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1 Axiom of Choice & Cardinality

1.1 Notation

N set of natural numbers, {1, 2, 3, . . . }

Z set of integers, {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . }

Q set of rationals, {ab : a ∈ Z, b ∈ N, gcd(a, b) = 1}

R set of reals

inclusion A ⊂ or A ⊆ B

proper inclusion A ( B

Definition. • Let X be a set P (X) = {A|A ⊂ X} is the power set of X.

• A, B sets. The union of A and B is A ∪ B = {x|x ∈ A or x ∈ B}. If I 6= ∅, {Aα}α∈I are sets,
Aα ⊆ X,∀α, ⋃

α∈I
Aα = {x|x ∈ Aα for some α ∈ I}

• Similarly for intersections

• Let A,B ∈ X, B \A = {b ∈ B|b /∈ A}. If B = X, X \A = AC is the complement of A (in X). Note:
(AC)C = A,AC = BC ⇐⇒ A = B

Theorem. De Morgan’s Laws:

1. (
⋃
α∈I)Aα)C =

⋂
α∈I A

C
α

Proof. x ∈ (
⋃
α∈I)Aα)C ⇐⇒ x /∈

⋃
α∈I)Aα ⇐⇒ ∀α ∈ I, x /∈ Aα ⇐⇒ x ∈

⋂
α∈I A

C
α

2. (
⋂
α∈I)Aα)C =

⋃
α∈I A

C
α

1.2 Products & Axiom of Choice

Definition. Let X, Y be sets. The product of X and Y is X × Y = {(x, y)|x ∈ X, y ∈ Y }. Let
X1, X2, . . . , Xn be sets. The product of {X1, X2, . . . , Xn} is

X1 ×X2 · · · ×Xn =
n∏
i=1

Xi = {(x1, x2, . . . , xn)|xi ∈ Xi,∀i = 1, 2, . . . }

An element (x1, . . . , xn) is called an n-tuple and xi is called the ith coordinate.

Theorem. If Xi = X,∀i = 1, · · · , n,
∏n
i=1Xi = Xn. If X is a set, |X| is the number of elements of X. If

{X1, · · ·Xn} is a finite collection of sets ∣∣∣∣∣
n∏
i=1

Xi

∣∣∣∣∣ =
n∏
i=1

|Xi|

If Xi = X, ∀i, |Xn| = |X|n
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How do we define the product of an arbitrary family of sets?
(x1, . . . , xn) ∈

∏n
i=1Xi, then (x1, x2, . . . , xn) determines a function

f(x1,...,xn) : {1, 2, . . . , n} →
n⋃
i=1

Xi

i.e. f(x1,...,xn)(i) = Xi

On the other hand, if we have a function

f : {1, 2, 3, . . . , n} →
n⋃
i=1

Xi

with f(i) ∈ Xi. We define (x1, . . . , xn) ∈
∏n
i=1Xi by xi ∈ Xi = f(i), ∀i = 1, . . . , n

n∏
i=1

Xi =

{
f{1, 2, . . . , n} →

n⋃
i=1

Xi|f(i) ∈ Xi

}

Definition. Given a collection {Xα}α∈I of sets, we define∏
α∈I

Xα := {f : I → Uα∈IXα|f(α) ∈ Xα}

Axiom. Zermlo’s Axiom of Choice. Given a non-empty collection {Xα}α∈I if non-empty sets,
∏
α∈I Xα =

∅.

Axiom. Axiom of Choice: Given a non-empty set X, there exists a function f : P(x)\∅ → X for every
A ⊆ X,A 6= ∅, f(A) ∈ A

1.3 Relations and Zorn’s Lemma

Definition. X, Y are sets A relation is a subset of X × Y . We write xRy if (x, y) ∈ R.

1. Reflexive if xRx,∀x ∈ X

2. Symmetric if xRy =⇒ yRx

3. Anti-symmetric xRy and yRx =⇒ x = y

4. Transitive if xRy and yRz =⇒ xRz

Example:

1. x = R, xRy ⇐⇒ x ⊆ y. It is reflexive, antisymmetric, transitive.

2. X set. We define a relation on P(X). ARB ⇐⇒ A ⊆ B

3. R∗ relation on P(x). ARB ⇐⇒ A ⊇ B

Definition. A relation R on a set X is a partial order if it is reflexive, anti-symmetric and transitive.
(X,R) is a partially order set or poset.

A partial relation R on X is a total order if ∀x, y ∈ X, either xRy or yRx. (X,R) is a totally order set
or a chain.

Definition. (X,≤) poset. Let A ∈ X. x ∈ X is an upper bound for A if a ≤ x, ∀a ∈ A. A is bounded
above if it has an upper bound. x ∈ X is the least upper bound (or supermum) for A if x is an upper bound
and y is an upper bound, then x ≤ y. x = lub(A) = sup(A). If x = lub(A) and x ∈ A =⇒ x = max(A)
is the maximum of A.
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Axiom. Least Upper bound axiom for R: Consider R with usual order ≤. A ⊆ R, A 6= ∅. If A is bounded
above, the A has a least upper bound.

Example

1. (P(X),⊆), {Aα}α∈I , Aα ⊆ X,Aα 6= ∅. X is an upper bound for {Aα}α∈I . ∅ is a lower bound,
lub({Aα}α∈I) =

⋃
α∈I Aα, and glb({Aα}α∈I) =

⋂
α∈I Aα

2. (P(X),⊇)

Definition. (X,≤) poset, x ∈ X is maximal if x ≤ y implies x = y.

• (R,≤) has no maximal element

• (P(X),≤) =⇒ X is maximal.

• (P(X),≥) =⇒ ∅ is maximal.

Proposition. Every finite, non-empty poset has a maximal element but there are poset with no maximal
element.

Lemma. Zorn’s Lemma: (X,≤) non-empty poset. If every totally order subset C of X has an up-
per bound, then (X,≤) has a maximal element. Let V be a non-zero vector space. Let L = {A ≤
V|A is linearly independent}.

Note: A basis B for P is a maximal element on (L,≤).

Theorem. Every non-zero vector space V has a basis.

Proof. Let C = {Aα|α ∈ I} be a chain in L.
Let A =

⋃
α∈I Aα. Claim: A is linearly independent. Let {x1, x2, · · · , xn} ⊆ A, {β1, β2, · · · , βn} ⊆ R.

Then β1x1 + β2x2 + · · ·+ βnxn = 0.
For each i = 1, 2, · · · , n,∃αi|xi ∈ Aαi .
Assume, Aα1 ⊆ Aα2 ⊆ · · · ⊆ Aαn (L is a chain, change name of index if needed). Therefore,

{x1, x2, · · · , xn} ⊆ Aαn and Aαn is linearly independent. Hence, {x1, x2, · · · , xn} is linearly indepen-
dent. Lastly, βi = 0, ∀i. Then A is linearly independent. A is an upper bound for C on L. By Zorn’s
lemma, L has a maximal element.

Definition. A poset (X,≤) is well-ordered, if every non-empty subset A has a least element.

Examples

• (N,≤) is well-ordered.

• Q = { nm |n ∈ Z,m ∈ N, gcd(n,m) = 1}.

We can construct a well-order on Q. φ : Q→ N by φ( nm) =


2n3m n > 0

1 n = 0

5−n7m n < 0

. φ is 1-to-1. n
m ≤

p
q ⇐⇒

φ( nm) ≤ φ(pq )
(Q,≤) is well-ordered.

Axiom. Well-ordering principle: Given any set X 6= Q, there exists a partial order ≤ such that (X,≤) is
well-ordered.

Theorem. TFAE:

1. Axiom of Choice

2. Zorn’s lemma

3. Well-ordering principle
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1.4 Equivalence Relations & Cardinality

Definition. A relation ∼ on a set X is an equivalence relation if

1. Reflexive

2. Symmetric

3. Transitive

Given x ∈ X, let [x] = {y ∈ X|x ∼ y} be the equivalence class of x.

Proposition. Let ∼ be an equivalence relation on X

1. [x] 6= ∅, ∀x ∈ X

2. For each x, y ∈ X, either [x] = [y] or [x] ∩ [y] = ∅.

3. X =
⋃
x∈X [x]

Definition. If X is a set, a partition of X is a collection P = {Aα ⊆ X|α ∈ I}.

1. Aα 6= ∅,∀α.

2. If β 6= α =⇒ Aα ∪Aβ = ∅

3. X =
⋃
α∈I Aα.

Note:
Given ∼ on X =⇒ ∼ induces a partition on X. Given a partition on X (P = {Aα|α ∈ I}) we define

an equivalence relation on X:
x ∼ y ⇐⇒ x, y ∈ Aα, for some α

Example: Define ∼ on P(X) by A ∼ B ⇐⇒ ∃ a 1-to-1 and onto function f : A → B. ∼ is an
equivalence relation.

Definition. Two sets X and Y are equivalent if there exists a 1-to-1 and onto function f : X → Y . In
this case, we write X ∼ Y . We say that X and Y have the same cardinality, |X| = |Y |.

A set X is finite if X = or X ∼ {1, 2, · · · , n} for some n ∈ N, |X| = n. Otherwise, X is infinite.

Can X be equivalent to both {1, 2, · · · , n} and {1, 2, · · · ,m}, with n 6= m? If X ∼ {1, 2, · · · , n} and
X ∼ {1, 2, · · · ,m} =⇒ {1, 2, · · · , n} ∼ {1, 2, · · · ,m}.

Proposition. The set {1, 2, · · · ,m} is not equivalent to any proper subset of itself.

Proof. Induction on m
m = 1: The only proper subset of {1} is ∅. and {1} ∼ ∅.
m = k Statement holds for {1, 2, · · · , k}. Assume ∃S ( {1, 2, · · · , k, k+1} and f : {1, 2, · · · , k+1} → S,

1-to-1 and onto.
Two cases:

1. If k + 1 ∈ S =⇒ f{1,2,··· ,k} : {1, 2, · · · , k} → S\{f(k + 1)} ( {1, 2, · · · , k}. This is impossible.

2. If k + 1 ∈ S, f(k + 1) = k + 1, then f{1,2,··· ,k}{1, 2, · · · , k} → S\{k + 1} ( {1, 2, · · · , k}. This is
impossible.

If f(k+ 1) = j and f(i) = k+ 1. Define f∗ : {1, 2, · · · , k+ 1} → S, f∗(l) =


k + 1 l = k + 1

j l = i

f(l) otherwise

. This

is impossible
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Corollary. If X is finite, then X is not equivalent to any proper subset of itself.

Example:
f : N→ N\{1} = n→ n+ 1 is 1-to-1 and onto. Hence N ∼ N\{1}.

Definition. A set X is countable if X is finite or X ∼ N. Otherwise, uncountable.X is countable infinite
if X ∼ N, |X| = |N| = ℵ0

Proposition. Every infinite set contains a countable infinite subsets.

Proof. By Axiom of Choice, ∃f : P(X)\∅ → X, f(A) ∈ A. x1 = f(X) and x2 = f(X\{x1}) · · ·xn+1 =
f(X\{x1, x2, · · · , xn})

A = {x1, x2, · · · , xn+1, · · · }X is countable infinite.

Corollary. A set X is infinite if and only if it is equivalent to a proper subset of itself.

Theorem. (Cantor-Schroeder-Berstein) (CSB) Assume that A2 ⊆ A1 ⊆ A0. If A2 ∼ A0, then A1 ∼ A0.

Corollary. Assume A1 ⊆ A and B1 ⊆ B. If A ∼ B1 and B ∼ A1, then A ∼ B. f : A→ B1 is 1-to-1 and
onto and g : B → A1 is 1-to-1 and onto. A2 = g(f(A) = g(B) ⊆ A1 ⊆ ad g ◦ f is 1-to-1 and onto on A2.
Hence A2 ∼ A→CSB A1 ∼ A and A1 ∼ B. Hence A ∼ B.

Corollary. An infinite set X is countable infinite if and only if there exists a 1-to-1 function f : X → N.

Proposition. Assume there exists g : X → Y onto. Then there exists a 1-to-1 function f : Y → X.

Proof. By axiom of choice, ∃h : P(x)\∅ → X,h(A) ∈ A,A 6= ∅, A ⊆ X. ∀y ∈ Y , define f(y) =
h(g−1({y})) ∈ X. f : Y → X. Check f is 1-to-1.

Corollary. X,Y sets. TFAE

1. ∃f : X → Y , 1-to-1

2. ∃g : Y → X, is onto

3. |Y | � |X|

Theorem. [0, 1] is uncountable.

Proof. Assume [0, 1] is countable
[0, 1] = {a1, a2, · · · , an, · · · }

each real number has a unique decimal expansion if we don’t allow .999̄ (∞ times 9)

a1 = 0.a11a12a13 · · ·

a2 = 0.a21a22a23 · · ·

a3 = 0.a31a32a33 · · ·
...

Let b ∈ [0, 1), b = 0.b1b2 · · · where bn :=

{
1 an1 6= 1

2 ann = 1
Well, b 6= an,∀n. It is impossible. Then [0, 1] is

uncountable.

Corollary. R is uncountable. R ∼ (0, 1). Note |R| = c.

Theorem. Comparability theorem for cardinals: Given X,Y sets, either |X| � |Y | or |Y | � |X|.
6



1.5 Cardinal Arithmetic

1.5.1 Sums of Cardinals

Definition. Let X,Y be disjoint sets, then

|X|+ |Y | = |X ∪ Y |

Examples

1. X = {1, 3, 5, · · · }, Y = {2, 4, 6, · · · }. |X|+ |Y | = ℵ0 + ℵ0 = ℵ0.

Theorem. If X is infinite, then
|X|+ |Y | = max{|X|, |Y |}

In particular,
|X|+ |X| = |X|

X1, · · · , Xn countable sets. Then |
⋃n
i=1Xi| = ℵ0.

Theorem. {Xi}∞i=1 countable collection of countable sets, then X =
⋃∞
i=1Xi is countable.

Note: we can assume Xi∩Xj = ∅ if i 6= j. Otherwise, let E1 = X1, E2 = X2\X1, · · · , En = Xn\∪n−1
i=1 Xi.

Assume {Xi}∞i=1 is pairwise disjoint if Xi 6= ∅, let Xi = {xi1, xi2, · · · } countable. Let f : X = ∪∞i=1Xi → N
1-to-1 such that f(xij) = 2i3j .

1.5.2 Product of cardinals

Let X,Y be two sets
|X| · |Y | = |X × Y |

Theorem. If X is infinite and Y 6= ∅, then

|X| · |Y | = max{|X|, |Y |}

In particular,
|X| · |X| = |X|

1.5.3 Exponentiation of Cardinals

Recall: Given a collection {Yx}x∈X of non-empty sets, we defined∏
x∈X

Yx = {f : X →
⋃
x∈X

Yx|f(x) ∈ Yx}

If ∀x ∈ X, Yx = Y for some set Y, Y X =
∏
x∈X Yx =

∏
x∈X Y = {f : X → Y }.

Definition. Let X, Y non empty sets, we define

|Y ||X| = |Y X |

Theorem. X,Y, Z non-empty sets.

1. |Y ||X||Y ||Z| = |Y ||X|+|Z|

2. (|Y ||X|)|Z| = |Y ||X|+|Z|

7



Example (2ℵ0 = c) 2ℵ0 = |{0, 1}N| = |{{an}n∈N|an = 0 or an = 1}.
2ℵ0 � c: f{0, 1}N → [0, 1] is 1-to-1 such that {an} →

∑∞
n=1

an
3n .

2ℵ0 � c: g : [0, 1]→ {0, 1}N is 1-to-1. α =
∑∞

n=1
an
2n → {an}.

Hence done.
Given a set X, we want to find |P(X)| = 2|X|.

Let A ⊆ X, χA : X → {0, 1}, such that χA(x) =

{
1 x ∈ A
0 x /∈ A

. This is called characteristics function of

A. XA ∈ {0, 1}X . If f ∈ {0, 1}X , A = {x ∈ X|f(x) = 1}. Hence χA = f . Let Γ : P (X) → {0, 1}N. Hence
Γ is a bijection. Therefore |P(X)| = 2|X|.

Theorem. |P(X)| � |X| for any X 6= ∅ (Russel’s Paradox)
It is enough to show that there is no onto function X → P(X). Assume to the contrary: there exists

f : X → P(X) onto.
A = {x ∈ X|x /∈ f(X)}.∃x0 ∈ X|f(x0) = A. If X0 ∈ A: =⇒ x0 /∈ f(x0) = A. Impossible. If

X /∈ A : =⇒ x0 ∈ f(x0) = A. OK

2 Metric spaces

Definition. Let X 6= ∅. A metric on X is a function d : X ×X → R.

1. d(x, y) ≥ 0,∀x, y ∈ X. d(x, y) = 0 =⇒ x = y.

2. d(x, y) = d(y, x), ∀x, y ∈ X.

3. d(x, y) ≤ d(x, z) + d(z, y),∀x, y, z ∈ X.

(X, d) is a metric space.

Examples

1. X = R d(x, y) = |x− y| “usual metric on R”

2. X any non-empty set d(x, y) =

{
0 x = y

1 x 6= y
“discrete metric”

3. X = Rn. d2((x1, x2, · · · , xn), (y1, y2, · · · , yn)) =
√∑n

i=1(xi − yi)2. d2 verifies 1), 2). This is called
“Euclidean Metric”.

Definition. Let V be a vector space. A norm on V is a function ‖ · ‖ : V → R such that

1. ‖x‖ ≥ 0,∀x ∈ V . ‖x‖ = 0 ⇐⇒ x = 0

2. ‖αx‖ = |α|‖x‖,∀α ∈ R,∀x ∈ V .

3. ‖x+ y‖ ≤ ‖x‖+ ‖y‖,∀x, y ∈ V

(V, ‖ · ‖) is normed vector space.

Remark: (V, ‖ · ‖) normed vector space. ‖ · ‖ induces a metric on V. d‖·‖(x, y) = ‖x− y‖

1. d‖·‖(x, y) = ‖x− y‖ ≥ 0, ∀x, y ∈ V . ‖x− y‖ = 0 =⇒ x = y.

2. d‖·‖(x, y) = ‖x− y‖ = | − 1|‖y − x‖ = d‖·‖(y, x)

3. d‖·‖(x, y) = ‖x− y‖ ≤ ‖x− z‖+ ‖z − y‖

8



Examples

1. X = Rn, ‖(x1, · · · , xn)‖2 = (
∑

i=1 |xi|2)1/2. d‖·‖2 = d2. This is a 2-norm or Euclidean norm.

2. X = Rn, 1 < p <∞. ‖(x1, x2, · · · , xn)‖p = (
∑n

i=1 |xi|p)1/p This is called p-norm.

3. X = Rn, ‖(x1, · · · , xn)‖∞ = max{|xi|}. This is called ∞−norm.

4. ‖(x1, · · · , xn)‖1 =
∑n

i=1 |xi|. This is called 1-norm.

Remark: Let p, 1 < p <∞, and q, 1
p + 1

q = 1. Then 1 + p
q = p =⇒ p

q = p− 1 =⇒ p
p−1 = q =⇒ q

p =

q − 1 =⇒ 1
p−1 = q

p = q − 1.

Lemma. Let α, β > 0, 1 < p <∞. If 1
p + 1

q = 1, then αβ ≤ αp

p + βq

q (Young’s inequality)

u = tp−1 =⇒ t = u
1

p−1 = uq−1. αβ ≤
∫ α

0 tp−1dt+
∫ β

0 uq−1du = αp

p + βq

q .

Theorem. Hdder’s Inequality: Let (a1, · · · , an) and (b1, · · · , bn) ∈ Rn. Let 1 < p < ∞ and 1
p + 1

q = 1.
Then

n∑
i=1

|aibi| ≤ (

n∑
i=1

|ai|p)1/p(

n∑
i=1

|bi|q)1/q

Proof. Assume a 6= 0 6= b.
Note: α, β > 0,

n∑
i=1

|(αai)(βbi)| = αβ

n∑
i=1

|aibi|

(

n∑
i=1

|αai|p)1/p = α(

n∑
i=1

|ai|p)1/p

(

n∑
i=1

|βbi|q)1/q = β(

n∑
i=1

|bi|q)1/q

Then the inequality holds for a, b ∈ Rn ⇐⇒ it holds for αa, βb ∈ Rn for some αβ > 0. By scaling if
needed, we can assume

(
n∑
i=1

|ai|p)1/p = 1, (
n∑
i=1

|bi|q)1/q = 1

Lemma.

|aibi| ≤
|ai|p

p
+
|bi|q

q
, ∀i = 1, · · · , n

Hence
∑n

i=1 |aibi| ≤
∑n

i=1 |ai|p
p +

∑n
i=1 |bi|q
q = 1

p + 1
q = 1

Theorem. Minkowski’s Inequality: Let a = (a1, a2, · · · , an), b = (b1, b2, · · · , bn) ∈ Rn. Let 1 < p < ∞,
then

(

n∑
i=1

|ai + bi|p)1/p ≤ (

n∑
i=1

|ai|p)1/p + (

n∑
i=1

|bi|p)1/p

9



Proof. Assume a 6= 0 6= b. Let q/1
p + 1

q = 1.

n∑
i=1

|ai + bi|p =

n∑
i=1

|ai + bi||ai + bi|p−1

≤
n∑
i=1

|ai||ai + bi|p−1 +

n∑
i=1

|bi||ai + bi|p−1

n∑
i=1

|ai||ai + bi|p−1 ≤ (

n∑
i=1

|ai|p)1/p(

n∑
i=1

(|ai + bi|p−1)q)1/q = (

n∑
i=1

|ai|p)1/p(

n∑
i=1

|ai + bi|p)1/q

Similarly,

n∑
i=1

|bi||ai + bi|p−1 ≤ (

n∑
i=1

|bi|p)1/p(

n∑
i=1

|ai + bi|p)1/q

n∑
i=1

|ai + bi|p ≤ ((

n∑
i=1

|ai|p)1/p + (

n∑
i=1

|bi|p)1/p)(

n∑
i=1

|ai + bi|p)1/q

(

n∑
i=1

|ai + bi|p)1−1/p ≤ ‖a‖p + ‖b‖p

Examples: sequence space

1. Let l1 = {{xn}|
∑∞

i=1 |xn| < ∞} Then ‖{xn}‖1 =
∑∞

i=1 |xn|. Let {xn}, {yn} ∈ l1. Claim that
{xn + yn} ∈ l1. Let k ∈ N

k∑
n=1

|xn + yn| ≤
k∑

n=1

|xn|+
k∑

n=1

|yn| ≤
∞∑
n=1

|xn|+
∞∑
n=1

|yn| <∞

By MCT, {
∑k

i=1 |xn + yn|} convergent then
∑∞

n=1 |xn + yn| convergent. Hence {xn + yn} ∈ l1.

Moreover,
‖{xn + yn}‖ ≤ ‖{xn}‖1 + ‖{yn}‖1

This implies ‖ · ‖1 is a norm.

2. Let 1 < p <∞,

lp = {{xn}|
∞∑
i=1

|xi|p <∞}

‖{xn}|p = (
∑∞

i=1 |xi|p)1/p Prove that {xn}, {yn} ∈ lp and then {xn + yn} ∈ lp and ‖ · ‖p is norm.

3. l∞ = {{xn}|sup{|xn|} <∞}. ‖{xn}‖∞ = sup{|xn|}. This is a norm.

Examples Continuous function space

1. C([a, b]) = {f : [a, b] → R| f is continuous}. ‖f‖∞ = max{|f(x)||x ∈ [a, b]}. Let f, g ∈ C([a, b]), x ∈
[a, b].

|(f + g)(x)| = |f(x) + g(x)| ≤ |f(x)|+ |g(x)| ≤ supx∈[a,b]|f(x)|+ max
x∈[a,b]

|g(x)| = ‖f‖∞ + ‖g‖∞

‖f + g‖∞ = max
x∈[a,b]

|f(x) + g(x)| ≤ ‖f‖∞ + ‖g‖∞

2. C([a, b]), ‖f‖1 =
∫ b
a |f(t)|dt.

10



3. C([a, b]), ‖f‖p = (
∫ b
a |f(t)|pdt)1/p

Theorem. Holder’s inequality II: Let 1 < p <∞, 1
p + 1

q = 1. If f, g ∈ C[a, b].∫ b

a
|f(t)g(t)|dt ≤ (

∫ b

a
|f(t)|pdt)1/p(

∫ b

a
|g(t)|qdt)1/q

Theorem. Minkowski’s Inequality II: If f, g ∈ C([a, b]) and 1 < p <∞

(

∫ b

a
|(f + g)(t)|pdt)1/p ≤ (

∫ b

a
|f(t)|pdt)1/p + (

∫ b

a
|g(t)|pdt)1/p

Then f 6= 0 6= g.

Proof. ∫ b

a
|f(t) + g(t)|pdt =

∫ b

a
|(f + g)(t)||(f + g)(t)|p−1dt

≤
∫ b

a
|f(t)||(f + g)(t)|p−1dt+

∫ b

a
|g(t)||(f + g)(t)|p−1dt

≤ (

∫ b

a
|f(t)|pdt)1/p(

∫ b

a
|f(t) + g(t)|(p−1)qdt)1/q

+ (

∫ b

a
|g(t)|pdt)1/p(

∫ b

a
|f(t) + g(t)|(p−1)qdt)1/q

∫ b

a
|f(t) + g(t)|pdt ≤ [(

∫ b

a
|f(t)|pdt)1/p + (

∫ b

a
|g(t)|pdt)1/p](

∫ b

a
|f(t) + g(t)|pdt)1/q

(

∫ b

a
|f(t) + g(t)|pdt)1−1/q ≤ ‖f‖p + ‖g‖p

Example: Bounded operators

Let (X, ‖·‖X) and (Y, ‖·‖Y ) be normed linear spaces. Let T : X → Y , linear. ‖T‖ := sup{‖T (x)‖Y |‖x‖X ≤
1, x ∈ X}. B(X,Y ) = {T : X → Y linear|‖T‖ <∞}.

Claim: B(X,Y ) is a vector space and ‖ · ‖ is a norm.

• T, S ∈ B(X,Y ) =⇒ T + S ∈ B(X,Y ), x ∈ X, ‖x‖X ≤.

‖(T + S)(x)‖Y = ‖T (x) + S(x)‖Y
≤ ‖T (x)‖Y + ‖S(x)‖Y
≤ ‖T‖+ ‖S‖

‖T + S‖ = sup‖(T + S)(x)‖ ≤ ‖T‖+ ‖S‖ <∞, x ∈ X, ‖x‖X ≤ 1

=⇒ T + S ∈ B(X,Y ) and ‖T + S‖ ≤ ‖T‖+ ‖S‖

• α ∈ R, T ∈ B(X,Y )

‖αT‖ = sup
x∈X,‖x‖X≤1

‖αT (x)‖Y = |α| sup
x∈X,‖x‖X≤1

‖T (x)‖Y = |α|‖T‖ <∞

=⇒ αT ∈ B(X,Y ) and ‖αT‖ = |α|‖T‖

Note B(X,Y ) ≤ L(X,Y ), 0 ∈ B(X,Y ) =⇒ B(X,Y ) subspace of L(X,Y ). ‖T‖ ≥ 0 and ‖T‖ =
0 ⇐⇒ ‖T (x)‖Y = 0,∀x ∈ X, ‖x‖X ≤ 1.

11



2.1 Topology of Metric Spaces

Definition. Let (X, d) be a metric space. Let x0 ∈ X and ε > 0. The open ball centered at x0 with radius
ε is

B(x0, ε) = {x ∈ X|d(x, x0) < ε}

The closed ball centered at x0 with radius ε is

B[x0, ε] = {x ∈ X|d(x, x0) ≤ ε}

A subset U ⊆ X is open if ∀x ∈ U,∃ε > 0|B(x, ε) ⊆ U . A subset F ⊆ X is closed if FC is open.

Proposition. Let (X, d) be a metric space. Then

1. X, ∅ are open.

2. If {Uα}α∈I is a collection of open sets, then the union of all the sets in this collection is open =.

3. If {U1, U2, · · · , Un} are open, then ∩ni=1Ui is open.

Example

1. If x ∈ X, any ε > 0, B(x, ε) ⊆ X =⇒ X is open. ∅ is “trivially” open.

2. If x ∈ ∪α∈IUα, then ∃α ∈ I such that x ∈ Uα0 . Since Uα is an open set and x ∈ Uα0 , ∃ε > 0 such
that B(x, ε) ⊆ Uα ⊆ ∪α∈IUα =⇒ ∪α∈IUα is open.

3. If x ∈ ∩ni=1Ui, ∀i ∈ {1, · · · , n}, ∃ε < 0 such that B(x, ε) ⊆ U , let ε = min{ε|i = 1, · · · , n} >
0, B(x, ε) ⊆ B(x, εi),∀i =⇒ B(x, εi) ⊆ ∩ni=1B(x, εi) ⊆ ∩ni=1Ui.

Proposition. Let (X, d) be a metric space. Then

1. X, ∅ are closed

2. If {Fα}α∈I is addition of close sets, then ∩α∈IFα is closed

3. If F1, · · · , Fn are closed sets, then the union is also closed.

From this proposition, it flows that if (X, d) is a metric space. τj = {U ⊆ X|U is open with respect to d}.
τj is a topology.

Proposition. Let (X, d) be a metric space, then

1. If x0 ∈ X, ε > 0 =⇒ B(x0, ε) is open

2. U ⊆ X is open ⇐⇒ U is the union of open balls

3. If x0 ∈ X, ε > 0 =⇒ B[x0, ε] is closed

4. If x ∈ X, {x} is closed. Every finite subset is closed.

Proof. 1. Let x ∈ B(x0, ε), then d(x, x0) = δ < ε Let ε′ = ε − δ. Claim B(x, ε′) ⊆ B(x, ε). Let
x ∈ B(x, ε′) and d(x0, z) ≤ d(x0, x) + d(x, z) < ε+ ε− δ = ε This proves that B(x0, ε) is open.

2. =⇒ follows (1). → If x ∈ U,∃εx > 0 such that B(x, εx) ⊂ U , ∪x∈UB(x, εx) = U .

3. Let x ∈ (B[x0, ε])
C . d(x, x0) = δ > ε. Let ε′ = δ · ε. Claim B(x, ε′) ⊆ (B[x0, ε])

C . Let z ∈ B(x, ε′)
assume z ∈ B[x0, ε], d(x, x0 ≤ d(x, z) + d(z, x0) < ε′ + ε = δ− ε+ ε = δ. This implies z ∈ (B[x0, ε])

C .
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4. If y ∈ {x}C , then y 6= x and d(y, x) > 0 and B(y, d(x, y)) =⇒ {x}C is open.

Open sets in R.
Recall I ⊆ R is an interval if x, y ∈ I and z such that x < z < y =⇒ z ∈ I.

• Open finite intervals (a, b)

• Closed finite intervals [a, b].

• Half open finite set (a, b].

• Open rays (a,∞)

• Closed rays

Example: Cantor set

Pn is obtained from Pn−1 by removing the open interval of length 1/3n from the middle third of each
of the 2n−1 subintervals of Pn−1. Each Pn is closed. It’s the union of 2n closed intervals of length 1/3n.

P =

∞⋂
n=1

PnCantor (ternary) set)

• P is closed

• P is uncountable (x ∈ P → x =
∑∞

n=1
an
3n with an = 0, 2.

• P contains no interval of positive length

Example: Discrete metric

X set, d(x, y) =

{
1 x 6= y

0 x = y
x ∈ X,B(x, 2) = X,B(x, 1) = {x} is an open set.

If U = X,U = Ux∈U{x} = Ux∈UB(x, 1) open. U is also closed.

2.2 Boundaries, interiors and closures

Definition. Let (X, d) metric space,

1. A ⊆ =⇒ The closure of A is
A = ∩{F closed in |A ⊆ F}

It’s the smallest closed set that contains A.

2. The interior of A is int(A) = ∪{U is open in X|U ⊆ A}. It is the largest open set inside A.

3. Let x ∈ X,N ⊆ X, we say that N is a neighborhood of x (N ⊂ Nx). If x ∈ int(N).

4. Given A ⊆ X,x ∈ X is a boundary point of A. If for every neighbor N of x, we have N ∩A 6= ∅ and
N ∩AC 6= ∅. Equivalently, x is a boundary point of A, if ∀ε > 0, B(x, ε)∩A 6= ∅ and B(x, ε)∩AC 6= ∅.

(∂A)bdy(A) = {x ∈ X|xis a boundary point of A}

Proposition. (X, d) metric space, A ⊆ X

1. A is closed ⇐⇒ bdy(A) ⊆ A
13



2. Ā = A ∪ bdy(A).

Proof. 1. ( =⇒ ) A is close if and only if AC is open. If x ∈ AC , ∃ε > 0 such that B(x, ε) ⊆ AC and
then B(x, ε) ∩A = ∅ =⇒ x /∈ bdy(A).

← Let x ∈ AC , then x /∈ bdy(A). This implies ∃ε > 0 such that B(x, ε) ∩ A = ∅. This implies
B(x, ε) ⊆ AC . By definition, AC is open.

2. Claim that bdy(A) ⊆ Ā. Let x ∈ (Ā)C . There exists ∃ε > 0 such that B(x, ε) ∩ Ā = ∅. This implies
that B(x, ε) ∩A = ∅ =⇒ x /∈ bdy(A). This implies F = bdy(A) ∪A ⊆ Ā. Claim that F is closed.

Definition. Let (X, d) metric space, A ⊆ X and x ∈ X. We say that x is a limit point of A, if for all
neighbor hood N of x, we have N ∩ (A\{x}) 6= ∅. Equivalently, ∀ε > 0, B(x, ε) ∩ (A\{x}) 6= ∅. The set of
limit points of A is Lim(A) cluster points.

Note: A = [0, 1] ⊆ R, bdy(A) = {0, 1}, Lim(A) = A. For B = {x} ⊆ R, bdy(B) = B,Lim(B) = ∅.

Proposition. Let (X, d) metric space, A ⊆ X

1. A is closed ⇐⇒ Lim(A) ⊆ A

2. Ā = A ∪ Lim(A).

Proposition. 1. Ā ⊆ B̄.

2. int(A) ⊆ int(A).

3. int(A) = A\bdy(A).

Proposition. Let A,B ⊆ (X, d) metric space.

1. A ∪B = Ā ∪ B̄

2. int(A ∪B) = int(A) ∩ int(B)

Proof. 1. A ∪B ⊆ Ā ∪ B̄. Hence, A ∪B ⊆ Ā ∪ B̄
Conversely, A ⊆ A ∪B =⇒ Ā ⊆ A ∪B. Similarly for B.

2. int(A) ∩ int(B) ⊆ A ∩B. and int(A) ∩ int(B) ⊆ int(A ∩B).

Conversely, int(A ∩B) ⊆ A =⇒ int(A ∩B) ⊆ int(A). Similar for B.

Definition. Let (X, d) metric space. A ⊆ X is dense in X if Ā = X. We say that (X, d) is separable if X
has a countable subset A such that Ā = X. Otherwise, X is non-separable.

Examples:

1. R is separable

2. Rn is separable.

3. l1 is separable

4. l∞ is non-separable.

Question:
Is (C[a, b], ‖‖∞) separable?
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2.3 Convergence of sequences and topology in a metric space

Definition. (X, d) metric space, {xn} ⊆ X sequence. We say that {xn} converges to a point x0 ∈ X if
∀ε > 0,∃n0 ∈ N such that if n ≥ n0, then d(xn, x0) < ε. Then x0 is the limit of {xn}, limn xn = x0, xn → x0.
Equivalently, limn xn = x0 ⇐⇒ limn d(x0, x) = 0.

Proposition. (X, d) metric space, {xn} ⊆ X. If limxn = x0 = y0

Proposition. 1. x0 ∈ bdy(A) ⇐⇒ ∃ sequence {xn} ⊆ A, {yn} ⊆ Ac such that xn → x0, yn → x0.

2. A is closed ⇐⇒ whenever {xn} ⊆ A with xn → x0 =⇒ x0 ⊆ A.

Proof. 1. x0 ∈ bdy(A), xn ∈ B(x0,
1
n) ∩ A. yn ∈ B(x0,

1
n) ∩ Ac. Conversely, suppose {xn} ⊆ A, {yn} ⊆

Ac, xn → x0, yn → x0. Given ε > 0,∃N ∈ N, such that xn ∈ B(x0, ε), ∀n ≥ N =⇒ B(x0, ε)∩A 6= ∅.
∃N ′ ∈ N, such that xn ∈ B(x0, ε), ∀n ≥ N ′ =⇒ B(x0, ε) ∩Ac 6= ∅. This implies x0 ∈ bdy(A).

2. A is closed, {xn} ⊆ A, xn → x0. Suppose x0 ∈ Ac =⇒ ∃ε > 0, such that B(x0, ε) ∩A = ∅ but since
xn → x0,∃N ∈ N, such that d(x0, xn) < ε,∀n ≥ N . Contradiction. Then x0 ∈ A.

Conversely, suppose A is not closed, Then x0 ∈ bdy(A)\A. By (1), ∃{xn} ⊆ A such that xn →
x0 =⇒ x0 ∈ A. This is a contradiction. Then A is closed.

Proposition. Let (X, d) metric space, {xn} ⊆ X. If x0 = limn→∞ xn = y0, then x0 = y0.

Proof. Suppose x0 6= y0 =⇒ d(x0, y0) = ε > 0. ε
2 > 0,∃N ∈ N such that d(xn, x0) < ε

2 , ∀n ≥ N , ∃N ′ ∈ N
such that d(xn, x0) < ε

2 ,∀n ≥ N
′, If n = max{N,N ′}, ε = d(x0, y0) ≤ d(x0, xn)+d(xn, y0) < ε

2 + ε
2 = ε.

Definition. We say that x0 is a limit point of {xn} if ∃ a subsequence {xnk
} of {xn} such that xnk

→ x0.
lim∗({xn}) = {x0 ∈ X|x0 is a limit point of {xn}} lim({xn})← {xn} subset of X.

Example, xn = (−1)n .lim∗({xn}) = {−1, 1}. lim({xn}) = ∅.

Proposition. (X, d) metric space, A ⊆ X. x0 ∈ lim(A) ⇐⇒ ∃{xn} ⊆ A, with xn 6= x0 and xn → x0.

Proof. Let x0 ∈ lim(A), ∀n ∈ N,∃xn ∈ N such that {xn} ∩B(x0,
1
n) Hence {xn} ⊆ A, xn 6= x0, xn → x0.

Conversely. ∀ε > 0, A\{x0} ∩B(x0, ε) 6= ∅. Since ∃N ∈ N, such that xn 6= x0 ∈ B(x0, ε),∀n ≥ N .

2.4 Induced metric and the relative topology

Definition. Let (X, d) metric space, A ⊆ X. Define dA : A×A→ R such that dA(x, y) = d(x, y), ∀x, y ∈ A.
dA is a mtreic, and its called the induced metric. Let τA = {W ⊂ A|W = U ∩ A for some U open in X}.
τA is a topology in A called the relative topology in A inherited from τd on X.

Theorem. (X, d) metric space, A ⊆ X, Then τA = τdA .

Proof. Let W ⊆ A,W ∈ τA and x ∈ W . ∃U open in X such that U ∩ A = W . x ∈ U =⇒ ∃ε > 0 such
that Bd(x, ε) ⊆ U . x ∈ BdA(x, ε) ⊆ Bd(x, ε) ⊆ U . x ∈ BdA(x, ε) ⊆ U ∩A = W ∈ τdA .

Let W ⊆ A,W ∈ τdA ,∀x ∈W, ∃εx > 0 such that BdA(x, εx) ∈W .

W =
⋃
x∈W

BdA(x, εx)

X ⊇ U =
⋃
x∈W

Bd(x, εx) open in X

Now W = A
⋂
U =⇒ W ∈ τA.
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2.5 Continuity

(X, dx), (Y, dy) metric spaces, f : X → Y function f(x) is continuous at x0 ∈ X if ∀ε > 0, ∃δ > 0 such
that x ∈ B(x0, δ) then f(x) ∈ B(f(x0), ε). Otherwise, f(x) is discontinuous at x0 f(x) is continuous if it
is continuous at x0, for all x0 ∈ X.

Theorem. (X, dx), (Y, dy) metric space, f : X → Y TFAE

1. f(x) is continuous at x0 ∈ X.

2. If W is a neighborhood of g = f(x0), then v = f−1(W ) is a neighborhood of x0.

Proof. From (1) to (2): ∃ε > 0 such that B(f(x0), ε) ⊆ W . This implies ∃δ > 0 such that d(z, x0) <
δ =⇒ dX(f(z), f(x0)) < ε. Therefore, f(B(x0, δ)) ⊆ B(f(x0), ε) ⊆ W . But V = f−1(W ) Hence
x0 ∈ B(x0, δ) ⊆ V =⇒ x0 ∈ int(V ).

From 2 to 1, let ε > 0, Therefore, B(f(x0), ε) = W neighborhood of f(x0). THen f−1(W ) is a
neighborhood of x0, i.e. x0 ∈ int(f−1(W )) Therefore, ∃δ > 0 such that B(x0, δ) ⊆ f−1(W ).

Theorem. Sequential Characterization of continuous (X, dx), (Y, dy) metric space, f : X → Y , TFAE

1. f(x) is continuous at x0 ∈ X.

2. If {xn} ⊆ X,xn → x0 =⇒ f(xn)→ f(x0).

Proof. From 1 to 2, f(x) is continuous at x0, {xn} ⊆ X, xn → x0. Fix ε > 0, then ∃δ > 0 such that
dx(x, x0) < δ =⇒ dy(f(x), f(x0)) < ε. Since xn → x0. ∃N ∈ N, such that if n ≥ N, dx(xn, x0) < δ =⇒
dy(f(xn), f(x0)) < ε.

From 2 to 1, assume f(x) is not continuous at x0. ∃ε0 > 0, for every ball Bx(x0, δ), ∃xδ ∈ Bx(x0, δ)
such that dY (f(xδ), f(x0) ≥ ε0. In particular, for each n ∈ N, xn ∈ Bx(x0,

1
n) Note: xn → x0 but

dY (f(xn), f(x0)) ≥ ε0 i.e. f(xn) does not converge to f(x0).

Theorem. (X, dx), (Y, dy) metric space, f : X → Y , TFAE

1. f(x) is continuous

2. If W ⊆ Y is open, then f−1(W ) = V ⊆ X is open

3. If {xn} ⊆ X,xn → x0 for some x0 ∈ X, then f(xn)→ f(x0) ∈ Y .

Proof. 3 to 1 is done
1 to 2: Let W ⊆ Y open and V = f−1(W ). Let x0 ∈ V ′, f(x0) ∈ W open. Therefore, W is a

neighborhood of f(x0). By 1, f−1(W ) = V is a neighborhood of x0 i.e. x0 ∈ int(V ) Then V = int(V ) is
open.

2 to 3: let {xn} ⊆ X,xn → x0. Let y0 = f(x0). Fix ε > 0, if W = By(y0, ε) open in Y. Then
f−1(W ) ⊆ X open. Note: x0 ∈ V =⇒ ∃δ > 0, such that Bx(x0, δ) ⊆ V . Since xn → x0, ∃N
such that if n ≥ N , then dx(xn, x0) < δ, i.e. xn ∈ V,∀n ≥ N . Hence f(xn) ⊆ W, ∀n ≥ N . i.e.
dy(f(xn), f(x0)) < ε ⇐⇒ f(xn)→ f(x0).

Example: X a set, d discrete metric (Y, dx) metric space, f(X, d)→ (Y, dY ) is continuous.

Definition. f(X, dX) → (X, dy): f is a homeomorphism if f is one-to-one and onto, and both f and f−1

are continuous. We say that (X, dX) and (Y, dY ) are homeomorphic.

Remark: f : X → Y is homeomorphic, U ⊆ X is open ⇐⇒ f(U) ⊆ Y is open.
Two metric spaces (X, dX) and (Y, dY ) are equivalent if ∃ a one-to-one and onto map f : X → Y and

two constants, c1, c2 > 0 , such that c1dX(x1, x − 2) ≤ dY (f(x1), f(x2)) ≤ c2dX(x1, x2), ∀x1, x − 2 ∈ X.
Remark: If X and Y are equivalent, then they are homeomorphic.
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2.6 Complete Metric Spaces: Cauchy sequences

Note: If {xn} ⊂ (X, dX), xn → x0 ∈ X then ∀ε > 0,∃N ∈ N such that if n ≥ N =⇒ d(x0, xn) < ε/2,
If n,m ≥ N , d(xn, xm) ≤ d(xn, x0) + d(x0, xm) < ε/2 + ε/2 < ε.

Definition. A sequence {xn} ⊆ (X, dx) is cauchy in (X, dx) if ∀ε > 0,∃N ∈ N, ∀n,m ≥ N , d(xn, xm) < ε.

Theorem. Let {xn} ⊆ (X, dx) be a convergent sequence then {xn} is Cauchy.

Does every Cauchy sequence converge? xn = 1
n , X = (0, 2) used metric {xn} is Cauchy but it does not

converge.

Definition. A metric space (X, dx) is complete if every Cauchy sequence converges. A set A ⊆ X is
bounded if ∃M > 0, and x0 ∈ X such that A ⊆ B[x0,M ].

Proposition. Every Cauchy sequence is bounded {xn} is Cauchy. This implies ∃N ∈ N such that ∀n,m ≥
N, d(xn, xm) < 1. In particular, d(xN , xm) < 1,∀m ≥ N . M = max{d(x1, xN ), · · · , d(xN−1, xN ), 1}. This
implies {xn} ⊆ B[xN ,M ].

Proposition. Assume {xn} is a Cauchy sequence with a subsequence {xnk
} such that xnk

→ x0. Then
xn → x0. Then xn → x0. Let ε > 0 =⇒ ∃N ∈ N such that n,m ≥ N, d(xn, xm) < ε/2 since
xnk
→ x0, ∃k ∈ N such that ∀nk ≥ k, d(xnk

, x0) < ε/2. M = max{N, k},∀n ≥M,d(xn, x0) ≤ d(xn, xnk
) +

d(xnk
, x0) < ε/2 + ε/2 < ε. Pick nk > M .

2.7 Completeness of R,Rn and lp

Theorem. Bolzano-Weierstrass Theorem: every bounded sequence in R has a convergent subsequence.

Theorem. Completeness Theorem for R. Every Cauchy sequence in R converges. {xn} is Cauchy =⇒
{xn} is bounded =⇒ {xn} has a convergent subsequence =⇒ Then {xn} is convergent.

Theorem. Let 1 ≤ p ≤ ∞, every Cauchy sequence in (Rn, ‖ · ‖p) converges.

Lemma. Let 1 ≤ p <∞, let {xk} be a Cauchy sequence in (lp, ‖ ·‖p). Then for each i ∈ N, the component
sequence {xk,2}k is Cauchy in R.

Proof. Assume {xk}k∈N ⊆ (lp, ‖ · ‖p) is Cauchy. xk = {xk,1, · · · , xk,n} Since each component sequence
{xk,i}k is Cauchy on R. and R is complete. Let x0,i = lmxk,i ∈ R Let x0 = {x0,1, · · · , x0,i, · · · }.

Claim: x0 ∈ lp and xk → x0.
Let ε > 0, ∃N0 ∈ N such that k,m ≥ N0, ‖xm − xk‖p < ε

2 .

Case 1 Let p = ∞, k ≥ N0, |xm,i − xk,i| ≤ ‖xm − xk‖∞, ∀m ≥ N0,∀i ∈ N. k ≥ N0, |x0,i − xk,i| =
limm→∞ |xm,i−xk,i| ≤ ε

2 < ε,∀i ∈ N. This implies {x0,i−xk,i}i ∈ l∞. Well {xk,i} ∈ l∞. This implies
{x0,i} ∈ l∞. Therefore, ‖x0 − xk‖∞ < ε,∀k ≥ N0. This implies xk → x0.

Case 2 Let k ≥ N0. For each j ∈ N such that (
∑j

i=1 |xm,i − xk,i|p)1/p ≤ ‖xm − xk‖[ < ε
2 . (

∑j
i=1 |x0,i −

xk,i|p)1/p = limm(
∑j

i=1 |xm,i − xk,i|p)1/p ≤ ε
2 .

(

∞∑
i=1

|x0,i − xk,i|p)1/p ≤ ε

2
< ε,∀k ≥ N0

Then this implies {x0,i−xk,i} ∈ lp and {xk,i}i ∈ lp. Then {x0,i} = x0 ∈ lp. then ‖x0−xk‖p < ε,∀k ≥
N0, then xk → x0.
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2.8 Completeness of (Cb(X), ‖ · ‖∞)

Definition. (X, dx), (Y, dy) metric space {fn} sequence of functions fn : X → Y . {fn} converges pointwise
to f0 : X → Y if limn fn(x0) = f0(x0), ∀x0 ∈ X. {fn} converges uniformly to f0 : X → Y if ∀ε > 0, ∃N0 ∈ N
such that n ≥ N0, dY (fn(x), f0(x)) < ε,∀x ∈ X.

Remark: {fn} such that fn →uniform f0 =⇒ fn →pointwise f0(x), ∀x. Let fn(x) = xn on [0, 1].
fn(x)→ f0(x),∀x, for f0(x) = 1, x = 1 otherwise 0.

Theorem. (X, dx), (Y, dy) metric space, {fn} such that fn : X → Y and fn →unit f0 : X → Y . If each fn
is continuous at x0, so is f0.

fn →unit f0. This implies ∃N0 ∈ N such that n ≥ N0, dy(fn(x), f0(x)) < ε
3 , ∀x ∈ X.

fn continuous at x0,∀n =⇒ in particular fN0 is continuous at x0. This means ∃δ > 0 such that
x ∈ B(x0, δ) =⇒ dy(fN0(x0), fN0(x)) < ε

3 .

Proof. If x ∈ B(x0, δ),

dY (f0(x0), f0(x)) ≤ dY (f0(x0), fN0(x0)) + dY (fN0(x0), fN0(x)) + dY (fN0(x), f0(x)) <
ε

3
× 3 = ε

.

Definition. (X, dx) metric space, Cb(X) := {f : X → R|f is continuous on X and f(x) is bounded}.

‖f‖∞ = sup{|f(x)|x ∈ X}

(Cb(X), ‖ · ‖∞) is a normed linear space.

Remark: let {fn} ⊆ Cb(X), fn(X, dx)→ (R,usual metric). fn →‖‖∞ f0 ⇐⇒ fn →uniform f0.

Theorem. Completeness for (Cb(X), ‖ · ‖∞), (Cb(X), ‖ · ‖∞) is complete.

Let {fn} be a Cauchy sequence.For each x0 ∈ X, |fn(x0) − fm(x0)| ≤ ‖fn − fm‖∞. It follows, that
{fn(x0)} is Cauchy in R, ∀x0 ∈ X. f0(x) = limn→∞ fn(x),∀x ∈ X.

Claim: fn → f0.
Let ε > 0, choose N0 such that n,m ≥ N0 =⇒ ‖fn − fm‖∞ < ε

2 . If n ≥ N0 and x ∈ X, then
|fn(x)− f0(x)| = limm→∞ |fn(x)− fm(x)| ≤ ε

2 < ε. Therefore, fn → f0 =⇒ f0 is continuous.
f0 is bounded. {fn} is Cauchy, then {fn} is bounded. ∃M > 0 such that ‖fn‖∞ < M,∀n ∈ N. ∃n0

such that |f0(x)− fn0(x)| < 1, ∀x ∈ X. Then |f0(x)| ≤ f0(x)− fn0(x)|+ |fn0(x)| < 1 +M, ∀x ∈ X. Hence
f0 ∈ Cb(X) and fn → f0.

Remark: N, discrete metric space. (Cb(N), ‖ · ‖∞) = (l∞, ‖‖∞) and (Cb(X), ‖ · ‖∞) =⇒ (l∞(X), ‖ · ‖∞)

2.9 Characterizations of Complete Metric Spaces

Note: Theorem fails if we consider open intervals {(0, 1/n)}.
Note: Theorem fails if we consider unbounded intervals {[n,∞)}.

Definition. Let A ⊆ (X, d). diam(A) := sup{d(x, y)|x, y ∈ A} is the diameter of A.

Proposition. Let A ⊆ B ⊆ (X, d), Then:

1. diam(A) ≤ diam(B)

2. diam(A) = diam(Ā).
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Proof. The second: ≤ from (1). If diam(A) =∞ =⇒ diam(Ā) =∞. Let ε > 0, let x, y ∈ Ā. this implies
∃x0, y0 ∈ A such that d(x, x0) < ε

2 , d(y, y0) < ε
2 . d(x, y) ≤ d(x1, x0) + d(x0, y0) + d(y0, y) ≤ diamA + ε.

Hence diamA ≤ diamĀ ≤ diamA+ ε, ∀ε > 0.

Generalization of Nested Interval Theorem to (X, d) is complete.

Theorem. Cantor’s Intersection Theorem: Let (X, d) be a metric space TFAE

1. (X, d) is complete.

2. (X, d) satisfies the following proposition.

• If {Fn} is a sequence of non-empty closed sets. such that Fn+1 ⊆ Fn, ∀n, and limn(diamFn) =
0 =⇒

⋂∞
n=1 Fn 6= ∅.

Proof. 1 to 2: {Fn} a sequence such that Fn 6= ∅, Fn is closed, Fn+1 ⊆ Fn, lim(diamFn) = 0. For
each n, choose xn ∈ Fn. Let ε > 0, ∃N0 such that diamFN0 < ε. If n,m ≥ N0, =⇒ xn, xm ∈ FN0 .
d(xn, xm) ≤ diam(FN0) < ε. Hence {xn} is a Cauchy sequence and (X, d) is complete. Then xn →n x0 ∈ X.

For each n, {xn, xn+1, · · · , xn+k, · · · } ⊆ Fn. Then xn+k →k x0 and Fn closed so x0 ∈ Fn,∀n. This
implies x0 ∈

⋂∞
n=1 Fn.

2 to 1: let {xn} ⊆ X. Cauchy. For each n, An := {xn, xn+1, · · · } Claim: diam(An)→n 0. Let Fn = Ān,
An+1 ⊆ An =⇒ Fn+1 ⊆ Fn. diam(Fn)→n 0.

This implies ∃x0 ∈
⋂∞
n=1 Fn, let ε > 0, choose N0 such that diamFN0 < ε. This implies FN0 ⊆ B(x0, ε).

If n ≥ N0, d(xn, x0) < ε. This implies xn →n x0.

Definition. Define (X, ‖ · ‖) normed space. {xn} ⊆ X. A series with terms {xn} is a formal sum∑∞
n=1 xn = x1 + x2 + · · · . For each k ∈ N, define the kth-[artial sum of

∑∞
n=1 xn by sk =

∑k
n=1 xn ∈ X.

The series
∑∞

n=1 xn converges if the sequence {sk} converges. Otherwise, diverge.

Definition. A normed linear space (X, ‖·‖) which is complete under the metric induced is called a Banach
space.

Theorem. Generalized Werestrass M-Test: Let (X, ‖ · ‖) normed linear space TFAE

1. (X, ‖ · ‖) is a Banach Space.

2. The space (X, ‖ · ‖) satisfies the following property:

Let {xn} ⊆ X. If
∑∞

n=1 ‖xn‖ converges in R =⇒
∑∞

n=1 xn converges in (X, ‖ · ‖).

Proof. 1 to 2: Let Tk =
∑k

n=1 ‖xn‖ =⇒ {Tk} is Cauchy. Given ε > 0,∃N0 such that k > m > N0

k∑
n=m+1

‖xn‖ = |Tk − Tm| < ε

Let sk =
∑k

n=1 xn, let k > m > N0.

‖sk − sm‖ = ‖
k∑

n=m+1

xn‖ ≤
k∑

n=m+1

‖xn‖ < ε

Therefore {sk} is Cauchy. This implies {sk} converges and then
∑∞

n=1 xn converges.
2 to 1: Assume 2 holds and {xn} is Cauchy. Choose n1 if i, j > n1 =⇒ ‖x1 − xj‖ < 1

2 and choose n2,
such that if i, j > n2 =⇒ ‖xi − xj‖ < 1

22
.
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If we have nk > nk−1 > · · · > n2 > n1 such that if i, j > nk =⇒ ‖xi − xj‖ < 1
2k

. Choose nk+1 > nk
such that if i, j > nk+1 =⇒ ‖xi − xj‖ < 1

2k+1 . By induction, {nk}k is an increasing sequence of N such

that i, j > nk =⇒ ‖xi − xj‖ < 1
2k

. In particular ‖xnk+1
− xnk

‖ < 1
2k

=⇒ gk = xnk
− xnk+1

∈ X,∀k.

∞∑
k=1

‖gk‖ =

∞∑
k=1

‖xnk+1
− xnk

‖ <
∞∑
k=1

1

2k
= 1

Hence
∑∞

k=1 ‖gk‖ converges. Hence
∑∞

k=1 gk converges in (X, ‖ · ‖) ⇐⇒ {sk}k converges sk =
∑k

j=1 gj .
sk = g1 + g2 + · · ·+ gk = xn1 − xn2 + xn2 − xn3 + · · ·+ xnk

− xnk+1
= xn1 − xnk+1

. xnk+1
→ xn1 −

∑∞
j=1 gj .

Therefore {xnk
} converges and {xn} is Cauchy. Then {xn} converges.

Example:
A continuous, nowhere differentiable function

Let φ(x) =

{
x x ∈ [0, 1]

2− x x ∈ [1, 2]
. Extend to R by φ(x) = φ(x+ 2). Let f(x) =

∑∞
n=0(3

4)nφ(4nx).

1. Claim 1: f(x) is continuous on R.
∑∞

n=1(3
4)nφ(4nx) ≤

∑∞
n=0(3

4)n = L. Then f(x) is defined.∑k
n=1(3

4)nφ(4nx) ≤
∑∞

n=0(3
4)n → f(x).

2.10 Completion of Metric Space

Proposition. (X, d) complete metric space, let A ⊆ X, then (A, dA) is complete ⇐⇒ A is closed in X.

Proof. Converse: assume A ⊆ X is closed, {xn} ⊆ A Cauchy in (A, dA).Then {xn} Cauchy in (X, d) =⇒
∃x0 such that xn → x0 and A is closed so x0 ∈ A.

=⇒ Suppose A is not closed. This implies ∃x0 ∈ bdy(A) \ A. This implies ∃{xn} ⊆ A such that
xn →n x0. This means {xn} is Cauchy (A, dA). This means A is not complete. Hence contradiction.

Definition. (X, dx), (Y, dy) metric spaces. A map φ : X → Y is an isometry if dY (φ(x), φ(y)) =
dX(x, y), ∀x, y ∈ X. Note: If φ is an isometry, then φ is one-to-one. If φ is an isometry and φ is onto, we
say that (X, dX) and (Y, dY ) are isometric. A completion of (X, dX) is a pair ((Y, dY ), φ) such that (Y, dY )
is a complete metric space, φ : X → Y is an isometry and φ(X) = Y .

Theorem. (X, d) metric space. This implies ∃ an isometry such that

φ : X → (Cb(X), ‖ · ‖∞)

.

Proof. Fix a ∈ X, for u ∈ X, let fu : X → R. Then fu(x) = d(u, x) − d(x, a). fu is continuous such that
fu is bounded, |fu(x)| = |d(u, x) − d(x, a)| ≤ d(u, a). This implies fu ∈ Cb(X). Let φ : X → Cb(X) such
that u→ fu.

d(fu, fv) = ‖fu − fv‖∞ = sup
x∈X
{|fu(x)− fv(x)|}

= supx∈X{|d(u, x)− d(x, a)− d(v, x) + d(x, a)|} ≤ d(u, v)

|fu(v)− fv(v)| = d(u, v) =⇒ ‖fu − fv‖∞ = d(u, v)

Corollary. Every metric space has a completion. Let φ : X → (Cb(X), ‖ · ‖∞) and Y = φ(x). ((Y, dY ), φ)
is complete.
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2.11 Banach Contractive Mapping Theorem

Question: can we find f ∈ C[0, 1] such that f(x) = ex +
∫ x

0 sin(t)/2f(t)dt?
Strategy: define Γ : C[0, 1] → C[0, 1]. Γ(g)(x) = ex +

∫ x
0 sin(t)/2g(t)dt ∈ C([0, 1]). ∃!f ∈ C[0, 1] such

that Γ fixes f, i.e., Γ(f) = f .

Definition. (X, dX) metric space, let Γ : X → X. We call x0 ∈ X a fixed point of Γ if Γ(x0) = x0. We
say that Γ is Lipchitz if ∃α ≥ 0 such that d(Γ(x),Γ(y)) ≤ αd(x, y),∀x, y ∈ X and Γ is a contraction if ∃k
such that 0 ≤ k < 1 such that d(Γ(x),Γ(y)) ≤ kd(x, y), ∀x, y ∈ X.

Theorem. Banach Contractive Mapping Theorem (or Banach fixed point Theorem). Let (X, d) be a
complete metric space. This implies Γ has a unique fixed point x0 ∈ X.

1. If such x0 exists, it’s unique: suppose Γ(x0) = x0 and Γ(y0) = y0, Γ 6= 0. This implies d(x0, y0) =
d(Γ(x0),Γ(y0)) ≤ kd(x0, y0) This implies d(x0, y0) = 0.

2. Let x1 ∈ X and x2 = Γ(x1), x3 = Γ(x2), · · · , xn+1 = Γ(xn).

d(x2, x3) = d(Γ(x1),Γ(x2)) ≤ kd(x1, x2)

d(x4, x3) = d(Γ(x3),Γ(x2)) ≤ kd(x3, x2) ≤ k2d(x1, x2)

By induction, d(xn+1, xn) ≤ kn−1d(x1, x2). If m > n, d(xm, xn) ≤ d(xm, xm−1) + d(xm−1, xm−2) +
· · ·+d(xn−2, xn−1)+d(xn−1, xn) ≤ km−2d(x2, x1)+km−3d(x2, x1)+· · ·+knd(x1, x2)+kn−1d(x2, x3) =
kn−1

1−k d(x2, x1).

Remark: If d(Γ(x),Γ(y)) < d(x, y), theorem fails.
Example: Show that there exists a unique f ∈ C[0, 1] such that

f(x) = ex +

∫ x

0

sin(t)

2
f(t)dt

Let Γ(g)(x) = ex +
∫ x

0
sin(t)

2 g(t)dt. (C[0, 1], ‖ · ‖∞) is complete. Let f(x), g(x) ∈ C[0, 1] and x ∈ [0, 1].

|Γ(g)(x)− Γ(f)(x)| = |ex +

∫ x

0

sin(t)

2
g(t)dt− ex −

∫ x

0

sin(t)

2
f(t)dt|

= |
∫ x

0

sin(t)

2
(g(t)− f(t))dt|

≤
∫ x

0
|sin(t)

2
||g(t)− f(t)|dt ≤ ‖g − f‖∞

∫ 1

0

1

2
dt =

1

2
‖g − f‖∞

=⇒ ‖Γ(g)− Γ(f)‖∞ ≤
1

2
‖g − f‖∞ =⇒ Γis a contraction

=⇒ ∃|f(x) ∈ C[0, 1]

Example: Show that there exists a unique f0(x) ∈ C[0, 1] such that

f0(x) = x+

∫ x

0
t2f0(t)dt

Find a power series representation for f0(x). Let Γ(g)(x) = x+
∫ x

0 t
2g(t)dt Note (C[0, 1], ‖·‖∞) is complete.

Let f, g ∈ C[0, 1], x ∈ [0, 1].
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|Γ(g)(x)− Γ(f)(x)| = |
∫ x

0
t2(g(t)− f(t))dt|

≤
∫ 1

0
t2|g(t)− f(t)|dt ≤ ‖g − f‖∞

∫ 1

0
t2dt =

1

3
‖g − f‖∞, ∀x ∈ [0, 1]

‖Γ(g)− Γ(f)‖∞ ≤
1

3
‖f − g‖∞, ∀f, g ∈ C[0, 1]

Therefore, Γ is a contraction. By BCM theorem, ∃!f0 ∈ C[0, 1] such that Γ(f0) = f0.
Let f1 = 0, fn+1 = Γ(fn). Therefore,

f2(x) = x+

∫ x

0
t2θdt = x

f3(x) = x+

∫ x

0
t2tdt = x+

x4

4

· · ·

f(x) =

∞∑
n=0

x3n+1

1, 47(3n+ 1)

Theorem. Picard-Lindelof Theorem: Let f : [0, 1]×R→ R be continuous and Lipchitz in y, i.e., 1 > α ≥ 0,
such that

|f(t, y)− f(t, z)| ≤ α|y − z|,∀y, z ∈ R

Let y0 ∈ R, =⇒ !y(t) ∈ C[0, b] such that y′(t) = f(t, y(t))∀t and y(0) = y0.

2.12 Baire’s Category Theorem

Example:

f(x) =


0 if x ∈ R\Q
1
n if x = m

n ,m ∈ Z, n ∈ N,m 6= 0, gcd(m,n) = 1

1 x = 0

f(x) is discontinuous at x = r, for all r ∈ Q. f(x) is continuous at x = α, for all α ∈ R\Q.

Definition. (X, d) metric space, A ⊆ X is said to be on Fσ set if A =
⋃∞
n=1 Fn where {Fn} is a sequence

of closed sets. This implies A ⊆ X is said to be a Gδ set if A =
⋂∞
n=1 Un where {Un} ⊆ X is a sequence of

open sets.

Remarks:

1. From DeMorgan’s Law, A is Fσ ⇐⇒ Ac is Gδ.

2. [0, 1) is both Fσ and Gδ. [0, 1) =
⋃∞
n=1[0, 1− 1

n ] and [0, 1) =
⋂∞
r=1(− 1

n , 1).

3. F ⊆ X closed. This implies F is Gδ. U ⊆ X open. This implies U is Fσ.

Definition. (X, dX), (Y, dY ) metric spaces and f : X → Y . D(f) = {x ∈ X|f is not continuous }.
Dn(f) = {x ∈ X|∀ε > 0,∃y, z ∈ B(x, δ) with dY (f(y), f(z)) ≥ 1

n}.

Theorem. Let f : (X, dX) → (Y, dY ), ∀n ∈ N, Dn(f) is closed in X. Moreover, D(f) =
⋃∞
r=1Dn(f). In

particular, D(f) is Fσ.
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Proof. (Dn(f))c open and x ∈ (Dn(f))c =⇒ ∃δ > 0,∀y, z ∈ B(x, δ), dY (f(y), f(z)) < 1
n . Let v ∈

B(x, δ), η = δ · dX(x, v). Let y, z ∈ B(v, η) If y ∈ B(v, η) =⇒ d(y, x) ≤ d(y, v) + dX(v, x) < δ− dX(x, v) +
dX(v, x) < δ. This implies y, z ∈ B(x, δ) =⇒ dY (f(x), f(y)) < 1

n . Hence B(x, δ) ⊆ (Dn(f))c =⇒
(Dn(f))c is open.

Definition. (X, d) metric space. A set A ⊆ X is nowhere dense if int(Ā) = ∅. A is of first category in
X if A =

⋃∞
n=1An where each An is nowhere dense. Otherwise, A is of second category in X. A set C is

residual in X if Cc is of first category in X.

Recall: A set A ⊆ X is dense if Ā = X. Equivalently, A is dense if ∀W ⊆ X open, W ∩ A 6= ∅.
Suppose there exists W ⊆ X open such that W ∩ A = ∅. Let x ∈ W =⇒ x ∈ X\A. But ∃δ such that
B(x, δ) ⊆W =⇒ x /∈ Ā.

Let x0 ∈ X\A (want ∃{xn} ⊆ A\xn → x0) since B(x, 1
n) ∩A 6= ∅. This implies ∃xn ∈ B(x, 1

n ∩A =⇒
{xn} ⊆ A, xn → x0.

Theorem. Baire Category Theorem 1, (X, d) complete metric space. Let {Un} be a sequence of open,
dense sets. Then

⋂∞
n=1 Un is dense in X.

Proof. Let W ⊆ X be open and non-empty. Then ∃x1 ∈ X and r1 < 1, B(x1, r1) ⊆ B[x1, r1] ⊆ W ∩ U .
And ∃x2 ∈ X, r2 <

1
2 such that B(x2, r2) ⊆ B[x2, r2] ⊆ B(x1, r1) ∩ U2

Recursively, we find sequences {xn} ⊆ X and {rn} ⊆ R such that 0 < rn <
1
n and B(xn+1, rn+1) ⊆

B[xn+1, rn+1] ⊆ B(xn, rn) ∩ Un+1, ∀n ≥ 1 but rn → 0, B[xn+1, rn+1] ⊆ B[xn, rn], X is complete. By
Cantor intersection theorem, there exists x0 ∈

⋂∞
n=1B[xn, rn] ⊆ W and B[xn, rn] ⊆ Un, ∀n. This means

x0 ∈W ∩ (
⋂∞
n=1 Un). This implies

⋂∞
n=1 Un is dense.

Remarks:

1. The Cantor set is nowhere dense in R, and has cardinality c.

2. A close set F is nowhere dense if and only if U = F c is dense.

Corollary. Baire Category Theorem II: every complete metric space (X, d) is of second category in itself.
Assume X is of the first category, i.e. ∃{An} sequence of nowhere dense sets such that X =

⋃∞
n=1An =⋃∞

n=1 Ān. Let Un = (Ān)c =⇒ Un is open and dense.

But
⋂∞
n=1 Un =

⋂∞
n=1(Ān)c = (

⋃∞
n=1 Ān)c = Xc = ∅. Hence contradiction.

Corollary. Q is not a Gδ subset of R. Suppose Q =
⋂∞
n=1 Un, where each Un is open. Let Fn = (Un)c,∀n.

Q ⊆ Un, ∀n and Q̄ = R then Ūn = R. Therefore, Fn is nowhere dense, for all n. Consider Q = {r1, r2, · · · }
Let Sn = Fn ∪ {rn} closed and nowhere dense. Then R =

⋃∞
n=1 Sn.

Then R =
⋃∞
n=1 Sn, if x ∈ Q =⇒ x = rn for some n. This implies x ∈ Sn. If x ∈ R\Q =⇒ x ∈⋃∞

n=1 U
c
n.Hence x ∈ Fn for some n, x ∈ Sn.

Corollary. There is no function f : R→ R for which D(f) = R\Q.

Definition. (X, dx), (Y, dy) metric space, {fn : X → Y } sequence of function fn → f0 pointwise on X.
We say that fn converges uniformly at x0 ∈ X if ∀ε > 0, ∃δ > 0 and N0 ∈ N such that if n,m ≥ N0 and
d(x, x0) < δ =⇒ dY (fn(x), fm(x)) < ε.

Theorem. (X, dx), (Y, dy) metric space, {fn : X → Y } such that fn → f0 point wise on X. Assume that
fn convergence uniformly at x0 and {fn} is a sequence of continuous function at x0 This implies f0 is
continuous at x0.

Theorem. Let fn : (a, b)→ R be a sequence of continuous functions that converges point wise to f0. This
implies ∃x0 ∈ (a, b) such that fn converges uniformly at x0.
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Claim: There exists a closed interval [α1, β1] ⊂ (a, b) with α1 < β1 and N1 ∈ N such that if n,m ≥ N ,
and x ∈ [α1, β1]. Then |fn(x)− fm(x)| ≤ 1.

Inductively, we can construct a sequence {[αk, βk]} with (a, b) ⊃ [α1, β1] ⊃ (α1, β1) ⊃ [α2, β2] ⊃
(α2, β2) ⊃ · · · and a sequence N1 < N2 < N3 < · · · such that n,m ≥ Nk and x ∈ [αk, βk]. This implies
|fn(x)− fm(x)| ≤ 1

k . Let x0 ∈
⋂∞
k=1[αk, βk]. Given ε > 0, if 1

k < ε, and n,m ≥ Nk and x ∈ (αk, βk), then
|fn(x) − fm(x)| ≤ 1

k < ε. Pick δ > 0 such that (x0 − δ, x0 + δ) ⊂ (αk, βk). For δ as above, and Nk, the
definition of uniform convergence at x0 is verified.

Corollary. {fn} ⊂ C[a, b] such that fn → f0 point wise on [a, b]. This implies ∃ a residual set A ⊂ [a, b]
such that f0 is continuous at each x ∈ A. Ac is first category, i.e. Ac =

⋃∞
n=1An, An nowhere dense.

A = {x ∈ [a, b]|f0 is continuous at x}.
Claim: A is dense in [a, b], i.e. given any (c, d) ⊂ [a, b], (c, d)∩A 6= ∅. Let (c, d) ⊂ [a, b], then ∃x0 ∈ (c, d)

such that fn converges uniformly at x0. But each fn is continuous. Then f0 is continuous at x0. This
implies x0 ∈ A

⋂
(c, d). and Ac = D(f0) is Fσ =⇒ A is Gδ. This implies A =

⋂∞
n=1 Un, Un open dense

⇐⇒ U cn closed, nowhere dense. i.e. Ac =
⋃∞
n=1 U

c
n, i.e., A is residual.

Corollary. Suppose f(x) is differentiable on R. Then f ′(x) is continuous for every point in a dense
Gδ-subset of R.

fn(x) = f(x+1/n)−f(x)
1/n Then f(x) pointwise. Apply Corollary.

2.13 Compactness

Definition. An open cover for A ⊆ X is a collection {Uα}α∈I of open sets for which A ⊆
⋃
α∈i Uα. Given

a cover {Uα}α∈I for A ⊆ X, a sub cover is a sub collection {Uα}α∈I , for J ⊆ I such that A ⊆
⋃
α∈I Uα. A

sub cover {Uα}α∈I is finite if I is finite. We say that A ⊆ X i compact if every open cover of A has a finite
sub cover. (X, d) is compact if X is compact. We say that A ⊆ X is sequentially compact if every sequence
{xn} ⊆ A has a converging subsequence converging to a point in A. (X, d) is sequentially compact if so is
X. We say that X has the Bolzano-Weierstrass property (BWP) if every infinite subset in X has a limit
point.

Theorem. (X, d) metric space, TFAE

1. X is sequentially compact

2. X has the BWP

Proof. 1 to 2: X sequentially compact and S ⊆ X infinite. S has a countable infinite subset {x1, x2, · · · }.
This implies ∃{xnk

} subsequence of {xn} such that xnk
→ x0. ∀ε > 0, (B(x0, ε)

⋂
S)\{x0} has infinitely

many points. Hence x0 ∈ LIm(S).
2 to 1: Assume X has the BWP, and {xn} ⊆ X. If ∃x0 ∈ X appearing infinitely many times in {xn},

then {xn} has a constant, converging subsequence. If such an x0 doesn’t exists, viewed as a subset of X,
{xn} is infinite. We can assume the terms of {xn} are distinct. Thus ∃x0 ∈ Lim({xn}). This implies
∃n1 ∈ N such that d(x0, xn1) < 1. Find n2 > n1 such that d(x0, xn2) < 1

2 If we have n1 < n2 < · · · < nk
such that d(x0, xk) <

1
k . Choose nk+1 > nk such that d(x0, xnk+1

< 1
k+1 This implies {xnk

} ⊆ {xn} such
that xnk

→ x0

Proposition. (X, d) metric space, A ⊆ X.

1. A compact =⇒ A is closed and bounded.

2. If A is closed and X is compact, then so is A.

3. If A is sequentially compact. Then A is closed and bounded.
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4. A is closed, X is sequentially compact. This implies A is sequentially compact.

5. If X is sequentially compact, then X is complete.

Proof. 1. Bounded pick x0 ∈ A. This implies {B(x0, n)} is an open cover of A. A compact =⇒ There
exists a finite sub cover {B(x0, nk)} let M = max{nj : j = 1, · · · , k} =⇒ A ⊂ B(x0,M)

Closed: Suppose A is not closed =⇒ ∃x0 ∈ Lim(A)\A, Un = (B[x0,
1
n ]c. {Un} open cover of A,

with no finite sub cover but A compact. Then contradiction.

2. Let {Uα}α∈I be an open cover of A. Then {Uα}α∈I ∪ {Ac} is an open cover of X. This implies
∃α1, · · · , αn such that {Uα1 , · · · , Uαn} ∪ {Ac} covers X. Thus {Uαn} covers A. A is compact.

3. Bounded: Assume A is not bounded. Choose x1 ∈ A =⇒ ∃x2 ∈ A, d(x1, x2) > 1. Therefore,
∃x3 ∈ A such that d(xi, x3) > 1, i = 1, 2. Recursively, we define {xn} such that d(xn, xm) > 1, if
n 6= m. Therefore, {xn} cannot have a convergent subsequence. Contradiction.

Closed: Assume A is not closed. This means ∃{xn} ⊆ A such that xn → x0 but x0 /∈ A. =⇒ {xn}
has no convergent subsequence in A. Contradiction.

Examples:

• A ⊆ R, A is sequentially compact ⇐⇒ A is closed and bounded.

• A ⊆ Rn, works too.

• A ⊆ Rn, A compact ⇐⇒ A is closed and bounded.

Theorem. Heine-Borel Theorem: A ⊆ Rn is compact if and only if A is closed and bounded.

Notation:
A closed cell in Rn is a set [a1, b1]× [a2, b2]× · · · × [an, bn].

Proof. 1. A is closed and bounded. Assume A is not compact. Let F1 = A, J1 be a closed cell such
that A ⊆ J1. Bisect each of the intervals [ai, bi] of J1. This implies we obtain 2n closed cells
{J11, J12, · · · , J12n}. Exists some open cover {Uα}α∈I such that it does not have a finite sub cover.
One of the subcells, call it J2, must be such that F2 = J2 ∩ A does not have a finite sub cover of
{Uα}α. Recursively, we construct a sequence of closed cells {Jn} and closed sets Fn = Jn ∩ A such
that

(a) Jn+1 ⊆ Jn, ∀n =⇒ Fn+1 ⊆ Fn, ∀n.

(b) Claim (Jn+1) = 1
2diam(Jn) =⇒ diam(Fn+1) ≤ diam(Fn)

2 .

(c) Fn = Jn
⋂
A cannot be covered by finitely many Uα’s.

2. By Cantor intersection theorem,

∞⋂
n=1

Fn = {x0} =⇒ x0 ∈ A =⇒ ∃α0|x0 ∈ Uα0 =⇒ ∃ε > 0|B(x0, ε) ⊆ Uα0

Pick n0 such that diamFn0 < ε. Then Fn0 ⊆ B(x0, ε) ⊆ Uα0 . {Uα} covers Fn0 . Contradiction.

Questions:
A ⊆ X is compact ⇐⇒ A is closed and bounded?
No, X is infinite set, d is discrete metric space. X is bounded but not compact. But if it is compact,

then it is also sequential compact.
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Definition. X set, a collection {Aα}α∈I , Aα ⊆ X,∀α has finite intersection.
Property: (FIP) if whenever {Aα, · · · , Aαn} is any finite sub collection, we have

n⋂
i=1

Aαi 6= ∅

Theorem. (X, d) metric space, TFAE

1. X is compact

2. If {Fα}α∈I is a collection of closed sets of X with the FIP then
⋂
α∈I Fα 6= ∅.

Corollary. (X, d) compact metric space, {Fn} of non-empty, closed sets such that Fn+1 ⊆ Fn,∀n ∈ N =⇒⋂
n∈N Fn 6= ∅.

Corollary. (X, d) compact metric space. Then X has BWP (X is sequentially compact).

Proof. Assume X is compact. Let S be an infinite set. Then exists a sequence {xn} ⊆ S consisting of distinct
points. Let Fn = {xn, xn+1, · · · } =⇒ {Fn} has the FIP. Then

⋂∞
n=1 Fn 6= ∅ =⇒ ∃x0 ∈

⋂∞
n=1 Fn. For all

ε > 0, B(x0, ε)
⋂
{xn, xn+1, · · · } 6= ∅,∀n ∈ N This implies B(x0, ε)

⋂
S\{x0} =6= ∅ =⇒ x0 ∈ Lim(S).

Theorem. (X, dx), (Y, dy) metric space. Let f : (X, dx) → (Y, dy) contains. If (X, dx) sequentially
compact. this implies f(X) is sequentially compact. Let {yn} ⊆ f(X), =⇒ ∀n, ∃xn such that yn = f(xn).
This implies {xn} ⊆ X =⇒ ∃{xnk

} such that xnk
→ x0 ∈ X. Hence f(xnk

)→ f(x0) ∈ f(X).

Corollary. Extreme Value Theorem:
Let f : (X, dx) =⇒ R be continuous. If (X, dx) is sequentially compact, then there exists c, d ∈ X

such that f(c) ≤ f(x) ≤ f(d), ∀x ∈ X.

Definition. Let ε > 0. A collection {xα}α∈I ⊆ X is an ε-net for X if X =
⋃
α∈I B(xα, ε). We say that

(X, d) is totally bounded if for each ε > 0, X has a finite ε-net. Given A ⊆ X, A is totally bounded if it is
totally bounded n the induced metric. ∀ε > 0,∃{x1, · · · , xn} ⊆ A such that

⋃∞
i=1B(x, ε) ⊇ A.

Proposition. If X is sequentially compact, then X is totally bounded. Suppose X is not totally bounded:
Then ∃ε0 > 0, with no finite ε0-net. Then ∃ sequence {xn} ⊆ X such that xi /∈ B(xj , ε0) if i 6= j. Then
{xn} has no convergent subsequence. Contradiction.

Remarks:

1. (N, d) discrete metric (N, d) is bounded but it is not totally bounded. Then there does not exist finite
1/2-net.

2. If A ⊆ (X, d) is totally bounded. Then so is Ā. If {x1, · · · , xn} is an ε-net for A. Then {x1, · · · , xn}
is an ε-net for Ā.

Theorem. Lebesgue (X, d) compact metric space, {Uα}α∈I open cover of X. Then ∃ε > 0, ∀x ∈ X and
0 < δ < ε. there exists α0 ∈ I with B(x, δ) ⊆ Uα0}.

Proof. If X = Uα for some α, then any ε > 0 would work. Assume X 6= Uα, ∀α. For each x ∈ X,
let φ(x) = sup{r ∈ R|B(x, r) ⊆ Uα0 , for some α0 ∈ I}. Then φ(x) = 0. Also, φ(x) < ∞: if φ(x) =
∞, ∃{rn} ⊆ R, {αn} ⊆ I|B(x1, rn) ⊆ Uαn , rn → ∞}. But X sequentially compact. This implies X
is bounded and ∃M > 0, B(x,M) = X. Pick rn > M =⇒ B(x, rn) = X ⊆ Uαn but X 6= Uαn .
Contradiction.

If φ is continuous: if x, y ∈ X,φ(x) ≤ φ(y) + d(x, y):

case 1 ∃α0 and r > 0 such that B(x, r) ⊆ Uα0 and y ∈ B(x, r). B(y, r − d(x, y)) ⊆ Uα0 =⇒ φ(y) ≥
r − d(x, y) =⇒ φ(x) ≤ d(x, y) + φ(y).
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case 2 ∀r and α such that B(x, r) ⊂ Uα, y /∈ B(x, r). r ≤ d(x, y), φ(x) ≤ d(x, y) and φ(x) ≤ d(x, y) +φ(y)
and |φ(x)− φ(y)| ≤ d(x, y) =⇒ φ is continuous. Therefore, by extreme value theorem, ε > 0, such
that φ(x) ≥ ε, ∀x ∈ X.

Theorem. Borel-Lebesgue (X, d) metric space, TFAE

1. X is compact

2. X has the BWP

3. X is sequentially compact.

Proof. 3 to 1: Let {Uα}α∈I be an open cover for X. This implies {Uα} has a Lebesgue number ε > 0.
Since X is totally bounded, there exists finite subset {x1, x2, · · · , xn} ⊆ X such that

⋃n
i=1B(xi, δ) = X

where 0 < δ < ε. But for each i = 1, 2, · · · , n, we can find αi ∈ I such that B(xi, δ) ⊆ Uαi This implies
{Uαi}i=1,··· ,n is a finite sub cover. This implies X is compact.

Theorem. Heine Borel for metric space: (X, d) metric space TFAE

1. X is compact

2. X is complete and totally bounded.

Proof. 2 to 1 (X is sequentially compact). Let {xn} be a sequence in X. Since X is totally bounded,
∃y1, · · · , yn ∈ X such that

⋃n
i=1B(y1, 1) = X. Then there exists yi such that B(y1, 1) = S1 contains

infinitely many terms of {xn}. Since X is totally bounded, ∃y2
1, · · · , y2

n2
such that

⋃n
i=1B(y2

1,
1
2) = X

Therefore ∃y2
i |B(y2

i , 1/2) = S2 contains infinitely many terms of {xn} in S1. Then, we construct sequence
of open balls {Sk = B(yk, 1/k)} and each Sk+1 contains infinitely many terms of {xn} also in S1

⋂
· · ·
⋂
Sk.

In particular, we can choose n1 < n2 < · · · such that xnk
∈ S1

⋂
· · ·
⋂
Sk. But diam(Sk)→ 0, this implies

{xn+k} is cauchy and X is complete. thus {xnk
} is convergent.

2.14 Compactness and Continuity

Theorem. Let f : (X, dx)→ (Y, dy) be continuous. If (X, dx) is compact. f(x) is compact.

Corollary. Extreme Value Theorem: Let f : (X, dx) → R be continuous. If (X, dx) is compact. There
exists c, d ∈ X such that f(x) ≤ f(x) ≤ f(d), ∀x ∈ X.

Theorem. Sequential characterization of uniform continuity: suppose f : (X, dx)→ (Y, dy) function TFAE

1. f is uniformly continuous on X

2. If {xn}, {zn} in X with limn d(xn, zn) = 0 =⇒ limn dY (f(xn), f(xn)) = 0.

Theorem. f : (X, dX) → (Y, dy) continuous if (X, dx) is compact. This implies f(x) is uniformly con-
tinuous. Suppose f(x) is not uniformly continuous. This implies ∃ε0 > 0 and {xn}, {yn} ⊆ X such that
limn d(xn, zn) = 0 but dY (f(xn), f(zn)) ≥ ε0,∀n ≥ n0. X compact =⇒ ∃{xnk

} subsequence of {xn} such
that it converges to x0. ∃{znk

} subsequence of {zn} such that it converges to x0.
f is continuous, then f(xnk

)→ f(x0) and f(znk
)→ f(x0). contradiction

Theorem. (X, dx), (Y, dy) metric space, X is compact. Then let Φ : X → Y be one-to-one, onto and
continuous. then Φ−1 is also continuous.

If Φ is continuous ⇐⇒ (U ⊆ X open =⇒ Φ(U) ⊆ Y is open). U ⊆ X is open, then U c = F ⊆ X
closed and X is compact. Then F is compact. Therefore, Φ(F ) ⊆ Y compact =⇒ Φ(F ) ⊆ Y is closed
there fore Φ(UC) = (Φ(U))C
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3 The Space (C(X), ‖ · ‖∞)
We assume (X, d) is a compact metric space. Then every continuous function is bounded (C(X), ‖ ·

‖∞) = (Cb(X), ‖ · ‖∞). In C(X), unless otherwise stated, the norm is ‖ · ‖∞

3.1 Weierstrass Approximation Theorem

Problem: Given h ∈ C([a, b]) and ε > 0. Exists p(x) polynomial on [a, b] such that ‖h− p‖∞ < ε?
Remarks

1. We can assume that [a, b] = [0, 1]. Assume f, g ∈ C([0, 1]) and ‖f − g‖∞ < ε.

Define Φ : [a, b]→ [0, 1] and Φ(x) = x−a
b−a ,Φ is one-to-one, onto. Then Φ′[0, 1]→ [a, b] then Φ−1(x) =

(b − a)x + a. Then f ◦ Φ, g ◦ Φ ∈ C([a, b]). In fact, ‖f ◦ Φ − g ◦ Φ‖∞ = ‖f − g‖∞. Then the map
Γ(C[0, 1], ‖‖∞) =⇒ (C[a, b], ‖‖∞). Then Γ(f) = f ◦ Φ is an isometric isomorphism with inverse
Γ−1(h) = h ◦ Φ−1, ∀h ∈ C[a, b]. Also, Γ(p(x)) is a polynomial if and only if p(x) is a polynomial.

2. We can assume f(0) = 0, f(1) = 0. If f ∈ C[0, 1], let g(x) = f(x) − [(f(1) − f(0))x + f(0)].
Then g(x) ∈ C[0, 1], g(0) = 0 = g(1). if we approximate g(x) uniformly with error at most ε by a
polynomial, the n we can do so for f(x). ε > |g(x)−p(x)| = |f(x)−{[(f(1)−f(0))x−f(0)]+p(x)}| =
|f(x)− p1(x)|

Lemma. If n ∈ N, (1 − x2)n ≥ 1 − nx2, ∀x ∈ [0, 1]. Let f(x) = (1 − x2)n − (1 − nx2). f(0) = 0,
f ′(x) = · · · > 0 on (0, 1). Then the inequality follows.

Theorem. Weierstrass Approximation Theorem: let f ∈ C[a, b]. Then there exists a sequence {pn(x)} of
polynomials such that

pn(x)→ f(x) uniformly on [a, b]

Proof. Assume that [a, b] = [0, 1] and f(0) = 0 = f(1). We can extend f(x) to a uniformly continuous
function on R by setting f(x) = 0 if x in (−∞, 0)∪ (1,∞). Note that

∫ 1
−1(1−x2)ndx 6= 0,∀n. Pick cn such

that
∫ 1
−1 cn(1− x2)ndx = 1. Let Qn(x) = cn(1− x2)n. Since (1− x2)n ≥ 1− nx2, ∀x ∈ [0, 1].∫ 1

−1
(1− x2)ndx = 2

∫ 1

0
(1− x2)ndx ≥ 2

∫ 1/
√
n

0
1− nx2dx =

4

3
√
n
≥ 1/

√
n

Then cn >
√
n. If 0 < δ < 1 =⇒ ∀x ∈ [−1, δ] ∪ [δ, 1],

cn(1− x2)n ≥
√
n(1− δ2)n

Let pn(x) =
∫ 1
−1 f(x+t)Qn(t)dt =

∫ 1−x
−x f(x+t)Qn(t)dt


t < −x
t+ x < 0

f(t+ x) = 0

=
∫ 1

0 f(u)Qn(u−x)du

{
u = x+ t

du = dt

pn(x) =

∫ 1

0
f(u)Qn(u− x)du

d2n+1p(x)

dx2n+1
=leibnizs rule

∫ 1

0
f(u)

d2n+1Qn(u− x)

dx2n+1
= 0

pn(x) is a polynomial of degree 2n + 14 or less. Let M = ‖f‖∞ 6= 0. Let ε > 0, choose 0 < δ < 1 so that
if |x − y| < δ =⇒ |f(x) − f(y)| < ε

2 . Since
∫ 1
−1Qn(t)dt = 1, this implies f(x) =

∫ 1
−1 f(x)Qn(t)dt. If
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x ∈ [0, 1],

|pn(x)− f(x)| = |
∫ 1

−1
f(x+ t)Qn(t)dt−

∫ 1

−1
f(x)Qn(t)dt|

= |
∫ 1

−1
(f(x+ t)− f(x))Qn(t)dt| ≤

∫ 1

−1
|f(x+ t)− f(x))|Qn(t)dt

=

∫ −δ
−1
|f(x+ t)− f(x)|Qn(t)dt+

∫ δ

−δ
|f(x+ t)− f(x)|Qn(t)dt+

∫ 1

δ
|f(x+ t)− f(x)|Qn(t)dt

≤ 2
√
n(1− δ2)n+1‖f‖∞ +

ε

2
+ 2
√
n(1− δ2)n+1‖f‖∞

|Pn(x)− f(x)| ≤ 4M
√
n(1− δ2)n+1 +

ε

2

Choose n large enough so that

4M
√
n(1− δ62)n+1 <

ε

2
=⇒ ‖pn − f‖∞ < ε

Corollary. Let f(x) ∈ C[0, 1] such that
∫ 1

0 f(t)dt = 0,
∫ 1

0 f(t)tndt = 0,∀n. This implies f(x) = 0, ∀x ∈
[0, 1].

Corollary. (C[a, b], ‖ · ‖∞) is separable. ∀n ∈ N,

Pn = {a0 + a1x+ · · ·+ anx
n|ai ∈ R}

Qn = {r0 + r1x+ · · ·+ rnx
n|r1 ∈ Q} =⇒ Q̄n = Pn

but also
∞⋃
n=1

Pn = C[a, b] =⇒
⋃
Qn = C[a, b]

. Qn is countable.

3.2 Stone-Weierstrass Theorem

(X, d) compact metric space:

Definition. (X, d) compact metric space, Φ ⊆ C(X) and Φ is a point separating if whenever x, y ∈ X and
x 6= y, there exists f ∈ Φ such that f(x) 6= f(y).

Remarks

1. a, b ∈ X, a 6= b. f(x) = d(x, a) =⇒ f(x) ∈ C(X) and f(a) 6= f(b) Then C(X) is point separating.

2. Suppose X has at least 2 points and Φ ⊆ C(X). Suppose f(x) = f(y),∀f ∈ Φ, ∀x, y ∈ X =⇒ g(x) =
g(y), ∀g ∈ Φ̄, ∀x, y ∈ X. Then if Φ is dense in C(X); Φ must be point separating.

Definition. A linear subspace Φ ⊆ C(X) is a lattice if ∀f, g ∈ Φ then (f ∨ g)(x) = max{f(x), g(x)} ∈ Φ
and (f ∧ g)(x) = min{f(x), g(x)} ∈ Φ.

Remarks
Let f, g ∈ C(X), (f∨g)(x) = (f(x)+g(x))+|f(x)−g(x)|

2 and (f∧g)(x) = −(f∨g)(x) =⇒ f∨g, f∧g ∈ C(X)
Then C(X) is a lattice.

If Φ ⊆ C(X), Φ is a linear subspace. Then Φ is a lattice if f ∨ g ∈ Φ,∀f, g ∈ Φ.
Examples
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f : [a, b] → R is piecewise linear if there exists a partition P = {a = t0 < · · · < tn = b} such that
f[ti−1,ti] = mi + di, ∀i = 1, · · · , n.

f : [a, b] → R is piecewise polynomial if ∃P = {a = t0 < · · · < tn = b} such that f[ti−1,ti] =
c0,i + c1,ix+ · · ·+ cn,ix

n

Theorem. Stone-Weierstrass Theorem (Lattice version): (X, d) is compact metric space, Φ ⊆ (C(X), ‖ · · · ‖∞)
linear subspace such that

1. the constant function 1 ∈ Φ

2. Φ separates points.

3. If f, g ∈ Φ =⇒ (f ∨ g) ∈ Φ

Hence, Φ is dense in C(X).

Note that if α, β ∈ R, and x 6= y ∈ X, then there exists g ∈ Φ such that g(x) = α and g(y) = β. Let

h ∈ Φ such that h(x) 6= h(y). Let g(t) = α+ (β − α) h(t)−h(x)
h(y)−h(x) =⇒ g ∈ Φ. Let f ∈ C(X) and ε > 0.

Step 1 Fix x ∈ X. For each y ∈ X, ∃hx,y(t) ∈ Φ and hx,y(x) = f(x), hx,y(y) = f(y). Since hx,y(y)−f(y) =
0, ∀y, we can find δy > 0 such that t ∈ B(y, δy) and −ε < hx,y(t) − f(t) < ε. {B(y, δy)} open cover
of X =⇒ ∃ points y1, y2, · · · , yn such that {B(yi, δyi)} cover X.

hx(t) = hx,y1 ∨ · · · ∨ hx,yn
Now if z ∈ X, ∃i such that z ∈ B(yi, δyi). f(z)− ε < hx,yi(z) ≤ hx(t).

Step 2 For each x ∈ X, hx(x) − f(x) = 0. For each x ∈ X, ∃δx > 0 such that t ∈ B(x, δx), then
−ε < hx(t)− f(t) < ε. As we did before, we can find {x1, x2, · · · , xk} such that {B(xj , δxj} is a cover
for X. Let h(t) = hx1 ∧ · · · ∧ hxk ∈ Φ. Then if z ∈ X, then f(z)− ε < h(z) < f(z) + ε.

Corollary. Let Φ1 = {f ∈ C[a, b]|f is piecewise linear} and Φ2 = {f ∈ C[a, b]|f is piecewise polynomial}.
Then Φi is dense in C(X), i = 1, 2, · · · .

Definition. A subspace Φ ⊆ C(X) is said to be a sub algebra if f · g ∈ Φ, for every f, g ∈ Φ.

Example: If P is the collection of all polynomials on [a, b], P is a sub algebra of C([a, b]).
Remark:
If Φ ⊆ C(X) is a sub algebra, then so is Φ. Let {fn}, {gn} ⊆ Φ|fn → f, gn → g. Note that fg ∈ C(X)

Note also {gn} is bounded.

‖fngn − fg‖∞ = ‖(fngn − fgn) + (fgn − fg)‖∞ ≤ ‖gn‖∞‖fn − f‖∞ + ‖f‖∞‖gn − g‖∞ → 0

Theorem. Subalgebra version) Stone-Weierstrass: (X, d) compact metric space. Let Φ be a linear subspace
of (C(X), ‖‖∞) such that

1. 1 ∈ Φ.

2. Φ separates points

3. Φ is a subalgebra

Then Φ is dense in C(X).

Proof. Step 1 If f ∈ Φ, then |f | ∈ Φ̄. Fix ε > 0, since X is compact, ∃M > 0 such that |f(x)| < M, ∀x ∈
X. We consider the function g(t) = |t| on [−M,M ]. By W.A Theorem, ∃p(t) = c0 + c1t+ · · ·+ cnt

n

such that
|g(t)− p(t)| = ||t| − p(t)| < ε,∀t ∈ [−M,M ]

but pf = c01 + c1f + c2f
2 + · · ·+ cnf

n ∈ Φ. If x ∈ X, f(x) ∈ [−M,M ] and then ||f(x)| − p(f(x))| <
ε,∀x ∈ X. This implies |f | ∈ Φ̄.
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Step 2 hg ∈ Φ =⇒ h ∨ g ∈ Φ̄. Then g ∨ h(x) = (g(x)+h(x))−|g(x)−h(x)|
2 ∈ Φ̄. Then

1. 1 ∈ Φ̄

2. Φ̄ separates points

3. Φ̄ is a lattice.

Therefore, Φ̄ = C(X) = Φ̄.

3.3 Complex Version

C(X,C) = {f : X → C|f(x) is continuous on X}. ‖f‖∞ = sup{|f(x)|x ∈ X} A subspace Φ ⊆ C(X,C)
is self-adjoint if f ∈ Φ implies that f̄ ∈ Φ.

Theorem. Stone-Weirstrass C-version (X, d) compact metric space. If Φ ⊂ C(X,C is a self-adjoint linear
subspace such that

1. 1 ∈ Φ

2. Φ separates points

3. Φ is a subalgebra

This implies Φ̄ = C(X,C).

Example
Let π = {λ ∈ C||λ| = 1}. Let φ : π → [0, 2π), eiΘ → Θ. On [0, 2π) we consider the metric d∗(Θ1,Θ2) =

the shortest at-length between eiΘ1 and eiΘ2 . Thus φ is a homeomorphism. This implies ([0, 2π), d∗) is
compact. C(π) ≈ {f ∈ C([0, 2π))|f(0) = f(2π)}. A trigonometric polynomial is an element of

TrigC([0, 2π)) = span{f(θ) = einθ|n ∈ Z}

. This implies TrigC([0, 2π)) = C([0, 2π)).
Example:
Ψ = {F (x, y) ∈ C([0, 1] × [0, 1])|F (x, y) =

∑k
i=1 f1(x)gi(y) for fi, gi ∈ C[0, 1]}. Then to prove that

Ψ̄ = C([0, 1]× [0, 1])

3.4 Compactness in (C(X), ‖ · ‖∞) and the Ascoli-Arzela Theorem

Definition. (X, d) metric space. A ⊆ X is relatively compact if Ā is compact. Remark: Assume (X, d) is
complete. Recall; if A is totally bounded, then Ā is totally bounded. Then A ⊂ X is relatively compact
⇐⇒ A is totally bounded.

Theorem. Arzela-Ascoli Theorem: Let (X, d) be a compact metric space. Let F ⊆ (C(X), ‖ · ‖∞). Then,
TFAE:

1. F is relative compact

2. F is equicontinuous and pointwise bounded.

Proof. 1 to 2: F is relative compact. This implies that F is bounded. This implies F is point wise
bounded. Fix ε > 0. F is relative compact. This implies F is totally bounded. This implies there
exists an ε

3 -net {f1, · · · , fn} ⊆ F . Since {f1, · · · , fn} is finite, it’s equicontinuous. Given ε
3 , there exists

δ > 0 such that d(x, y) < δ. This implies |fi(x) − fi(y)| < ε
3 , ∀i = 1, 2, · · · , n. Let f ∈ F and x, y ∈ X

such that d(x, y) < δ. This implies ∃i0 ∈ {1, · · · , n} such that ‖fi0 − f‖ < ε
3 . Then |f(x) − f(y)| ≤

|f(x)− fi0(x0|+ |fi0(x)− fi0(y)|+ |fi0(y)− f(y)| < ε
3 × 3 = ε.
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Definition. Compact operators Γ : (X, ‖ ·‖X)→ (Y, ‖ ·‖Y ) linear map is compact if Γ({x ∈ X|‖x‖X ≤ 1})
is relatively compact.

Remark:
Γis compact =⇒ Γ is continuous.

Example: (X, ‖ · ‖X), (Y, ‖ · ‖Y ) = (C([a, b], ‖ · ‖∞). Let K : [a, b] × [a, b] =⇒ [a, b] continuous. If

f ∈ C([a, b]). Γ(f)(x) =
∫ b
a k(x, y)f(y)dy. Clearly, Γ is linear.

Claim: Γ(f) ∈ C([a, b]). If f = θ, Γ(f) ∈ C[a, b]. If f 6= θ, since K is uniformly continuous given
ε > 0,∃δ > 0 such that ‖(x1, y1) − (x2, y2)‖2 < δ =⇒ |K(x1, y1) − K(x2, y2)| < ε

(b−a)‖f‖∞ . Now if

|x − z| < δ, then |Γ(f)(x) − Γ(f)(z)| = |
∫ b
a (K(x, y) −K(z, y))f(y)dy| ≤

∫ b
a |K(x, y) −K(z, y)||f(y)|dy <

ε
(b−a)‖f‖∞ ‖f‖∞(b− a) = ε

Claim: Γ(Bx[0, 1]) is uniformly equicontinuous. Fix ε > 0. there exists δ1 > 0 such that |x − z| <
δ1 =⇒ |K(x, y)−K(z, y)| < ε

b−a , ∀y ∈ [a, b].

let |x − z| < δ1 and f ∈ C([a, b]) such that ‖f‖∞ ≤ 1. |Γ(f)(x) − Γ(f)(z)| ≤
∫ b
a |K(x, y) −

K(y, z)||f(y)|dy < ε
Claim: Γ(Bx[θ, 1]) is uniformly bounded. Let M > 0 such that |K(x, y)| ≤ M, ∀(x, y) ∈ [a, b] × [a, b].

Let f ∈ C[a, b] such that ‖f‖∞ ≤ 1. |Γ(f)(x)| ≤
∫ b
a |K(x, y)||f(y)|dy ≤ M

∫ b
a dy = M(b − a), ∀x ∈ [a, b].

Therefore, for all f ∈ [a, b] such that ‖f‖∞ < 1. This implies Γ(Bx[θ, 1]) is relatively compact by Arzela
Ascoli Theorem,. Therefore, Γ is compact.

Theorem. Peano’s Theorem: Let f be continuous on an open subset D of R2. Let (x0y0) ∈ D. Then
the differential equation y′ = f(x, y) has a local solution through the point (x0, y0). Let R be a closed
rectangle, R ⊆ D, with (x0, y0) ∈ int(R). f os continuous on R, R compact; then there exists M ≥ 1
such that |f(x, y)| ≤ M,∀(x, y) ∈ R. Let W = {(x, y) ∈ R||y − y0| ≤ M |x − x0|} and I = [a, b] =
{x|(x, y) ∈ W for some y}. By uniform continuity, given ε > 0, ∃0 < δ < 1, such that if (x1, y1), (x2, y2) ∈
W, |x1−x2| < δ and |y1−y2| < δ =⇒ |f(x1, y1)−f(x2, y2)| < ε. Choose a = x0 < x1 < · · · < xn = b, with
|xj − xj−1| < δ

M ,∀j. On [x0, b], we define a function kε(x): kε(x0) = y0, and on [x0, x1], kε(x) is linear and
has slope f(x0, y0). On [x1, x2], kε(x) is linear and has slope f(x, kε(x1)) and proceed like this to define a
piecewise linear function kε(x) on [x0, b].

Note: the graph of kε(x) is contained in W and |kε(x)−kε(x̄)| ≤M |x− x̄|, ∀x, x̄ ∈ [x0, b]. Let x ∈ [x0, b],
x 6= xj , j = 0, 1, · · · , n. This implies there exists j such that xj−1 < x < xj .

|kε(x)− kε(xj−1)| ≤M |x− xj−1| < M
δ

M
= δ

This implies by uniform continuity of f ,

|f(xj−1, kε(xj−1)− f(x, kε(x))| < ε

but k′+ε (xj−1) = f(xj−1, kε(xj−1)) (slope approaching by the right). This implies |k+′
ε (xj−1)−f(x, kε(x)| <

ε,∀x ∈ [x0, b] such that x 6= x1, i = 0, 1, · · · , n. Let K = {kε|ε > 0}. K is pointwise bounded: (kε(x) ∈
W ⊆ R compact) K is equicontinuous. (*) By Arzela-Asidli, K is compact. Let x ∈ [x0, b], kε(x) =
y0 +

∫ x
x0
k′ε(t)dt = y0 +

∫ x
x0
f(t, kε(t)) + [(k′ε(t)− f(t, kε(t))]dt. Consider the sequence {k 1

n
(x)}n ⊆ K̄. This

implies ∃ subsequence {k 1
nk

(x)}k converging uniformly on [x0, b] to some k(x). f uniformly continuous on

W. This implies {f(t, k 1
nk

(t)} converges uniformly to f(t, k(t)) on [x0, b]. kε(t) = y0 +
∫ x
x0
f(t, k(t))dt. This

implies k(x) is a solution to the DE on [x0, b]. Similarly we can find a solution k∗(x) on [a, x0]
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