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1 Introduction

In this section we are going to mainly cover two things, review of probability theory and
review of random variable.

1.1 Basic Concepts of Probability

1.1.1 What is a probability model?

Three components form the probability model, sample space, event and probability func-
tion.

Sample Space For example, toss a coin or toss a die, the outcome is not predictable; all
possible outcomes are known; the set of all possible outcomes form a sample space
(Ω). Tossing a coin has 6 possible outcomes, denoted as Ω = {1, 2, 3, 4, 5, 6}.

Event Roughly speaking, an event is a subset of the sample space (Ω). For example,
towing a die has E = {2, 4, 6}. Here E is an event.

Probability Function We use P to denote it. It satisfies three conditions

1. for any even E, 0 ≤ P (E) ≤ 1.

2. P (Ω) = 1.

3. “Additivity”: If E1, E2, · · · are disjoint or mutually exclusive (i.e. Ei ∩Ej = ∅),
then

P (
∞⋃
i=1

Ei) =
∞∑
i=1

P (Ei)

In other words, the probability of the union of disjoint events is equal to the
sum of probability of disjoin events.

Let’s consider the following example. Toss a die, for an event. Let

P (E) =
number of outcomes in E

6

For example, E1 = {1, 2}, P (Ei) = 2
6 . Claim that this P is a probability function.

Some important properties 1. If E1 ⊂ E2, then P (E1) ≤ P (E2). In other words,
the larger set has larger probability than smaller set. Note: the meaning of
subset is that if E1 occurs, we must have E2 occur, then E1 ⊂ E2.

2. P (∅) = 0

3. P (E) + P (Ec) = 1 where Ec is the complementary set of E.

4. P (E1 ∪ E2) = P (E1) + P (E2) if E1 ∩ E2 = ∅.
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5. In general, P (E1 ∪ E2) = P (E1) + P (E2)− P (E1 ∩ E2)

Conditional Probability

Definition. Let E&F be two events and P (F ) > 0, then conditional probability of E
given F is

P (E|F ) =
P (E ∩ F )

P (F )

One useful result:
P (E ∩ F ) = P (E|F )P (F )

Independence Two events are independent if P (E ∩ F ) = P (E)P (F ). Extension to
multiple events are not required. (Message: Probability of intersection of independent
events = product of probability of each event.

Simple& Useful result: Suppose we have a sequence of independent trails & a sequence
of events :E1, · · · , En, · · · . Further: Ei only depends on the trial.

Conclusion:

1. E1, · · · , En, · · · are independent

2. P (∩ni=1Ei) =
∏n
i=1 P (Ei) & P (∩∞i=1Ei) =

∏∞
i=1 P (Ei)

For example, suppose we toss a fair die repeatedly & independently, we get a sequence
of number. Find P (observe 333 in the sequence). Let E = observe “333” in the sequence,
Ec = Not observe “333” in the sequence. Ec implies that first 3 numbers is not
“333”, · · ·
P (Ec) ≤ P (1st 3 numbers is not “333” · · · )

Therefore, P (Ec) = P (1st 3 number is not “333”) · · · = (1− 1
6

3
)(1− 1

6

3
) · · · = 0. As

a result, P (Ec) ≤ 0 & P (Ec) = 0 =⇒ P (E) = 1

Summary:

1. partition the sequence into no-overlap blocks

2. P (E1) ≤ P (E2) if E1 ⊂ E2

3. P (E) + P (Ec) ≤ 1

4. independence property

Here is another example:

toss a fair coin repeatedly & independently P (H) = P (T ) = 1
2

1. P (1st 2 tosses gives HH) = 1
4

2. P (1st 2 tosses gives TH) = 1
4
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3. P (TH occurs before HH in the sequence) = 3
4 .

Case I: 1st outcome is a tail and TH occurs before HH. If you have T already,
only need one H to get TH but HH to get HH.

Case II: sat is head and second is tail. Similar as case I, TH occurs 1st.

Case II: sat is a head and second is also a head. Then HH occurs before TH.

Bayes Formula Suppose: F1, F2, · · · are disjoint events such that ∪Fi = Sample space.
Result 1: consider an event E, P (E) =

∑
P (E ∩ Fi) =

∑
P (E|Fi)P (Fi)

Result 2:

P (Fk|E) =
P (E ∩ Fk)
P (E)

=
P (E|Fk)P (Fk)∑
P (E|Fi)P (Fi)

Here is another example (Monty Hall problem). There are three doors A, B, C and
two goats & a car. Monty knows the position of car, but you don’t know. Now, let’s
randomly select a door and the probability of choosing a car is a third. Monty opens
a door to reveal a goat. You can have choice to switch the door. if you choose the
door has car, you can win the car.

Solution: I suppose you always choose door A and then you will have 2 thirds
chance to win. In general, P is two thirds. Now let’s try to apply Bayes for-
mula to solve this question. Suppose you choose door A and Monty opens door
B. Ei = car behind door, i ∈ {A,B,C} and E = Monty open door B).

P (win if switch) = P (EC |E) =
P (E|EC)P (EC)

P (E|EA)P (EA) + P (E|EB)P (EB) + P (E|EC)P (EC)

Hence P (win if switch) = 2
3

1.2 Review of Random Variable

A random variable is a function defined from sample space to real line. X : sample space→
R. Two types of random variables:

• discrete: all possible values is finite or countable such as binomial and poisson.

• continuous: all possible values contain an interval, such as normal

1.3 Some important distributions

1.3.1 Binomial Trials

Each trial has 2 outcomes: success or failure. All trails are independent. Probability of
success will be the same for all trials: P (S) = P .

Let I =

{
1 if S on ith trial

0 OW
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I1, I2, · · · are a sequence of Bernoulli trials.
Comments:

1. I1, I2, · · · are independent and identically distributed (iid)

2. P (Ii = 1) = P, P (Ii = 0) = 1− P

1.3.2 Binomial Random Variable

denoted by BIN(n, p)
Let X = # of S in n Bernoulli Trials X ∼ BIN(n, p)
Range of X = {0, 1, 2, · · · , n} Probability mass function

P (X = k) =

(
n

r

)
P k(1− Pn−k, k = 0, 1, · · · , n

Result I:
If X ∼ BIN(n, p), then X = I1 + I2 + · · · + In [connection between binomial and

Bernoulli RVs]
Result II:
If X1 ∼ BIN(n, p), X2 ∼ BIN(n, p) and X1, X2 are independent, then X1 + X2 ∼

BIN(n, p)

1.3.3 Geometric Random Variable

denoted by GEO(P ) Let X = # of trials to see the first S ∼ GEO(p)

• GEO(p) is the first waiting time

• x ∈ {1, 2, 3, · · · }

• p.m.f.: P (X = k) = (1− p)k−1p, k = 1, · · ·

Property: Non-memory property (i.e. P (X > n+m|X > m) = P (X > n)
Meaning of No-memory property
No matter how long you spent, as long as you do not observe S, the remaining time

∼ GEO(P )
“Toy Example”
Toss a fair coin. Observe 5 T already. What is the probability of requiring 10 trials in

total to see the first H.
Solution:
Remaining time ∼ GEO(P = 1/2). Here P (remaining time = 5) = (1− P )5−1P = 1

25
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1.3.4 Negative Binomial Random Variable

denoted by NEGBIN(r, P )
Let X = # of trials to see r S in the sequence X ∼ NEGBIN(r, p)
Support of this distribution is {r, r + 1, r + 2, · · · }

P (X = r) =

(
k − 1

r − 1

)
P r(1− P )k−r

first r trials of r S of k − r F has r − 1 S.
Property: NegBin&Geo(P )
LetX1 = wiring time for the first S, X2 = waiting time for the second S after the first S
Xr = waiting time for rth S after (r -1)th S.

1. X1, X2, · · · , Xr ∼iid Geo(p)

2. X =
∑r

i=1Xi

1.3.5 Poisson Random Variable

denoted by Pois(λ)
If the customers come to T.H. uniform and randomly over the time with rate λ per

unit.
Let

X(t) = # of customers coming to TH in [0, t]

Then X(t) ∼ Pois(λt)
X(t) ∈ {0, · · · }

P (X(t) = k) =
(λt)te−λt

k!
, k = 0, 1, 2, · · ·

If X1 ∼ POIS(λ1) and X2 ∼ POIS(λ2) and independent, then

X1 +X2 ∼ POIS(λ1 + λ2)

1.3.6 Exponential Random Variable

denoted by EXP (λ)
Let X = waiting time to see a customer in TH
X ∼ EXP (λ) f(x) = λe−λx, x ≥ 0.
Properties: P (X > x) = e−λx (tail probability); No-memory property P (X > t+s|X >

s) = P (X > t)
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1.3.7 Summary for Rate λ

1. λ is the unit rate for poisson rv

2. λ is also the rate for exponential waiting time

1.4 Expectation & Variance

1.4.1 Expectation

1. Linearity:

E[

n∑
i=1

aiXi] =

n∑
i=1

aiE[Xi]

e.g. E[X1 +X2] = E[X1] + E[X2]

2.

1.4.2 Variance

V ar(X) = E[(X − µ)2] = E[X2]− E[X]2

1.

V ar(
n∑
i=1

aiXi) =
n∑
i=1

a2iV ar(Xi)

if X1, · · · , Xn are independent.

e.g. If X1 and X2 are independent, then V ar(X1 ±X2) = V ar(X1)± V ar(X2)

2. In general

V ar(

n∑
i=1

aiXi) =

n∑
i=1

a2iV ar(Xi) +
∑
i 6=j

2aiajCov(Xi, Xj)

e.g. V ar(X1 +X2) = V ar(X1) + V ar(X2) + 2Cov(X1, X2)

V ar(X1+X2+X3) = V ar(X1)+V ar(X2)+V ar(X3)+2Cov(X1, X2)+2Cov(X1, X3)+
2Cov(X2, X3)

1.4.3 Covariance

Cov(X,Y ) = E[XY ]− E[X]E[Y ]

If X and Y are independent, then Cov(X,Y ) = 0.
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1.5 Indicator Variable

Indicator variables have only two values: 0&1. Bernoulli RV is indicator variable.
For an event A define

IA =

{
1 A occurs

0 O.W.

Suppose P (A) = P . What is E[IA] & V ar(IA)?
By definition E[IA] = 1× P (IA = 1) + 0× P (IA = 0) = P (A) = P
By definition V ar(IA) = E[I2A]− E[IA]2 = P − P 2 = P (1− P )
e.g. X ∼ BIN(n; p) Find E[X] and V ar(X)
X =

∑n
i=1 Ii where I1, · · · , In are iid Bernoulli RVs so

E[X] = E[
n∑
i=1

Ii] = np

V ar[X] = V ar[
n∑
i=1

Ii] =
n∑
i=1

V ar(Ii) = np(1− p)

1.5.1 Example

We have two boxes: red and black. Red box has 4 red balls and 6 black balls. Black box
has 6 red balls and 4 black balls. Step 1: toss a coin. H from red box and T from black
box. Choose the ball and record colour and place it back. Step 2: Choose a ball from the
box has the same colour as the ball you selected in step 1. For example, step1 gets a red
ball and step 2 selects from Red box. Step 1 gets a blck ball and step 2 selected from black
box.

X = # of red balls selected in the first 2 steps. Find E[X] and V ar(X).

Solution: Let I1 =

{
1 the ball in step 1 is red

0 O.W
and I2 =

{
1 the ball in step 2 is red

0 O.W
Then X = I1 + I2.

E[X] = E[I1] + E[I2] = P (I1 = 1) + P (I2 = 1)

P (I1 = 1) = P (first ball is red) = P (first ball is red|H)P (H) + P (the first ball is red|T )P (T )

= (0.4 + 0.6)× 0.5

Hence P (I1) = 0.5

P (I2 = 1) = P (second ball is red) = P (second ball is red|first is black)P (first is black)

+ P (second ball is red|first is red)P (first is red) = 0.5

10



Therefore, E[X] = 1

V ar(X) = V ar(I1 + I2) = V ar(I1) + V ar(I2) + 2Cov(I1, I2)

V ar(I1) = P (I1 = 1)(1− P (I1 = 1)) = 0.52

V ar(I2) = P (I2)(1− P (I2 = 1)) = 0.52

Cov(I1, I2) = E[I1I2)− E[I1]E[I2] = E[I1I2]− 0.52

Note I1I2 =

{
1 I1 = I2 = 1

0 O.W.
Now

E[I1I2] = P (I1 = I2 = 1) = P (I1 = 1&I2 = 1) = P (I2 = 1|I1 = 1)P (I1 = 1)

= P (second is red|first is red)P (first is red) = 0.4× 0.5 = 0.2

Hence Cov(I1, I2) = 0.2− 0.52 = −0.05

V ar(X) = 0.52 + 0.52 − 2× 0.05 = 0.4

2 Waiting Time Random Variable

2.1 Background

Suppose we have a sequence of independent trials and we would like to observe E.
Let TE = # of trials required to see first E (waiting time for first E)
Range of TE = {1, 2, 3, · · · } ∪ {∞}. We are interested in

1. Can we observe E? P (TE <∞) = 1 or P (TE =∞) = 0?

2. How long will it take? E[TE ]]

2.2 Classification of TE

P (TE <∞) = 1 or P (TE =∞) = 0

If above is true, TE is called proper; otherwise, it is improper. If E[TE ] < ∞, then it is
called short proper. If E[TE ] = ∞, it is null proper. For improper, it is automatically
E(TE) =∞

If P (TE <∞) < 1 or > 0, then TE is improper. Note: here E(TE) =∞.
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Aside∑∞
i=1 ai is just a limit summation does not include “∞”.

∑∞
i=1 ai = limn→∞

∑n
i=1 ai.

[
∑∞

i=1] is the summation over all positive integers but not “∞”.

Example 1 (Short proper) Consider the Bernoulli trials P (S) = p. E1 = waiting time for the first “S” ∼
GEO(P ) and E2 = waiting time for r “S” ∼ NegBin(r, p)
Claim: TE1&TE2 are short proper. Solution: for E1: check

1. P (TE1 <∞) = 1 or P (TE1 =∞) = 0.

2. E(TE1) <∞

For

P (TE1 <∞) =
∞∑
i=1

P (TE1 = k)

=
∞∑
i=1

(1− p)−1p

=
p

1− (1− p)
= 1

Equivalently,

P (TE1 =∞) = P (first = F, second = F, third = F, · · · )
= P (first = F )P (second = F ) · · · = (1− p)∞ = 0

For E(TE1). Recall E(TE1) = 1
p <∞ =⇒ TE1 is short proper

For E2: Note TE2 =
∑r

i=1Xi. Well it is just that a sum of r geometric distributions
will become a negative binomial with r successes.

P (TE2 <∞) = P (

r∑
i=1

Xi <∞)

= P (X1 <∞, X2 <∞, · · · , Xr <∞)

=
r∏
i=1

P (Xi <∞) = 1

E(TE2) = E(

r∑
i=1

Xi) =

r∑
i=1

E(Xi) =

r∑
i=1

1

p
= r/p <∞

Hence TE2 is short proper.
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Example 2 (null proper) Toss a coin independently. Suppose that nth toss probability of
H = Pn = 1

n+1 . That is probability of H at first toss is 1
2 . · · · at second toss is 1

3 .
TH = waiting time for the first H

Claim: TH is null proper. Solution: Check

1. P (TH <∞) = 1 =
∑∞

i=1 P (TH = i)

2. E(TH) =∞ =
∑∞

i=1 i× P (TH = i)

Find P (TH = n),

P (TH = n) = P (first = T, · · · , (n− 1)th = T, nth = T )

= P (first = T ) · · ·P ((n− 1)th = T )P (nth = T )

= (1− 1

1 + 1
)× (1− 1

1 + 2
) · · · × (1− 1

n
)

1

n+ 1

=
1

n(1 + n)
=

1

n
− 1

n+ 1

P (TH <∞) =
∞∑
i=1

P (TH = i) =
∞∑
i=1

(
1

i
− 1

i+ 1
) = 1

E[TH ] =

∞∑
n=1

n× P (TH = n) =

∞∑
n=1

n× (
1

n× (n+ 1)
) =

∞∑
n=1

1

n+ 1
=∞

3 Conditional Probability & Conditional Expectation

In this chapter, we consider two or more RVs and need the concept of joint RVs.

3.1 Joint Discrete Random Variables

• How to characterize the joint random variables? By joint c.d.f.

• Joint c.d.f: two rvs X&Y . Joint c.d.f. of X&Y s defined as

FX,Y (x, y) = P (X ≤ x, Y ≤ y)

Joint c.d.f uniquely define joint RVs.

• Joint discrete RVs: Roughly speaking, if X&Y are both discrete, then X&Y are
called joint discrete.
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• Joint p.m.f. for discrete case: Suppose X&Y are joint discrete then

fXY (xy) := P (X = x, Y = y)

is joint p.m.f of X&Y . Properties

1. fXY (x, y) ≥ 0.

2.
∑

x

∑
y fXY (x, y) = 1

• Marginal p.m.f. from joint p.m.f.

fX(x) := P (X = x) =
∑
y

fXY (x, y)

fY (y) := P (Y = y) =
∑
x

fXY (x, y)

• Joint expectation: Suppose h(x, y) is a bivariate function, then

E[h(X,Y )] =
∑
x

∑
y

h(x, y)fXY (x, y)

For example, E[XY ] =
∑

x

∑
y xyfXY (x, y) and E[X] =

∑
x

∑
y xfXY (x, y)

3.1.1 Independence

If fXY (x, y) = fX(x)fY (y), then X&Y are independent. Properties: Expectation and
independence: If X&Y are independent, then

1. g1(X)&g2(Y ) are independent;

2. E[g1(X)g2(Y )] = E[g1(X)]E[g2(Y )] For example, if X&Y are independent then
E[XY ] = E[X]E[Y ]&Cov(X,Y ) = 0.

3.2 Joint Continuous Random Variables

If the joint c.d.f of X&Y can be written as

FXY (x, y) =

∫ x

−∞

∫ y

∞
fXY (s, t)dsdt

then

1. X&Y are joint continuous

2. fXY (x, y) is called joint p.d.f

14



Properties:

1. fXY (x, y) ≥ 0

2. The sum of all possibilities is 1

3. Marginal p.d.f.

fX(x) =

∫ ∞
−∞

fXY (x, y)dy

3.3 Conditional Distribution & Conditional Expectation

3.3.1 Discrete Case

Definition. Suppose X&Y has joint p.m.f fXY (xy), marginal p.m.f. fX(x), fY (y). The
conditional p.m.f. of X given Y = y is

fX|Y (x|y) = P (X = x|Y = y) =
P (X = x|Y = y)

P (Y = y)
=
fXY (xy)

fY (y)

or

Conditional pmf =
Joint pmf

marginal pmf

Properties:fX|Y (x|y) is a pmf. That is

1. fX|Y (x|y) ≥ 0

2.
∑

x fX|Y (x|y) = 1

Proof. 1.

fX|Y (xy) =
fXY (x, y) ≥ 0

fY (y) > 0
≥ 0

2. ∑
x

fX|Y (x|y) =
∑
x

fXY (xy)

fY (y)

so ∑
x

fX|Y (x|y) =

∑
x fXY (xy)

fY (y)
=
fY (y)

fY (y)
= 1

Definition. Conditional expectation: Since fX|Y (x|y) is a pmf, we can define expectation
based on it. Condition expectation of X given Y = y

E[X|Y = y] =
∑
x

fX|Y (x|y)

15



Conditional expectation of g(X) given Y = y.

E[g(X)|Y = y] =
∑
x

g(x)fX|Y (x|y)

Comment: if X&Y are independent. Here, fXY (xy) = fX(x)fY (y) and fX|Y (x|y) =
fXY (xy)
fY (y) = fX(x) so the conditional pmf is just the marginal pmf.

Note: E[X|Y = y] =
∑

x xfX|Y (x|y) =
∑

x xfX(x) = E[X] so if X&Y are independent

E[X|Y = y] = E[X]

Example

Suppose X1 ∼ POIS(λ1), X2 ∼ POIS(λ2) are independent. Let X = X1, Y = X1 +X2 ∼
POIS(λ1 + λ2) and Find fX|Y (x|y)&E[X|Y = y]

Solution: By definition

fX|Y (x|y) =
P (X = x, Y = y)

P (Y = y)

For

P (X = x, Y = y) = P (X1 = x,X1+X2 = y) = P (X1 = x,X2 = y−x) = P (X1 = x)P (X2 = y−x)

Hence we just need to plug the poisson distribution formula into the expression and we are
done.

fX|Y (x|y) =
y!

x!(y − x)!

λx1λ
y−x

(λ1 + λ2)y
=

(
y

x

)
(

λ1
λ1 + λ2

)x(
λ2

λ1 + λ2
)y−x

so X|Y = y ∼ BIN(y, P = λ1
λ1+λ2

)

Therefore E(X|Y = y) = y λ1
λ1+λ2

3.3.2 Continuous Case

Suppose X&Y are joint continuous with joint df fX|Y (xy). Marginal pdf fX(x), fY (y).

Definition. Conditional pdf: The conditional pdf pf X given Y = y is

fX|Y (x|y) =
fXY (xy)

fY (y)
=

joint pdf

Marginal pdf

Claim: fX|Y (x|y) is a pdf. That is

1. fX|Y (x|y) ≥ 0.

2.
∫∞
−∞ fX|Y (x|y)dx = 1
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Definition. Conditional Expectation: Conditional expectation of X given Y = y is

E[X|Y = y] =

∫ ∞
−∞

xfX|Y (x|y)dx

conditional expectation of g(X) given Y = y is

E[g(X)|Y = y] =

∫ ∞
−∞

g(x)fX|Y (x|y)dx

Comment: If X&Y are independent f(X|Y = y) = fX(x), E[X|Y = y] = E[X]

Example

fXY (xy) =

{
xe−xy x > 0, y > 1

0 otherwise

Find fX|Y (x|y)&E[X|Y = y]
First of all

fY (y) =
1

y2
Γ(2) =

1

y2

Conditional pdf

fX|Y (x|y) =
xe−xy

1/y2
= xy2e−xy

E[X|Y = y] =

∫ ∞
0

xfX|Y (x|y)dx =

∫ ∞
0

x2y2e−xydx

Let t = xy. Hence

E[X|Y = y] =
1

y

∫ ∞
0

t2e−tdt

so

E[X|Y = y] =
Γ(3)

y
=

2

y

Summary of Properties for conditional expectation: For both continuous and discrete

1. Conditional expectation has all properties of expectation

2. Substitution rule:

E[Xg(Y )|Y = y] = E[Xg(y)|Y = y] = g(y)E[X|Y = y]

In general E[h(XY )|Y = y] = E[h(XY )|Y = y]

3. If X&Y are independent, E[X|Y = y] = E[X] and E[g(X)|Y = y] = E[g(X)]
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3.3.3 Expectation Theorem

EX [EY [Y |X]] = E[X] =

{∑
y E[X|Y = y]fY (y) r is discrete∫∞
−∞E[X|Y = y]fY (y)dy r is continuous

By double expectation theorem,

E[X] = E[X|Y = s]P (y = s) + E[X|Y = F ]P (Y = F ) = 1× P + [1 + E[X]]× (1− p)

E[X] = p+ (1− p) + (1− p)E[X] =⇒ E[X] = 1/p

Example

A miner is crapped. There are 3 doors to go out side. Door 1: leads to safety after 2 hours.
Door 2: return the miner to starting point in 3 hours. Door 3: return the miner to starting
point in 4 hours. Assume miner randomly choose a door at each time

X = length of time until miner go out

Find E[X]
Solution: Let Y denote the door number P (Y = 1) = P (Y = 2) = P (Y = 3) = 1

3
X|Y = 1 = 2 =⇒ E[X|Y = 1] = 2, X|Y = 2 = 3 + remaining time, X|Y = 3 =

4 + remaining time. No memory: remaining time &X have same distribution. so

E[X|Y = 1] = 2

E[X|Y = 2] = 3 + E[remaining time] = 3 + E[X]

E[X|Y = 3] = 4 + E[remaining time] = 4 + E[X]

By double expectation theorem, E[X] =
∑3

y=1E[X|Y = y]P (Y = y) = 1
3 × 2 + 1

3 ×
[3 + E[X]] + 1

3 × [3 + E[X]] =⇒ E[X] = 2 + 3 + 4 = 9
Think: If miner will not choose the door that he choose before what is E[X].

3.4 Calculating probability by conditioning

Suppose we have an event A, we are interested in P (A). Let IA =

{
1 if A occurs

0 O.W.

P (A) = E[IA] = E[E[IA|Y ]] =

{∑
y E[IA|Y = y]fY (y) Y is discrete∫∞
−∞E[IA|Y = y]fY (y)dy Y is continuous
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Example 3.6

X1, X2, X3 ∼iid Uniform[0, 1]

1. P (X1 < X2) = 1
2

2. P(X1 < X2 < X3) = 1
6

Solution:

1. P (X1 < X2) = E[IX1<X2 ] Conditioning on Y = X2 fY (y) =

{
1 0 < y < 1

0 OW
=∫ 1

0 E[I[X1 < X2]|Y = X2 = y]fY (y)dy so P (X1 < X2) =
∫ 1
0 E[IX1<X2 |Y = X2 =

y]× 1dy =
∫ 1
0 E[IX1<y|Y = X2 = y]dy =

∫ 1
0 E[IX1<y]dy

Note E[IX1<y] = P (X1 < y) =
∫ y
0 1× pdf of X1dy = y

=⇒ P (X1 < X2) =
∫ 1
0 E[IX1<y]dy =

∫ 1
0 ydy = 1

2

2.
P (X1 < X2 < X3) = E[I(X1<X2<X3)] = E[E[IX1<X2<X3 |X2]]

so

P (X1 < X2 < X3) =

∫ 1

0
E[IX1<X2<X3 |X2 = y]fX2(y)dy

=

∫ 1

0
E[IX1<y<X3 |X2 = y]dy

X1, X3 are independent from X2 =⇒ P (X1 < X2 < X3) =
∫ 1
0 E[IX1<y<X2 ]dy

E[IX1<y<X3 ] = P (X1 < y < X3) Then P (X1 < y < X3) = P (X1 < y&y < X3) =
P (X1 < y)P (y < X3)

P (X1 < y) =

∫ y

0
fX1(x1)dx1 =

∫ y

0
1dx1 = y

P (X3 > y) =

∫ 1

y
fX3(x3)dx3 = (1− y)

so

P (X1 < X2 < X3) =

∫ 1

0
P (X1 < y < X3)dy =

∫ 1

0
y × (1− y)dy =

1

6
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Example

An insurance company suppose number of accidents each customer ∼ Poisson. And the
poisson mean for a randomly selected customer is a RV & has p.d.f f(y) = ye−y, y > 0.
Find probability of a random selected customer has n accident.

Solutions: X = number of accidents for a randomly selected customer, Y = poisson mean of a randomly selected customer.
Conditions tell us {

Y has pdf ye−y, y > 0

X|Y = y ∼ Poisson(y)

Find P (X = n).
Solution: P (X = n) = E[Ix=n] = E[E[IX=n|Y ]] =

∫∞
0 E[IX=n|Y = y]fY (y)dy.

Now

E[IX=n|Y = y] = P (X = n|Y = y) =
yne−y

n!
so

P (X = n) =

∫ ∞
0

yne−y

n!
ye−ydy

You substitute by y = t
2 . We get the following =

∫∞
0 tn+1e−tdt/(2n+2×n!) = Γ(n+ 2) so

P (X = n) =
Γ(n+ 2)

2n+2n!
=
n+ 1

2n+2

3.5 Calculate Variance by Conditioning

Given X calculate V ar(X).
Method 1: definition of variance and double-expectation.

V arX(X) = V ar(E[X|Y )) + E[V ar(X|Y )]

Example (miner problem from previous lecture)
Let R = Remaining time. R and X have same distribution because of no memory

property. Now

E[X2] = E[E[X2|Y ]] =
3∑
y=1

E[X2|Y = y]P (Y = y)

so

E[X2] =
1

3
×22+

1

3
×E[(3+R)2]+

1

3
×E[(4+R)2] =

1

3
+

1

3
E[9+6R+R2]+

1

3
E[16+8R+R2]

Note E[X2] = E[R2]
Expand them, we can get E[X2] = 155 and V ar(X) = E[X2]− E[X]2 = 74.
Method 2: Def Conditional variance. Given Y = y, the conditional variance of X is

V ar(X|Y = y) = E[X|Y = y]− [E[X|Y = y]]2.
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Note that V ar(X|Y = y) is a function of y and w use h(y) = V ar(X|Y = y)
Another definition: Conditional variance of X given Y. V ar(X|Y ) = h(Y )
Comments

1. Two steps to calculate V ar(X|Y ). Step 1: Calculate h(y) = V ar(X|Y = y). Step 2:
V ar(X|Y ) = h(Y )

2. If X&Y are independent, V ar(X|Y ) = V ar(X.

3. Substitution rule can still be applied. A coin is weighted such that P (H) = 1
4 .

LetN = number of tosses required to get 3 Hs by the weighted coin. N ∼ NegBin(3, 14)
We toss another fair coin N times. Let X = number of H is in the N tosses Find

V ar(X).
solution: X|N = n ∼ Bin(n1

2) and N ∼ NegBin(3, 14)
E[X|N = n] = n

2 , V ar(X|N = n) = n× 1
2(1− 1

2) = n
4 =⇒ V ar(X|N) = N

4
so

V ar(X) = V ar(E[X|N ]) + E[V ar(X|N)] = V ar(
N

2
) + E(

N

4
) =

1

4
V ar(N) +

1

4
E[N ]

Hence V ar(X) = 12

3.6 Application to compound RVs to a random summation of iid RVs

Suppose X1, X2, · · · are a sequence of iid RVs. N is a RV which only take non-negative
integers. Further N&X1, X2, · · · are independent Let W =

∑N
i=1Xi Comound RV.

Our interest: Find E[W ] and V ar(W ). (Aggregate Claim example).

Theorem.
E[W ] = E[N ]E[Xi]

V ar(W ) = E[N ]V ar(X) + V ar(N)E[X]2

Proof.
V ar(X) = E[V ar(X|Y )] + V ar(E[X|Y ])

Here X = W and Y = N .
E[X] = E[E[X|Y ]]
E[X|N ]:
Two steps:

Step 1 E[W |N = n] = E[
∑N

i=1Xi|N = n] = E[
∑n

i=1Xi|N = n] so E[W |N = n] =
E[
∑n

i=1Xi] =
∑n

i=1E[Xi] = nE[Xi].

Hence E[W |N = n] = nE[Xi]
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Step 2 E[W |N ] = NE[Xi] so E[W ] = E[E[W |N ]] = E[NE[Xi]] = E[N ]E[Xi]

V ar(W |N):

Step 1 V ar(W |N = n) = V ar(
∑n

i=1Xi|N = n) = V ar(
∑n

i=1Xi|N = n) = V ar(
∑n

i=1Xi) =∑n
i=1 V ar(Xi). X1, · · · , Xn, independent. Since X1, · · · , Xn are iid, V ar(W |N =

n) = V ar(
∑n

i=1Xi) = nV ar(Xi). Then V ar(W |N = n) = nV ar(Xi)

Step 2 V ar(W |N) = NV ar(Xi). By conditional variance formula V ar(W ) = E[V ar[W |N ]]+
V ar(E[W |N ]) = E[NV ar(Xi)] + V ar(NE[Xi]) = E[N ]V ar(Xi) + V ar(N)[E[Xi]]

2

Example

Let N = number of customers marking claim in 2012 ∼ Poi(200). Suppose the amount
claimed by each customer ∼ EXP (rate = 1

100).
Let W = total amount paid to all customers in 2012. Find E[W ]&V ar(W ).
Solution: Let Xi = amount claimed by ith customer
W =

∑n
i=1Xi. E[W ] = E[N ]E[Xi] = 20000. V ar(W ) = E[N ]V ar(Xi)+V ar(N)E[Xi]

2 =
4× 106.

Example

N ∼ NegBin(3, 14)X = number of “H”, in N tosses with a fair coin. Find E[X]&V ar(X).

Solution: Let xX =

{
1 if ith tosses is “H”

0 OW

E[X] = E[N ]E[Xi] = 6 V ar(X) = 12

4 Probability Generating Function [pgf]

4.1 Generating Function [gf]

Definition. Given a sequence of real numbers {a0, a1, a2, · · · } = {an}∞n=0. Definte A(S) =∑∞
n=0 anS

n → power series

According to values of {an|∞n=0. We have

1. A(S) only converges at S = 0

2. A(S) converges when |S| < R and diverges when |S| > R.

3. A(S) converges when |S| <∞ = R.
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Example for case 2, A(S) =
∑∞

n=0 S
n = 1

1−S . A(S) converges when |S| < 1 and
diverges when |S| > 1 so R = 1.

Example for case 3, A(S) =
∑∞

n=0
Sn

n! = es for all |S| <∞. Hence R→∞.
Our interest: Case 2 and Case 3 and A(S) is called gf of {an}∞n=0 and R is called

convergence radius.

Theorem. This is one-to-one correspondence between {an}∞n=0 and A(S). That is

1. Given {an}∞n=0, A(S) is unique

2. Given A(S), {an}∞n=0 is unique

Given A(S), we can find {an}∞n=0 by Talor expansion.

A(S) =

∞∑
n=0

A(n)(0)

n!
Sn

Next: Review for power series and two properties of gf. This will help us to get

1. Given {an}∞n=0, find A(S)

2. Given A(S), get {an}∞n=0

4.2 Four Power Series

1. Geometric

A(S) =
∞∑
n=0

sn =
1

1− S
&R = 1

an = 1 for n ≥ 0.

2. Alternate Geometric

A(S) =

∞∑
n=0

(−1)nSn =
1

1 + S
&R = 1

an = (−1)n for n ≥ 0

3. Exponential

A(S) =
∞∑
n=0

Sn

n!
= eS&R =∞

an = 1
n! for n ≥ 0.
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4. Binomial

A(S) =
n∑
k=0

(
n

k

)
Sk = (1 + S)n&R =∞

since it is finite summation ak =
(
n
k

)
, k = 0, 1, 2, · · ·n

In general

A(S) =

∞∑
k=0

(
α

k

)
Sk = (1 + S)α&R =∞

where an =
(
α
n

)
= α(α−1)···(α−n+1)

n! for n ≥ 0.

For example: (
−1

2

n

)
= (−1

4
)n
(

2n

n

)
A useful result for random walk.

Solution: (
−1

2

n

)
= (−1

2
)n

2n!

n!× 2nn!
= 2nn!

Simplify the form we have (
−1

2

n

)
= (−1

4
)n
(

2n

n

)
4.3 Properties of generating function

Suppose

A(S) =

∞∑
n=0

anS
n and Radius = RA

B(S) =
∞∑
n=0

bnS
n and Radius = RB

1. Addition:

C(S) = A(S) +B(S) =
∞∑
n=0

cnS
n

cn = an + bn for n ≥ 0 Radius = min(RA, RB)

2.

C(S) = A(S)B(S) = (

∞∑
n=0

anS
n)(

∞∑
n=0

bnS
n) =

∞∑
n=0

cnS
n

What is cn?
cn 6= anbn
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but

cn =
n∑
k=0

akbn−k

Well cn is the convolution of an and bn.

Example

1. C(S) = 1
(1−S)(1+S) ,find Rc&cn

2. C(S) = 1
(1−S)2 , find Rc&cn.

Solution:

1.

C(S) =
1

(1− S)(1 + S)
=

1

S
(

1

1− S
+

1

1 + S
)

A(S) =
1

1− S
=

∞∑
n=0

Sn and RA = 1

B(S) =
1

1 + S
=

∞∑
n=0

(−1)nSn and RB = 1

so

C(S) =
1

2
(A(S) +B(S)) =

1

2

∞∑
n=0

(1 + (−1)n)Sn =
∞∑
n=0

1

2
(1 + (−1)n)Sn

so

Cn =
1

2
(1 + (−1)n) and Rc = min(RA, RB) = 1

2.

C(S) =
1

1− S
1

1− S
so

cn =

n∑
k=0

akbn−k =

n∑
k=0

(1× 1) = n+ 1, for n ≥ 0

and
Rc = min(RA, RB) = 1
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4.4 Probability generating function (pgf)

Definition. Suppose X has range {0, 1, 2, · · · } ∪ {∞}
Let

Pn = P (X = n) for n ≥ 0

the pdf of X is defined as

GX(S) =
∞∑
n=0

P (X = n)Sn =
∞∑
n=0

PnS
n

Comment: If X is proper, i.e., P (X =∞) = 0,

GX(S) =
∞∑
n=0

P (X = n)Sn = E[SX ]

Most situation, we have proper RV and need this formula.

4.4.1 Applications

1. If GX(S) is known or easy to find, we can find Pn = P (X = n) from GX(S)

Two ways here

(a) Taylor expansion

GX(S) =

∞∑
n=0

GX(0)(0)

n!
Sn =⇒ P0 = P (X = 0) = GX(0)

and

Pn = P (X = n) =
G

(n)
0 (0)

n!
n ≥ 1

(b) B1 fair power series and tow properties.

2. Check if X is proper or not based on GX(S) Note P (X < ∞) =
∑∞

n=0 P (X =
n) =

∑∞
n=0 Pn = GX(1) =⇒ GX(1) = 1 =⇒ X is proper andGX(1) < 1 =⇒

X is improper

3. Calculate E[X] and V ar(X) based on GX(S) [X is proper]

Take the first derivative of GX(S),

[GX(S)]′ = [

∞∑
n=0

PnS
n]′ =

∞∑
n=0

Pn × nSn−1
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Set S = 1,

GX(1)′ =
∞∑
n=0

Pn × n =
∞∑
n=0

P (X = n)× n = E[X]

For V ar(X) take the second derivative.

GX(S) =
∑
n=0

P0 × n× (n− 1)× Sn−2

Set S = 1, Hence

G′′X(1) =
∞∑
n=0

Pn × n× (n− 1) =
∞∑
n=0

P (X = n)× n× (n− 1) = E[X(X − 1)]

so
V ar(X) = E[X2]− E[X]2 = G′′X(1) +G′X(1)− [GX(1)′]2

Why pgf not moment generating function? Properties 1 and 2 takes that pdf can
find P (X = n) and moment of X but moment generating function cannot.

4. Uniquness: If X&Y have same pgf, they have same distribution, that is pdf deter-
mines distribution type.

5. Independence: IfX1, · · · , Xn are independent, thenGX1+X2+···+Xn(S) =
∏n
i=1GXi(S)

Solution:
GX1+X2+···+X3 = E[SX1+···+Xn ] = E[SX1SX2 · · ·SXn ]

Since X1, · · · , Xn are independent,

GX1+··· ,Xn =
n∏
i=1

E[SXi ] =
n∏
i=1

GXi(S)

Example: find pdf of

(a) IA with P (A) = p

(b) X ∼ Bin(n, p)

(c) X ∼ Pois(λ)

Solution:

(a) GIA(S) = E[SIA ] = S0P (IA = 0) + S1P (IA = 1) = PS + 1− P . Radius is just
∞ since it is a finite summation.
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(b) X ∼ Bin(n, p)

X =
n∑
i=1

Ii

I1, · · · , In are Bernoulli rvs. so

GX(S) = G∑∞
i=1

(S) =
n∏
i=1

GIi(S)

so

GX(S) =

n∏
i=1

(1− P + PS) = (1− P + PS)n

Converge Radius is ∞.

(c)

P (X = n) =
λn

n!

GX(S) = E[SX ] =
∞∑
n=0

P (X = n)Sn =
∞∑
n=0

λne−λ
Sn

n!

so

GX(S) =

∞∑
n=0

(λS)n

n!
e−λ = eλs−λ

Converge Radius is ∞.

Example: Suppose G(S) = 1
4S
−1/(1− 3

4S)

1. G(S) is pdf of a proper RV X.

2. Find E[X].

Solution:

1. Need to show

G(S) =

∞∑
n=0

PnS
n

and Pn ≥ 0 and
∑∞

n=0 Pn = G(1) = 1.. It is easy to check

∞∑
n=0

Pn = G(1) =
1
4

1− 3
4

= 1

done.

28



Now,

G(S) =
1

4
S4 × 1

1− 3
4S

=
∞∑
n=0

(
3

4
S)n

so

G(S) =
1

4
S4

∞∑
n=0

(
3

4
)nSn =

∞∑
n=0

1

4
(
3

4
)nSn+4

We change index

m = n+ 4 =⇒ n = m− 4 =

∞∑
m=4

1

4
(
3

4
)m−4Sm

.

Therefore
P0 = P1 = P2 = P3 = 0

Pn = coefficient of Sn =
1

4
(
3

4
)n−4 for n ≥ 4

Hence G(S) is pdf of proper RV X.

2. E[X] = G′(1) = 7 (it is easy)

5 Renewal Process

Background: Suppose we have a sequence of RVs. {X1, X − 2, · · · } = {Xn}∞n=1 called a
stochastic process. For example, let

λ = event based on {Xn}∞n=1

λ = “SF” and Xn = outcome on the nth trial

λ occurs on the nth trial if Xn−1 = S and Xn = F .
Our interest

1. Can we observe it or not?

2. How long on average will it take?

Let
Tλ = Waiting time for first λ

so we need to find P (Tλ <∞) and F (Tλ)
Example we covered before

1. P (observe “333” in the sequence) = 1.

2. E[TSF ] = 1
P (1−P ) , E[TSS ] = 1

p2
+ 1

p

Expectation of TSF , TSS have different forms; hat are the difference between SF and
SS?
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5.1 Classification of Events

Notation:

T
(K,K+1)
λ = waiting time for kth λ given that we have λk times, k = 0, 1, 2, · · ·

5.1.1 Definition of Renewal Event

If all waiting time RVs:

Tλ, T
(1,2)
λ , T

(2,3)
λ , . . .

are iid, then λ is called a renewal events.

Information here

The occurrence of an event λ does not help the second event; No-memory property is here.

5.1.2 Definition of delayed renewal event

1. T
(1,2)
λ , T

(2,3)
λ , · · · are iid.

2. but Tλ and T
(1,2)
λ , T

(2,3)
λ , · · · have different distribution.

Comments

1. first event and second event, third event and so on are different.

2. Once we observe first event, other events (second event, third event) are the same.
The waiting time for other event have same distributions.

5.1.3 Associate Renewal Event of a delayed renewal event

Once we observe first λ the waiting times have same distributions and λ becomes a renewal
event. This renewal event is called associated renewal event and denote it by λ̃.

Example, Consider a sequence of Bernoulli Trials λ1 = “SF” and λ2 = “SS”.
Claim:λ1 is renewal event, and λ2 is delayers renewal event.
Solution: first argue λ2 is delayed renewal.

P (Tλ2 = 1) = P (observe “SS” in the first trial) = 0

P (T
(1,2)
λ2

) = P (S) = P

P (T
(2,3)
λ2

= 1) = P (S) = P

Only ones to get the third.
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Next argue λ, is renewal event.

P (Tλ1 = 1) = 0, P (Tλ1 = 2) = P (first is S and second is F) = P (1− P )

P (T
(1,2)
λ1

= 1) = 0, P (T
(1,2)
λ1

= 2) = P (S)P (F ) = P (1− P )

Looks that: all waiting times have same distribution and λ1 is renewal event. For “SF”,
the all occurrence of SF does not affect second event (No memory) =⇒ renewal.

For “SS”, the occurrence of “SS” affects second SS so delayed renewal.

General Rule for determining if λ is renewal or delayed renewal

Consider two consecutive events or two events in a row:

1. If there is no overlap between two events, λ is renewal

2. I there is some overlap, then λ is delayed renewal.

5.1.4 Example

λ1 = “SF” two consecutive events: firstλ1 is “SF” and second λ2 is “SF”. There is no
overlap so λ1 is renewal events. λ2 = “SS”, two consecutive events: the first λ2 is SS
and second λ2 is also SS. Well there will be an overlap between these two events so λ2 is
delayed renewal; overlap “S” helps the second λ2.

5.1.5 Example

Toss a fair die
Xn = the number shown on the nth toss

λ1 = “123”; λ2 = “123”, λ3 = “1212”. Classify all three events:
Solution:

λ1 : two events in a row 123123 No overlap, λ1 is renewal.

λ2 : two events in a row 121212 =⇒ λ2 is delayed renewal.

λ3 : overlap= “12”; λ3 is delayed renewal.

Next we study renewal events

1. Classify renewal event, Let fλ = P (Tλ < ∞) where fλ is the probability of finally
observing λ.

• If fλ < 1, λ is called transient

• If fλ = 1, λ is called recurrent.
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• If fλ = 1 and E[Tλ] =∞, λ is called null recurrent.

• If fλ = 1 and E[Tλ] <∞, λ is called positive recurrent.

2. Comments

(a) If λ is transient, E[Tλ] =∞ since P (Tλ =∞) > 0.

(b) If E[Tλ] <∞, λ is positive recurrent.

For example: “SF” is renewal event. E[TSF ] = 1
p(1−p) <∞, [0 < p < 1]. This implies

“SF” is positive recurrent.

3. Consider vλ = number of events observed in the sequence and range of this is {0, 1, · · · , }∪
{∞}.

Theorem. Distribution of vλ{
P (vλ = k) = fkλ (1− fλ), k = 0, 1, 2, · · ·
P (vλ =∞) = f∞λ

Proof. P (vλ = k) = P (Tλ < ∞, T (1,2)
λ < ∞, · · · , T (k,k+1)

λ < ∞) =iid P (Tλ <

∞) · · ·P (T
(k,k+1)
λ <∞) = fkλ (1− fλ)

P (vλ =∞) = P (Tλ <∞, T
(1,2)
λ <∞, · · · ) = f∞λ

Comments: If fλ = 1, P (vλ) = ∞) = 1 and fλ < 1, P (vλ) = ∞) = 0. For the
expectation of vλ

E[vλ] =
fλ

1− fλ
[only fr renewal event]. Note this is only for renewal event but not for delayed renewal
event.

Proof. If fλ < 1, P (vλ = ∞) = 0 and E[vλ] =
∑∞

k=0 P (vλ = k) × k so E[vλ] =∑∞
k=0 f

k
λ (1− fλ)× k = fλ

1
1−fλ

If fλ = 1, then automatically

E[vλ] =
fλ

1− fλ
=∞

Therefore summarize two parts,

E[vλ] =
fλ

1− fλ
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4. Quick summary:

(a) fλ = 1 ⇐⇒ λ is recurrent ⇐⇒ P (vλ =∞) = 1 and E[vλ] =∞.

(b) fλ < 1 ⇐⇒ λ is transient ⇐⇒ E[vλ] = fλ
1−fλ <∞&P (v∞) = 0

5.2 Renewal Sequence [for renewal event]

Definition. The renewal sequence associated with a renewal event λ is defined as γ0 = 1
and γn = P (observe λ at the nth trial) for n ≥ 1.

For example, “SF”. γ0 = 1, γn = P (observe “SF” at the nth trial) = P (Xn−1 =
S,Xn = F ) = 0 for n ≥ 1. For n ≥ 2, γn = p(1− p)

Comment: {γn}∞n=0 in general is easy to find and it has a lot of application.

Theorem. E[vλ] =
∑∞

n=1 γn =

{
∞ λ is recurrent

<∞ λ is transient

SF example γ0 = 1, γ1 = 0, γn = p(1− p) for n ≥ 2.

E[vλ] =

∞∑
n=1

γn =

∞∑
n=2

p(1− p) =∞

SF is recurrent

Proof. Let In =

{
1 if λ occurs at the nth trial

0 OW
. Then vλ =

∑∞
i=1 In. ∴ E[vλ] = E[

∑∞
n=1 In] =∑∞

n=1E[In] =
∑∞

n=1 rn.

5.2.1 Example

Toss a fair die. Xn = number of shown on the nth toss, λ = “123”, λ occurs on the nth
toss if xn−2 = 1 and xn−1 = 2, xn = 3 (i.e. in a sequence). Claim: λ is recurrent.

Solution: r0 = 1, r1 = r2 = 0. (we need at least 3 tosses to get “123”)
f3 = P (x1 = 1, x2 = 2, x3 = 3) = (16)3

In general, for n ≥ 3. rn = P (xn−2 = 1, xn−1 = 2, xn = 3) = 1
6

3
.

E[vλ] =
∑∞

i=3 rn =∞. Therefore λ is recurrent.

5.3 Renewal Relationship

Still for renewal event. In this section, calculate pgf of Tλ based on {rn}∞n=0.
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Definition. First waiting time probabilities

{
fn = P (first observed λ at the nth time ) = P (Tλ = n) n ≥ 1

f0 = 0
.

Let Fλ(s) =
∑∞

n=0 P (Tλ = n)sn =
∑∞

n=0 fns
n = pgf of Tλ

Let Rλ(s) =
∑∞

n=0 rns
n =⇒ gf of {rn}∞n=0

It is easy to find since {rn}n=0 is easy to find.

Theorem. Renewal relation: Fλ(s) = 1− 1
Rλ(s)

Proof. Step 1: find relationship between {rn}∞n=0 and {fn}∞n=0

For n ≥ 1, rn = P (observe λ at nth trial). Condition on the first occurrence time
where Tλ = 1, 2, · · · , n.

Then rn =
∑n

k=1 P (observe λ at nth trial|Tλ = k)P (Tλ = k).
P (observe λ at nth trial|Tλ = k) = P (observe λ at (n-k)th trial|λ is observed at time 0)
∴ λ is renewal event.
∴ the occurrence of λ does not affect next λ. thus P (observe λ at nth trial|Tλ = k) =

P (observe λ at n -k) = rn−k Hence rn =
∑n

k=1 rn−kfk. when k = 0, rn−kfk = rnf0 = 0.
Hence rn =

∑n
k=0 rn−kfk for n = 1 and r0 = 1.

Aside from the proof: how to use rn =
∑n

k=0 rn−kfk, n ≥ 1.
When n = 1, r1 = r1f0+r0f1 = r0f1 . When n = 2, r2 = r2f0+r1f1+r0f2 = r1f1+r0f2

given r0, r1, r2 to get f1, f2.
If we continue, we can find {fn}∞n=0 by {rn}∞n=0 why do we define r0 = 1? It has been

used in rn =
∑n

k=0 rn−kfk.
When n = 1, r1 = r0f1. Note that r1 = f1 by definition. Therefore r0 = 1
Step 2: find relationship between Fλ(s) and Rλ(s).
From rn =

∑n
k=0 rn−kfk, n ≥ 1, r0 = 1.

Rλ(s) =

∞∑
n=0

cns
n = 1 +

∞∑
n=1

rns
n

Plug in, we getRλ(s) = 1+
∑∞

n=1(
∑n

k=0 rn−kfk)s
n for n = 0,

∑n
k=0 rn−kfk =

∑0
k=0 r0−kfk =

r0f0 = 0
=⇒ Rλ(s) = 1 +

∑∞
n=0 fns

ncn
∑∞

n=0 rns
n. Here an = fn and bn = rn. Hence

Rλ(s) = 1 + Fλ(s)Rλ(s).
Therefore we prove the relation.

From Fλ(s), we can

1. Check if n is recurrent or not. Or check fλ = Fλ(1) =
∑∞

n=0 fn = 1 or not

2. E[Tλ] = F ′λ(1).

3. fn = P (Tλ = n) =
F

(n)
λ (0)

n! for n ≥ 1.
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5.3.1 Example

Toss a fair die, λ = “123”. Show

1. λ is recurrent

Renewal sequence

r0 = 1, r1, r2 = 0 since we need at least 3 trials to get 123.

rn = P (Xn−2 = 1, Xn−1 = 2, Xn−3) = (16)3 for n ≥ 3.

Next: fλ(s) =
∑∞

n=0 rns
n = 1 +

∑∞
n=3(

1
6)3Sn = 1 +

( 1
6
)3S3

1−S

Fλ(S) = 1− 1
Rλ(S)

= 1− 1−S2

1−S+( 1
6
)3S3 .

fλ = Fλ(1) = 1

2. λ is positive recurrent

Fλ(S) =
1− S + (16)3S3 − (S − 1)[1− S + 1

6

3
S3]′

[1− S + 1
6

3
S3]2

Therefore F (Tλ) = Fλ(1) =
( 1
6
)3S3

[( 1
6
)3S3]2

= 63.

Hence F (Tλ) = 1
P (1)P (2)P (3) <∞. Therefore λ is positive recurrent

3. Find f5, f6, f7.

In general, fn =
F

(n)
λ (0)

n! , n ≥ 1.

Find f5, f6, f7 by definition.

f5 = P (Tλ) = 5 = P ( first observation of 5th trial) = 1
6

3

f6 = P (Tλ = 6) = P (X4 = 1, X5 = 2, X6 = 3&X1, X2, X3) = 1
6

3
[1− 1

6

3
].

P7 = P (Tλ = 1
6

3
[1− 21

6

3
].

5.4 Delayed Renewal Relation

1. T
(1,2)
λ , T

(2,3)
λ , · · · are iid.

2. Tλ and T
(1,2)
λ , T

(2,3)
λ have different distribution.

This means: once we observe first λ, λ becomes a renewal event. This renewal event is
called associate renewal event of λ. Further we denote this renewal event by λ̃. purpose
here is to find the pgf of Tλ.
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Delayed renewal sequence : d0 = 0, dn = P (λ occurs at the nth trial ) for n ≥ 1.

Associated renewal sequence or renewal sequence of λ̃ r̃0 = 1, r̃1 = P (observe λ̃ at nth trial).
since when we observe first λ is not important for r̃n, we assume that we observe first λ
at zeroth trial. By argument, r̃n =P(λ occurs at nth trial|λ is observed at zeroth trial).

gf of {dn}∞n=0 Dλ(s) =
∑∞

n=0 dnS
n.

gf of {r̃n}∞n=0 Rλ̃(S) =
∑∞

n=0 r̃nS
n.

pgf of Tλ fn = P (Tλ = n), n ≥ 1 and f0 = 0.

Fλ(S) =
∑∞

n=0 fnS
n: pgf same as before of Tλ.

Theorem. Delayed renewal relation: Fλ(S) = Dλ(S)
Rλ̃(S)

.

Once we have Fλ(S), we can

1. fλ = P (Tλ =∞) = Fλ(1).

2. F (Tλ) = Fλ(1)

3. fn =
F

(n)
λ (0)

n! .

How to find F (T
(1,2)
λ )?

Hint: T
(1,2)
λ = Tλ̃ waiting time for first λ̃.

1. Find Rλ̃(S): gf of {S̃n}∞n=0.

2. Fλ̃(S) = 1− 1
Rλ̃(S)

: pgf of Tλ̃.

3. F (Tλ) = Fλ̃(1).

Example: toss a count, P (H) = P , λ = “HH”. d0 = 0, d1, dn = P (Xn−1 = H,Xn =
H) = P 2 for n ≥ 2.

r̃n:
r̃0 = 1, r̃1 = P = P (X1 = H). r̃n = P (Xn−1 = H,Xn = H) = P 2.

5.4.1 Example

Toss a fair coin. λ = “121”

1. Fλ(s)

2. E[Tλ] and E[T
(1,2)
λ ].
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3. average number of trials to see 5 λs.

4. Find f5 and f6

5. P (number of time observing λ =∞)

Solution: λ is delayed renewal and overlap is “1”. Delayed renewal sequence d0 =
0, d1 = d2 = o[Need at least 3 trials], dn = P (Xn−2 = 1, Xn−1 = 1, Xn = 1) = 1

6

3
for

λ ≥ 3.

Dλ(S) =
∞∑
n=0

dnS
n =

∞∑
n=3

1

6

3

Sn =
1

6

3 S3

1− S

Associated renewal sequence, r̃0 = 1, r̃1 = 0, r̃2 = P (observe λ at the second trial) =

P (X1 = 2, X2 = 1) = 1
6

2

r̃3 = P (X1 = 1, X2 = 2, X3 = 1) =
1

6

3

In general r̃n = P (Xn−2 = 1, Xn−1 = 2, Xn = 1) = 1
6

3
so

Rλ̃(S) =
∞∑
n=0

r̃nS
n = 1 + 0 +

1

6

2

S2 +
∞∑
n=3

1

6

3

Sn = 1 +
1

6

2

S2 +
1
6

3
S3

1− S

Therefore

Dλ(S) =
1

6

3 S3

1− S
Hence

Fλ(S) =
Dλ(S)

Fλ̃(S)
=

1
6

3
S3

[1 + 1
6

2
S2](1− S) + 1

6

3
S3

Fλ(1) = P (Tλ <∞) = 1

=⇒ we can finally observe λ.

E[Tλ] = F ′λ(1)

Check

F ′λ(1) = 6 + 63 =
1

P (overlap)
+

1

P (“121”)

Now E[T
(1,2)
λ ] and pgf of Tλ̃ = T

(1,2)
λ

Fλ̃(S) = 1− 1

Rλ̃(S)
= 1− 1− S

(1 + 1
6

3
S2)(1− S) + 1

6

3
S3
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E[Tλ̃] = E[T
(1,2)
λ ] = F ′

λ̃
(1)

Check

F ′λ(1) = 63 =
1

P (121)

(3) Need to find

E[Tλ + T
(1,2)
λ + T

(2,3)
λ + T

(3,4)
λ + T

(4,5)
λ ] = E[Tλ] + 4E[T

(1,2)
λ ] = 6 + 63 + 3× 63

(4)

f5 = P (Tλ = 5) = P (X3 = 1, X4 = 2, X5 = 1, (X1, X2) 6= (1, 2))

= P (X3 = 1, X4 = 2, X5 = 1)P ((X1, X2) 6= (1, 2))

=
1

6

3

[1− 1

6

2

]

f6 = P ([X4, X5, X6] = 121)× P ((X1, X2, X3) 6= 121 (X2, X3) 6= 12)

=
1

6

3

[1− P ((X1, X2, X3) = 121)− P ((X2, X3) = 12)]

=
1

6

3

[1− 1

6

3

− 1

6

2

]

(5)

P (observe λ infinite times) = P (observe λ infinite times|observe λ once)× P (observe λ once)

= P (Vλ̃ =∞) = f∞
λ̃

= [Fλ̃(1)]∞ = 1

so P ( observe λ infinite times) = 1.

5.5 Renewal Theorem

Calculate E[Tλ] =

{
λ is renewal

λ is delayed renewal
Some notations:

Renewal event • Period: let d = gcd{n|Yn > 0, n ≥ 1}. d is called period. If d = 1,
aperiodic; if d > 1, periodic.

E.G., “123” example: r0 = 1, r1 = r2 = 0, rn = 1
6

3
for n ≥ 3. d = gcd{n|rn >

0, n ≥ 1} = gcd{3, 4, 5, · · · } = 1, aperiodic. Check: any fixed pattern, period=
1.

E.G. (periodic), We cover one example in 5.6.

Two comments:
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1. aperiodic: means there is a warm-up period and after this period, rn > 0.
“123” warm up period r1 = r2 = 0, rn > 0 for n ≥ 3.

2. periodic: only when index is a multiple of d, we can have positive probabil-
ities.

Theorem.

E[Tλ] =

{
1

limn→∞ rn
d = 1

d
limn→∞ rnd

d > 1

Example 5.6:

1. Toss a coin λ1 = “123” and λ2 = “123456”. E[Tλ1 ] and E[Tλ2 ]

Solution: λ1 : d = 1 and rn = 1
6

3
for n ≥ 3, so E[Tλ1 ] = 1

limn→∞ rn
= 1

1
6

3 = 63

λ2: r0 = 1, r1 = r2 = · · · , r5 = 0 and rn = 1
6

6
for n ≥ 6. d = gcd{6, 7, 8, 9, · · · } =

1 and E[Tλ2 ] = 1
limn→∞ rn

= 66

Comments:

(a) d = 1 for fixed pattern

(b) only need to have rn for n ≥ number of letters in pattern.

2. Toss a coin, P (H) = p, 0 < p < 1. λ3 = “H” and λ4 = “HHT”

Solution: λ3 = “HT” : d = 1. Hence rn = P (1− P ) for n ≥ 2.

E[Tλ] = 1
P (1−P )

λ4 = “HHT”, d = 1, rn = P 2(1− P ) for n ≥ 3. E[Tλ4 ] = 1
P 2(1−P )

Delayed Renewal Event λ is a displayed renewal event.

Theorem.
E[Tλ] = E[Toverlap] + E[Tλ̃]

Overlap = Overlap between two consecutive events

Toverlap = waiting time for first overlap

Tλ̃ = waiting time for the first λ̃
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Understanding

1. To observe λ, we need to observe overlap E.G. λ = “HH”, overlap = “H” to
observe “HH”, we need to observe “H”.

Tλ = Toverlap + Tλ|overlap is observed

Hence
E[Tλ] = E[Toverlap] + E[Tλ|overlap is observed]

2. argue Tλ̃ and Tλ|overlap is observed have same distribution. Therefore E[Tλ̃] =
E[Tλ|overlap is observed]

Use “HH” as example: “H” is overlap: 1st = H, Tλ|overlap is observed = 1 is
observed. 1st = T , Tλ|overlap is observed = 1 + THH .

Tλ̃: here “HH” is observed. 1st = H and Tλ̃ = 1,

1st = T and Tλ̃ = 1 +THH , so Tλ̃ and Tλ|overlap is observed have same distribution
and same expectation.

Intuition:

(a) Only overlap will be useful and other parts are useless.

(b) because (1), we observe other parts or not does not help. This implies
observe “overlap” and observe whole effect have same effect on waiting tim
for λ.
Therefore Tλ̃ and Tλ|overlap is observed have same distribution and expectation
so E[Tλ] = E[Toverlap] + E[Tλ|overlap is observed] = E[Toverlap] + E[Tλ̃]

How to apply?

(a) E[Tλ̃] = 1
limn→∞ r̃n

, d = 1 apply renewal theorem for renewal event

(b) E[Toverlap]

i. overlap is renewal apply renewal theorem for renewal event.

ii. overlap is delayed renewal. Continue partition.

Example 5.7: Toss a die λ1 = “121”, λ2 = “12121”, find E[Tλ1 ] and E[Tλ2 ].

Solution: λ1 : overlap = 1, E[Tλ1 ] = E[T“1”] + E[T ˜121] = 1
1
6

+ 1
1
6

3

λ2 : overlap = “121”, E[Tλ2 ] = E[T121] + E[T ˜12121] = E[T1] + E[T ˜121] + E[T ˜12121] so
E[Tλ2 ] = 1

1
6

+ 1
1
6

3 + 1
1
6

5

5.6 Random Walk

Background suppose we have particle starting from 0. Each step, it can move to the right
by 1 unit with probability p, and can move to the left by 1 unit with probability (1− p).

For example, toss a coin such that H goes to right and T goes to the left. If we toss a
coin 5 times and get HHTTT.
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Definition. Let x0 = 0 (starting point) and xn is the position of particle after n steps,
then {xn}∞n=0 is called simple or ordinary random walk.

We are interested in

1. λ00 is the returning to 0 given the process starts from 0. Let Tλ00 be the waiting time
for the first λ00 We could like to figure out fλ00 = P (Tλ00 <∞) and E[Tλ00 ].

2. λ0k is the visiting k given that process starts from 0. Let Tλ0k is the waiting time
for visiting k given the process starts from 0. We would like to figure out fλ0k =
P (Tλ0k <∞) and E[Tλ0k ].

Well, λ00 is returning to 0 given the process starts from 0.

Step 1 Is λ00 a renewal or delayed renewal event? It is pretty intuitive that Tλ and T
(1,2)
λ

have the same distribution. Hence, it is a renewal event.

Step 2 Use pgf of Tλ00 to find fλ00 and E[Tλ00 ]

r0 = 1, rn = P (return to 0 after n steps given the process starts from 0),

r2n−1 = 0: since process cannot return to 0 after odd number of steps.

r2n = P (number of moments to right = number of moments to the right = n)

r2n is just a Bin(2n, p) r.v. equal to n. Therefore r2n =
(
2n
n

)
pnqn

Aside result: d = gcd{n|rn > 0&n > 0} = gcd(2, 4, 6, · · · ) = 2 (periodic). Move back
to gf of {rn}∞n=0, r0 = 1 and r2n−1 = 0. Therefore

Rλ00(s) =

∞∑
n=0

rns
n = 1 +

∞∑
n=1

(
2n

n

)
pnqns2n

Note: 1 =
(
2n
n

)
pnqns2n for n = 0. Hence

Rλ00(s) =

∞∑
n=0

(
2n

n

)
pnqns2n

Recall
(− 1

2
n

)
= (−1

4)n
(
2n
n

)
and

(
2n
n

)
= (−4)n

(− 1
2
n

)
. Then

Rλ00(s) =
∞∑
n=0

(1
2

n

)
(−4)npnqns2n = (1− 4pqs2)−

1
2

Therefore Tλ00 ’s pgf is

Fλ00 = 1− 1

Rλ00(s)
= 1−

√
1− 4pqs2
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1. fλ00 = P (Tλ00 <∞) = Fλ00(1).

2. E[Tλ00 ] = F ′
00

(1)

fλ00 = F ′
00

(1) = 1−
√

1− 4pq = 1− |p− q|

Then fλ00 =

{
1 p = q = 1/2

< 1 p 6= q or p 6= 1/2
. Therefore p = 1/2, λ is recurrent; other-

wise, transient.

Question: p = 1/2 is λ positive recurrent or null recurrent?

Find E[Tλ00 ] for p = 1/2. Fλ00(s) when p = 1/2 = 1−
√

1− s2

F ′λ00(1) = E[Tλ00 ] =∞. Hence λ is null recurrent.

One more concept: vλ00 is the number of times returning to 0 given the process starts
from 0. For renewal event

E[vλ00 ] =
fλ00

1− fλ00
=

1− |p− q|
|p− q|

λ0k: visiting k given the process start from 0 start with λ01

Step 1 Is this a renewal or delayed renewal? delayed renewal.

Step 2 We use the delayed renewal relationship to get the pgf.

λ00: returning to 0 and starting from 0.

1. It is renewal event.

2. period d = 2.

3. p = q = 1
2 , λ00 is null recurrent where E[Tλ00 ] =∞ and E[vλ00 ] =∞ and fλ00 = 1.

p 6= q, λ00 is transient, fλ00 = 1− |p− q|

or p 6= 1
2 , E[Tλ00 ] =∞, E[vλ00 ] = 1−|p−q|

|p−q|

We argue

Rλ̃01s) = Rλ11(s) = Rλ00(s) = (1− 4pqs2)−
1
2

You read

Dλ01(s) =
1

2qs
[(1− 4pqs2)−

1
2 − 1]

Therefore

Fλ0(s) =

1
2qs [(1− 4pqs2)−

1
2 ]

(1− 4pqs2)−
1
2

=
1

2qs
[1− (1− 4pqs2)

1
2
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Result 1:

fλ01 = P (Tλ01 <∞) = Fλ01(1) =
1

2q
[1− (1− 4pqs2)

1
2 ] =

1

2q
[1− |p− q|]

Hence fλ01 =

{
1 p ≥ q
p/q < 1 p < q

Result 2: E[Tλ01 ] = Fλ01(1) for P ≥ 1.
Check: F ′λ01(s)

E[Tλ01 ] = 1−|p−q|
2q|p−q| =

{
1
p−q p > q

∞ p = q
= 1

p−q , for p ≥ q

5.6.1 Summary

1. p ≥ q or p ≥ 1
2 , fλ01 = 1&E[Tλ01 ] = 1

p−q

2. p < q or p < 1
2 , fλ01 = p/q&E[Tλ01 ] =∞.

λ0k: visiting k (k > 0)given the process starts from 0.
Note: Tλ0k = Tλ01 + · · ·+ Tλk−1,k

and they are iid.
Tλ01 have the same distribution as Tλ12 since both meaning to right by 1 unit.
Result 1:

fλ0k = P (Tλok <∞) = [fλ01 ]k =

{
1 p ≥ q
p
q
k p < q

Result 2:

E[Tλ0k ] = E[Tλ01 ] + · · ·E[Tλk−1,k
] = kE[Tλ01 ] =

{
k/(p− q) p ≥ q
∞ p < q

Q1: How about k < 0. change positions of p and q. For example

fλ0,−1 =

{
1 q ≥ p
q
p q < p

E[Tλ0−1 ] =

{
1
q−p q ≥ p
∞ q < p

Q2: what is E[vλ0,k ] vλ0,k is the number of times visiting k given process starts from 0
6= fλ0,k/(1− fλ0,k)

Idea condition on Tλ0k <∞ or not.

Tλ0,k =∞, vλ0,k = 0
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Tλ0,k <∞, vλ0k = 1 + vλk,k

Hence
E[vλ0k ] = P (Tλ0,k <∞) ∗ E[1 + vλkk ] = fλ0,k/|p− q|

.

5.7 Gambler’s ruin model

Consider a random walk starting from i, 0 < i < k. Our interest is what is the probability
hitting k before hitting 0 starting from i?

Example, gambler have 100 dollars to gamble in a casino. Each game: win $10 or lost
$10. What is the probability of doubling your money before getting 0?

Solution: probability of hitting 20 before hitting 0 starting from 10, 1 unit is $10. then
let

pi = P (hit k before hitting 0 starting from i) =
1 + · · ·+ ( qp)i−1

1 + · · ·+ ( qp)k−1
=


1−( q

p
)i

1−( q
p
)k

if p 6= q

1
k p = q

Conditional on the first movement and difference the equations.
pi = P (hit k before 0| first is right)P (first is right)+P (hit k before 0| first is left)P (first is left) =

qpi−1 + ppi+1, 0 < i < k and p0 = 0, pk = 1.
Firstly, pi = qpi−1 + ppi+1 =⇒ pi+1 − pi = ( qp)(pi − pi−1)
Secondly, pk − p0 = [1 + · · ·+ q

p
k−1](p1 − p0)

Therefore, 1 = [1 + · · ·+ q
p
k−1]p1. Hence p1 = 1

[1+···+ q
p
k−1]

It is easy to find out that

pi =
1 + · · ·+ q

p
i−1

1 + · · ·+ q
p
k−1 =


1− q

p
i

1− q
p
k p 6= q

i
k p = q

6 Discrete Markov Process

6.1 Definitions

Suppose we have a sequence of rvs {Xn}∞n=0 (stochastic process).
State space denoted by S and state space is all possible values of {Xn}∞n=0.
For example, simple random walk, S = {0,±1,±2,±3, · · · }. All integers.
A star is, for i ∈ S, we call it state i. For example, simple random walk, 0 is called

state 0. In this lecture we study properties of {Xn}∞n=0 from Markov process.
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Definition. Discrete Markov process {Xn}∞n=0 is called a Markov process if

1. S is countable or discrete

2. P (Xn+1 = j|Xn = i,Xn−1 = in−1, · · · , X0 = i0) = P (Xn+1 = j|Xn = i) = P (Xi =
j|X0 = i). The first equality is called Markov property and the second equality is
called time homogeneous.

Comment:

1. Markov property: Xn+1 refers to future andXn refers o current information. X0, · · · , Xn−1
refers to the history. Markov process means that the future only depends on current
information Xn but not history X0, · · · , Xn−1.

2. time homogeneous: As long as it is one step. For example, from Xn → Xn+1 and
Xn → X1, they are same and does not depend on starting time.

3. One-step transition Matrix: [denoted by P] Let Pij = P (Xi = j|X0 = i). Pij :
one-step transition probability from state i to state j.If we put all probabilities into
a matrix, we get P = (Pij)i∈S,j∈S

6.1.1 Example: Random Walk on the circle

3 positions (0, 1, 2). Each step, process can move clock wise 1 unit with probability p. It
can move counter clockwise with 1 unit probability q. Xn is position after n steps. Here:

1. S = {0, 1, 2}

2. {Xn}∞n=0 is a Markov process

(a) Xn+1 only depends on Xn

(b) P (Xn+1 = j|Xn = i) does not depend on n.

3. One-step transition probability.

P =

0 p q
q 0 p
p q 0


6.1.2 Gambler’s Ruin Model

Random walk with 2 absorbing boundaries 0 and k.

1. If the process is in i, 0 < i < k. it moves to right with p and to the left with q.

2. If the process is in 0 or k, the next step the process will stay in 0 or k.

45



3. state space S = {0, 1, 2, · · · , k},

4. {Xn}∞n=0 is a Markov process.

5. One-step transition matrix: Pi,i+1 = p,Pi,i−1 = q, 0 < i < k and Pij = 0, |j − i| ≥ 2.

6. P00 = 1, P0j = 0, for j 6= 0.

7. For example, k = 3

P =

1 0 0 0
q 0 p 0
0 0 0 1


Properties of P

1. first and important concept in Markov process; just like {rn}∞n=0 for renewal process

2. It is a stochastic Matrix (i.e. Pij ≥ 0,
∑

j∈S Pij = 1 [summation of each row is 1])

6.1.3 Example (Random Walk with reflecting boundary)

1. If the walk is in i, i > 0, it moves to right with p and moves to left with q.

2. If it is in 0, the next step the process will be in 1. Xn is the position of process after
n steps. State space is S = {0, 1, 2, · · · }.

3. {Xn}∞n=0 is a Markov process.

4. Transition probability is Pi,i+1 = p and Pi,i−1 = q, i > 0, Pij = 0, |j−i| > 2. P0,1 = 1,
P0j = 0, j 6= 1.

P =


0 1 0 0 · · ·
q 0 p 0 · · ·
0 q 0 p · · ·
...

...
...

...
...


6.2 C-K equation

Two questions:

1. given P find P (Xn = j|X0 = i)

2. given P and P (X0 = i), i ∈ S, find P (Xn = j).
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• n- step transition matrix

Let P
(n)
ij = P (Xn = j|X0 = i) = P (Xn+m = j|Xm = i).

P
(n)
j : n-step transition probability from i to j.

P (n): n-step transition matrix.

Theorem. (C-K equation I)

P
(n+m)
ij =

∑
k∈S

P
(n)
ik P

(m)
kj

as matrix form
P (m+n) = P (n)P (m)

Further:
P(n) = Pn

Proof.

P
(n+m)
ij = P (Xn+m = j|X0 = i) =

∑
k∈S

P (Xn+m = j|Xn = k,X0 = i)× P (Xn = k|X0 = i)

P (Xn = k|X0 = i) = Pik(n)

P (Xn+m = j|Xn = k,X0 = i) = P (Xn+m = j|Xn = k) = P
(m)
kj

so
P

(m+n)
ij =

∑
i∈S

P
(n)
ik P

(m)
kj

Intuition: from i to j after n+m steps is the same as from i to k after n steps times from
k to j after m steps.

Put the point wise form into a Matrix, then

P (m+n) = P (n)P (m)

From first step to the nth step.
result: P (n) = Pn. Reason P (2) = P (1)P (1) = P 2 and so on; therefore, P (n) = Pn.

Suppose P and P (X0 = i), i ∈ S are given what is P (Xn = j), j ∈ S.

Notation: π
(0)
i = P (X0 = i) and π(0) = (π

(0)
i )i∈S .

π
(n)
j = P (Xn = j), π(n) = (π

(n)
j )j∈S
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Theorem. C-K equation 2

π
(n)
j =

∑
i∈S

π
(0)
i P

(n)
ij

or π(n) = π(0) × Pn

Proof.

π
(n)
j = P (Xn = j) =

∑
i∈S

P (Xn = j|X0 = i)× P (X0 = i) =
∑
i∈S

π
(0)
i P

(n)
ij

Put it in Matrix form:
π(n) = π(0)P (n)

Example 6.6: Random walk on the circle, S = {0, 1, 2}.

P (2) =

2pq q2 p2

p2 2pq q2

q2 p2 2pq


and suppose P (X0 = 0) = 1/4, P (X0 = 1) = 1/2, P (X0 = 2) = 1/4.

Find P (X2 = n), P (X2 = 1), P (X2 = 2)
Solution:

π(0) = (1/4, 1/2, 1/4)

so
π(2) = π(0)P (2)

6.3 Classification of States

Purpose: classify all states in S. Let λii =

• λii is a renewal event once the process returns to state i, Markov property tells us
process only depends on current state i, not history. This is no-memory property so
λii is a renewal event.

• Renewal sequence r0 = P
(0)
ii = 1), rn = P (Xn = i|X0 = i) = P

(n)
ii for n ≥ 1.

• Def: classification of states state i is transient if λii is transient. State i is null
recurrent if λii is null recurrent. Otherwise, it is positive recurrent.

• Def: State i has period d if λii has period d and state i is called aperiodic if d = 1.
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6.4 Class in Markov Process

6.4.1 Some Definitions

• Accessible: We say state j is accessible from i. [denote by i→ j]

If ∃n ≥ 0, such that P
(n)
ij > 0. From i to j has positive probability

• Communication if i→ j and j → i then we say i&j can communicate.

Property:

1. i ⇐⇒ i [P
(0)
ii = 1]

2. If i ⇐⇒ j, then j ⇐⇒ i

3. If i ⇐⇒ j and j ⇐⇒ k, then i ⇐⇒ k.

• “Class”: communication helps us to divide the state space S into disjoint classes or
sets. If two states can communicate, then they are in same class j. If not, then they
are in different classes.

Definition: (irreducible) If we only have one class in sate space, then Markov process
is called irreducible.

6.4.2 Irreducible: Only one class

Suppose there is a Markov process with S = {0, 1, 2, 3, 4}

P =


1/2 1/2 0 0 0
1/2 1/2 0 0 0
0 0 1/2 1/2 0
0 0 1/2 1/2 0

1/4 1/4 0 0 1/2


Find Classes.
Solution: 0→P01>0 1→P10>0→ 0. Therefore 0 ⇐⇒ 1.
2→P23>0 3→P32>0 2 ⇐⇒ 2 ⇐⇒ 3
4→ 0 or → 1 or 4.
Therefore, we have 3 classes.

Theorem. Let c be a class

1. All states in C should have same type. all states in same class should be

(a) positive recurrent at same time; or,

(b) null recurrent at same time; or,

(c) transient at same time
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2. All states in same class C should have same period.

Theorem. (easy way to find period) Let C be a class. If ∃i ∈ C such that Pii > 0 then
all states in C have period 1.

Comprehensive version:

1. All states in C should have same period.

2. state i has period 1.

For stae i; rn = P
(n)
ii and r1 = Pii > 0.

Period: d = gcd{n|rn > 0, n ≥ 1} = gcd{1, other numbers} = 1.

6.4.3 Concept of States

So far, we do not know how to classify states. Need some concepts:

{
open class

closed class

Closed Class A class C is called closed. If process cannot leave the class, i.e., for i ∈
C, j /∈ C,Pij = 0.

Open Class A class C is called open, if it is possible for process to leave the class, i.e.
∃i ∈ C and j /∈ c such that Pij > 0.

Comment: Once the process leaves the open class, it will not return to that open class.

Theorem. 1. All states in open class are transient.

2. For closed class and number of states is finite; then all states must be positive recur-
rent.

How about closed class with infinite number of states?
Example: S = {0, 1, 2, 3, 4}.

P =


1/2 1/2 0 0 0
1/2 1/2 0 0 0
0 0 1/2 1/2 0
0 0 1/2 1/2 0

1/4 1/4 0 0 1/2


1. Which class is cloud or open? Three classes C1 = {0, 1} is closed. C2 = {2, 3} is

closed. C3 = {4} is open (transient).

2. period of each state. All Pii > 0 for i ∈ {0, 1, 2, 3, 4}. Therefore periods of all states
are 1 and all star are aperiodic.
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6.5 Stationary distribution

So far, we don’t know how to calculate E[Tii].{
πP = π∑

i∈S πi = 1

The meaning of πi: proportion of process in state i.

6.6 Absorption Probability

Q 4:
Open class {1, 2}. LetA1,C1 = P (ending in C1|X0 = 1) andA1,C2 = P (ending in C2|X0 =

1). A1,C1 +A1,C2 = 1.
A2,C1 = P (ending in C1|X0 = 2)

A2,C2 = P (ending in C2|X0 = 2)

A2,C1 +A2,C2 = 1

Others can be similarly defined. Idea:Conditional on X1. start with A1,C1 .

A1,C1 =
∑
i

P (ending in C1|X1 = i)×P (X1 = i|X0 = 1) = P1,4×A4,C1+P1,1×A1,C1+P1,2×A2,C1

Therefore, A1,C1 = 1
3A1,C1 + 1

3A2,C1 =⇒ A2,C1 =⇒ A1,C1 For A2,C1 , we will then list all
the possibility that goes to state 3 (C1), 6 (C2), 1, 2.

Conditional on X1, then

A2,C1 =
∑
i

P (ending in C1|X1 = i)×P (X1 = i|Xn = 2) = P1,3×A3,C1+P2,6×A6,C1+P2,1×A1,C1+P2,2×A2,4

Therefore, A2,C1 = 1
4 + 1

4A1,C1 + 1
4A2,C1 combined with A2,C1 = 2A1,C1 . Hence A2,C1 = 2/5

and A1,C1 = 1
5 . So A2,C1 = 2/5 and A2,C2 = 1− 2/5 = 3/5. A1,C1 = 1/5 and A1,C2 = 4/5.

Q 5:
X0 = 0: stationary distribution? 0 in C1 (closed class);: process stays in C1 and pro-

portion of visiting C2 and C3 is zero. For C1: stationary distribution πC1 = (1/3, 1/3, 1/3).
For whole process stationary distribution is (1/3, 0, 0, 1/3, 0, 1/3, 0). Similarly: if X0 = 4, 6
in C2, πC2 = (5/7, 2/7). For whole process: π = (0, 0, 0, 0, 5/7, 0, 2/7).

Q 6:
X0 = 1 in open class. What is stationary distribution? Recall: if it is in C1, it is 1/5;

if it is in C2, it is 4/5.
Stationary distribution:

A1,C1 × (1/3, 0, 0, 1/3, 0, 1/3, 0) +A1,C2 × (0, 0, 0, 0, 5/7, 0, 2/7)
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Q 7:
Let T1 = waiting time to leave class C3 given process starts from 1.
T2 = waiting time for process to leave C3 given the process starts from 2.
Find E[T1] and E[T2].
Idea: condition on X1. state 1 to 4 (in C2 leave C3, 2 (in C3), 1 (in C3). Therefore

T1 =


1 1/3(4)

1 + T2 1/3(2)

1 + T1 1/3(1)

Double-expectation theorem implies that E[T1] = 1× 1
3+E[1+T2]×1/3+E[1+T1]×1/3.

Therefore, E[T1] = 1 + 1/3E[T2] + 1/3E[T1]. For T2, state 2 to 3 (leaveC3), 6 (leave C3),
1 (in C3), 2 (in C3). Values of T2 is 1, 1, 1 + T1, 1 + T2 so E[T2] = 1

4 × 1 + 1
4 × 1 +

1
4E[1 + T1] + 1

4E[1 + T2]. Therefore E[T2] = 1 + 1/4E[T1] + 1/4E[T2] combined with
E[T1] = 1 + 1/3E[T1] + 1/3E[T2]. We have E[T1] = 13/5 and E[T2] = 11/5.

7 Poisson Process

7.1 Exponential distribution

Exponential distribution: continuous waiting time R.V. Summary: exp(λ)

1. pdf: f(x) = λe−λx, x > 0, λ > 0 where λ is called the rate

2. Tail probability: P (X > x) = e−λx for x > 0. X ∼ Exp(λ).

3. E[X] = 1
λ and V ar(X) = 1

λ2
. X ∼ exp(λ).

4. No-memory property: P (X > s+ t|X > s) = P (X > t). Intuitively, No-matter how
long we spent as long as we don’t observe the event, the remaining time still follows
exp(λ).

5. Alarm clock lemma: If Xi ∼ exp(λi), i = 1, 2, · · · , λ. and X1, · · · , Xn are indepen-
dent, then

(a) min{X1, · · · , Xn} ∼ Exp(
∑n

i=1Xi).

(b) P (Xi = min{X1, · · · , Xn}) = λi∑n
i=1 λk

.

Example: T1 ∼ Exp(λ1) and T2 ∼ Exp(λ2) are independent. T = max(T1, T2), find
E[T ]. Solution: Method I: max(T1, T2) + min(T1, T2) = T1 + T2. Well, min(T1, T2) ∼
Exp(λ1, λ2). Hence E[max(T1, T2)] = 1

λ1
+ 1

λ2
− 1

λ1+λ2
.

Method II: T = min(T1, T2) + remaining time. E[max(T1, T2)] = 1
λ1+λ2

. If T1 <

T2: prob =P(T1 = min(T1, T2)) = λ1
λ1+λ2

. Also the remaining time of T2 is exp(λ2). If
T1 > T2, P (T2 = min(T1, T2) = λ2 λ1+λ2 . Remaining time of T1 ∼ Exp(λ1). Therefore,
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E[Remaining time) = E[exp(λ2)]×P (case I, T1 < T2)+E[exp(λ1)]×P (cases II, T1 > T2) =
1
λ2
× λ1

λ1+λ2
+ 1

λ1
× λ2

λ1+λ2

7.2 Poisson Process

This section:
Interested in {X(t), t ≥ 0} (continuous). This is called continuous process.
Continuous process: time is continuous.
Discrete process: time is discrete.
For both: state space is discrete.

Definition. Counting process: {X(t) : t ≥ 0} is called a counting process if

1. X(t) ≥ 0.

2. X(t) can only be non-negative integers.

3. X(t) is an increasing function of t.

For counting process: X(t) = i means we observe i events in (0, t]. Therefore, condition
3 makes sense [more time =⇒ more events]. Plot of {t,X(t)} for counting process. (only
increase but not decrease)

Definition. Poisson process: a counting process is called a poisson process if

X(0) = 0;

For 0 < S1 < S2 ≤ t1 < t2, X(t2)−X(t1) and X(S2)−X(S1) are independent.

X(t+ s)−X(s) ∼ Poisλt) where the first part is the number of events in (S, t+ S] and λ
is the unit rate and t is the length of interval.

Summary of 3 conditions

1. starts from 0

2. in two non-overlapped intervals, the number of events are independent.

3. The number of events in an interval is poisson distributed with mean = unit rate ×
length of interval.

7.2.1 Property 1

In a very small interval, we can only observe 0 or 1 event.
Mathematically, limh→0+

P (X(t+h)−P (X(t))
h = 0.
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Proof. X(t+ h)−X(t) ∼ Pois(λh) Therefore,

lim
h→0+

P (X(t+ h)−X(t) ≥ 2)

h
= lim

h→0+

1− (λh)0e−λh

0! − (λh)1e−λh

1!

h

Apply L’Hôpital’s Rule,

lim
h→0+

P (X(t+ h)−X(t) ≥ 0)

h
= lim

h→0+
λ2heλh = 0

Property 1 tells us we cannot jump from 0 to 2.

7.2.2 Property 2

T1 = waiting time for the first event

T2 = waiting time for the second event after the first event

In general,
Ti = waiting time for ith event after ith event

Conclusion: T1, T2, · · · are iid and follow exp(λ) where λ is the unit rate of poisson
process.

Proof. Only for T1, P (T1 > t) = P (X(t) = 0) (tail probability of T1 is the probability of

number of events in (0, t]. Therefore, it is just (λt)0e−λt

0! = e−λt so P (T1 > t) = e−λt tail
probability of exp(λ). Hence T1 ∼ exp(λ).

7.2.3 Property 3

Suppose S < t given X(t) = n. X(S)|X(t) = n ∼ BIN(n, St ).

Proof. P (X(S) = k|X(t) = n) = P (X(S)=1,X(t)=n)
P (X(t)=n) = P (X(t)−X(S)=n−k)

P (X(t)=n)

Note X(S) and X(t) − X(S) are independent, X(S) ∼ Pois(λ)&X(t) and X(t) −
X(S) ∼ Pois(λ(t− s)) so

P (X(S) = k|X(t) = n) =
(λS)ke−λS/k!× [λ(t−S)]n−ke−λ(t−S)

(n−k)!
(λt)ne−λt

n!

Simplify it, we get P (X(S) = k|X(t) = n) ∼ Bin(n, S/t)
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7.2.4 Example

Customer arrive at CIBC according to a Poisson process at the rate 90 per hour. If in the
first half hour, we see 15 customers

1. What is the probability that 5 customers arrive in next half hour?

X(t) = number of customers in (0, t] unit is per hour

X(t) ∼ Poisson process unit rate λ = 20/hr

X(1/2) = 15

P (X(1)−X(1/2) = 5|X(1/2) = 15) = P (X(1)−X(1/2) = 5) ∼ Poisson(10) =
105e−10

5!

2. Of 15 people who arrived in the first half hour, what is the probability that 10 arrive
in the first 10 minutes?

P (X(1/6) = 10|X(1/2) = 15) =

(
15

10

)
(
1

3
)10(

2

3
)5

7.2.5 Property 4

X(t) = number of events in (0, t]&it follows poisson process with unit rate λ

The events can be classified as type I event (prob= p) or type II event (prob= q)

X1(t) = number of type I events in (0, t]

X2(t) = number of type II events in (0, t]

X(t) = X1(t) +X2(t)

Conclusion

1. X1(t) is a poisson process with unit rate λp

2. X2(t) is a poisson process with unit rate λq.

3. X1(t) and X2(t) are independent.

How to proceed?

1. X(t) ∼ Pois(λt)

2. X1(t)|X(t) = n ∼ Bin(n, p)
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8 Midterm Coverage

Chapter 1 1. commonly used distributions: binomial, geometric, negative binomial,
poisson. ? when to use them?, pmf, expectation and variance will be given.

2. property of expectation and variance

3. indicator variable

Chapter 2 classification of RVs. Definition: improper, null improper, short proper.

Chapter 3 1. Joint RVs: joint pdf, joint pmf and independence

2. Conditional expectation, distribution

3. property of conditional expectation (linearity, substitution rule, independence)

4. double expectation theorem, variance

5. calculate probability, variance

Chapter 4 emphasize pgf

1. Def of pgf

2. 5 properties of pgf. Note: 4 power series and two properties of gf.

Chapter 5 Delayed renewal is not covered

1. definition of renewal, delayed renewal

2. Rule to determine renewal or delayed renewal

3. Classification of renewal

4. expectation and probability

5. Renewal sequence
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