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1 Introduction

Regression deals with the functional relationship between a response (or outcome) variable
y and one or more explanatory variables (or predictor variables) x1, · · · , xp. A general
expression for a regression model is

y = f(x1, · · · , xp) + ε

where

• function f(x1, · · · , xp) represents the deterministic relationship between y and x1, · · · , xp

• the extra ε term is an error term or called noise. It represents unexplained variation
in y due to other factors

Applications

y xs

global climate surface temperature GHG

finance stock price index unemployment rate, CPI, etc.

Economics Unemployment rate interest rate

Regression Modelling can be used for

• Identify important factors (or explanatory variables)

• estimation

• prediction

,k. In dumb first statistics class, we saw only a simplest form of the regression model

y = β0 + β1x+ ε

where we have only one explanatory variable x, and the form of f(x) is assumed to be
known as a linear function. For example, y = β0 + β1x + β2x

2 + ε is a linear; however,
y = β0 + β1exp(β2x) is not linear.

In this class, we will extend discussion to p explanatory variable y = β0 + β1x1 +
· · ·+ βpxp + ε where β0, · · · , βp are constants in the linear function, we normally call them
regression parameters (or coefficients). Note that βs are unknown and to be estimated
from the data.
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2 Review of Simple Linear Regression Model

2.1 The Model

Let y be the response variable, and x be the only explanatory variable. The simple linear
regression model is given by

y = β0 + β1x+ ε

where β0 +β1x represent the systematic relationship, and ε is random error. β0 and β1 are
unknown regression parameters. (Note y is always random, and x is non-random)

Suppose we observe n pairs of value {(yi, xi), i = 1, · · · , n} on y and x from a random
sample of subjects. Then for the ith observation, we have yi = β0 + β1xi + εi

Formally, we make a number of assumptions about ε, · · · , εn. Gauss-Markov Assump-
tion (Conditional on xi)

1. E[εi] = 0 =⇒ E(yi) = β0 + β1xi

2. ε1, · · · , εn are statistically independent =⇒ y1, · · · , yn are independent

3. V ar(εi) = σ2 =⇒ V ar(yi) = σ2

4. εi is normally distributed for i = 1, · · · , n, ε ∼ N(0, σ2)

These four assumptions are often summarized as saying that ε1, · · · , εn are independent
and identically (iid) N(0, σ2).

In particular, assumption (i) is needed to ensure that a linear relationship between y
and x is appropriate. Assumptions (ii) - (iv) also translate to assumption about y1, · · · , yn.
Assumption (ii) implies that y1, · · · , yn are independent. Assumption (ii) implies V ar(yi) =
σ2 (constant over xi). Assumption (iv) implies that yi is normally distributed, . Equiva-
lently, we can summarize that y1, · · · , yn are independent normal such that

yi ∼ N(β0 + β1xi, σ
2)

The two unknown regression parameters β0 and β1:

• β0 is the intercept

• β1 is the slope and is of primary interest.

1. β1 = E[y|x = a+ 1)− E[y|x = a]

2. If β1 = 0, E[y|x] = β0

5



2.2 Least Square Estimation (LSE)

Suppose we let β̂0 and β̂1 be the chosen estimators for β0 and β1, respectively, and the
fitted value for yi from the regression line is ŷi = β̂0 + β̂1xi. Then the least squares criterian
chooses β̂0 and β̂1 to make the residuals

ri = yi − ŷi

“small”. Specifically, LSE of β0 and β1 are chosen to minimize the sum of squared residuals:

minβ̂0,β̂1S(β0, β1) =
n∑
i=1

r2
i =

n∑
i=1

(yi − β0 − β1xi)
2

The LSE of β0 and β1 are
β̂0 = ȳ − β̂1x̄

β̂1 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
=

∑n
i=1 xiyi − nx̄ȳ∑n
i=1 x

2
i − nx̄2

=
Sxy
Sxx

where Sxy =
∑

(xi − x̄)(yi − ȳ) and Sxx =
∑

(xi − x̄)2

A note on notation

• In this course, we used some times yi to denote the random variable for response
from the ith subject of a sample; and some times for the value (number) actually
observed.

• Similarly, β̂0 and β̂1 will be used both for the estimators which are random variables
if yi’s are random; and for particular estimates (i.e. 0.77) calculated from a particular
data.

2.3 The Properties of β̂0 and β̂1

We have following properties of LSE

1. E[β̂0] = β0, E[β̂1] = β1

2. The theoretical variance of β̂0 and β̂1

V ar(β̂0) = σ2(
1

n
+

x̄2∑
(xi − x̄)2

)

V ar(β̂1) = σ2 1∑
(xi − x̄)2

3.

cov(β̂0, β̂1) =
−σ2x̄∑
(xi − x̄)2
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The proof of the results related to β̂1

We write

β̂1 =

∑
(xi − x̄)(yi − ȳ)∑

(xi − x̄)2
=
∑ (xi − x̄)

Sxx
yi =

∑
ciyi

Hence
E[β̂1] =

∑
ciE[yi]

(y1, · · · , yn are independent)

E[β̂1] =
∑

ci(β0 + β1xi) = β0

∑
ci + β1

∑
cixi = β1

Similarly,

V ar(β̂1) =
∑

c2
iV ar(yi)

=
∑ (xi − x̄)2

S2
xx

σ2

=
σ2

Sxx

Result:

β̂1 ∼ N(β1,
σ2

Sxx
)

Consequence of LS fitting

1.
∑
ri = 0 (r means residual)

2.
∑
rixi = 0

3.
∑
riŷi = 0

4. The point (x̄, ȳ) is always on the fitted regression line.

2.4 The Estimation of σ2

Note that we can rewrite the model yi = β0 + β1xi + εi as

εi = yi − β0 − β1xi

to emphasize the analogy with the residuals

ri = yi − β̂0 − β̂1xi

We could say that ri (which can be calculated) estimate the unobservable εi. The basic
idea is then to use sample variance of r1, · · · , rn to estimate the unknown V ar(εi) = σ2.
The sample variance of r1, · · · , rn
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1

n− 1

n∑
i=1

(ri − r̄)2

this is actually not an unbiased.

E[
1

n− 1

n∑
i=1

(ri − r̄)2] 6= σ2

The unbiased estimator of σ2 is defined as

s2 =
1

n− 2

n∑
i=1

(ri − r̄)2

(Homework: proof E[s2] = σ2)
Hint:

1.
∑n

i=1 r
2
i = Syy −

S2
xy

Sxx

2. E[Syy] = (n− 1)σ2 + β2
1Sxx

3. E[
S2
xy

Sxx
] = β2

1Sxx + σ2

2.5 Confidence Interval and Hypothesis Testing

Recall that

β̂1 ∼ N(β1,
σ2

Sxx
)

so
β̂1 − β1

σ/
√
Sxx
∼ N(0, 1)

By definition,

P (−1.96 <
β̂1 − β1

σ/
√
Sxx

< 1.96) = 0.95

P (β̂1 − 1.96
σ√
Sxx

< β1 < β̂1 − 1.96
σ√
Sxx

) = 0.95

95% CI for β1 is (β̂1 ± 1.96 σ√
Sxx

) when σ2 is known.

In most practice, σ2 is unknown, when we replace σ2 by s2, then the unknown standard
deviation of β̂1 is replaced by standard error

SE(β̂1) =

√
S2

Sxx
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where S2 = 1
n−2

∑
r2
i

The standardized β̂1 random variable becomes

β̂1 − β1

SE[β̂1]
∼ tn−2

which is no longer standard normal but has a t-distribution with n− 2 degree of freedom
A 100(1− α)% confidence interval for β1 is

β̂1 ± tn−2,α/2SE(β̂1)

Hypothesis tests are derived and computed in the similar way. To test

H0 : β1 = β∗1 v.s. Ha : β1 6= β∗1

We use the t-statistic

t =
β̂1 − β∗1
SE[β̂1]

which as a tn−2 distribution when H0 is true.

2.5.1 The t-test Statistic

t =
β̂1 − β∗1
SE(β̂1)

∼ tn−2

where H0 : β1 = β∗1
Formally, if

|t| = | β̂1 − β∗

SE(β̂1)
| > tn−2,α/2

There is evidence to reject H0 : β1 = β∗1 at significant level of α. Otherwise, we can not
reject H0.

2.6 Prediction for Future Values

The fitted value
ŷi = β̂0 + β̂1xi

refers to an x which is part of the sample data

1. Predict a single future value at a given x = xp. The future value is given as

yp = β0 + β1xp + εp

where εp is the future error.
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Naturally, we replace εp by its expectation and use

ŷp = β̂0 + β̂1xp

to predict yp.

Some properties of ŷp.

(a) E[yp − ŷp] = 0 is an unbiased prediction.

(b) V ar(yp − ŷp) = [1 + 1
n +

(xp−x̄)2

Sxx
]σ2

yp − ŷp = β0 + β1xp + εp − β̂0 − β̂1xp

Note that εp is independent of β̂0 and β̂1 since it is a future error that is unrelated

to the data that β̂0 and β̂1 are calculated.

V ar(yp − ŷp) = V ar(εp) + V ar(β̂0 + β̂1xp)

(c) It can be shown that
yp − ŷp

SE(yp − ŷp
∼ tn−2

where SE(y − ŷp) = [1 + 1
n +

(xp−x̄)2

Sxx
]s2

2. Predict the mean of future response values at a given x = xp. We will still use

µ̂p = β̂0 + β̂1xp

as the predicted future mean
µ = β0 + β1xp

The variance of the prediction error

V ar(µp − µ̂)

is smaller than the variance of prediction error of yp.

2.7 Analysis of Variance (ANOVA)

Testing H0 : β1 = 0.
The total variation among the yi’s is measured by

SST =
∑

(yi − ȳ)2
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If there is no variation (all yi’s are same), the SST = 0. The bigger the SST, the more
variation. If we rewrite SST as

SST =
∑

(yi − ȳ)2 =
∑

(yi − ŷi + ŷi − ȳ)2

=
∑

(yi − ŷi)2 +
∑

(ŷi − ȳ)2 + 2
∑

(yi − ŷi)(ŷi − ȳ)

= SSE + SSR+ 0

where

• SSE refers to the sum of squares of residual. It measures the variability of yi’s that
is unexplained by the regression model

• SSR refers to the sum of squares of regression . It measures the variability of response
that is accounted for by the regression model

If H0 : β1 = 0 is true, SSR should be relatively “small” compare to SSE. Our decision
is to reject H0 if the ratio of SSR and SSE is large.

2.7.1 Some distribution result (when H0 is true)

•
SST

σ2
∼ χ2(n− 1)

To show this, recall that y1, · · · , yn are independent ∼ N(β0, σ
2) then∑

(
yi − β0

σ
)2 ∼ χ2(n)

(
ȳ − β0

σ/
√
n

)2 ∼ χ2(1)

By rearrangement of SST

SST =
n∑
i=1

(yi − β0 + β0 − ȳ)2

=
n∑
i=1

(yi − β0)2 −
n∑
i=1

(β − ȳ)2

=

n∑
i=1

(yi − β0)2 − n(ȳ − β0)2

SST

σ2
=

n∑
i=1

(yi − β0)2

σ2
− n(ȳ − β0)2

σ2

∼ χ2(n)− χ2(1) ∼ χ2(n− 1)
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Form Cockran’s Theorem:
SST
σ2 is independent of n(ȳ−β0)2

σ2 and SST
σ2 ∼ χ2(n− 1)

•
SSR

σ2
∼ χ2(1)

SSR =
∑

(ŷi − ȳ)2

=
∑

(β̂0 + β̂1xi − ȳ)2

=
∑

(ȳ − β̂1x̄+ β̂1xi − ȳ)2

= β̂2
1

∑
(xi − x̄)2 = β̂2

1Sxx

Recall

β̂1 ∼ N(β1,
σ2

Sxx
)

(
β̂1 − β1

σ/
√
Sxx

2

∼ χ2(1)

Under

H0 :
β̂2

1

σ2/Sxx
=
β̂2

1Sxx
σ2

∼ χ2(1)

•
SSE

σ2
∼ χ2(n− 2)

SST

σ2
=
SSE

σ2
+
SSR

σ2

χ2(n− 1) = χ2(n− 2) + χ2(1)

Based on theses results, we derive F-statistic

F =
(SSR/σ2)/1

(SSE/σ2)/n− 2
∼ F (1, n− 2)

It can be used for testing H0 : β1 = 0, we reject H0 at α-level if

F > Fα(1, n− 2)

Recall

t =
β̂1

SE(β̂1)
=

β̂1√
S2/Sxx

12



.

t2 =
β̂2

1Sxx
S2

and

F =
β̂2

1Sxx
S2

also t2n−2 = F (1, n− 2)
The t-test and F-test for H0 : β1 = 0 are equivalent for SLR.

2.7.2 Terminology of ANOVA

Sum of squares Source of variation degree of freedom mean squares F

SSR Regression 1 MSR = SSR/1 F = MSR/MSE
SSE residual n-2 MSE = SSE/(n− 2) F = MSR/MSE

SST total n -1

Coefficient of Determination:

R2 =
SSR

SST
, 0 ≤ R ≤ 1

It is a measure of goodness-of-fit of the regression model to the data. In the case of
SLR,

R2 =
SSR

SST
=
β̂1Sxx
Syy

=
S2
xy

SxxSyy
= r2

where r2 is the sample correlation coefficient. R2 is applicable to multiple regression, but
r2 is not.

3 Review of Random Vectors and Matrix Algebra

3.1 Definition

y = (y1, · · · , yn)′

E(y) =

E(g1)
...

E(gn)

 =

µ1
...
µn

 = µ

V (y) = (σij)n×n =

 V ar(y1) Cov(y1, y2) · · · Cov(y1, yn)
...

...
. . .

...
Cov(yn, y1) · · · · · · V ar(yn)


n×n

V (y) = E((y − E(y))(y − E(y))′) = E((yi − µi)2)n×n

If y1, · · · , yn are independent and identical distributed V ar(y) = σ2I

13



3.2 Basic Properties

A = (aij)m×n, b = (b1, · · · , bm)′, c = (c1, · · · , cn)′

1. E(AY + b) = AE(Y ) + b

2. V ar(Y + c) = V ar(Y )

3. V (AY ) = AV (Y )A′

4. V (AY + b) = AV (Y )A′

3.3 Differentiating Over Linear and Quadratic Forms

1. f(y) = f(y1, · · · , yn)
d

dy
f = (

d

dy1
f, · · · , d

dyn
f)′

2. f = c′y =
∑n

i=1 ciyi
d

dy
f = C

3. f = y′Ay =
∑

i

∑
j aijyiyj =

∑
i aiiy

2
i + 2

∑∑
i<j aijyiyj

d

dy
f = 2Ay

For example, d
dy1
f = 2a11y1 + 2

∑
i<j a1jyj = 2

∑n
j=1 a1jyj

3.4 Some Useful Results on Matrix

1. Trace:

Tr(Am×m) =
m∑
i=1

aii

Tr(Bm×nCn×m) = Tr(Cn×mBm×n)

2. Rank of a matrix

rank(An×n) = # of linearly independent columns of Am×n

3. vectors y1, · · · , ym are linearly independent off c1y1 + · · · + cmym = 0 off c1 = c2 =
· · · = cm = 0

4. Orthogonal Vectors & Matrices: two vectors are orthogonal

14



(a) two vectors are orthogonal: y′x = 0

(b) Am×m is orthogonal if

A′A = AA′ = I = =⇒ A′ = A−1

(c) Eigenvector & Eigenvalues: A vector vi is called an eigenvector of Am×m if ∃λi
such that

Avi = λivi, i = 1, 2, · · · , k

where λi is the eigenvalue.

(d) Decomposition of a Symmetric Matrix:

A′ = A

For a systematic matrix Am×m, λ1, · · · , λm are real and exists an orthogonal
matrix P such that

A = PΛP ′

where Λ =

λ1 · · · 0
. . .

0 · · · λm

 is diagonal matrix with eigenvalues on diagonal,

p = [v1, · · · , vm] is a matrix with eigenvectors on columns.

(e) Idempotent Matrix: Am×m is idempotent if A2 = A. Results:

i. If Am×m is idempotent, then all eigenvalues are either 0 or 1

Proof.
Avi = λivi = A2vi = λi(Avi) = λ2

i vi

Hence λi = λ2
i . This implies λi = 0 or 1.

ii. If Am×m is idempotent, exist an orthogonal matrix P such that

A = PΛP ′

where Λ = diagonal(1, · · · , 1, 0, · · · , 0)m×m
iii. Tr(A) = rank(A) = Tr(Λ) = # of 1 in the diagonal

4 Multiple Linear Regression

4.1 Multivariate Normal Distribution

The random vector y = (y1, · · · , yn)′ follow a multivariate normal distribution with a joint
p.d.f .

f(y) = [
1

2π
]
n
2 |Σ|−

1
2 exp{−1

2
(y − µ)′

∑
(y − µ)}
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where µ = E(y)n×1 = (E(y1), · · · , E(yn))′ and Σ = V ar(y)n×n = (σij)n×n. We can write

y ∼MVN(µ,Σ)

1. Margin Normality: If y ∼ MVN(µ,Σ), then yi ∼ N(µi, σii) where σii is the (i, i)th
element of Σ.

2. y1, · · · , yn are independent if and only if Σ is diagonal. (In general, if y1, · · · , yn are
independent , then the Cov(yi, yj) = 0(i 6= j). However this does not implies from
the other way around.)

3. If y ∼MVN(µ,Σ), then let z = Ay, z ∼MVN(Aµ,AΣA′)

4. If ∼ MVN(µ,Σ), y1 = AU, y2 = BU Then y1 and y2 are independent if and only if
Cov(y1, y2) = 0, Cov(AU,BU) = 0, (AV (U)B′ = 0, AΣB′ = 0.

5. y1, · · · , yn are iid N(µ, σ2I),
y ∼MVN(µ, σ2I)

6. If y ∼MVN(0, σ2I),
y′y/σ2 ∼ χ(n)

4.2 The Regression Model

Suppose we are interested in the relationship between a type of air pollutant and lung
function. y : FEV I; x1 : a type air pollutant, x2 : age, x3 : gender.

The general model is in the form:

yi = β0 + β1xi1 + β2xi2 + · · ·+ βpxip + εi

where xi1, · · · , xip are p explanatory variables, and β1, · · · , βp are regression coefficients
associated with these explanatory variables respectively, i = 1, · · · , n.

Assumption:

1. E[ε] = 0 =⇒ E[yi] = β0 + β1xi1 + · · ·+ βpxip

2. V (ε) = σ2 =⇒ V (yi) = σ2

3. ε1, · · · , εn are independent =⇒ y1, · · · , yn are independent.

4. A stronger assumption

εi ∼ N(0, σ2) =⇒ yi ∼ N(β0 + β1xi1 + · · ·+ βpxip, σ
2)
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Regression coefficients: β1, · · · , βp. βj : the average amount of increase (or decrease) in
response when the nth covariate xj increase (or decreases) by 1 unit while holding all other
covariate fixed.

H0 : βj = 0 =⇒ xj

is not (linearly) related to y, given all the other explanatory variables in the model.
In matrix form: y1

...
yn

 =

1 x11 · · · x1p
...

...
. . .

...
1 xn1 · · · xnp


β0

...
βp

+

ε0...
εn


yn×1 = Xn×(p+1)βp+1 + εn×1

where
ε ∼MVN(0, σ2I)

and
y ∼MVN(xβ, σ2I)

4.3 LSE of β

Lease squares chose β̂ to make the n×1 vector ŷ = xβ̂ “close” to y (or to make the residual
vector r = y − ŷ “small”). Specifically, we want to minimize

S(β) =

n∑
i=1

(yi − β0 − β1xi1 − · · · − βpxip)2 = (y − xβ)′(y − xβ)

= y′y − y′xβ − β′x′y + β′x′xβ

Set ∂
∂βS(β) = 0 to get

∂

∂β
S(β) = −2x′y + 2x′xβ = 0

β̂ = (x′x)−1x′y

(we require x′x to be full rank)
Properties of LSE β̂

1. β̂ is unbiased
E(β̂) = E[(x′x)−1x′y] = (x′x)−1x′E[y] = β

2. V ar(β̂) = σ2(x′x)−1

V ((x′x)−1x′y) = (x′x)−1x′V (y)x(x′x)−1 = σ2(x′x)−1x′x(x′x)−1 = σ2(x′x)−1
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Some useful results

1. Fitted values
ŷ = xβ̂ = x(x′x)−1x′y

Let H = x(x′x)−1x′ ← “hat” matrix

ŷ = Hy

where H is idempotent and symmetric =⇒ H is a projection matrix which projects
y to R(x) (a (p + 1) diminutional subspace spanned by linear combination of p + 1
columns of x)

2. Residuals

r = y − ŷ = y − x(x′x)−1x′y = (I − x(x′x)−1x′)y = (I −H)y

(homework: I −H is idempotent)

•
∑
ri = 0,

∑n
i=1 rixi1 = 0, · · · ,

∑n
i=1 rixip = 0

∑
riŷi = ŷ′r = 0

x′r = x′(I − x(x′x)−1x′)y = x′y − x′y = 0

• E(r) = 0
E(r) = E((I − x(x′x)−1x′)y) = xβ − xβ = 0

• v(r) = σ2(I − x(x′x)−1x′)

v(r) = v((I − x(x′x)−1x′)y) = (I −H)σ2I(I −H)′ = σ2(I −H)

4.4 An estimation of σ2

σ̂2 =
1

n− p− 1

n∑
i=1

r2
i

is an unbiased estimator of σ2.

Proof.

E(

n∑
i=1

r2
i ) = E(r′r) = E(tr(r′r)) = E(tr(rr′)) = tr(E(rr′)) = tr(V (r)) = tr(v((I −H)y))

= tr(σ2(I −H)) = σ2(n− tr(x(x′x)−1x′)) = σ2(n− tr(x′x(x′x)−1)

= σ2(n− tr(I(p+1)×(p+1)) = σ2(n− p− 1)
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4.5 Sampling Distribution of β̂, σ̂2 under Normality

We assume
Y ∼MVN(xβ, σ2I)

Results:

1. β̂ ∼MVN(β, σ2(x′x)−1), β̂ = (x′x)−1x′y

2. β̂ and σ̂2 are independent

σ̂2 = 1
n−p−1r

′r, to show r and β̂ are independent.

3.

cov(r, β̂) = cov((I − x(x′x)−1x′)y, (x′x)−1x′y) = (I − x(x′x)−1x′)σ2Ix(x′x)−1

= (I − x(x′x)−1x′)σ2Ix(x′x)−1

= σ2(x(x′x)−1 − x(x′x)−1 = 0

4. (n− p− 1)σ̂2σ2 ∼ χ2(n− p− 1)

Proof. Note that we can rewrite

(n− p− 1)
σ̂2

σ2
= (n− p− 1)

1
n−p−1

∑
r2
i

σ2
=

∑
r2
i

σ2
=
r′r

σ2
= (

r

σ
)′(
r

σ
) = r∗

′
r∗

Recall Y ∼MVN(xβ, σ2I), then r∗ = (I−H)Y
σ ∼MVN(0, I −H). Since I −H is idempo-

tent, then there is an orthogonal matrix P such that

I −H = PΛP ′

where Λ =



1 · · · · · · · · · 0
...

. . .
. . .

...
...

...
. . . 1

...
...

...
. . .

. . . 0
...

...
. . .

. . .
...

...
0 · · · · · · · · · 0


and number of 1’s = n− p− 1 and tr(I −H) = tr(n)

Now, if we define a new r.v.
z = p′r∗

then
z ∼MVN(0, P ′(I −H)P ′)
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z ∼MVN(0,Λ)

z = (z1, · · · , zn)′, the first n− p− 1 zi’s has N(0, 1), the rest are 0’s.
Therefore,

(n− p− 1)
σ̂2

σ2
= r∗

′
r∗

(z = p′r∗, z = r∗) so

= (pz)′(pz) = z′p′pz = z′z =

n−p−1∑
i=1

z2
i ∼ χ2(n− p− 1)

From result 1,
β̂ ∼MVN(β, σ2(x′x)−1)

when σ2 is unknown, we use

σ̂2 =
1

n− p− 1

∑
r2
i

ti estimate σ2

From 1 and 2, we know that β̂ and σ̂2 are independent, and

(n− p− 1)
σ̂2

σ2
∼ χ2(n− p− 1)

(Note if x ∼ N(0, 1), y ∼ χ2(q), then x√
y/q

= tq)

Then
β̂i−βi√
σ2vii√

(n−p−1)σ̂2/σ2

n−p−1

=
β̂i − βi√
viiσ2

∼ tn−p−1

this also implies that we use standard error se(β̂i) =
√
viiσ̂2 to estimate the standard

deviation
√
viiσ2. The quantity can be used to construct CI and test hypothesis H0Lβi =

β∗i .

4.6 Prediction

Suppose we interested in predicting y for given values of the explanatory variables x1, · · · , xp.
For example, our multiple regression model:

y(FEVI) = β0 + β1x1(level of certain air pollutant) + β2x2(age) + β3x3(weight) + ε

We want to predict FEVI for a new cease with an arbitrary vector of explanatory variable
values ap (e.g. ap = (1, 10, 52, 170)′)
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Be cautious when extrapolating outside the ranges of the explanatory variables in the
fitting data.

yP = β0 + β1 × 10 + β2 × 52 + β3 × 170 + εp

We can estimate yp by using β̂ (LSE) to replace β, and set εp = 0.

ŷp = β̂0 + β̂1 × 10 + β̂2 × 52 + β̂3 × 170a′pβ̂

To place a confidence interval around the single predicted value yp, we need to know

V (yp − ŷp) = V (a′pβ + εp − a′pβ̂)

= V (εp − a′pβ̂) = V (εp) + V (a′pβ̂)

= σ2 + a′pV (β̂)ap = σ2 + σ2a′p(x
′x)−1ap

= σ2(1 + a′p(x
′x)−1ap)

As usual, we have to replace σ2 by σ̂2 = 1
n−p−1

∑
r2
i , which lead to the result that

yp − ŷp√
σ̂2(1 + a′p(x

′x)−1ap)
∼ tn−p−1

and 100(1− α)% CI for yp is

ŷp ± tn−p−1.α/2

√
σ̂2(1 + a′p(x

′x)−1ap)

What if we want to predict the mean of the response oat a given vector of values for
explanatory variable, a′p?

µp = E[yp] = a′pβ

The estimate of µp, µ̂p = a′pβ̂ = ŷp however V (µp− µ̂p) = V (µ̂p) is smaller than V (yp− ŷp).
(derive V (µp − µ̂p) and 95% CI for µp)

4.7 ANOVA Table

Consider the general model

yi = β0 + β1xi1 + · · ·+ βpxip + εi(?)

β̂ is LSE

SSE =

n∑
i=1

r2
i = r′r = (y − xβ̂)′(y − xβ̂)

Now if we consider the hypothesis

H0 : β1 = β2 = · · · = βp = 0
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under H0, the general model (?) reduces to yi = β0 + εi ← restricted model the LSE of β0

is β̂0 = ȳ

SSE(β̂0)
n∑
i=1

(yi − ŷi) =
n∑
i=1

(yi − β̂0) =
n∑
i=1

(yi − ȳ)2 = SST

The difference
SSE(β̂0) = SSE(β̂) = SST − SSE(β̂) = SSR

is the additional sum of squares from the p-explanatory variables. SSR tells us how much
variability in response is explained by the full model, over and above the simple mean
model.

SSR =
∑

(yi − ȳ)2 − (y − xβ̂)′(y − xβ̂) = y′y − nȳ2 − [(I −H)y]′[(I −H)y]

= y′y − nȳ2 − y′(I −H)y = β̂′x′xβ̂ − nȳ2

The F-test statistics

F =
SSR/P

SSE/n− p− 1
=

additional sum of squares/p

sum of squares of errors from the full model/n− p− 1

is used to test
H0 : β1 = β2 = · · · = βp = 0

vs
Ha : at least one of βishould be non-zero

What does a statistically significant F-ratio. Imply?

• It indicates that there is strong evidence against the claim that none of the explana-
tory variables have an influence on response.

4.7.1 ANOVA Table

Source df sum of square mean square F

Regression p SSR = β̂′xx′β̂ − nȳ2 MSR = SSR/p F = MSR
MSE

Residual n− p− 1 SSE = (y − xβ̂)′(y − xβ̂) MSE = SSE/n− p− 1 same

Total n− 1

The R2 = SSR
SST is an overall measurement of the goodness of fit of the model.

Does a large R2 always mean that a significant relationship has been discovered? R2

cannot decrease as more terms are added to the model (even if they are not relevant or
useful)
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5 Model evaluation and residual analysis

Some clarification

1.
β̂ ∼MVN(β, σ2(xTx)−1)

(β̂0, β̂1, · · · , β̂p)T ∼MVN((β0β1 · · ·βp)T , σ2(xTx)−1)

β̂1 ∼ N(βi, σ
2vii)

where ith element of β, (i, i)th entry of (xTx)−1. Note that the i subscript does not
represent the number for β in the model setting but actually the ith element of the
β vector, i.e. β0 is the first element, so it corresponds to i = 1.

V (β̂1 + β̂2 − β̂3), let ap = (0, 1, 1,−1, 0, · · · , 0)T . V (β̂1 + β̂2 − β̂3)aTp v(β̂)ap

2. R2 usually will increase as we add more explanatory variables in the model (even
if they are not relevant). Suppose p + 1 = n, then R2 = 1. Adjusted R2 = 1 −
n−1
n−p−1(1−R2) to penalize for a large number of parameters.

3. R output: residual standard error =
√
MSE =

√
σ̂2 =

√
s2

4. Formally, under H:β0 = β1 = · · · = βp = 0, the F-ratio F = (SSR/p)/(SSE/(n −
p− 1)) = MSR/MSE ∼ F (p, n− p− 1). Therefore if F > Fα(p, n− p− 1) then F
is large enough to reject H0.

5. Model evaluation and residual analysis. Given a particular dataset, a specific model
(with a set of assumptions)

• Least squares fit

• Construct hypothesis test and confidence intervals

• estimation and prediction

In practice, a more difficult task is to find a reason that model for a set of data. We
will focus on techniques based on analysis of residuals for model checking.

5.1 Model and Model Assumptions

What is a “good” model?

• A “good” model is the one which is complex enough to provides good fit to the data
and yet simple enough to use (i.e. make prediction). Well beyond the data.

Basic Model Assumptions:

1. E[εi] = 0 =⇒ E[yi] = β0 + β1xi1 + · · ·+ βpxip. This implies linearity.
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2. V (εi) = σ2, constant variance. This implies homoscedaticity.

3. ε1, · · · , εn are independent.

4. εi ∼ N(0, σ2).

Of course, we can not observe or compute the errors in practice, so their properties
cannot be evaluated. Rather, we look at the residuals r1, · · · , rn in the fitted model

ri = yi − ŷi

If the residuals estimate the errors well, any pattern found in the residuals suggest that a
similar relationship exists in the random error.

5.2 Relationship between residuals and random errors

We can write

r = y − xβ̂ = y − x(x′x)−1x′y

= (I −H)y = (I −H)(xβ + ε)

= (I −H)ε

The residuals will approximately equal the errors if H is small relative to I. Since H is
a projection matrix, H = HH, and the ith diagonal element can be written as

hii = (HH)ii =
∑
j

hijhji

H is also symmetric, hij = hji

hii = h2
ii +

∑
j 6=i

h2
ij

hii(1− hii) =
∑
j 6=i

h2
ij

The right hand side is sum of squares, hence non-negative, and we see that

0 < hii < 1

If the diagonal elements hii are small, the off diagonal elements are also small.
Note

tr(H) =
∑

hii = p+ 1

Therefore the average of diagonal elements is p+1
n . If we try to fit nearly as many parameters

as there are observations, the hii’s can not all be small relative to 1, and the residuals are
poor estimator of the errors.
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5.2.1 Statistical Properties of r (r = (I −H)ε)

• E[ε] = 0

• V (r) = V ((I −H)ε) = (I −H)V (ε)(I −H)′ = (I −H)σ2

• V (r) 6= V (ε), but if H is small, they are “close”, if H is not small, there could be
substantial correlations among the residuals, and patterns will be apparent even if
the error assumption hold.

Since r is a linear combination of ε, and ε follow MVN(0, σ2I). Therefore

r ∼MVN(0, ε2(I −H))

then ri ∼ N(0, σ2(1− hii))

In summary, if the assumptions about ε hold and H is small relative to I, then

• r = (I −H)ε ≈ ε

• E[r] = 0, V (r) = σ2(I −H)≈̇σ2I

r∼̇MVN(0, σ2I)

The residual should look approximately like a sample from un-correlated, mean zero,
constant variance normal distribution.

Standardized Residuals:

di =
ri√

σ̂2(1− hii)
, i = 1, · · · , n

d1, · · · , dn are approximately i.i.d. N(0, 1).

5.3 Residual plots for checking E(εi) = 0

Potentially, the most important assumption for linear regression models is E[εi] = 0. The
likely causes for violation of this assumption are:

• Effect of explanatory variables on response variable is not in fact linear

• Omission of some important explanatory variables

We shall consider three types of plot for checking this assumption:

• Residual versus xj , j = 1, · · · , P

• Partial residuals versus xj , j = 1, · · · , p

• Added-variable plots
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5.3.1 Residual versus xj

Suppose we fit a multiple regression model and

ri = yi − (β̂0 + β̂1xi1 + · · · β̂pxip)

the residuals have the linear effect of x’s removed from y. If xj does have a linear effect
on y (in other words the model assumption E[εi] = 0 is not violated), when we plot raw
residuals r1, · · · , rn against the n values x1j , · · · , xnj , we expoct to see a random scatter.

On the other hand, if we see any obvious non-random pattern, it suggests the non-
linearity and we could adapt the way xj is modelled.

5.3.2 Partial residuals versus xj

Plots of the raw residuals are some times difficult to interpret because we have to decide
whether the scatter looks random or not. For

For each xj , the partial residuals r
(j)
i is defined as

r
(j)
i = ri + β̂jxij

i = 1, · · · , n. The estimated linear effect of xj is added back into the residuals.
For each xj , when we plot, we expect to see a linear trend if the model with a linear term

in xj is adequate. Hence the typical pattern of partial residual plots when the assumption
is not violated is pretty linear.

the partial residuals for xj attempt to correct y for all other explanatory variables , so

that the plot of r
(j)
i against xij(i = 1, · · · , n) shows the marginal effect of xj

In R, a function crP lots() in the car package has been made available to you to produce
partial residuals plots.

5.3.3 Added-variable plots

When deciding whether a new explanatory variable should be included, an added variable
plot turns out to be a more powerful graph. To provide the added-variable plot for a new
explanatory variable.

5.4 Residual plots for checking constant variance V (εi) = σ2

Recall Residual plots for checking Model assumptions

1. If E[ε] = 0 is ok. This is called first order assumption.

• Residual v.s. xj
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• Parial Residual v.s. xj .

ri = yi − (β̂0 + β̂1x1 + β̂2x2 + · · ·+ β̂pxp)

r
(j)
i = ri + β̂jxij

2. V (εi) = σ2

• Residual v.s. ŷi If there is a fan shape, it means there is a violation of the
assumption.

Suppose we have n = 5, r1, r2, r3, r4, r5. Ordered Residual r(1) < r(2) < r(3) <
r(4) < r(5). Then those r(i) separates the normal distribution as 6 equal areas.
Consider the following

ai =
i

n+ 1
, i = 1, 2, · · · , 5, P r(Z < zi) = ai = Φ(zi)

where zi = Φ−1(ai). For a Q-Q plot, it plot the ordered residual and the quantile.

5.5 Residual plots for detecting correlation in ci’s

Consequence of correlation in εi?
E[β̂] = β

V ar(β̂) = V ar((X ′X)−1X ′Y ) = (X ′X)−1X ′V (Y )X(X ′X)−1

= (X ′X)−1X ′V (ε)X(X ′X)−1

V ar(ε) may be under estimated if we simply assume independence. This will be possibly
to be really dangerous for hypothesis testing result.

The Durbin-Watson test is a formal statistical test for the correlation structure men-
tioned above. It tests H0 : ρ = 0 versus Ha : ρ 6= 0. The Durbin-Watson test statistic
is

d =

∑n
i=2(ri − ri−1)2∑n

i=1 ri

D-W test for autocorrelation: H0 : ρ = 0 v.s. Ha : ρ 6= 0. We can do a one-sided test
for the hypothesis test (ρ > 0). The test statistic

d =

∑
(ri − ri−1)2∑

r2
i

∼ Distribution

If the p-value < α← significant level, then we reject H0. We conclude that there is strong
evidence that the random errors are negatively/positively correlated.

dwtest(fit, alternative="two.sided"/"greater"/"less")

If p-value > α, we can not reject H0. We conclude that there is not enough evidence
that there is autocorrelation among random errors.
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6 Model Evaluation: Data Transformations

6.1 The Box-Cox Transformation

For each λi transform yi to

Zi =

{
yλi (λ 6= 0)

log(yi) (λ = 0)

Fit the regression
Zi = β0 + β1xi1 + · · ·+ βpxip + εi

and calculate
MSEadj

Remarks on data transformation

1. Once the transformation is selected, all subsequent estimation and tests are performed
in terms of transformed values.

2. Transformation complicates the interpretation. Some transformations are easier to
explain than others in some context.

3. The graphic diagnostics do not provide a clear cut decision rule. A natural criterion
for assessing the necessity for transformation is whether important substantive results
differ qualitatively before and after.

4. In multiple regression, the best solution may require transforming x’s

5. For this course we focus on Box-Cox transformation of Y. If log transformation is
chosen, then we may consider same log transformation on all explanatory variables
(log-log model) if the improvement is substantial.

6.2 Logarithmic Transformation

6.2.1 Logarithmic Transformation of y only

In general, suppose we fit the model

log y = β0 + β1x1 + · · ·+ βpxp + ε

On the original scale, this model becomes

y = eβ0+β1x1+···+βpxp+ε = eβ0eβ1x1 · · · eεpxpeε

where the explanatory variables have multiplicative effects on response variable, and each
appears as an exponential relationship. The multiplicative error eε = ε∗ has a lognormal
distribution.
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Interpretation of βj : assume xj = a.

E[y|xj = a] = eβ0eβ1x1 · · · eβjaeβj+1xj+1 · · · eβpxpeε

Now if xj = a+ 1

E[y|xj = a+ 1] = eβ0eβ1x1 · · · eβj(a+1)eβj+1xj+1 · · · eβpxpeε

E[y|xj = a+ 1]

E[y|xj = a]
− 1 = eβj − 1 =⇒ E[y|xj = a+ 1]− E[y|xj = a]

E[y|xj = a]
= eβj − 1

100(eβ̂j −1) is interpreted as percentage of change in the average value of response variable
per unit increase in explanatory variable xj , while holding all the other explanatory variable
fixed.

6.2.2 Logrithmic transformation of all variables

Suppose in general, we fit model

log(y) = β0 + β1 log(x1) + · · ·+ βp log(xp) + ε

On the original scale of y

y = eβ0eβ1 log(x1) · · · eβp log(xp)eε = eβ0xβ11 · · ·x
βp
p e

ε

Essentially, explanatory variables now have multiplicative effects rather than additive ef-
fects on y, and each appears as a power relationship.

Interpretation of βj :

100(eβ̂j log 1.01 − 1)

percentage change in average value of response variable per 1% change (increase) in xj .

6.2.3 Logarithmic transformation of y and some x’s

Consider the model with two explanatory variables

log y = β0 + β1 log x1 + β2x2 + ε

where x1 is transformed, but x2 is not. On the original scale of y

y = eβ0xβ11 e
β2x2eε

thus x1 has a power relationship, while x2 has an exponential effect. In general, we can
obtain a mixture of power and exponential multiplication effects.
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6.2.4 95% CI for transformed estimate

Consider log model, 95% CI for yp for a given vector of values ap for explanatory variables.

log(ŷp) = a′p
ˆ̂
β

ŷp = ea
′
p

ˆ̂
β

There are two ways:

1. find 95% CI for a′pβ̂ = y∗p then 95% CI for yp = ea
′
pβ̂ is

[eL, eU ]

2. find SE(ea
′
pβ̂) based on delta method, then 95% CI for yp = ea

′
pβ̂ is

ea
′
pβ̂ ± tn−p−1,0.05/2SE(ea

′
pβ̂)

6.3 Transformation for Stabilizing Variance

Consider the general model

yi = β0 + β1xi1 + · · ·+ βpxip + εi

yi = µi + εi

where µi is the mean of response. Furthermore, suppose that yi has non-constant variance

V (yi) = µαi σ
2

where σ2 is a constant of proportionality between the variance of yi and the mean of yi. If
α > 0, then variance increases with the mean. If α < 0, then variance decreases with the
mean.

Now we want to find a transformation g(yi) of yi such that g(yi) has a construct
variance. For this, we approximate g(yi) by a first-order Taylor series.

g(yi) ≈ g(µi) + (yi − µi)g′(µi)

Then
V (g(yi)) ≈ V (g(µi) + (yi − µi)g′(µi)) = V (yi)g

′(µi)
2 = g′(µi)

2µαi σ
2

To stabilize the variance, we may choose transformation g(·) such that

g′(µi)
2 =

1

µαi
=⇒ g′(µi) =

1

µ
α/2
i
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Then choosing g(yi) =

y
1−α/2
i

1−α/2 α 6= 2

log(yi) α = 2
does the trick and lead to V (g(yi)) = σ2. This

analysis does not tell us which function g(·) to choose as we do not know α and the true
form of V (yi). It does, however explain why Box-Cox often choose transformation

yλi

with λ < 0 or log yi.

6.4 Some Remedies for non-linearity- Polynomial Regression

Fit: y = β0 + β1x+ ε.
Plot: rv.s.x =⇒ non-linearity
Include higher order terms:

y = β0 + β1x+ β2x
2 + ε

y = β0 + β1x+ β2x
2 + β3x

3 + ε

Rule 1 If x2 is in, then x should be in too. In general, if a higher term is in, all lower
order terms should also be in.

Rule 2 We include a higher order term only f the new model is much “better”.

7 Model Evaluation - Outliers and Influential Case

7.1 Outlier

An outlier is a particular case with unusual (extreme) value in y or/ and in x’s.
Consider the following cases:

1. Case A is outlying in covariate x, but not in y. The response is right in the model.

2. Case B is not unusual with respect to x, but it is an outlier for y.

3. Cae C represents an outlier in the x as well as in y.

How to detect outliers?

• Simple diagnostic tool-graphs of standardized residuals

di =
ri√

σ̂2(1− hii
where hii is the (i,i) entry of H = X(X ′X)−1X ′, and approximately

di ∼ N(0, 1)

Large values of di (e.g. |di| > 2.5) =⇒ outlier in y.

31



• The real issue is not whether a case is an outlier or not; it is whether a case has a
major influence on a given statistical procedure, in other words, keeping or removing
the case will result in dramatically different results of the regression model =⇒ on
fitted line ŷi and on estimate β̂. How to detect influential cases?

7.2 Hat Matrix and Leverage

Recall:
H = X(X ′X)−1X = (hij)n×n

ŷ = HY

and the ith fitted value ŷi

ŷi =
n∑
j=1

hijyj = hiiyi +
∑
j 6=i

hijyj

The weight hii indicates influence of yi to ŷi.

• hii is large =⇒ hiiyi dominates ŷi

• 0 ≤ hii ≤ 1, if hii → 1, then ŷi → yi

This implies that when hii is large, the fitted line will be forced to pass very close to
the ith observation (yi, xi1, · · · , xip). We say that the case i exerts high leverage on the
fitted line.

Definition: hii is called the leverage value of case i. large hii → high leverage →
influential on fitted line.

• The leverage hii is a function of x’s but not y.

• The leverage hii is small for cases with (xi1, · · ·xip) near the centroid (x̄1, · · · , x̄p)
that is determined by all cases. The leverage hii will be large if (xi1, · · · , xip) is for
away from the centroid. (hii is used to assess whether a case is unusual with regards
to its covariates -the x dimension). e.g. Simple linear regression

(X ′X)−1 =

(
n nx̄
nx̄

∑
x2
i

)−1

=
1

nSxx

(∑
x2
i −nx̄

−nx̄ n

)
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hii = (1, xi)
1

Sxx

(
1
n

∑
x2
i −x̄

−x̄ 1

)(
1
xi

)
=

1

Sxx
(
1

n

∑
x2
i − x̄xi, xi − x̄)

(
1
xi

)
=

1

Sxx
(
1

n
Sxx + (xi − x̄)2)

=
1

n
+

(xi − x̄)2

Sxx

The leverage is the smallest when xi = x̄, and it is large if xi is far from x̄.

Rule: The average leverage in a model with (p+ 1) regression parameters is h̄ = p+1
n .

If a case for which hii > 2h̄ = 2(p+1)
n then it is considered a high-leverage case.

7.3 Cook’s Distance

It is a measure of influential on estimate β̂. Consider model

y = Xβ + ε

and
β̂ = (X ′X)−1X ′Y

Suppose delete the ith case and fit model.

Y(−i) = X(−i)β + ε(−i)

where

Y−i =



y1
...

yi−1

yi+1
...
yn


(n−1)×1

, X−i =


1 xi1 · · · xip
1 xi−1,1 · · · xi−1,p

1 xi+1,1 · · · xi+1,p
...

...
. . .

...
1 xn1 · · · xnp


(n−1)×(1+p)

and β̂(−i) = (X ′(−i)X(−i))
−1X ′(−i)Y(−i)

If ith case is influence, we expect big change in the estimate of β. The change

β̂ − β̂(−i)

is then a good measure of influence of the ith case.
Note that
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• β̂ − β̂(−i) is a vector, any large value in any component implies that the ith case is
influential

(β̂ − β̂(−i))
′(β̂ − β̂(−i))

• The magnitude of β̂ − β̂(−i) should be adjusted by the variance of β̂

V (β̂) = σ̂2(X ′X)−1

Cook’s D Statistic

Di =
(β̂ − β̂(−i))

′(σ̂2(X ′X)−1)−1(β̂ − β̂(−i))

(p+ 1)
=

(β̂ − β̂(−i))
′(X ′X)(β̂ − β̂(−i))

σ̂2(p+ 1)

An identity

β̂ − β̂(−i) =
ri

1− hii
(X ′X)−1Xi

where x′i = (1, xi1, · · · , xip) is the ith row of X. Substituting this into the expression

Di =
r2
iX
′
i(X

′X)−1Xi

(1− hii)2(p+ 1)σ̂2
=
d2
iX
′
i(X

′X)−1Xi

(1− hii)2(p+ 1)
=

d2
ihii

(1− hii)(p+ 1)

Di is large if both di and hii are large. This implies it is an overall measure of influence.
If Di > 1, we will be concerned.

• Di measures the influence of the ith case on all fitted values and on the estimated β.

• If hii large and di small, then Di is small. vice versa. Di is an overall measure of
influence.

• How large is large enough? The cut off: if Di > 1 (sometimes Di > 0.5). We will be
concerned.

Outliers and influential cases: remove or keep?

• Correct for obvious error due to data processing

• A careful decision on whether keep or remove them before/after analysis. The target
population may change due to inclusion/exclusion of certain cases.

• Most investigator would hesitate to report rejecting H0 if the removal of a case results
in the H0 not being rejected.

• Robust method - weighted least squares.

In R: Suppose fit a model
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• To get Cook’s D (cook.distance(fit)

• To get leverage hii (fitinf < −influence(fit), fitinf$hat is just hii (contains a
vector of diagonal of the “hat” matrix H))

• To get studendized residual di fitsummary < −summary(fit), s < −fitsummary$sig,
studr < −residuals(fit)/(sqrt(1− fitinf$hat) ∗ s)

8 Model Building and Selection

8.1 More Hypothesis Testing

8.1.1 Testing some but not all β’s

Consider the general model

y = β0 + β1x1 + · · ·+ βpxp + ε

Partition

X =


1 x11 · · · x1p
...

...
. . .

...
1 xn1 · · · xnp

 =
(
XA XB

)

β =

β0
...
β1

 =

(
βA
βB

)
Example: y = β0 +β1x1 +β2x2 +β3x3 +β4x4 + ε with p+ 1 = 5 parameters partitioned as

βA = (β0, β1, β2)′, βB = (β3, β4)′

and

XA =

1 x11 x12
...

. . .
...

1 xn1 xn2

 , XB =

x13 x14
...

...
xn3 xn4


Suppose we want to test

H0 : βB = 0 v.s. Ha : βB 6= 0

for example
H0 : β3 = β4 = 0 v.s. Ha : a least one of them is not 0

we are not restricted to the last βB elements, these ideas apply to any βB elements
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8.2 Extra Sum of Square Principle

A test follows from the change in the sum of square of regression between fitting model
(1): just βA (reduced model) and model (2): both βA and βB.

8.2.1 ANOVA Table for Testing Some β’s

Source df SSR

regression fitting A pA SSR(β̂A)

residual fitting βB extra to βA pB SSR(β̂)− SSR(β̂A)

residuals n− p− 1 SSE(β̂) = r′r

total n− 1 SST = y′y − nȳ

ANOVA Version 1

Source df sum of square

regression p SSR (ŷ − ȳ)′(ŷ − ȳ)
residual n− p− 1 SSE r′r

total n− 1 SST (y − ȳ)′(y − ȳ) = y′Y − nȳ2

β̂ = (x′x)−1x′y, β̂0 = ȳ

ANOVA Version 2

Source df sum of square

regression p+1 SSR ŷ′ŷ
residual n− p− 1 SSE r′r

total n SST y′y

The idea is then if H0 : βB = 0 is not true, the extra sum of squares of regression
contributed by including βB in the model should be large (relative to MSE)

Formally if all model assumption hold

F =
(SSR(β̂)− SSR(β̂A))/pB

MSE
∼H0 F (pb, n− p− 1)

If F > Fα(pB, n − p − 1), then we reject H0 with significance level α, O.W., H0 is not
rejected.

Note that
SST − SSR(β̂) = SSE

SST − SSR(β̂A) = SSE0

where SSE0 is sum of squares of residuals leaving out XB (fitting the model subject to
H0) Then the difference

SSE0 − SSE = SSR(β̂)− SSR(β̂A)

Thus if the extra sum of squares of regression is small:
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• The two models have similar residual sum of squares =⇒ the two models fit about
the source

• we choose simpler model =⇒ we do not reject H0.

Mathematically,

F =
(SSR(β̂)− SSR(β̂A))/pB

MSE
=

(SSE0 − SSE)/pB
MSE

8.2.2 The general linear hypothesis

To test the very general hypothesis concerning the regression coefficients β

H0 : Tβ = b

where T is a c× (p+ 1) matrix of constance, and b is a c× 1 vector of constance.
For example,

y = β0 + β1x1 + β2x2 + β3x3 + ε

the null hypothesis
H0 : β0 = 0 and β1 = β2(

1 0 0 0
0 1 −1 0

)
β0

β1

β2

β3

 =

(
0
0

)

thus H0 : Tβ = b.
To test H0 : Tβ = b in general

1. Fit regression with no constrains

2. Compute SSE

3. Fit regression model subject to constrains

4. Compute the new SSE0

5. Compute F-ratio

F =
(SSE0 − SSE)/c

SSE/(n− p− 1)

6. If F > Fα(c, n− p− 1), then reject the null hypothesis; otherwise, not reject.

Consider H0 : β2 = β3 = 0

(
0 0 1 0
0 0 0 1

)
β0

β1

β2

β3

 =

(
0
0

)
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8.3 Categorical Predictors and InteractionTerms

8.3.1 Binary predictor

Recall low both weight infant example:

y : head circa

x1 : best age

x2 : toxaemia, 1 = “yes”, 0 = “No”

Consider model
y = β0 + β1x1 + β2x2 + ε

ŷ = 1.496 + 0.874x1 − 1.412x2 + ε

• testing β2 = 0

It is often not reasonable to assume the effect of other explanatory variables are some
across different groups

Interaction terms:
y = β0 + β1x1 + β2x2 + β3x1x2 + ε

=⇒

{
y = β0 + β1x1 + ε if x2 = 0

y = β0 + β2 + (β1 + β3)x1 + ε if x2 = 1

by adding interaction term, it allows X1 to have a different effect on y depending on the
value of x2 .

8.3.2 Hypothesis Testing of Interaction Term

H0 : β3 = 0 v.s. Ha : β3 6= 0

tells whether the effect is different or not between groups.

8.3.3 categorical predictor with more than 2 levels

Example
y : prestige score of occupations

exp. var : education (in years), income

type of occupation : blue collar, white collar, professional

Dummy variable : D1 =

{
1 professional

0 O. W.
, D2 =

{
1 white collar

0 O. W.
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type of occupation D1 D2

professional 1 0
white collar 0 1
blue collar 0 0

The categorical exp var. with k levels can be represented by k − 1 dummies.
The regression model

y = β0 + β1x1 + β2x2 + β3D1 + β4D2 + ε

prof y = (β0 + β3) + β1x1 + β2x2 + ε

w.c. y = (β0 + β4) + β1x1 + β2x2 + ε

b.c. y = β0 + β1x1 + β2x2 + ε

where β3 represents the constant vertical distance between the paralleled regression planes
for prof and b.c. occupation. β4 represents the constant vertical distance between the
paralleled regression planes for w.c. and b.c. occupation.

yi = β0 + β1xi1 + β2xi2 + β3Di1 + β4Di2 + εi

Testing Individua Hypothesis (t-test)

H0 : β3 = 0 v.s. Ha : β3 6= 0

or
H0 : β4 = 0 v.s. H4 : β4 6= 0

• Testing difference between: “experimental” (prof and bc) group and “reference” (bc)
group

• Testing overall effect of a categorical predictor

H0 : β3 = β4 = 0 v.s. Ha : at least one not 0

Model Terms df SSE

1 (F) x1, x2, D1, D2 93 4681.28
2 (R) x1, x2 95 5272.44

F =
(SSE0 − SSE)/2

SSE/93
= 5.95 > F0.05(2.93) = 3.07 ∼ F (2, 93)

Therefore we reject H0 and conclude that occupation type is overall significantly
related to prestige score (the dummy variables are significant).
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8.3.4 Modeling Interaction with categorical predictors

yi = β0 + β1xi1 + β2xi2 + β3Di1 + β4Di2 + β5xi1Di1 + β6xi1Di2 + β7i2Di1 + β8xi2Di2 + εi

where β3Di1 +β4Di2 is the mean effect, β5xi1Di1 +β6xi1Di2 is education × type, β7i2Di1 +
β8xi2Di2 is income × type.

This model also can be written as

prof: y = (β0 + β1) + (β1 + β5)x1 + (β2 + β7)x2 + ε

w.c.: y = (β2 + β4) + (β1 + β6)x1 + (β2 + β8)x2 + ε

b.c.: y = β0 + β1x1 + β2x2 + ε

where β5, β6 represent effect of interaction between education and occupation type; β7 and
β8 represent effect of interaction between income and occupation type.

8.3.5 To test the significance of the interaction

For example, H0 : β7 = β8 = 0 v.s. Ha : at least one is not 0

Model Terms df SSE

1 x1, x2, D1, D2, x1D1, x1D2, x2D1, x2D2 89 3552.624
2 x1, x2, D1, D2, x1D1, x2D2 91 4504.982

We use F-test, F = (SSE0−SSE)/2
SSE/89 = 11.929 > F0.05(2.89) = 3.099. Hence, we reject H0

and conclude that there is significant evidence that the relationship between income and
prestige score is different across different occupation type.

8.4 Variable Selection

Often many explanatory variables are available, investigators need to choose which to use.
Introduce only important variables

• Model is simpler and easier to understand

• Cost of prediction is reduced (fewer variables to measure)

• Accuracy of predicting new y’s may improve (unnecessary explanatory variables in-
flates variance)

Algorithms

• Forward selection

• Backward elimination

• Stepwise regression

• Criterion based all subsets regression
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8.4.1 Examples and discussion of which method to use follows

We illustrate the variable selection methods on some data on the 50 states in the USA from
the 1970s. We will take the life expectancy as the response and the remaining variables as
predictors.

State

Population

Income

Illiteracy

Life_Exp

Murder

Hs_Grad

Frost

Area

Use all variables in model:

g<-lm(Life_Exp~., data=statedata)

8.4.2 Backward elimination

1. Start with all p potential explanatory variables

2. Calculate the p-value based on either t-test or F-test on null hypothesis all betas =
0

3. Remove the explanatory variable with the largest p-value or the smallest —t— value,
in this case area is dropped first, if the p-value is greater than alpha. Stop if not.

4. Repeat the procedure until all p-values for remaining variables are less than the
significance level alpha.

Note: t-test and F-test give different results
Note: t-test can’t be used for categorical predictors, must use the F-test if you have

categorical predictors.

g<-update(g, .~. -Area)

Note that the final model depends on the significance level alpha (alpha to drop), the
larger the alpha is, the bigger the final model is.

Once a variable is removed, it is never reconsidered (could be a problem)
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8.4.3 Forward Selection

1. Fit p simple linear models, each with only a single explanatory variable. Use p t-
test statistics and p-values on our null hypothesis, and choose the most significant
predictor which has the smallest p-value. If the smallest p-value ¡ alpha, stop the
algorithm.

2. Start with the single predictor model and repeat to add additional variables.

null<-lm(Life.Exp~1, data=statedata)

fullmodel<-lm(Life.Exp~., data=statedata

newmodel<- addterm(null, scope=fullmodel, test="F")

newmodel<-lm(Life.Exp~murder, data=statedata)

addterm(newmodel, scope=fullmodel, test="F")

Once a variable is added, it stays in the model (could be a problem, as it may become
insignificant).

8.4.4 Stepwise Regression

It is a combination of backward and forward method. Depends on two alphas: 1 to enter
and 2 to drop. At each stage a variable may be added or removed and there are several
variations

Example

1. Start as in forward selection using alpha 1

2. At each stage once a predictor entered the model, check all other predictors previously
in the model for their significance. Drop the least significant predictor if its p-value
is greater than alpha 2.

3. Continue (do forward, then backward, etc) until no predictors can be added or re-
moved.

Remarks
“one at a time” nature makes it possible to miss optimal model. Procedures not directly

linked to final objective. Variable selection amplifies statistical significance of remaining
variables, but the other variables may still be correlated with the response. All automatic
algorithms should be used with caution. When there is multicollinearity among explanatory
variables, the three methods may lead to quite different results.
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8.5 The Principle of Marginality

yi = β0 + β0xi1 + β2xi2 + β3Di1 + β4Di2 + εi + β5xi1Di1 + β6xi1Di2 + β7xi2Di1 + β8xi2Di2

• If a model include higher order term, then the lower order term should also be
included

• exam higher oder term (interactions) first, then proceed to test,estimate and interpret
main effects.

8.6 All Subsets Regressions

Suppose we start with a regression model with p explanatory variables. Thus there are 2p

possible regressions. In principle, we can fit each regression and choose the “best” model
based on some “fit” criterion.

Numerical criteria for model comparison

• R-square. The bigger the better.

• Adjusted R-square

R2
adj = 1− n− 1

n− p− 1
(1−R2)

where p is the number of explanatory variables in the model. A large model may
have a smaller R2

adj .

• Mallows’ Ck

Ck =
SSEk

MSEfull
− (n− 2(k + 1))

If the subset model (or candidate model) is adequate, then we expect

E[
SSEk

n− k − 1
] ≈ σ2

E[SSEk] ≈ (n− k − 1)σ2

We also know that
E[SSE/n− p− 1] = σ2

Therefore,

E[Ck] = E[
SSEk
MSE

− (n− 2(k + 1)] ≈ k + 1

A candidate model is good if Ck ≤ k + 1. Look for the simplest model for which Ck
is close to k + 1.
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• AIC

AIC = −2(max log likelihood− (p+ 1)) = n log(
SSE

n
) + 2(p+ 1))

Under linear regression model

yi = β0 + β1xi1 + · · ·+ βpxip + εi

then we know
yi ∼ N(β0 + β1xi1 + · · ·+ βpxip, σ

2)

and yi’s are independent.

The likelihood function

L(β, σ2) =

n∏
i=1

f(yi) = f(y1, · · · , yn) =

n∏
i=1

1√
2πσ2

exp{−(yi − (β0 + β1xi1 + · · ·+ βpxip))
2

2σ2
}

l(β, σ2) = logL(β, σ2) =
n

2
log(2πσ2)−

n∑
i=1

(yi − (β0 + β1xi1 + · · ·+ βpxip))
2

2σ2
]

The LSE β̂ are same as MLE β̂.

l(β̂, σ2) = −n
2

log 2πσ2 − 1

2σ2
SSE

∂l(β̂, σ2)

∂σ2
=
−n
2

2π

2πσ2
+

1

2σ4
SSE = 0

σ̂2 =
SSE

n

l(β̂, σ̂2) = −n
2

log 2π − n

2
log

SSE

n
− n

2
= constant− n

2
log

SSE

n

– For linear regression model, the maximum log-likelihood is

l(β̂, σ̂2) = constant− n

2
log

SSE

n

– AIC is a penalized maximum log-likelihood

– Small AIC means better model.

Note that for a model of a given size (here size refers to the number of explanatory
variables included in the model), all the criterion above will select the model with
the smallest sum of squares of errors (SSE).
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9 Multicollinearity in Regression Models

9.1 Multicollinearity

An example: pizza sales data
y : sales ($1000’s)}

x1 : number of advertisements

x2 : cost of advertisements ($100’s)

Suppose fit a model
yi = β0 + β1xi1 + β2xi2 + εi

and get following results

Est. S.E. t-value p-value

Intercept 24.82 5.46 4.39 0.0007
x1 0.66 0.54 1.23 0.2404
x2 1.23 0.70 1.77 0.1000

R2 = 0.7789, F-statistic: 22.899 on 2 and BDF. p-value is 0001
What do we find?

• R2 = 0.7789, x1 and x2 together explain a large part (78%) of the variability in sales

• F-statistic and p-value indicate that one of them is important.

• we cannot reject H0 : β1 = 0 when x2 is in the model. Similarly, we cannot reject
H0 : β2 = 0 when x1 is in the model. In other words, if one of x1 and x2 is in the
model, then the extra contribution of the other variable toward the regression is not
important. The individual t-test indicates that you do not need one variable if you
already included the other.

This is because variables x1 and x2 are highly correlated. The two variables appear to
express the same information. So no point to include both.

Definition: Collinearity: linear relationship between x1 and x2. Multicollinearity: there
is a linear relationship involving more than two x variables. for example x1 ≈ x2 + x3.

9.2 Consequence of Multicollinearity

If there is an exact linear dependence

X = [1, x− 1, · · · , xp]

where xk = (x1k, · · · , xnk) is the k + 1 th column of X.
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If one of xk is a linear combination of the other, say

x1 = c01 + c2x2 + · · ·+ cpxp

then
rank(X) < p+ 1 =⇒ rank(x′x) < p+ 1

Hence |x′x| = 0, and (x′x)−1 does not exist, not be able to solve β̂. Under multicollinearity

|x′x| ≈ 0

It is computationally unstable for

β̂ = (x′x)−1x′y

• insignificance of important predictors

• opposite sign of β̂

• large s.e. and wide c.i.

9.3 Detection of Multicollinearity among (x1, · · · , xn)

First look pairwise sample correlations

rlm =

∑n
r=1(xil − l̄)(xim − x̄m)√∑n

i=1(xil − x̄l)2
∑n

i=1(xim − x̄m)2

rlm measures the linear association between any two x variables, xl and xm. 1 r12 · · · r1p
...

. . .
. . .

...
rp1 · · · · · · 1


|rlm| = 1, xl and xm are strongly linearly related.
A formal check: variance inflation factor. xk is regressed (xk is used as response ) on

the remaining p− 1 x’s.

xik = β0 + β1xi1 + · · ·+ βk−1xik−1 + βk+1xik+1 + · · ·+ βpxip + εi

for k = 1, 2, · · · , p.
The resulting

R2
k =

SSRk
SST

is a measue of how strongly xk is linearly related to the rest of x’s.

R2
k = 1 =⇒ perfect linear
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R2
k = 0 =⇒ not linearly related

Variance Inflation Factors (VIF)

V IFk =
1

1−R2
k

(≥ 1)

where k = 1, · · · , p

• V IFk > 10, strong evidence of multicollinearity

• V IFk ∈ [5, 10], since evidence of multicollinearity

9.4 Ridge Regression

Ridge regression is used when the design matrix X is multi collinear and the usual least
squares estimate of β appear to be unstable.

LSE β̂min(y − xβ)′(y − xβ)

For |x′x| ≈ 0, ridge regression makes the assumption that the regression coefficients are
not likely to be very large. Suppose we place some upper bound on β

p∑
j=1

β2
j = β′β < c

Minimize subject to constrains (lagrange Multiplier Method)

min(y − xβ)′(y − xβ) + λc

p∑
j=1

β2
j

the second term is penalty depending on
∑p

i=1 β
2
j .

Ridge regression minimize

(y′ − xβ)′(y − xβ) + λ

p∑
j=1

β2
j

• in statistics, this is called “shrinkage”; you are shrinking
∑
β2
j toward 0.

• λ is a shrinkage parameter that you have to choose

• the ridge regression solution β̂k

∂

∂β
[(y′ − xβ)′(y − xβ) + λβ′β] = 0

x′xβ − x′y + λβ = 0

Therefore β̂k = (x′x+ λI)−1x′y. Ridge regression is not an unbiased estimator.
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Note that

• β̂k is biased for β (LSE β̂ is unbiased)

• choose λ such that

1. bias is small

2. |X ′X + λI| 6= 0.

3. variance not large

10 Final Instruction

Final exam is similar to the midterm.
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