0, σ2) is not stationary. E[Xt] = 5 + 2t

which depends on t . This implies Xt is not stationary.

1.7 The Sample Autocorrelation function

What we have see so far on ACF, is based on given models (theoretical). In practice,
based on the observed data {X1, X2, · · · , Xn} we use the sample ACF to assess the degree
of dependence in the data sample ACF is the estimate of the theoretical ACF (under
stationarity).

Definition. Let x1, x2, · · · , xn be observations of a time series. The sample mean of
x1, · · · , xn is x̄ = 1

n

∑n
i=1 xi. The sample auto covariance function is

γ̂(h) =
1

n

n−|h|∑
t=1

(xt+|h| − x̄)(xt − x̄),−n < h < n

The sample autocorrelation function is ρ̂(h) = γ̂(h)
γ̂(0) ,−n < h < n.
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Convention: we will use γ̂(h) to show the estimate (value). Notice that in this estimate,
xt and x̄ (lower case) are sued. The corresponding estimator (random variable) to γ̂(h) is
shown by r̃(h).

γ̃(h) =
1

n

n−|h|∑
i=1

(Xt+|h| − X̄)(Xt − X̄)

Throughout the course,ˆis estimate and˜is estimator.

• γ(h) =⇒ Theoretical, fixed but unknown

• γ̃(h) =⇒ The estimator, random variable

• γ̂(h) =⇒ realization of γ̃(h) based on a sample

The sample ACF measures the correlation in the data under stationarity. Therefore, it can
be used to check the uncorrelatedness of the residuals of a regression model

residual ∼iid N(0, σ2)

independent =⇒ uncorrelated

Not uncorrelated =⇒ Not independent

It can be shown for iid noise with finite variance,

φ̃(h) ∼ N(0,
1

n
)

for large values of n, Therefore, for data from such process (iid noise) we expect that 95%
of the sample ACFs fall between 51.96/

√
n

ρ̃(h) ∼ N(0,
1

n
) =⇒ Pr(

−1.96√
n

< ρ̃(h) <
1.96√
n

) = 0.95

Based on the trends in the plot of sample ACF (ρ̂(h) vs h), we will decide on different
models for the data (to be discussed later).

Remark: for the observed data {x1, x2, · · · , xn} if the data contains a trend (non-
constant mean), |ρ̂(h)| will exhibit a slow decay (linear decay) as h increases. If the data
contains a substantial deterministic periodic term, ρ̂(h) will exhibit similar behavior with
the same period.
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2 Forecasting and Regression

2.1 Review of simple and multiple linear regression and prediction in-
terval

1. Use linear and non-linear regression to estimate trend component

2. Review the basics of simple and multiple linear regression

3. Look at model selection strategies and regression diagnostics

4. Look at forecasting and prediction using regression

Simple Linear Regression y = β0 + β1x+R

Multiple Linear regression y = β0 + β1x1 + · · ·+ βpxp +R

2.2 Simple Regression

Yi|{Xi = x} = α+ βx+Ri

where

• Ri ∼ N(0, σ2) and

• Ri are iid random variables

• Can use least squares or maximum likelihood to estimate α, β and σ

2.3 Confidence Interval

Refer this portion of notes to STAT 331 notes.

Pr(a < (n−p−1)σ̂2

σ2 < b) = 0.95.
For χ2 distribution,

(
(n− p− 1)σ̂2

bχ2
n−p−1,0.975

,
(n− p− 1)σ̂2

aχ2
n−p−1,0.025

)

SSY = SSR+ SSE

σ̂2 =
SSE

n− p− 1

Therefore
SSR/P

SSE/n− p− 1
=
SSR/P

σ̂2
∼ F(p,n−p−1)
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2.4 Prediction

Yi = α′ + βxi +Ri, Ri ∼ N(0, σ2)

= α′ + βx̄− βx̄+ βxi +Ri

= α′ + βx̄+ β(xi − x̄) +Ri

= α+ β(xi − x̄) +Ri

Therefore,

{
α̃ ∼ G(α, σ√

n
)

β̃ ∼ G(β, σ√
Sxx

Therefore, Y = α+ β(xnew − x̄) +Rnew

2.5 Bias-variance Trade-off

• The linear model has a small prediction error at price = 700

• but at that point we see the model does not fit well

• The lack of flexibility of the linear model causes a bias in that region of the graph

• When predicting need to think about both bias and variance in prediction

2.6 Adjusted R2

R̃2 = 1− (1−R2)
n− 1

n− p− 1

n is sample size, p number of regressors (number of explanatory variables x1, · · · , xp)

2.7 Akaike’s Information Criterion AIC

SSR

SST
= 1− SSE

SSY

AIC is defined as
−2l(θ̂) + 2Np

where l is log-likelihood, θ̂ the MLE and Np the number of parameters in model. The
smaller, the better.
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2.8 Other Criteria

AICC Correction:

AICC = AIC +
Np(Np + 1)

n−Np − 1

Bayesian Information Criterion :

BIC = −2l(θ̂) +Np log(n)

2.9 Interpolation vs Extrapolation

1. When functional form is estimated mostly from observed data not all predictions will
be reliable

2. Important question is to determine range of validity

3. If the explanatory variates are in range of validity this is called interpolation, other-
wise extrapolation

4. Let hmax = max(Hij) whereH = X(XTX)−1XT . If the point x satisfies xT (XTX)−1x ≤
hmax, then estimating y for x is an interpolation problem, otherwise extrapolation.

2.9.1 Shapiro-Wilk test of Normality

1. QQ plot is a graphical method in testing Normality

2. A more formal non-parametric test is Shapiro-Wilk

3. H0 : Y1, · · · , Yn come from a Gaussian distribution

4. Reject H0 if the p-value of this test is small

5. In R: if the data is stored in the vector y, use the command shapio.test(y)

2.9.2 Difference Sign Test

1. Count the number S of values such that yi − yi−1 > 0

2. For large iid sequence

µS = E(S) =
n− 1

2
, σ2

S =
n+ 1

12

3. For large n, S is approximately N(µS , σ
2
S), therefore

S − µS√
σ2
S

∼ N(0, 1)
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4. Large positive (negative) value of S − µS indicates the presence of increasing )de-
creasing) trend

5. Reject H0: data is random if |S−µS√
σ2
S

| > Z1−α/2

6. This may not work for data with strong seasonal component

2.9.3 Runs Test for Randomness

1. Estimate the median and call it m→ in R: median(y) where y is the vector of data

2. n1: number of observations ≥M .

3. n2: number of observations < m

4. Count R the number of consecutive observations which are all smaller (larger) than
m

5. For large iid sequence

µR = E(R) = 1 +
2n1n2

n1 + n2
, σ2

R =
(µR − 1)(µR − 2)

n1 + n2 − 1

6. For large number of observations

R− µR
σR

∼ N(0, 1)

2.10 Smoothing Methods

2.10.1 Models with trend and seasonality

1. Recall the classical decomposition

Xt = mt + st + Yt

where Yt is stationary random noise component

2. mt is the slowly changing function (trend component)

3. st is the periodic term with period d (seasonal component)

4. For identification need
∑d

t=1 st = 0 and E(Yt) = 0

5. The assumption of linearity is strong amy or may not hold true.
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2.10.2 Trend Estimation

Non seasonal model with trend

Xt = mt + Yt, t = 1, 2, · · · , n

where E(Yt) = 0. If E(Yt) 6= 0, write

Xt = (mt + E(Yt)) + (Yt − E(Yt)), t = 1, 2, · · · , n

2.10.3 Finite moving average filter

Let q be a nonnegative integer and consider the two-sided moving average of the series
Xt = mt + Yt

Wt =
1

2q + 1

q∑
j=−q

Xt−j

=
1

2q + 1

q∑
j=−q

[mt−j + Yt−j ]

=
1

2q + 1

q∑
j=−q

mt−j +
1

2q + 1

q∑
j=−q

Yt−j ≈ mt

2.10.4 Exponential Smoothing

m̂t = αXt + (1− α)m̂t−1, 0 ≤ α ≤ 1

m̂t = αXt + (1− α)[αXt−1 + (1− α)m̂t−2]

= αXt + α(1− α)Xt−1 + (1− α)2m̂t−2

= αXt + α(1− α)Xt−1 + (1− α)2[αXt−2 + (1− α)m̂t−3]

= αXt + α(1− α)Xt−1 + (1− α)2αXt−2 + (1− α)m̂t−3

2.10.5 Trend elimination by difference

Example: Xt = α+ βt+ Yt where α and β are constants (6= 0) and Yt ∼iid N(0, σ2).

1. Is Xt stationary?

E[Xt] = α+ βt+ E(Yt) = α+ βt

2. Is ∇Xt stationary?

∇Xt = (1−B)Xt = Xt−Xt−1 = (α+βt+Yt)− (α+β(t−1) +Yt−1) = β+Yt−Yt−1

where Y ∗t ∼iid N(β, 2σ2)
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2.10.6 Estimate seasonality and trend

1. Estimate the trend mt by applying a moving average filter specially chosen to elimi-
nate the seasonal component and dampen the noise

2. Estimate the seasonal component by averaging over the seasons

3. Eliminate the seasonal component st from the data

2.10.7 Estimate seasonal component

1. For each k = 1, · · · , d estimate seasonal component

2. Compute the average wk of

{xk+jd − m̂k+jd|q < k + jd ≤ n− q}

For monthly data, this is averaging each month across the whole data

3. Normalise to get

ŝk = wk −
∑d

1 wj
d

so that
∑d

j=1 sj = 0

4. Notice that ŝk = ŝk−d for k > d.

2.11 Holt-Winters Algorithm

1. This generalizes exponential smoothing to the case where there is a trend and sea-
sonlity

2. Following Chatfield and Yar define trend as long-term change in the mean level per
unit time

3. Have local linear trend where mean level at time t is

µt = Lt + Ttt

where Lt and Tt vary slowly through time.

4. Lt: the level, Tt: the slope of the trend at time t.

5. Holt’s idea:
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2.11.1 Holt-Winters method: Additive case

Lt = α(Xt/lt−p) + (1− α)(Lt−1 + Tt−1)

Tt = β(Lt − Lt−1) + (1− β)Tt−1

lt = γ(Xt/lt) + (1− γ)lt−p

The forecast for h periods ahead is then

Lt + hTt + lt−p+h

2.11.2 Holt-Winters method

1. Need to provide starting values for Lt, Tt, lt at the beginning of the series

2. provide values for α, β and γ

3. choose between additive and multiplicative models

2.11.3 Special Cases

1. β = γ = 0: this is the case with no trend and no seasonal updates in the H-W
algorithm

2. Lt = α+ (1− α)Lt−1

3. This is the exponential smoothing with trend playing the role of the “history”

4. γ = 0: this is the case with no seasonal updates in the H-W algorithm

5. There are two corresponding H-W equations for updating the level Lt and the trend
Tt.

6. H-W under γ = 0 is called double exponential smoothing.{
Lt = αXt + (1− α)(Lt−1 − Tt−1)

Tt = β(Lt − Lt−1) + (1− β)Tt−1

2.11.4 Exponential Smoothing

mt = αYt + (1− α)mt−1

where

Ŷt+1 = αYt + (1− α)mt−1

= mt−1 + α(Yt −mt−1)

= Ŷt + α(Yt − Ŷt)

where Ŷt is predicted at time t and Yt − Ŷt is predicted error at time t.
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3 Stationary & Linear processes

To perform any form of forecasting, there must be an assumption that “somethings” are
the “same” in future as in the past. The idea of “being constant over time” is central to
stationary processes, therefore, we will use stationary processes as the main framework to
develop forecasting models.

In this chapter/module, we will talk about moving average (MA(q)), autoregressive
(AR(p)) processes, and will look at the connection between the two, and will develop
forecasting methods within stationary process.

The MA(q) process: {Xt, t ∈ T} is called a moving average process of order q if
Xt = Zt + θ1Zt−1 + · · · + θqZt−q where {Zt} ∼ WN(0, σ2) and θ1, · · · , θq are constants.
Sometimes Zt is referred to “innovation”. Notice that these innovations are uncorrelated
(Cov(Zt, Zs) = 0, t 6= s. Constant variance (V ar(Zt) = σ2, ∀t) and zero mean (E[Zt] =
0,∀t).

Deriving the mean and auto covariance function of MA(q), it is easy to see that this
process is stationary.

Definition. The process {Xt} is called q-dependent if Xt and Xs are dependent whenever
|t− s| > q if Xt and X s are within q steps of each other, they are dependent.

Clearly, an iid sequence of r.v.s is zero-dependent. Similarly, we say that a stationary
time series is q-correlated if γ(h) = 0 whenever |h| > 0. Clearly, white noise is 0-correlated.

Example: Show that MA(1) process is 1-correlated. Use

γ(h) =


(1 + θ2)σ2 if h = 0, γ(h) = 0∀|h| > 1

θσ2 if |h| = 1, =⇒ MA(1) is 1-correlated

0 if |h| > 1

It is easy to show that the MA(q) process is q-correlated. The inverse of this statement is
also true.

If {Xt : t ∈ T} is stationary q-correlated time series, with mean 0. Then it can be
represented as the MA(q) process.

3.1 Autoregressive process AR(1)

Consider the process {Xt : t ∈ T} defined by Xt = φXt−1 + Zt, t = 0,±1, · · · , where
{Zt} ∼ WN(0, σ2) this process is called the first order autoregressive process we can also
show this process by (1 − φB)Xt = 2t. Notice that if |φ| = 1, then {Xt} forms a random
walk which we showed that it is not stationary, therefore depending on the value of φ, {Xt}
may or may not be stationary connection between AR(1) and MA process. Consider the
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AR(1) process with the condition |φ| < 1, then we have

Xt = φXt−1 + Zt = φ(φXt−2 + Zt−1) + Zt = φ2Xt−2 + φZt−1 + Zt

= φ3Xt−3 + φ2Zt−2 + φZt−1 + Zt · · · = Zt +
∑
i=1

φiZt−i =

n∑
i=0

φiZt−i

Define θi = φi, we have written Xt as an MA(∞).
Autoregressive of order P: AR(P )

Xt = φ1Xt−1 + · · ·+ φpXt−p + Zt, {Zt} ∼WN(0, σ2)

Definition. {Xt : t ∈ T} is called a Gaussian time series if all its joint definitions are
multivariate normal, i.e., for any set i1, i2, · · · , in(n ∈ N) the random vector (Xi1, · · · , Xin)
has a multivariate normal distribution.

Example: Consider the stationary gaussian time series {Xt : t ∈ T}. Suppose Xn has
been observed and we want to forecast Xn+h using m(Xn) function of Xn. Let’s measure
the quality of a forecast by

MSE = E([Xn+h −m(Xn)]2|Xn)

It can be shown that the function m(·) which minimize MSE in a general case (not neces-
sarily Gaussian) is

m(Xn) = E[Xn+h|Xn]

Stationarity implies that E(Xn+h) = E(Xn) = µ. Also Cov(Xn+h, Xn) = Cov(Xr, Xn) =
γ(σ) = V ar(Xn+h) = V ar(Xn).

Corr(Xn+h, Xn) =
Cov(Xn+h, Xn)√
V ar(Xn+h)V ar(Xn)

=
γ(h)

γ(0)
= ρ(h)

Hence

(Xn+h, Xn) ∼MVN([µµ]T ,

(
σ2 ρ(h)σ2

0 σ2

)

Xn+h|Xn = X ∼ N(µ+

√
γ(0)

γ(0)
ρ(h)(X − µ), σ2(1− ρ(h)))

m(Xn) = m(Xn+h|Xn)

= µ+ ρ(h)(Xn − µ) =⇒ ρ(h)Xn + (1 + ρ(h))µ = aXn + b

MSE = E[(Xn+h − E(Xn+h|Xn))2|Xn] = V ar(Xn+h|Xn) = σ2(1− ρ(h))
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In general, looking at prediction of the form aXn + b which is a linear function of history,
is of interest. In previous example, knowing mean and correlation function result in this
linear predictor. Even if the normality assumption does not hold true. We can still look
at predictor aXn + b where a, b are computed in the form of

mina,bE[(Xn+h − aXn − b)2|Xn]

MA(q) process with mean 0, it is a q-correlated process which is why ACF is 0 after lag
q. AR(1) is an exponential decay and asymptotically approaches 0. Therefore, MA(∞) =
AR(1).

In a gaussian process, m(Xn) = µ+ ρ(h)(Xn − µ). If we go with gaussian assumption,
then select the best linear process, not necessarily the best assumption.

aXn + b

Even if the normality assumption does not hold true, we still can look at the predictor
m(Xn) = aXn + b when a and b are computed from

minE[[Xn+h − aXn − b]2]

3.2 Linear Prediction

We can consider the problem of predicting Xn+h, h > 0 for a stationary time series with
known mean µ and know ACVF γ(·), based on previous values {Xn, Xn−1, · · · , X1}

Showing the linear predictor of Xn+h by PnXn+h, we are interested in

PnXn+h = a0 + a1Xn + a2Xn−1 + · · ·+ anX1

which minimizes
S(a0, · · · , an) = E[(Xn+h − PnXn+h)2]

To get a0, · · · , an, we need to solve the system dS
daj

= 0, j = 1, 2, · · · , n. Doing so, we

get a0 = µ(1−
∑r

i=1 ai),Γnan = γn(h), wehere an =


a1

a2
...
an

.


γ(0) γ(1) · · · γ(n− 1)
γ(1) γ(0) · · · γ(n− 2)

...
. . .

. . .
...

· · · · · · · · · γ(0)

 , γn(h) =


γ(h)

γ(h+ 1)
...

γ(h+ n)


=⇒ PnXn+h = a0 +

n∑
i=1

aiXn−i+1 = µ(1−
n∑
i=1

ai)+
n∑
i

aiXn−i+1 = µ+
n∑
i=1

ai(Xn+1−i−µ)

Some properties

21



1. PnXn+h is defined by µ, γ(h)

2. It can be shown that
E[(Xn+h − PnXn+h)2] = γ(0)

3. E[Xn+h − PnXn+h] = 0 (prediction error on average is 0

4. E[(Xn+h − PnXn+h)Xj ] = 0, j = 1, 2, 3, · · · , n.

In a more general setup, suppose that Y and W1, · · · ,Wn are any random variables with
finite second moments and means µY = E[Y ], µi = E[Wi] and Cov(Y, Y ), Cov(Y,Wi),
i = 1, · · · , n. Cov(Wi,Wj) are all known. Define W = (Wn, · · · ,W1) and µ(W ) =
(µn, · · · , µ1)T . and γ = Cov(Y,W ) = (Cov(Y,Wn), · · · , Cov(Y,W ))T and Γ = Cov(W,W ) =
[Cov(Wn+1−i,Wn+1−j)]

n
i,j=1

Now, by the some argument used in the derivation of PnXn+h, the “best” linear pre-
dictor of Y in terms of {Wn,Wn−1, · · · ,W1} is PWY = P (Y |W ) = µY + aTn (W−W ) where
an = (a1, · · · , an)T is the solution of Γa = γ.

Example 10: Derive the one-step prediction for AR(1) model.
Suppose Xt = φXt−1 + Zt, where |φ| < 1 and {Zt} ∼ WN(0, σ2). In example 6, we

showed that
γ(h) = φ|h|γ(0), h = 0, 1, 2, · · ·

Also E[Xt] = µ = 0. To find the linear predictor, we need to solve:

Γnan = γn(h)
γ(0) γ(1) · · · γ(n− 1)
γ(1) γ(0) · · · γ(n− 2)

...
. . .

. . .
...

· · · · · · · · · γ(0)



a1

a2
...
an

 =


γ(h)

γ(h+ 1)
...

γ(h+ n)


We divide both side by γ(0).

1 φ · · · φn−1

φ 1 · · · φn−2

...
. . .

. . .
...

· · · · · · · · · 1



a1

a2
...
an

 =


φ
φ2

...
φn



An obvious solution to this system is an =


φ
0
...
0
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PnXn+1 = Y +
n∑
i=1

ai(Xn+1−i − Y ) =
n∑
i=1

aiXn+1−i = aiXn + 0

Therefore
PnXn+1 = φXn

.

MSE = E[[Xn+1 − PnXn+1]2] = E[[Xn+1 − φXn]2] = E[Z2
n+1] = V ar(Z2

n+1) = σ2

You can also use the formula for MSE to calculate it.

MSE = γ(0)− aTnγn(h) = γ(0)−
(
φ 0 0 · · · 0

)

γ(1)
γ(2)

...
γ(n)


= γ(0)− φγ(1) = γ(0)− φ2γ(t) = (1− φ2)γ(0) = σ2

3.2.1 Properties of linear predictor

Suppose E[W 2] <∞, E[V 2] <∞,Γ = Cov(W,W ), B, α1, · · · , αn
1. P (V |W ) = E[V ] + aTn (W − µw) where Pan = γ.

2. E[U − P (U |W )W ] = 0 and E[U − P (U |W )] = 0

3. E[(U − P (U |W ))2] = V ar(V )− aTnCov(U,W )

4. Pw(a1U + a2V +B) = a1Pw(U) + a2Pw(V ) +B

5. P (
∑n

i=1 aiWi +B|W ) =
∑n

i=1 aiwi +B

6. P (U |W ) = E[U ] if Cov(V,W ) = 0

3.3 Linear Processes

We have discussed linear prediction in which future values are predicted by linear combina-
tion of historical values. This section focuses on a class of linear time series which provides
a general framework for studying stationary processes.

Definition. The time series {Xt} is a linear process if

Xt =

∞∑
j=−∞

ψjZt−j

for all t, where {Zt} ∼WN(0, σ2) and ψj is a sequence of constants such that
∑∞

j=−∞ ψj <
∞.
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Example 11: show that AR(1) with |φ| < 1 is a linear process. We know that Xt =
φXt−1 + Zt. We showed before that

Xt =

∞∑
j=0

φjZt−j

Since |φ| < 1 =⇒
∑∞

j=0 |φ|j <∞ =⇒
∑∞

j=0 |φj | <∞. Therefore all assumptions in the
definition above are satisfied and AR(1) is a linear process.

For prediction purposes we may not want to have dependence on the future innovations
(Zts). However, the general form

∑∞
j=−∞ ψjZt−j involves future innovations.

Definition. A linear process
∑∞

j=−∞ ψjZt−j is called causal or future independent if ψj =
0,∀j < 0.

Examples: AR(1) =⇒ Xt =
∑∞

j=0 φ
jZt−j . Then

MA(q) : Xt = Zt + θ1Zt−1 + · · ·+ θqZt−q = Zt +

q∑
j=1

θjZt−j

3.4 Box-Jenkins Models

The Box-Jenkins Methodology uses ARMA and ARIMA models for forecasting. The class
of ARMA models tries to balance goodness of fit with a limited number of parameters.
Whenever the series is not stationary, ARIMA models (ARMA with differecing) are used.
When seasonal effect is present, the more general SARIMA model will be used all theres
models use two key functions: ACF and PACF.

Definition. {Xt, t ∈ T} is an ARMA(p, q) process if

1. {Xt, t ∈ T} is stationary.

2. Xt − φ1Xt−1 − φ2Xt−2 − · · · − φpXt−p = Zt + θ1Zt−1 + · · · + θqZt−q where {Zt} ∼
WN(0, σ2).

3. Polynomials (1− φ1z − φ2z
2 − · · · − φpzp) and (1 + θ1z + θ2z

2 + · · ·+ θqz
q) have no

common factors (no common root).

{Xt, t ∈ T} is an ARMA process with mean µ if {Xt − µ} is an ARMA(p, q) process.
Recall the backward shift operator BXt = Xt−1. By iteration we have BjXt = Xt−j .
Therefore, we can write ARMA(p, q) process as (1 − φ1B − φ2B

2 − · · · − φpB
p)Xt =

(1 + θ1B + θ2B
2 + · · ·+ θqB

q)Zt and that is θ(B)Xt = θ(B)Zt
where φ(B) = 1− φ1B − · · · − φpBp and θ(B) = 1 + θ1B + · · ·+ θqB

q.
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The general model in above equation has a unique stationary solution for Xt if φ(z) =
1−φ1z− · · · − θpzp 6= 0 for all complex z such that |z| = 1. Recall that a complex number
z is z = a+ bi where i =

√
−1 and |z| =

√
a2 + b2, a, b ∈ R.

If for all z such that |z| = 1 we have φ(z) 6= 0, then there exists δ > 0 such that

1

φ(z)
=

∞∑
j=−∞

xjz
j , 1− δ < |z| < 1 + δ

∞∑
j=−∞

|xj | <∞

Under this condition
1

φ(B)
=

∞∑
j=−∞

xjB
j

is a linear filter. Hence

φ(B)Xt = θ(B)Zt =⇒ Xt =
1

θ(B)
θ(B)Zt

since 1
θ(B) is a polynomial and θ(B) is a polynomial. Thus 1

φ(B)θ(B) = ψ(B) is a polyno-
mial. Therefore

Xt =
1

φ(B)
θ(B)Zt = ψ(B)Zt =

∞∑
j=−∞

ψjZt−j

where
∑∞

j=−∞ |ψj | <∞.

3.5 Causality

An ARMA(p, q) process φ(B)Xt = θ(B)Zt where {Zt} ∼ WN(0, σ2) is causal if there
exists constants {ψj} such that

∑∞
j=0 |ψj | <∞ and Xt =

∑∞
j=0 ψjZt−j = ψ(B)Zt, ∀t. This

condition is equivalent to

φ(z) = 1− φ1z − φ2z
2 − · · · − φpzp 6= 0,∀zsuch that |z| ≤ 1

Causal ⇐⇒ roots of φ(z) are outside the unit circle. If the condition above holds true,

then θ(B)
φ(z) = ψ(z) =⇒ θ(z) = φ(z)ψ(z), ∀z . This implies

1 + θ1z + · · ·+ θqz
q = (−φ1z − · · · − φpzp)(ψ0 + ψ1z + ψ2z

2 + · · · )

where 1 = ψ0, θ1 = ψ1 − φ1ψ1, · · ·
Note:
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1. If φ(z) = 1 =⇒ φ(B)Xt = θ(B)Zt reduces to

Xt = θ(B)Zt = Zt + θ1Zt−1 + · · ·+ θqZt−q

Therefore, this is a MA(q)

2. If θ(B) = 1 we have θ(B)Xt = Zt =⇒ Xt − φ1Xt−1 − · · · − φpXt−p = Zt. This is
AR(p).

Notice that AR(p) and MA(q) are special cases of ARMA(p, q) processes.

AR(p) = ARMA(p, 0)

MA(q) = ARMA(0, q)

3.6 Invertibility

An ARMA(p, q) process {Xt} is invertible if there exist constants {πj} such that
∑∞

j=0 |πj | <
∞ and Zt =

∑∞
j=0 πjXt−j = π(B)Xt,∀t. Invertibility is equivalent to the condition

θ(z) = 1 + θ1z + θ2z
2 + · · ·+ θqz

q 6= 0,∀z such that |z| ≤ 1

We have that
φ(z)

θ(z)
= π(z) =⇒ φ(z) = θ(z)π(z)

(1− φ1z − φ2z
2 − · · · − φpzp) = (1 + θ1z + · · ·+ θqz

q)(π0 + π1z + π2z
2 + · · · )

where π0 = 1,−φ1 = π0θ + π1

Example 12: consider {Xt, t ∈ T} satisfying Xt − 0.5Xt−1 = Zt + 0.4Zt−1 where
{Zt} ∼WN(0, σ2). Investigate the causality and invertibility of Xt. If the series is causal
(invertible) provide the causal (invertible) solution. (there are also called MA(∞) and
AR(∞) representations)

Causality φ(z) = 1−0.5z and φ(z) = 0. This implies 1−0.5z = 0 =⇒ z = 2, |z| = 2 > 1.
The root is outside the unit circle so Xt is causal. θ(z) = φ(z)ψ(z). 1 + 0.4z =
(1 − 0.5z)(ψ0 + ψ1z + ψ2z

2 + · · · ). ψ0 = 1, ψ1 − 0.5ψ0 = 0.4 → ψ1 = 0.9 and
ψ2 − 0.5ψ1 = 0→ ψ2 = 0.5× 0.9 and ψ3 − 0.5ψ2 = 0→ ψ3 = 0.52 × 0.9, · · ·

Therefore,

{
ψ0 = 1

ψj = 0.5j−1 × 0.9, j = 1, 2, 3, · · ·

The causal solution is Xt =
∑∞

j=0 ψjZt−j = Zt + 0.9
∑∞

j=1 0.5j−1Zt−j
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Invertibility : θ(z) = 0→ 1 + 0.4z = 0 =⇒ z = − 1
0.4 = −10/4 and then |z| = 10

4 > 1.

The set of θ(z) is outside the unit circle. Then Xt is invertible.

φ(z) = θ(z)π(z)

(1− 0.5z) = (1 + 04z)(π0 + π1z + π2z
2 + · · · )

π0 = 1

π1 + 0.4π0 = −0.5→ π1 = 0.9

π2 + 0.4π1 = 0→ π2 = (−0.4)(−0.9)

...

πj = −0.9× (−0.4)j−1, j = 1, 2, 3, · · ·

Therefore, the AR(∞) representation of Xt is

Zt =

∞∑
j=0

πjXt−j = Xt − 0.9

∞∑
j=1

(−0.4)j−1Xt−j

Zt = Xt − 0.9

∞∑
j=1

(−0.4)j−1Xt−j

3.7 ACVF of ARMA(p, q)

Consider a causal, stationary ARMA process φ(B)Xt = θ(B)Zt, {Zt} ∼ WN(0, σ2). The
MA(∞) representation of Xt is

Xt =

∞∑
j=0

ψjZt−j

where E[Xt] = 0,∀t. We have,

γ(h) = Cov(Xt, Xt+h) = E(Xt, Xt+h)− E(Xt)E(Xt+h) = E[

∞∑
j=0

ψjZt−j

∞∑
j=0

ψjZt+h−j ]

Notice that E(ZtZs) = 0,∀t 6= s. Then (Cov(Zt, Zs) = 0,∀t 6= s).
If h ≥ 0:

γ(h) =

∞∑
j=0

ψjψj+hσ
2

If h < 0,

γ(h) =
∞∑
j=0

ψjψj−hσ
2
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Then

γ(h) = σ2
∞∑
j=0

ψjψj+|h|

Example 15: Derive the ACVF for the following ARMA(1, 1) process

Xt − φXt−1 = Zt + θZt−1

where {Zt} ∼WN(0, σ2) and |φ| < 1. If |φ| < 1 we show that Xt is casual. φ(z) = 0 =⇒
1− φz = 0→ z = 1

φ . | 1φ | > 1 = 0 casual.

θ(z) = θ(z)ψ(z)

(1 + θz) = (1− φz)(ψ0 + ψ1z + ψ2z
2 + · · · )

ψ0 = 1, ψ1 − φψ0 = θ → ψ = φ+ θ

ψ2 − ψ1φ = 0→ ψ2 = φ(φ+ θ)

· · · , ψj = φj − 1(φ+ θ), j = 1, 2, 3, · · ·

If h = 0, then

γ(0) = σ2
∞∑
j=0

ψ2
j = σ[1 +

∞∑
j=1

ψ2
j ]

= σ2[1 + (θ + φ)2
∞∑
j=1

φ2(j−1)] = σ2[1 + (θ + φ)2
∞∑
i=0

φ2i]

= σ2[1 + (θ + φ)2 1

1− φ2
]

where i = j − 1
If h 6= 0,

γ(h) = σ2
∞∑
j=0

ψjψj+|h| = σ2[ψ0ψ|h| +
∞∑
j=1

ψjψj+|h|]

= σ2[φ|h|−1(θ + φ) + (θ + φ)2
∞∑
j=1

φj−1φj+|h|−1]

= σ2[φ|h|−1(θ + φ) + φ|h|(θ + φ)2
∞∑
j=1

φ2(j−1)]

= σ2[φ|h|−1(θ + φ) + φ|h|
(θ + φ)2

1− φ2
]
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with i = j − 1.
Example 16: Derive the ACVF of an AR(1) process (|φ| < 1) using the general format

σ2
∑∞

j=0 ψjψj+|h| of ARMA processes.
Example 17: Derive the ACVF of an MA(q) process.

Xt = Zt + θ1Zt−1 + · · ·+ θqZt−q

θ(z) = θ(z)ψ(z)

(1 + θ1z + · · ·+ θqz
q) = |x(ψ0 + ψ1z + ψ2z

2 + · · · )

Therefore, ψ0 = 1, ψ1 = θ1, ψ2 = θ2, · · ·ψq = θq, ψj = 0, ∀j > q. Therefore,

γ(h) = σ2
∞∑
j=0

ψjψj+|h| =

{
σ2
∑q−|h|

j=0 θjθj+|h| |h| ≤ q
0 |h| > q

ρ(h) =
γ(h)

γ(0)
=

{
σ2
∑q−|h|

j=0 θjθj+|h|/σ
2
∑q

j=0 θ
2
j |h| > q

0 O.W.
=


∑q−|h|

j=0 θjθj+|h|∑q
j=0 θ

2
j

|h| > q

0 O.W.

We can see that γ(h) = 0 after q lags, confirming that the process is an MA(q) [q-
corelatedness]. However, there are models with infinite number of non-zero values of γ(h)
(e.g. AR(p)). Therefore, it is useful to introduce another tool to help us identify time
series models.

3.8 Partial Autocorrelation Function (PACF)

ACF measures the correlation between Xn and Xn+h. This correlation can be due to direct
connection, or through the intermediate steps Xn+1, Xn+2, · · · , Xn+h−1. PACF looks at
the correlation between Xn and Xn+h once the effect of the intermediate steps are removed.

We remove the effect of the intermediate steps by deriving the linear predictor
P (Xn+h|Xn+1, · · · , Xn+h−1) and P (Xn|Xn+1, · · · , Xn+h−1). The partial auto-correlation

function (PACF) is shown by α(h) and is defined to be

α(h) =


1 if h = 0

Corr(Xn, Xn+1) = ρ(1) if h = 1

Corr[Xn − P (Xn|Xn+1, · · · , Xn+h−1), Xn+h − P (Xn+h|Xn+1, · · · , Xn+h−1)]

Example 18: Derive the PACF for an AR(1) process (|φ| < 1). We saw in example 10
that P (Xn+1|Xn) = φXn where Xt = φXt−1 +Zt is an AR(1) process. h = 0 =⇒ α(0) =
1, h = 1 =⇒ α(1) = Corr(Xt, Xt+1) = Corr(Xt, Xt+1) = ρ(1) = φ.
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Then h = 2:

α(2) = Corr[Xt − P (Xt|Xt+1), Xt+2 − P (Xt+2|Xt+1)

= Corr[Xt − P (Xt|Xt+1), Xt+2 − φXt+1], xt+1

= Corr[linear function of Xt+1, Zt+2] = 0

Similarly, α(h) = 0, ∀h > 0. Therefore,

α(h) =


1 h = 0

φ h = 1

0 h ≥ 2

Notice that similar to ACF, the PACF is symmetric in h so h < 0 is omitted from derivations
above.

Theorem. {Xt, t ∈ T} is a causal AR(p) process if and only if its PACF has the following
properties

α(p) 6= 0, α(h) = 0,∀h > p

Furthermore, α(p) = φp.

This theorem shows that PACF is a powerful tool for identifying AR(p) processes. In
fact, ACF to MA(q) is like the PACF to AR(q) from the visual point of view (trend). In
summary

ACF PACF

MA(q) zero after lag q decays exponentially

AR(p) decays exponentially zero after lag p

In the general case of ARMA processes, the PACF is defined as α(0) = 1 and α(h) =
Φhh, h ≥ 1 where Φhh is the last component of the vector Φh = Γ−1

h γh in which

γh =


γ(0) γ(1) · · · γ(h− 1)

0 γ(0) · · · γ(h− 2)
...

...
. . .

...
· · · · · · · · · γ(0)


Based on observations (data) {x1, · · · , xn} with xi 6= xj for i, j = 1, · · · , n, i 6= j, the
sample PACF α̂(h) is given by

α̂(0) = 1, α̂(h) = Φ̂hh, h ≥ 1

where Φ̂hh is the last component of Φ̂h = Γ̂−1
h γ̂h
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3.9 ARMA(p, d, q) process

Definition. Let d be a non-negative integer {Xt, t ∈ T} is an ARIMA(p, d, q) process if
Yt := (1−B)dXt is a causal ARMA(p, q) process.

The definition above means that {Xt} satisfies an equation of the form

φ∗(B)Xt = φ(B)(1−B)dXt = θ(B)Zt, {Zt} ∼WN(0, σ2)

Notice that if d 6= 0 =⇒ φ∗(1) = 0 =⇒ Xt is not stationary. Therefore, {Xt} is
stationary if and only if d = 0, in which case it is reduced to an ARMA(p, q) process.

If {Xt} exhibits a trend which is well-approximated by a polynomial m(t) = α0 +α1t+
· · · + αdt

d, then (1 − B)dXt will not have a time-dependent trend. Therefore, ARIMA
models are appropriate when the non-stationary is due to the existence of a trend.

Example 21:
Consider the process Xt = 0.8Zt−1 + 2t+ Zt where {Zt} ∼WN(0, σ2)
Write this process as ARIMA(p, d, q) process.

Xt − 0.8Xt−1 = Zt + 2t→ (1− 0.8B)Xt = 2t+ Zt

2t is a linear trend, so let us look at (1−B)Xt.

∇Xt = (1−B)Xt

= Xt −Xt−1

= 0.8Xt−1 + Zt + 2t− 0.8Xt − 2Zt−1 − 2(t− 1)

=⇒ Xt −Xt−1 = 0.8(Xt−1 −Xt−2) + Zt − Zt−1 + 2

=⇒ Yt − 0.8Yt−1 = Zt − Zt−1 + 2

=⇒ (Yt − 10)− 0.8(Yt−1 − 10) = Zt + Zt−1

Since Yt is an ARIMA(1,1) with mean 10, then Xt is an ARIMA(1,1, 1) process.
We have see how differencing can be bused to remover a trend. Seasonality is a par-

ticular type of trend which can be removed by a particular type of differencing . This is
discussed under SARIMA (seasonal ARIMA) model.

3.10 SARIMA(p, d, q) × (P, D, Q) process

Recall the operator B, where BXt = Xt−1 and BkXt = Xt−k. Examples: B2Xt =
Xt−2, B

2Xt = Xt−12. Hence

(1−B)2Xt = (1− 2B +B2)Xt = Xt − 2Xt−1 +Xt−2 =⇒ 2 times of differencing

(1−B)2Xt = Xt −Xt−2 =⇒ Differencing in lag 2

Therefore (1− Bk) and (1− B)k are different fitness. The latter is performing k times of
differencing, but the former is differencing one time in lag k.

In R we have:
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diff(x, difference= k)

diff(x, lag=k)

As an example, consider the process {Xt} where t represents the month.
if there is a seasonal effect for month, i.e. S(t) = S(t−12) then the effect of the seasonal

trend for Xt and Xt−12 should be the same as they are exactly 12 steps apart (period = 12).
Therefore, one may hope that Yt = Xt −Xt−12 does not exhibit any seasonal trend.

We have seen how differencing can be used to remove a trend . We talked about
“seasonal differencing” to remove the effect of a periodic trend. If we apply differencing at
lag s

((1−Bs)Xt = Xt −Xt−s)

where s represents the season we can ( in theory) remove the effect of the seasonal trend.
Therefore, fitting and ARMA(p, q) model to the differenced series Yt = (1−Bs)Xt is the
same as fitting the model

φ(B)(1−Bs)Xt = θ(B)Zt, {Zt} ∼WN(0, σ2)

This is a special case of SARIMA models.

Definition. If d,D are non-negative integers, then {Xt, t ∈ T} is a seasonal ARIMA(p,
d, q)×(P,D,Q)s process with a period s if the differenced series

Yt = ∇d∇Ds Xt = (1−B)d(1−Bs)DXt

is a causal ARMA process defined by

φ(B)Φ(Bs)Yt = θ(B)Θ(Bs)Zt, {Zt} ∼WN(0, σ2)

where
φ(z) = 1− φ1z − · · · − φpzp

Φ(z)i = 1− Φ1z − · · · − Φpz
p

θ(z)i = 1 + θ1z + · · ·+ θpz
p

Θ(z)i = 1 + Θ1z + · · ·+ Θpz
p

Remark 1: Notice that the process {Xt, t ∈ T} is causal if and only if φ(z) = 0 and
Φ(z) 6= 0,∀z, |z| ≤ 1.

Remark 2: In practice D is rarely more than 1 and P, Q are typically less than 3.
Example 22: Write down the equation form of ARMA(1, 1)12 process.

ARMA(1, 1)12 = SARIMA(0, 0, 0)× (1, 0, 1)12

φ(B)Φ(Bs)∇d∇Ds Xt = θ(B)Θ(Bs)Zt
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1× (1− Φ1B
12)(1−B)0(1−B12)0Xt = 1× (1 + Θ1B

12)Zt

=⇒ (1− Φ1B
12)Xt = (1−Θ1B

12)Zt, {Zt} ∼WN(0, σ2)

If d 6= 0 or D 6= 0, then SARIMA models are not stationary. This model (ARMA(1, 1)12)
looks like ARMA(1, 1): (1− φB)Xt = (1 + θB)Zt. In fact, this model is an ARMA(1, 1)
sitting on the season.(s = 12).

Example 23: Derive the ACF of SARIMA(0, 0, 1)12 = SARIMA(0, 0, 0)× (0, 0, 1)12

d = D = 0 =⇒ φ(B)Φ(Bs)Xt = θ(B)Θ(Bs)Zt

=⇒ 1× 1×Xt = 1× (1 + Θ1B
12)Zt

=⇒ Xt = Zt + Θ1Zt−12, {Zt} ∼WN(0, σ2)

γ(h) = Cov(Xt, Xt+h) =


(1 + Θ2

1)σ2 h = 0

Θ1σ
2 h = 12

0 otherwise

Therefore,

ρ(h) =
γ(h)

γ(0)
=


1 h = 0

Θ1

1+Θ2
1

h = 12

0 otherwise

Aside, for MA(1),

ρ(h) =


1 h = 0
θ

1+θ2
h = 1

0 otherwise

Example 24: Write down the ARIMA(0, 1, 1)× (0, 1, 1)12 is the equation format.
To use Box-Jenkins methodology,

1. check for seasonal and non-seasonal trends (stationarity)

2. use differencing to make the process stationary.

3. Identify p, q, P,Q: visually (from ACF and PACF) and/or with formal model selection
methods

4. forecast the future with the appropriate model.
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4 Parameter Estimation in ARMA processes

This section concentrates on estimation of the parameters φi, i = 1, 2, · · · , p and θj , j =
1, · · · , q and σ2 (the variance of W.N.) in the ARMA(p, q) process φ(B)Xt = θ(B)Zt, {Zt} ∼
WN(0, σ2). We assume that p and q have been correctly specified. If the mean of the se-
ries is not zero, we will use the model φ(B)(Xt − µ) = θ(B)Zt where µ = E[Xt], ∀t.
Also µ̃ = X̄ = 1

n

∑n
i=1Xi. The common parameter estimation methods are maximum

likelihood, least squares, Yule-Walker, Innovations algorithm, Durbin-Levinson method.

4.1 Yule-Walker estimation in AR(p)

Consider a causal AR(p) model Xt−φ1Xt−1−· · ·−φpXt−p = Zt with causal solution Xt =∑∞
j=0 ψjZt−j where {Zt} ∼ WN(0, σ2). Multiplying both sideby Xt−j , j = 0, 1, 2, · · · , p

and taking expectation we have

E[XtXt−j ]− φ1E[XtXt−j ]− · · ·φpE[Xt−pXt−j ] = E[ZtXt−j ], i = 0, 1, 2, · · · , p

Since E[Xt] = 0, ∀t is simplified to

γ(j)− φ1γ(j − 1)− · · · − φpγ(j − p) = E[ZtXt−j ]

j = 0 =⇒ E[ZtXt−j ] = E[ZtXt] = E[Zt

∞∑
j=0

ψjZt−j ] = E[Z2
t ] = σ2

j > 0 =⇒ E[ZtXt−j ] = 0

We have for j = 0, γ(0)− φ1γ(1)− · · · − φpγ(p) = σ2

for j = 1, γ(1)− φ1γ(0)− · · · − φpγ(p− 1) = 0

...

for j = p, γ(p)− φ1γ(p− 1)− · · ·φpγ(0) = 0.
Rearranging the terms:

σ2 = γ(0)− φ1γ(1) · · · − φpγ(p)

φ1γ(0) + · · ·+ φpγ(p− 1) = γ(1)

φ1γ(1) + · · ·+ φpγ(p− 2) = γ(2)

...

φ1γ(p− 1) + · · ·+ φpγ(0) = γ(p)

Above is Yule-Walker equations.
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This system of p + 1 equations are called Yule-Walker equations. System A can be
written in matrix form as

γ(0) γ(1) γ(2) · · · γ(p− 1)
γ(0) γ(1) · · · γ(p− 2)

· · · . . .
. . .

...
· · · · · · · · · γ(0)



φ1

φ2
...
φp

 =


γ(1)
γ(2)

...
γ(p)


Based on a sample {X1, X2, · · · , Xn} the parameters φ and σ2 can be estimated by{

φ̂ = Γ̂−1
p γ̂p

σ̂2 = γ̂2(0)− φ̂T γ̂p
where φ̂ =


φ̂1

φ̂2
...

φ̂p

 , γ̂p =


γ̂(1)
γ̂(2)

...
γ̂(p)


The system is called the sample yule-walker equations. we can write Yule-Walker

equations in terms of ACF too.
Yule-Walker equations can be written in terms of acf (rather than acvf). Dividing both

sides of Yile-Wlake equations defined above and simplifying the resulting equations, we get

(?)


φ̂ =


φ̂1

...

φ̂p

 = R̂−1
p ρ̂p

σ̂2 = γ̂(0)[1− φ̂T ρ̂p]

where ρ̂p =

ρ̂(1)
...

ρ̂(p)

 and R̂p =
Γ̂p

γ(0) = [ρ̂(i− j)]pi,j=1

Notice that γ̂(0) is the sample variance of {x1, · · · , xn}. Based on a sample {x1, · · · , xn},
(?) will provide the parameter estimates.

Asside: in R, a← acf(x) Using advanced probability theory, it can be shown that

φ̃ =

φ̃1
...

φ̃p

 ∼MVN(φ,
σ2

n
Γ−1
p )

If we replace σ2 and Γp by their sample estimates σ̂2 and Γ̂p, we can use this result for
large-sample confidence intervals for the parameters φ1, · · · , φp, we show this in an example.

Example 24: Based on the following sample act and pact, an AR(2) model has been
proposed for the data. Provide the Yule-Walker estimates of the parameters as well as
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95% confidence interval for the parameters in φ =

φ1
...
φp

. The data was collected over a

window of 200 points with sample variance 3.96.

h 0 1 2 3 4 5 6 7

ρ̂(h) 1 0.821 0.764 0.644 0.586 0.49 0.411 0.354

γ̂(h) 1 0.821 0.277 -0.121 0.052 -0.06 -0.072

Xt = φ1 +Xt−1 + φ2Xt−2 + Zt, {Zt} ∼WN(0, σ2)
We need to estimate φ1 and φ2.

φ̂ =

(
φ̂1

φ̂2

)
= R̂−1

2 ρ̂2 =

(
0.594
0.276

)
We have

σ̂2 = γ̂(0)[1−
(
φ̂1 φ̂2

)(ρ̂(1)
ρ̂(2)

)
] = 1.112

Therefore, the estimated model is

Xt = 0.594Xt−1 + 0.276Xt−2 + Zt, {Zt} ∼WN(0, 1.112)(
φ̃1

φ̃2

)
∼ N(

(
φ1

φ2

)
,
σ2

n
Γ−1

2 )

Γ̂2 = γ̂(0)R̂2 = 3.96

(
1 0.821

0.821 1

)
Γ̂−1

2 =

(
0.831 −0.683
−0.683 0.831

)
Therefore, σ̂2

n Γ̂−1
2 =

(
0.005 −0.004
−0.004 0.005

)
Therefore, a 95% confidence interval for φ1 is φ̂1 ± 1.96

√
ˆvar(φ̂1) → (0.455, 0.733). a

95% confidence interval for φ2 is φ̂2 ± 1.96

√
ˆvar(φ̂2)→ (0.137, 0.415).

4.2 Likelihood Methods

To use likelihood methods, we have to have some distributional assumptions. Consider
{Xt, t ∈ T} to be a Gaussian process. Therefore ,Zt in φ(B)Xt = θ(B)Zt is i.i.d. G(0, σ).
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Based on the observations x1, x2, · · · , xn at times 1, 2, · · · , n the likelihood function of the
parameters φ, θ and σ2 is

L(θ, φ, σ2) =
1

(2π)n/2|Γn|1/2
e−1/2xT Γ−1

n x

where x =

x1
...
xn

 and

Γn =

γ(0) · · · γ(n− 1)

· · · . . .
...

· · · · · · γ(0)


Notice that it is assumed that E[Xt] = 0, ∀t.

To estimate φ, θ&σ2, we maximize the likelihood function. Usually, it is easier to
maximize the log of the likelihood function, which is called the log-likelihood. In this like-
lihood function, γ(h) (hence Γh) depends on the parameters θ, φ,&σ2 in a non-linear way.
Furthermore, as the dataset gets larger (n increases), the inversion Γ−1

n can be computa-
tionally challenging. Therefore, efficient computational methods are needed for likelihood
estimation.

4.3 Forecasting ARMA models

Based on the history of the process up to including time n(x1, x2, · · · , xn), we are inter-
ested in deriving the predictor for xn+h, h > shown by P (xn+h|x1, · · · , xn) = x̂n+h which
minimizes the MSE. We know that x̂n+h is of the form

x̂n+h = E[xn+h|x1, · · · , xn]

Therefore, in different cases of ARMA processes we will derive this conditional expectation.
We will see that in the case of ARMA processes (linear). This expectation is in fact, the
best linear predictor, PnXn+h.

4.4 Forecasting AR(p) process

Let xt =
∑p

j=1 φjxt−j + zj , {zt} ∼WN(0, σ2), be a causal AR(p) process we have.

x̂n+h = E[xn+h|x1, · · · , xn]

= E[

p∑
j=1

φjxn+h−j |x1, · · · , xn] + E[Zn+h|x1, · · · , xn]

= E[

h−1∑
j=1

φjxn+h−j +

p∑
j=h

φjxn+h−j |x1, · · · , xn]
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If h = 1, then above is just
∑p

j=1 φjxn+h−j then
∑p

j=1 φjxn+1−j .
If h = 2, 3, · · · , p, j < h =⇒ n + h − j > n =⇒ first summation and j ≥ h =⇒

n+ h− j ≤ n =⇒ second summation.
Therefore,

p∑
j=h

φjxn+h−j + E[
h−1∑
j=1

φjxn+h−j |x1, · · · , xn]

=

p∑
j=h

φjxx+h−j −
h−1∑
j=1

φjE[xn+h−j |x1, · · · , xn]

=

h−1∑
j=1

φj x̂n+h−j +

p∑
j=h

φjxn+h−j

If h > p: n+ h− j > n. This implies

E[

p∑
j=1

φjxn+h−j |x1, · · · , xn] =

p∑
j=1

φjE[xn+h−j |x1, · · · , xn]

=

p∑
j=1

φj x̂n+h−j

In summary, for a causal AR(p) process, the h-step predictor is

x̂n+h =


∑p

j=1 φjxn+h−j h = 1∑h−1
j=1 φj x̂n+h−j +

∑p
j=h φjxn+h−j h = 2, 3, · · · , p∑p

j=1 φj x̂n+h−j h > p

Note: in AR(p), the h-step prediction is a linear combination of the previous steps. We
either have the previous p steps in x1, · · · , xn so we substitute the values (like the h = 1
case), or we don’t have all or some of them, which we recursively predict.

Given a dataset, φj can be estimated (φ̂j) and x̂n+h will be computed.
Example 25: Based on the annual sales data of a chain store, an AR(2) model with

parameters φ̂1 = 1 and φ̂2 = −0.21 has been fitted. If the total sales of the last 3 years
have been 9, 11 and 10 million dollars. Forecast this year total sales (2013) as well as that
of 2015.

Xt = φ̂1Xt−1 + φ̂2Xt−2 + Zt

Xt = Xt−1 − 0.21Xt−2 + Zt, {Zt} ∼WN(0, σ2)
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X̂2013 = φ̂1X2012 + φ̂2X2011

= X2012 − 0.21X2011 = 9− 0.21× 11 = 6.69

Hence by doing the similar prediction, X̂2015 = 3.4.

4.5 Forecasting in MA(q) process

MA processes are linear combination of white noise. To do forecasting in

MA(q) : Xt = Zt + θ1Zt−1 + · · ·+ θqZt−q

We need to estimate θ1, · · · , θq as well as “approximate” the innovations Zt, Zt+1, · · · . First
consider the very simple case of MA(1):

Xt = Zt + θZt−1, {Zt} ∼WN(0, σ2)

X̂n+h = E[Xn+h|X1, · · · , Xn] = E[Zn+h|X1, · · · , Xn] + θE[Zn+h−1|X1, · · · , Xn]

If h = 1, = E[Zn+1|X1, · · · , Xn] + θE[Zn|X1, · · · , Xn] = E[Zn+1] + θE[Zn|X1, · · · , Xn] =
θE[Zn|X1, · · · , Xn] = θZn

If h > 1, = E[Zn+h] + θE[Zn+h−1] = 0
Now, we need to plugin a value for Zn. We “approximate” Zi’s by Uis as follows:

U0, Xt = Zt + θZt−1 =⇒ Zt = Xt − θZt−1 =⇒ Ut = Xt − θUt−1, U0 = 0

U0 = 0

U1 = X1 − θU0 = X1

U2 = X2 − θU1 = X2

...

Notice that as i→∞, U will need a convergence condition where |θ| < 1 is sufficient. This
was the invertibility condition for MA(1).

We see that Ut’s are recursively calculable. This implies for an invertible MA(1) process
we have

X̂n+h =

{
θUt h = 1

0 h > 0

Where Ut = Xt − θUt, U0 = 0.
Now consider MA(q) processXt = Zt+θ1Zt−1+· · ·+θqZt−q. X̂n+h = E[Xn+h|X1, · · · , Xn] =

E[Zn+h|X1, · · · , Xn] + θ1E[Zn+h−1|X1, · · · , Xn] + · · ·+ θqE[Zn+h−q|X1, · · · , Xn]
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Clearly, if h > q → n + h − q > n, hence X̂n+h = 0. If 0 < h ≤ q, then at
least some of the terms are non-zero. Then = 0 +

∑q
j=1 θjE[Zn+h−j |X1, · · · , Xn] =

0 +
∑q

j=h θjE[Zn+h−j |X1, · · · , Xn] =
∑q

j=h θjZn+h−j for j = h, h+ 1, h+ 2, · · · , q,

E[Zn+h−j |X1, · · · , Xn] = Zn+h−j

Similar to MA(1), we approximate Zi’s by Ui’s provided the MA(q) process is invertible, i.e.,
θ(z) = 1+θ1z+· · ·+θqzq 6= 0,∀z : |z| ≤ 1. Therefore, assuming U0 = U−1 = U−2 = · · · = 0,
then Un = Xn −

∑q
j=1 θjUn−j .

Therefore, U0 = 0, U1 = X1 −
∑q

j=1 θjU1−j = X1, U2 = X2 − θ1U1 = X2 − θ1X1, · · · .
in summary, for an invertible MA(q) process we have:

X̂n+h =

{∑q
j=h θjUn+h−j 1 ≤ h ≤ q

0 h > q

where, U0 = Ui = 0 and Un = Xn −
∑q

j=1 θjUn−j , n = 1, 2, 3, · · ·
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