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1 Axiom of Choice & Cardinality
1.1 Notation

N set of natural numbers, {1,2,3,...}

Z set of integers, {...,—3,-2,-1,0,1,2,3,...}

Q set of rationals, {{ : a € Z,b € N, gcd(a,b) = 1}
R set of reals

inclusion ACor ACB

proper inclusion A C B

Definition. e Let X be aset P(X) = {A|]A C X} is the power set of X.

e A, B sets. The union of A and Bis AUB = {z|lx € Aorxz € B}. If I # 0, {As}acr are sets,
A, C X Va,
U Ay = {z|x € A, for some o € T}
ael

e Similarly for intersections

e Let ABcX,B\A={becBlb¢g A}. If B= X, X\ A= A® is the complement of A (in X). Note:
(A9 = A, A =BY <= A=B8B

Theorem. De Morgan’s Laws:

L. (Uael)Aa)C = mael Ag

Proof. © € (Upep)Aa)® <= 2 & Upe)Aa < Vael,x ¢ Ay < z €,/ AY O

2. (mael)Aa)C = UaEI Ag

1.2 Products & Axiom of Choice

Definition. Let X, Y be sets. The product of X and Y is X x Y = {(x,y)|lz € X,y € Y}. Let
X1, Xo,..., X, be sets. The product of {X1, Xo,...,X,} is

n
X1 x Xg--- xXn:HXi:{(xl,mg,...,xn)\xi GXZ',Vi=1,2,...}
i=1

An element (z1,...,x,) is called an n-tuple and z; is called the ith coordinate.

Theorem. If X; = X,Vi=1,---,n, [, X; = X". If X is a set, |X] is the number of elements of X. If
{X1,--- X,} is a finite collection of sets

n

[1x

=1

n

= [T 1xil

=1

If X; = X, Vi, |X"| = | X|"



How do we define the product of an arbitrary family of sets?
(x1,...,2y) € [[i=y Xi, then (x1,z2,...,z,) determines a function

Faornmwn 41,2, o0} = | X,
=1

i.e. f($1 ..... In)(Z) = X@
On the other hand, if we have a function

f:{1,2,3,... 0} = | X

=1

with f(i) € X;. We define (z1,...,2,) € [[[o; Xi by z; € X; = f(i),Vi=1,...,n

HXZ» = {f{l,Q,...,n} — Jxil£0) GXZ}

i=1 =1
Definition. Given a collection { X, },cr of sets, we define
HXa = {f 1 — UaGIXa|f(a) € Xa}
ael

Axiom. Zermlo’s Axiom of Choice. Given a non-empty collection { X, }aer if non-empty sets, [[,c; Xo =
0.

Axiom. Axiom of Choice: Given a non-empty set X, there exists a function f : P(z)\() — X for every
ACX A#0D,f(A)e A
1.3 Relations and Zorn’s Lemma
Definition. X, Y are sets A relation is a subset of X x Y. We write zRy if (z,y) € R.
1. Reflexive if zRz,Vx € X
2. Symmetric if tRy — yRx
3. Anti-symmetric xRy and yRxr — x =y
4. Transitive if Ry and yRz — xRz
Example:
1. x =R,2Ry <= z Cy. It is reflexive, antisymmetric, transitive.
2. X set. We define a relation on P(X). ARB <— ACB
3. R* relation on P(z). ARB <= ADB

Definition. A relation R on a set X is a partial order if it is reflexive, anti-symmetric and transitive.
(X, R) is a partially order set or poset.

A partial relation R on X is a total order if Vz,y € X, either xRy or yRz. (X, R) is a totally order set
or a chain.

Definition. (X, <) poset. Let A € X. z € X is an upper bound for A if a < z,Va € A. A is bounded
above if it has an upper bound. = € X is the least upper bound (or supermum) for A if = is an upper bound
and y is an upper bound, then z < y. x = lub(A) = sup(A). If x = lub(A) and x € A — x = max(A)
is the maximum of A.
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Axiom. Least Upper bound axiom for R: Consider R with usual order <. A C R, A # (). If A is bounded
above, the A has a least upper bound.

Example

1. (P(X),9), {Aatacr, 4o € X, A, # 0. X is an upper bound for {A,}acr. 0 is a lower bound,
lub({Aataer) = Uaer Ao, and glb({Aatacr) = Naer Aa

2. (P(X),D)
Definition. (X, <) poset, x € X is maximal if x < y implies z = y.
e (R, <) has no maximal element
e (P(X),<) = X is maximal.
e (P(X),>) = 0 is maximal.

Proposition. Every finite, non-empty poset has a maximal element but there are poset with no maximal
element.

Lemma. Zorn’s Lemma: (X, <) non-empty poset. If every totally order subset C of X has an up-
per bound, then (X,<) has a maximal element. Let V be a non-zero vector space. Let £ = {A <
V|A is linearly independent}.

Note: A basis B for P is a maximal element on (£, <).

Theorem. Every non-zero vector space V has a basis.

Proof. Let C = {Aq|a € I} be a chain in L.
Let A=J,.; As- Claim: A is linearly independent. Let {x1,xo, - ,z,} C A, {81,082, - ,0n} C R.

acl
Then Bi1z1 + Bax2 + - - + fBpxy = 0.

For each i = 1,2, ,n, Ja;|z; € A,,.

Assume, A,, € A,, € -+ C A,, (L is a chain, change name of index if needed). Therefore,
{z1,29, - ,2} C A,, and A,, is linearly independent. Hence, {x1,x2, -+ ,x,} is linearly indepen-
dent. Lastly, 8; = 0,Vi. Then A is linearly independent. A is an upper bound for C on £. By Zorn’s
lemma, £ has a maximal element. ]

Definition. A poset (X, <) is well-ordered, if every non-empty subset A has a least element.
Examples
e (N, <) is well-ordered.
e Q={2n€Z meN,gecd(n,m) =1}
2"3m n>0
We can construct a well-order on Q. ¢ : Q — N by ¢(;-) = {1 n=20. ¢is 1-to-1.
57T n <0

<!«
H(2) < 6(2)
(Q, <) is well-ordered.

Axiom. Well-ordering principle: Given any set X # Q, there exists a partial order < such that (X, <) is
well-ordered.

Theorem. TFAE:

1. Axiom of Choice
2. Zorn’s lemma

3. Well-ordering principle



1.4 Equivalence Relations & Cardinality
Definition. A relation ~ on a set X is an equivalence relation if

1. Reflexive

2. Symmetric

3. Transitive

Given x € X, let [z] = {y € X|z ~ y} be the equivalence class of x.
Proposition. Let ~ be an equivalence relation on X

1. [z] #0,Vz e X

2. For each z,y € X, either [z] = [y] or [z] N [y] = 0.

3. X = UxEX [‘T]
Definition. If X is a set, a partition of X is a collection P = {A, C X|a € I}.

1. Ay # 0,Va.
2. IfB#a = AyUAg=0
3. X = Uyes Aa-

Note:
Given ~ on X = ~ induces a partition on X. Given a partition on X (P = {Ay|a € I}) we define
an equivalence relation on X:
T~y < x,y € Ay, for some a

Example: Define ~ on P(X) by A ~ B <= 3 a l-to-1 and onto function f : A — B. ~ is an
equivalence relation.

Definition. Two sets X and Y are equivalent if there exists a 1-to-1 and onto function f : X — Y. In
this case, we write X ~ Y. We say that X and Y have the same cardinality, | X| = |Y|.
A set X is finite if X = or X ~ {1,2,--- ,n} for some n € N, |X| = n. Otherwise, X is infinite.

Can X be equivalent to both {1,2,--- ,n} and {1,2,--- ;m}, with n # m? If X ~ {1,2,--- ,n} and
X ~{1,2,--- ,m} = {1,2,---,n} ~{1,2,--- ,m}.

Proposition. The set {1,2,---,m} is not equivalent to any proper subset of itself.

Proof. Induction on m

m = 1: The only proper subset of {1} is (). and {1} ~ 0.

m = k Statement holds for {1,2,---  k}. Assume 35 C {1,2,--- ,k,k+1}and f:{1,2,--- ,k+1} — 5,
1-to-1 and onto.

Two cases:

LIfk+1eS = fuo.ny 1,2k} = S\{f(k+1)} €{1,2,--- ,k}. This is impossible.
2. Ifk+1€ S, f(k+1) =k+1, then fro.. 1{1,2,---,k} — S\{k+1} € {1,2,--- ,k}. This is
impossible.
k+1 Il=k+1
If f(k+1)=jand f(i) = k+1. Define f*: {1,2,--- ,k+1} = S, f*(1) = j l=1i . This

f(l)  otherwise
is impossible



Corollary. If X is finite, then X is not equivalent to any proper subset of itself.

Example:
f:N—=N\{1} =n — n+1is 1-to-1 and onto. Hence N ~ N\{1}.

Definition. A set X is countable if X is finite or X ~ N. Otherwise, uncountable.X is countable infinite
if X ~N,|X|=|N =¥

Proposition. Every infinite set contains a countable infinite subsets.

Proof. By Axiom of Choice, 3f : P(X)\0 — X, f(A) € A. 21 = f(X) and x2 = f(X\{z1}) Zpy1 =
f(X\{xlva’ e 7$n})

A= {x1,z2,  + ,Tpy1, - }X is countable infinite. O
Corollary. A set X is infinite if and only if it is equivalent to a proper subset of itself.
Theorem. (Cantor-Schroeder-Berstein) (CSB) Assume that Ao C A; C Ag. If Ay ~ Ay, then A; ~ Ay.

Corollary. Assume A] C Aand B C B. If A~ By and B~ Ay, then A~ B. f: A— Bjis 1-to-1 and
onto and g : B — Aj is 1-to-1 and onto. Ay = g(f(A) = g(B) € A1 C ad go f is 1-to-1 and onto on A,.
Hence As ~ A —¢5B A ~ A and A; ~ B. Hence A ~ B.

Corollary. An infinite set X is countable infinite if and only if there exists a 1-to-1 function f : X — N.

Proposition. Assume there exists g : X — Y onto. Then there exists a 1-to-1 function f:Y — X.

Proof. By axiom of choice, 3h : P(z)\0 — X,h(A) € A;A # 0,A C X. Vy € Y, define f(y) =
h(g~*({y})) € X. f: Y — X. Check fis 1-to-1. O

Corollary. X,Y sets. TFAE
1. 3f: X =Y, 1-to-1
2. dg: Y — X, is onto
3. Y] = |X]|
Theorem. [0, 1] is uncountable.

Proof. Assume [0, 1] is countable
[0,1] ={a1, a2, ,an, -}
each real number has a unique decimal expansion if we don’t allow .999 (co times 9)

a1 = 0.a11a12a013 - - -

az = 0.az1a22a23 - - -

a3 = 0.az1azzazz - - -

1 anl#l

2 app, =1

Let b € [0,1), b = 0.b1ba--- where b, := { Well, b # ay,Vn. It is impossible. Then [0, 1] is

uncountable.
O

Corollary. R is uncountable. R ~ (0,1). Note |R| = ¢.

Theorem. Comparability theorem for cardinals: Given X, Y sets, either | X| < |Y]| or |Y| < | X].
6



1.5 Cardinal Arithmetic
1.5.1 Sums of Cardinals
Definition. Let X Y be disjoint sets, then
X|+Y|= X UY]|
Examples
1. X ={1,3,5,--- },)Y ={2,4,6,--- }. | X|+|Y]=No+ Rog = No.

Theorem. If X is infinite, then
[ X[+ Y] = maz{| X[, [Y]}

In particular,
| X[+ X[ = |X]

Xi,--+, X, countable sets. Then ||J;_; X;| = Ro.
Theorem. {X;}2°, countable collection of countable sets, then X = (7=, X; is countable.

Note: we can assume X;NX; = 0 if i # j. Otherwise, let By = X1, By = Xo\ X1, , B, = n\U?:_in.
Assume {X;}2°, is pairwise disjoint if X; # 0, let X; = {x;1, zi2, - - - } countable. Let f: X =U? X; - N
1-to-1 such that f(z;;) = 2'37.

1.5.2 Product of cardinals

Let X,Y be two sets
XY =X x V]

Theorem. If X is infinite and Y # (), then
[ X]- Y] = max{[X], [Y]}
In particular,

(X 1X] = |X]

1.5.3 Exponentiation of Cardinals

Recall: Given a collection {Y, },cx of non-empty sets, we defined

[[v-={f:X— | Yalf(x) e V2}

rzeX rzeX
Ifvez e X, Y, =Y forsomeset Y, Y* =[x Yo =[Loex Y ={f: X 2 Y}.
Definition. Let X, Y non empty sets, we define
VX = |y
Theorem. X,Y, 7 non-empty sets.
1. ‘y‘\Xl‘Y‘IZI - yy|lX\+\Z|
2. (|Y‘\X|)IZ\ — ‘y‘\XIHZI



Example (2% = ¢) 2% = {0, 1}N| = |{{an }nen|an = 0 or a, = 1}.
2% < e f{0,1}N — [0,1] is 1-to-1 such that {a,} — > 00, &.
2% = g:[0,1] = {0, 1}V is I-to-1. =300 92 — {a,}.
Hence done.

Given a set X, we want to find |[P(X)| = 211,

1 €A
Let AC X, x4 :X — {0,1}, such that x4(z) = 0 v A This is called characteristics function of
x

A Xpc{0,1}X. If fe{0,1}¥, A= {2 € X|f(z) =1}. Hence x4 = f. Let I' : P(X) — {0,1}N. Hence
[ is a bijection. Therefore [P(X)| = 21X1.

Theorem. [P(X)| > |X| for any X # () (Russel’s Paradox)

It is enough to show that there is no onto function X — P(X). Assume to the contrary: there exists
f:X — P(X) onto.

A={zr e Xz ¢ f(X)}.Fzo € X|f(xg) = A. If Xo € A+ = ¢ ¢ f(zo) = A. Impossible. If
X¢A: = x0€ f(zg) =A. OK

2 Metric spaces

Definition. Let X # (). A metric on X is a function d : X x X — R.
1. d(z,y) > 0,Vx,y € X. d(z,y) =0 = z =y.
2. d(z,y) = d(y,x),Vz,y € X.
3. d(z,y) <d(z,z) +d(z,y),Vz,y,z € X.
(X,d) is a metric space.
Examples

1. X =R d(z,y) = |z — y| “usual metric on R”

0 z=y
“discrete metric”

2. X any non-empty set d(z,y) =
1 z#y

3. X = R™ da((z1, 22, ), (Y1, %2, Un)) = /Doiey (Ti — yi)2. da verifies 1),2). This is called
“Fuclidean Metric”.
Definition. Let V be a vector space. A norm on V is a function || - || : V' — R such that
Lz >0,Vz e V. ||z =0 < =0
2. ||ax| = |a|||z||, Vo € R,Vz € V.
3. Ml +yll < llzll + llyll, Ve, y € V
(VI - ||) is normed vector space.
Remark: (V[ -||) normed vector space. | - | induces a metric on V. dy(z,y) = ||z — y||
Lodp(z,y) =z -y >0Va,yeV. [z —y|=0 = z=uy.
2. dy(z,y) = [l —yll = | = Ully — z|| = d)(y, )
3. dy(z,y) = llz =yl <z — 2] + [z —yll



Examples
L X =R (21, 2n)l2 = (X |2il?)/2 dj.|, = d2. This is a 2-norm or Euclidean norm.
2. X =R", 1 <p<oo. |[(z1,22, -, 2n)|p = 1, |2i|P)/P This is called p-norm.
3. X =R", |[(x1, - ,2n)||co = max{|z;|}. This is called co—norm.
4. (1, ,2n)|li = >i—q |zi|. This is called 1-norm.

Remark: Letp,1<p<oo,andq,%+%:1. Then1+§:p =
qg—1 = 1

p—1

ESEiS]

SN

— 9 _ 4 _
=574 1.

Lemma. Let o, 5> 0,1 <p < oo. If % + % =1, then af < ‘% + % (Young’s inequality)
_ 1 A | o p—1 B,q-17, _ aP a
u=tr" = t=wurT =ull af < [P ldt + [ ul du—%ﬁ—’%.

Theorem. Hdder’s Inequality: Let (ai,---,a,) and (b1, -+ ,b,) € R™. Let 1 < p < oo and % —1—5 =1.

Then " n "
> aibil < O ai)VPO il 1)
i=1 i=1 i=1

Proof. Assume a # 0 # b.
Note: o, 8 > 0,

n n

" [(aa) (85:)] = a8 Y laibi]

i=1 i=1
O laaiP)? = a(d |aiP)”
i=1 i=1
(D186l = B bl
i=1 i=1
Then the inequality holds for a,b € R” <= it holds for aa, b € R™ for some af > 0. By scaling if

needed, we can assume
n n
O laiP)P =1, )1 =1
i=1 i=1

Lemma. » bl
lasbs| < M+ @7%: 1,--,n
p q

"o PP ?: b; |2
Hence }77"; |aibi| < Z“;Ja SqEIp> ;' ® % + é =1 O
Theorem. Minkowski’s Inequality: Let a = (a1,a9, - ,a,),b = (b1,ba,--+ ,b,) € R™. Let 1 < p < o0,

then

O lai+bi7) 7 < (3 Jaal?) 7 (3 i)
=1 =1 =1



Proof. Assume a # 0 # b. Let q/% + % =1.

n n

D lai +bilP =" |ai + billa; + bl

=1 i=1

n n
< Z |a;||a; + b P~ + Z |billa; + bi P~
i=1 i=1

D laillai + 0P < Q- lad)P (Y (lai + 0P DY = (3 fasl?) P i+ bifP)
i=1 i=1 1 =1 =1

1=

Similarly, > |billa; + bi[P™ < (3 15:fP) P> lai + bsfP) 4
=1 i=1

=1
S las bl < (O fail?) M7 4 (30 107D s + i)
i=1 =1 i=1 i=1

n

(> lai + ) < lall, + o],
=1

Examples: sequence space

L. Let 1 = {{zn} D202, |on] < oo} Then |{zn}li = Doooy |zn]- Let {zn},{yn} € li. Claim that
{n+yn} €l. Let k€N

k k k 00 oo
>z F ynl Dl D lyal <Dl + Dyl < 00
n=1 n=1 n=1 n=1

n=1

e}

By MCT, {Zle |Tp + yn|} convergent then > °° | |z, + yn| convergent. Hence {x, + y,} € 1.

Moreover,
{zn +ynd I < [{zndll + [{yn bl

This implies || - |1 is a norm.
2. Let 1 < p < oo,
o0
lp = {{zn}] Y |2ilP < o0}
i=1
{zn}p = 252, |2i[P)Y/P Prove that {z,}, {yn} € I, and then {2, +y,} €I, and || - ||, is norm.
3. loo = {{zn}|sup{|zn|} < o0}. |{zn}|lcoc = sup{|x,|}. This is a norm.

Examples Continuous function space

1. [C’(E;]I, b)) = {f : [a,b] — R| fis continuous}. ||f|lecc = max{|f(x)||x € [a,b]}. Let f,g € C([a,b]),x €

[(f+9)(@)] = [f(2) + g(@)] <[f(@)| + |g(2)] < supzealf(@)] + Tax, (@) = I flloc + llglloo

1f + glleo = Jnas [f (@) + g(2)] < | flloo + [lglloo

2. Cla,b)), Ifll = [71(2)ldt.
10



b
3. C([a,0)), Ifll, = (J; |F(®)[Pdt)'/P
Theorem. Holder’s inequality II: Let 1 < p < oo, ]l? + % =1.If f,g € Cla, ]

b b b
/ F(B)g(t)ldt < ( / FPdey( / g(t) )Mo

Theorem. Minkowski’s Inequality II: If f,g € C([a,b]) and 1 < p < o0

b b b
( / (f + 9)B)Pdr)7? < ( / PP + / MOIZORG

Then f #0 # g.
Proof.

b b
[ 180+ gtrae = [ 1+ 90 + )P
a ab b
< [150I + 9P+ [ 19l + 9P
a,b b a
<( / F@Pdey / () + g(t)| P Dadr)V/a
b b
+( / lg(t)Pdt) VP / () + g(t)| ¢ Dadr)V/a
b b b b
/ () + gt) Pt < [( / F@Pde)? + ( / lg(t)Pde) 7 / () + g(t)Pdr)Y/a

b
([ 170+ g(olPa' = < |11, + gl

Example: Bounded operators

Let (X, ||'||x) and (Y, ||-||y') be normed linear spaces. Let T : X — Y, linear. ||T|| := sup{||T(x)||y|||z||x <
1,z e X}. B(X,Y)={T: X — Y linear|||T]| < co}.
Claim: B(X,Y) is a vector space and || - || is a norm.

e I'SeB(X,)Y) = T'+SeB(X,)Y), zeX,|z|x <
(T + 8)(@)lly = T(x) + S()[ly
< NT@)lly +115(=)lly
< 17+ 1151
1T+ S| = supl| (T + S)(@) | < T[]+ [|S]] < 00,2 € X, [Jz]lx <1
= T+SeB(X,Y)and [T+ S| <|T|+ |5

e acRT e B(X,Y)

[aTl|= sup [[aT(z)|ly =|a] sup [T(z)lly = |af|T] < oo
zeX ||zl x <1 zeX,||z||x <1

= oT € B(X,Y) and [[oT|| = ||| T|
Note B(X,Y) < L(X,Y), 0 € B(X,Y) = B(X,Y) subspace of L(X,Y). |T| > 0 and ||T| =
0 <= [IT(x)lly =0,z € X, [z x <1.
11



2.1 Topology of Metric Spaces
Definition. Let (X, d) be a metric space. Let g € X and € > 0. The open ball centered at xg with radius
i
o B(zg,€) = {x € X|d(z,z0) < €}
The closed ball centered at xg with radius € is
Blzg, €] = {z € X|d(x,z0) < €}
A subset U C X is open if Vo € U,3e > 0|B(x,¢) C U. A subset F' C X is closed if F is open.
Proposition. Let (X, d) be a metric space. Then
1. X, () are open.
2. If {Uqs}aer is a collection of open sets, then the union of all the sets in this collection is open =.
3. If {Uy,Us,--- ,Upy} are open, then N}, U; is open.
Example
1. Ifx € X, any € > 0, B(z,e) C X = X is open. ) is “trivially” open.

2. If x € UaerU,, then Ja € I such that z € U,,. Since U, is an open set and = € U,,, e > 0 such
that B(z,€) C Uy C UperUa = UqaerU, is open.

3. If z € N U;, Vi € {1,---,n},3e < 0 such that B(z,e) C U, let € = min{e[i = 1,---,n} >
0,B(x,€) C B(x,¢),Vi = B(x,¢) €N B(x,€¢) C NI, Ui.

Proposition. Let (X, d) be a metric space. Then
1. X, 0 are closed
2. If {F,}aer is addition of close sets, then NyerFy, is closed
3. If Fy,--- | F, are closed sets, then the union is also closed.

From this proposition, it flows that if (X, d) is a metric space. 7; = {U C X|U is open with respect to d}.
7 is a topology.

Proposition. Let (X, d) be a metric space, then
1. fxzp € X, e >0 = B(xp,¢€) is open
2. U C X is open <= U is the union of open balls
3. If zp € X,e >0 = Bz, ¢ is closed
4. If z € X, {x} is closed. Every finite subset is closed.

Proof. 1. Let € B(xzg,€), then d(z,z9) = § < € Let ¢ = ¢ — . Claim B(z,¢’) C B(x,€). Let
x € B(z,€) and d(zg, 2) < d(xo,z) + d(z, z) < € + € — § = € This proves that B(zo,€) is open.

2. = follows (1). — If x € U,3e, > 0 such that B(z,e;) C U, UpecyB(z,€;) = U.
3. Let = € (Blzo,€])C. d(z,z0) =6 > €. Let € =0 -e. Claim B(z,€) C (Blzo,€])¢. Let z € B(x, €)
assume z € Blzo, €], d(z, z0 < d(x,2) +d(z,70) < € + € =0 — e+ ¢ = 6. This implies z € (B[xo, €])°.
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4. Ity € {x}%, then y # = and d(y,z) > 0 and B(y,d(x,y)) = {2} is open.

Open sets in R.
Recall I C R is an interval if z,y € I and z such that x < 2 <y = z € I.

e Open finite intervals (a, b)

Closed finite intervals [a, b].

Half open finite set (a, b].

e Open rays (a, o)

Closed rays

Example: Cantor set

P, is obtained from P,_; by removing the open interval of length 1/3™ from the middle third of each
of the 2”1 subintervals of P,_;. Each P, is closed. It’s the union of 2" closed intervals of length 1 /3™

o
P = ﬂ P, Cantor (ternary) set)

n=1
e P is closed

e P is uncountable (r € P — =}, ¢ with a, = 0,2.

e P contains no interval of positive length

Example: Discrete metric

L z#y
0 z=y
IfU=X,U=Ugev{zr} = UzerB(z,1) open. U is also closed.

X set, d(z,y) = x € X,B(z,2) =X, B(z,1) = {x} is an open set.

2.2 Boundaries, interiors and closures
Definition. Let (X, d) metric space,

1. A C = The closure of A is
A =n{Fclosed in |[A C F}

It’s the smallest closed set that contains A.
2. The interior of A is int(A) = U{U is open in X|U C A}. It is the largest open set inside A.
3. Let z € X, N C X, we say that N is a neighborhood of x (N C N,). If z € int(N).

4. Given A C X,z € X is a boundary point of A. If for every neighbor N of x, we have N N A # () and
NNAC # (. Equivalently, x is a boundary point of A, if Ve > 0, B(z, )N A # () and B(z, )N AC # 0.

(0A)bdy(A) = {x € X|zis a boundary point of A}

Proposition. (X,d) metric space, A C X

1. Ais closed <= bdy(A) C A
13



2. A= AUbdy(A).

Proof. 1. (=) A is close if and only if A is open. If z € A®, 3¢ > 0 such that B(z,¢) C A® and
then B(z,e)NA=0 = x ¢ bdy(A).

+ Let z € AY, then = ¢ bdy(A). This implies Je > 0 such that B(x,e) N A = (). This implies
B(z,€) C A®. By definition, A® is open.

2. Claim that bdy(A) C A. Let = € (A)®. There exists 3¢ > 0 such that B(x,e) N A = (). This implies
that B(z,e)N A =0 = x ¢ bdy(A). This implies F = bdy(A) UA C A. Claim that F is closed.
O

Definition. Let (X, d) metric space, A C X and € X. We say that x is a limit point of A, if for all

neighbor hood N of x, we have N N (A\{z}) # 0. Equivalently, Ve > 0, B(x,¢) N (A\{z}) # 0. The set of
limit points of A is Lim(A) cluster points.

Note: A =10,1] C R,bdy(A) ={0,1}, Lim(A) = A. For B = {z} C R,bdy(B) = B, Lim(B) = (.
Proposition. Let (X, d) metric space, A C X

1. Ais closed <= Lim(A) C A

2. A= AU Lim(A).
Proposition. 1. ACB.

2. int(A) Cint(A).

3. int(A) = A\bdy(A).
Proposition. Let A, B C (X, d) metric space.

1. AUB=AUB

2. int(AU B) = int(A) Nint(B)

Proof. 1. AUBC AUB. Hence, AUBC AUB
Conversely, AC AUB = A C AU B. Similarly for B.

2. int(A) Nint(B) C AN B. and int(A) Nint(B) Cint(AN B).

Conversely, int(ANB) C A = int(AN B) Cint(A). Similar for B.
O

Definition. Let (X, d) metric space. A C X is dense in X if A = X. We say that (X, d) is separable if X
has a countable subset A such that A = X. Otherwise, X is non-separable.

Examples:

1. R is separable

2. R™ is separable.

3. [y is separable

4. [ is non-separable.

Question:
Is (Cla, b], ||||c) separable?

14



2.3 Convergence of sequences and topology in a metric space

Definition. (X,d) metric space, {z,} C X sequence. We say that {x,} converges to a point xg € X if
Ve > 0,3np € N such that if n > ng, then d(x,, z¢) < €. Then x is the limit of {x,, }, lim,, z,, = xo, z, — 0.
Equivalently, lim,, z,, = ¢y <= lim, d(zo,z) = 0.

Proposition. (X, d) metric space, {z,} C X. If limx,, = 2o = yo
Proposition. 1. xy € bdy(A) <= 3 sequence {z,,} C A, {y,} C A° such that z,, = x¢, yn — Zo.
2. A is closed <= whenever {z,,} C A with x,, - zg = z9 C A.

Proof. 1. zy € bdy(A), x, € B(xo, %) NA. y, € B(xp, %) N A€, Conversely, suppose {z,} C A, {y,} C
AC xy — 20, yn — x0. Given e > 0,3IN € N, such that x,, € B(zg,¢),Yn > N — B(xg,e) N A # .
dN’ € N, such that z, € B(zg,e),Vn > N = B(xg,e) N A° # (. This implies z¢ € bdy(A).

2. A is closed, {z,} C A, x,, = xo. Suppose xg € A° = Je > 0, such that B(zg,c) N A = but since
Tn — o, AN € N, such that d(zg,z,) < €,Vn > N. Contradiction. Then z(y € A.

Conversely, suppose A is not closed, Then z¢ € bdy(A)\A. By (1), I{x,} C A such that z, —
rg = x9 € A. This is a contradiction. Then A is closed.
O

Proposition. Let (X, d) metric space, {z,} C X. If ¢ = lim,, 00 Tn, = Yo, then xy = yo.

Proof. Suppose xg # yo = d(x0,y0) = € > 0. § > 0,IN € N such that d(xn,29) < §,Vn > N, IN" € N
such that d(xn,z0) < §,Vn > N, If n = max{N, N'}, € = d(xo, y0) < d(x0,zn)+d(xn,y0) < 5+5 =€ O

Definition. We say that x¢ is a limit point of {z,} if 3 a subsequence {zy, } of {z,} such that x,, — zo.
lim*({xn}) = {xo € X|x¢ is a limit point of {x,}} lim({z,}) < {z,} subset of X.

Example, x, = (=1)" .lim*({z,}) = {-1,1}. lim({z,}) = 0.
Proposition. (X, d) metric space, A C X. xy € lim(A) < FH{z,} C A, with x,, # zp and z,, — xp.
Proof. Let xg € lim(A),Vn € N,3z,, € N such that {z,} N B(zo, 1) Hence {z,} C A, z, # 0, 2, — 0.
Conversely. Ve > 0, A\{zo} N B(zg,€) # 0. Since N € N, such that x,, # zo € B(xg,€),Vn > N. [

2.4 Induced metric and the relative topology

Definition. Let (X, d) metric space, A C X. Definedy : AXA — R such that ds(z,y) = d(z,y),Vz,y € A.
d4 is a mtreic, and its called the induced metric. Let 74 = {W C A|W = U N A for some U open in X}.
T4 is a topology in A called the relative topology in A inherited from 74 on X.

Theorem. (X,d) metric space, A C X, Then 74 = 74,,.

Proof. Let W C AW € 74 and x € W. 3U open in X such that UNA=W. z € U = de > 0 such
that By(z,e) CU. z € By, (z,€) C By(z,e) CU. x € By, (z,) CUNA=W € 14,.
Let W C AW € 1q,,Vo € W, 3¢, > 0 such that By, (z,€,) € W.

W = U Bg,(x,€)
zeW

XDoU= U Bj(z,€;) open in X
zeW

Now W =ANU = W € 14. O
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2.5 Continuity

(X, dz), (Y,dy) metric spaces, f: X — Y function f(z) is continuous at x9 € X if Ve > 0,36 > 0 such
that x € B(xo,9) then f(x) € B(f(x0),€). Otherwise, f(z) is discontinuous at z¢ f(z) is continuous if it
is continuous at zg, for all o € X.

Theorem. (X,d;), (Y, d,) metric space, f : X — Y TFAE
1. f(x) is continuous at zp € X.

2. If W is a neighborhood of g = f(xg), then v = is a neighborhood of x.

(W)
Proof. From (1) to (2): Je > 0 such that B(f(zg),e) € W. This implies 3§ > 0 such that d(z,z9) <
6 = dx(f(2),f(z0)) < e Therefore, f(B(xo,0)) € B(f(x0),e) € W. But V = f~1(W) Hence
xo € B(zp,0) C V = 0 € int(V).
From 2 to 1, let € > 0, Therefore, B(f(x¢),¢) = W neighborhood of f(xg). THen f~1(W) is a
neighborhood of z, i.e. x¢ € int(f~1(W)) Therefore, 36 > 0 such that B(zg,d) C f~H(W). O

Theorem. Sequential Characterization of continuous (X, d,), (Y, d,) metric space, f : X — Y, TFAE
1. f(z) is continuous at zo € X.
2. If {zn} C X,z > 0 = f(zn) — f(20)-

Proof. From 1 to 2, f(x) is continuous at zg, {z,} C X, z, — xo. Fix € > 0, then 36 > 0 such that
de(z,20) <6 = dy(f(x), f(z0)) < €. Since x, = xo. IN € N, such that if n > N, d,(xn,20) <6 =
dy(F (@), F(0)) < e

From 2 to 1, assume f(x) is not continuous at zp. Jey > 0, for every ball B, (1‘0,5) Jzs € By(wo,9)
such that dy (f(zs), f(z0) > €. In particular, for each n € N, z, € By(zo, %) Note: z, — xo but
dy (f(zn), f(xo)) > € i.e. f(x,) does not converge to f(xg). O

Theorem. (X,d,), (Y,d,) metric space, f : X =Y, TFAE
1. f(x) is continuous
2. If W C Y is open, then f~1(W) =V C X is open
3. If {z,,} C X, x,, = x for some 2y € X, then f(z,) — f(xg) €Y.

Proof. 3 to 1 is done

1to2 Let W C Y openand V = f~Y(W). Let 29 € V', f(xg) € W open. Therefore, W is a
neighborhood of f(xg). By 1, f~1(W) = V is a neighborhood of g i.e. g € int(V) Then V = int(V) is
open.

2 to 3: let {z,} € X,z, — zo. Let yo = f(x9). Fix € > 0, if W = By(yo,€) open in Y. Then
f~Y(W) C X open. Note: g € V. = 30 > 0, such that B,(zg,6) C V. Since z, — x0,3N
such that if n > N, then dy(x,,z¢) < 6, ie. =, € V,Vn > N. Hence f(z,) C W,¥n > N. ie.

dy(f(zn), f(x0)) <€ <= flzn) = f(20). O
Example: X a set, d discrete metric (Y, d;) metric space, f(X,d) — (Y, dy) is continuous.

Definition. f(X,dx) — (X,d,): f is a homeomorphism if f is one-to-one and onto, and both f and f~!
are continuous. We say that (X, dx) and (Y, dy) are homeomorphic.

Remark: f: X — Y is homeomorphic, U C X is open <= f(U) CY is open.

Two metric spaces (X, dx) and (Y, dy) are equivalent if 3 a one-to-one and onto map f: X — Y and
two constants, ci,co > 0, such that cidx(x1,2 — 2) < dy (f(x1), f(z2)) < cadx (21, 22), V1,2 — 2 € X.
Remark: If X and Y are equivalent, then they are homeomorphic.
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2.6 Complete Metric Spaces: Cauchy sequences

Note: If {z,} C (X,dx),xn — zo € X then Ve > 0,3N € N such that if n > N = d(z9,zy) < €/2,
If n,m >N, d(xn, Tm) < d(zn, z0) + d(z0, Tm) < €/2+€/2 < €.

Definition. A sequence {x,} C (X,d,) is cauchy in (X,d;) if Ve > 0,3N € N,Vn,m > N, d(zy, zm) < €.
Theorem. Let {z,,} C (X,d;) be a convergent sequence then {z,} is Cauchy.

Does every Cauchy sequence converge? x,, = %, X = (0,2) used metric {z,} is Cauchy but it does not
converge.

Definition. A metric space (X,d,) is complete if every Cauchy sequence converges. A set A C X is
bounded if 3M > 0, and xp € X such that A C B[zg, M].

Proposition. Every Cauchy sequence is bounded {z,} is Cauchy. This implies 3N € N such that Vn,m >
N,d(xn, ) < 1. In particular, d(xn, zmy) < 1,Ym > N. M = max{d(z1,zn), - ,d(xn_1,2N),1}. This
implies {z,,} C Blxn, M].

Proposition. Assume {z,} is a Cauchy sequence with a subsequence {x,, } such that z,, — xo. Then
Tn — 9. Then z, — xp. Let ¢ > 0 == IN € N such that n,m > N,d(xz,,z,) < €/2 since
Ty, — o, 3k € N such that Vny > k,d(xy,,z0) < €/2. M = max{N,k},Vn > M,d(zy,x0) < d(xn,zn,) +
d(xp,,x0) < €/2+¢€¢/2 < e. Pick n, > M.

2.7 Completeness of R,R" and [,

Theorem. Bolzano-Weierstrass Theorem: every bounded sequence in R has a convergent subsequence.

Theorem. Completeness Theorem for R. Every Cauchy sequence in R converges. {z,} is Cauchy —
{zy} is bounded = {x,} has a convergent subsequence = Then {x,} is convergent.

Theorem. Let 1 < p < oo, every Cauchy sequence in (R”, || - ||,) converges.

Lemma. Let 1 < p < oo, let {z}} be a Cauchy sequence in (I, || -||,). Then for each i € N, the component
sequence {xy 2} is Cauchy in R.

Proof. Assume {xp}ren € (Ip, | - ||p) is Cauchy. z = {xp1,- - ,2k,} Since each component sequence
{x i}k is Cauchy on R. and R is complete. Let zg; = i,z € R Let 29 = {xo1,- -+ , %0, - }-
Claim: zg € [, and xj, — 0.

Let € > 0, 3Ng € N such that k,m > Ny, ||z — zxll, < 5.

Case 1 Let p = o0, k > No, |@mi — Tkil < ||2m — Tklloo, Ym > No,Vi € N k > Ny, |zo; — 24| =
limy, o0 [Tm,i — Tri| < § <€, Vi € N. This implies {zo; — Tk, }i € loo. Well {2} € loo. This implies
{z0,} € los. Therefore, ||xg — zk|lc0 < €, Vk > Ny. This implies z1, — xo.

Case 2 Let k > Ny. For each j € N such that (Z{Zl |Zm.i — TpiP)YP < || — el < §- (Zgzl |zo,; —
o) VP = dim (31 [omi — wral?)P < 5

[e.9]

(Z |0 — Xk

i=1

PYUP < % < e,Vk> Ny
Then this implies {zo; —x;} € I” and {zy;}; € [P. Then {x¢;} = zo € IP. then ||xg— x|, < €, Vk >
Ny, then x, — xp.

O
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2.8 Completeness of (Cy(X), || - |lco)

Definition. (X,d.), (Y,d,) metric space { f, } sequence of functions f, : X — Y. {f,} converges pointwise
to fo : X = Y iflim, f,(x0) = fo(xo),Vao € X. {fn} converges uniformly to fop: X — Y if Ve > 0,INy € N
such that n > Ny, dy (fn(x), fo(z)) <€, Vr e X.

Remark: {f,} such that f, —uriform f, — f, —pointwise g (0) v Let fo(r) = 2™ on [0,1].
fu(x) = fo(z),Vz, for fo(x) =1,2 =1 otherwise 0.

Theorem. (X,d,),(Y,d,) metric space, {f,} such that f, : X — Y and f, =" fo: X — Y. If each f,
is continuous at xg, so is fo.

frn =" fo. This implies 3Ny € N such that n > No, dy(fn (), fo(z)) < §,Vz € X.

fn continuous at zp,Vn = in particular fpy, is continuous at xp. This means 3§ > 0 such that
x € B(wo,0) = dy(fny(@0), [no (7)) < 3

Proof. If x € B(xo,0),

dy (fo(zo), fo(z)) < dy (fo(wo), fno (w0)) + dy (fng (%0), fvg (7)) + dy (fng (), fo(x)) < § X3=¢€

Definition. (X, d,) metric space, Cp(X) := {f : X — R|f is continuous on X and f(x) is bounded}.

[flloo = sup{|f(z)|lz € X}
(Co(X), | - lloo) is a normed linear space.
Remark: let {f,} C Co(X), fn(X,ds) = (R, usual metric). f, —llle fo «— f, suniform
Theorem. Completeness for (Cp(X), | - |loo)s (Co(X), || - [|so) is complete.

Let {f.} be a Cauchy sequence.For each xo € X, |fn(z0) — fm(z0)| < ||fn — fimlloo. It follows, that
{fn(z0)} is Cauchy in R, Vzg € X. fo(z) = lim, o0 fn(z),Vr € X.

Claim: f, — fo.

Let € > 0, choose Ny such that n,m > No = | fn — fullo < 5. If n > Ny and € X, then
|fn(z) = fo(z)] = limy 00 | fu(z) — fm(z)| < § < e. Therefore, f,, = fo == fo is continuous.

fo is bounded. {f,} is Cauchy, then {f,} is bounded. IM > 0 such that || f,|lcc < M,Vn € N. Ing
such that |fo(z) — fu,(2)| < 1,Vx € X. Then |fo(x)| < fo(x) — fue(@)| + | fro(x)] < 14 M,Vz € X. Hence
fo € Cp(X) and f, — fo.

Remark: N, discrete metric space. (Cp(N), || - [loo) = (loo; ||l|oo) and (Co(X), || - [loo) = (loo(X), || - [|c0)

2.9 Characterizations of Complete Metric Spaces

Note: Theorem fails if we consider open intervals {(0,1/n)}.
Note: Theorem fails if we consider unbounded intervals {[n, c0)}.

Definition. Let A C (X,d). diam(A) := sup{d(z,y)|x,y € A} is the diameter of A.
Proposition. Let A C B C (X, d), Then:

1. diam(A) < diam(B)

2. diam(A) = diam(A).
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Proof. The second: < from (1). If diam(A) = co = diam(A) = co. Let € > 0, let =,y € A. this implies
Jxg,yg € A such that gl(a:,:co) < §5,d(y,y) < 5. d(z,y) < d(xy,x0) + d(xo,yo) + d(yo,y) < diamA + e.
Hence diamA < diamA < diamA + €, Ve > 0. ]

Generalization of Nested Interval Theorem to (X, d) is complete.
Theorem. Cantor’s Intersection Theorem: Let (X, d) be a metric space TFAE

1. (X,d) is complete.

2. (X,d) satisfies the following proposition.

e If {F,,} is a sequence of non-empty closed sets. such that F,, 11 C F,,,Vn, and lim, (diamF,) =
0 = Mooy Fn # 0.

Proof. 1 to 2: {F,} a sequence such that F, # 0, F, is closed, F,+1 C F), lim(diamF,) = 0. For
each n, choose z, € F,. Let € > 0, ANy such that diamFy, < €. If n,m > Ny, = 2z, 2, € Fi,.
d(xp, Tm) < diam(Fy,) < €. Hence {z,} is a Cauchy sequence and (X, d) is complete. Then z,, —, z9 € X.

For each n, {z,,Tnt+1,  * ,Tntk, -} € Fy. Then x4, — zo and F, closed so xy € F,,Vn. This
implies zg € (o) Fn.

2to 1: let {z,,} € X. Cauchy. For each n, A, := {2, Tni1, -} Claim: diam(A,) —, 0. Let F,, = A,
An+1 - An — Fn+1 CF,. dzam(Fn) —n 0.

This implies 3z € ()o—; Fn, let € > 0, choose Ny such that diamFy, < e. This implies Fy, C B(xo,€).
If n > Ny, d(zp,x0) < €. This implies z,, —, x. O

Definition. Define (X, || - ||) normed space. {x,} C X. A series with terms {z,} is a formal sum
Yol Ty =1+ 22+ ---. For each k € N, define the kth-[artial sum of Y 7, z, by s, = Eﬁ:l T, € X.
The series > > | x, converges if the sequence {s;} converges. Otherwise, diverge.

Definition. A normed linear space (X, || -||) which is complete under the metric induced is called a Banach
space.

Theorem. Generalized Werestrass M-Test: Let (X, || - ||) normed linear space TFAE
1. (X, ]| -]|) is a Banach Space.

2. The space (X, | - ||) satisfies the following property:
Let {z,} C X. If 2, ||zp|| converges in R = > >° | x, converges in (X, || -||).

Proof. 1 to 2: Let T}, = Z’;:l |zn|| = {Tk} is Cauchy. Given € > 0,3Ny such that k£ > m > Ny

k
Z [2nll = T — Tm| <€
n=m-1
Let s, = Zﬁzl ITn, let K >m > Ny.
k k
sk = smll =1 D aall < Y ol <e
n=m+1 n=m-+1

Therefore {s;} is Cauchy. This implies {sj} converges and then > > | x, converges.
2 to 1: Assume 2 holds and {,} is Cauchy. Choose ny if i,j >n1 = ||z1 —z;| < 1 and choose no,
such that if i, j > ny = ||z; — 2| < 2%
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If we have ny, > ng_1 > --- > ng > ng such that if 4,5 > np, = |lz; — || < 2% Choose ngy1 > ng
such that if i,j > np1 = |jlz; — ]| < Qk% By induction, {n}; is an increasing sequence of N such

that 7,7 > np, = |jla; — || < 2% In particular ||z, ,, — Zn, || < 5% = gk = Tny — Tny,, € X, k.

2k
o [e.9] (o9} 1
Z gkl = Z Hl'nkH - xnk” < Z ok =1
k=1 k=1 k=1
Hence > 77, ||lgx|| converges. Hence > ;7 gi converges in (X, || -||) <= {sg}r converges s, = Zle gj.
Sk =0g1tg2t Tt Gk =Tn —Tny +Tny =Tzt "+ Tny —Tny iy = Tny — Ty Tngyy 7 Ty _Z]o'ilgj'
Therefore {zy, } converges and {z,} is Cauchy. Then {x,} converges. O
Example:
A continuous, nowhere differentiable function
x x € [0,1]

Let ¢(z) = { . Extend to R by ¢(z) = ¢(z +2). Let f(z) =300 (3)"¢(4"x).

2—z ze€]l,2]
1. Claim 1: f(z) is continuous on R. 300 (3)"¢(4"x) < >°0° (3)" = L. Then f(z) is defined.
Yonoi(Dre(dra) < ()" = fla).

2.10 Completion of Metric Space

Proposition. (X, d) complete metric space, let A C X, then (A, d4) is complete <= A is closed in X.

Proof. Converse: assume A C X is closed, {z,} C A Cauchy in (A,d4).Then {x,} Cauchy in (X,d) =
dxg such that x, — x¢ and A is closed so zg € A.

= Suppose A is not closed. This implies Jz¢ € bdy(A) \ A. This implies I{x,} C A such that
Xy —n To. This means {z,,} is Cauchy (A4,d4). This means A is not complete. Hence contradiction.  [J

Definition. (X,d,),(Y,d,) metric spaces. A map ¢ : X — Y is an isometry if dy(¢(x),¢(y)) =
dx(x,y),Vx,y € X. Note: If ¢ is an isometry, then ¢ is one-to-one. If ¢ is an isometry and ¢ is onto, we
say that (X, dx) and (Y, dy) are isometric. A completion of (X, dx) is a pair ((Y,dy), ¢) such that (Y,dy)
is a complete metric space, ¢ : X — Y is an isometry and ¢(X) =Y.

Theorem. (X,d) metric space. This implies 3 an isometry such that

¢ X = (Cp(X), [ - lloo)

Proof. Fix a € X, for u € X, let f, : X — R. Then f,(x) = d(u,x) — d(x,a). f, is continuous such that
fu is bounded, |fy(z)| = |d(u,z) — d(z,a)| < d(u,a). This implies f,, € Cp(X). Let ¢ : X — Cp(X) such
that u — f.

d(fus fo) = 1fu = folloo = jgg{lfu(w) — fu(2)[}
= SupxeX{‘d(ua x) - d(:L‘, CL) - d(v7x) + d(:ﬂ, a)|} < d(ua U)
[fu(v) = fu ()| = d(u,v) = [|fu = folloo = d(u, )
O

Corollary. Every metric space has a completion. Let ¢ : X — (Cy(X), || - ||o) and Y = ¢(x). ((Y,dy), d)
is complete.
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2.11 Banach Contractive Mapping Theorem

Question: can we find f € C[0, 1] such that f(z) = e” + fo sin(t)/2f(t)dt?
Strategy: define ' : C[0,1] — C[0,1]. T(g)(z) = e* + [y sin(t)/2g(t)dt € C([0,1]). 3!f € C[0,1] such
that T" fixes f, i.e., I'(f) = f.

Definition. (X, dx) metric space, let I' : X — X. We call zp € X a fixed point of I if I'(x¢) = zo. We
say that I' is Lipchitz if o > 0 such that d(T'(x),T'(y)) < ad(z,y),Vz,y € X and T is a contraction if Ik
such that 0 < k < 1 such that d(I'(z),I'(y)) < kd(z,y),Vz,y € X.

Theorem. Banach Contractive Mapping Theorem (or Banach fixed point Theorem). Let (X,d) be a
complete metric space. This implies I' has a unique fixed point x¢ € X.

1. If such xq exists, it’s unique: suppose I'(zg) = xg and I'(yo) = yo, I' # 0. This implies d(zo,yo) =
d(T'(z0),T'(y0)) < kd(zo,yo) This implies d(zo, yo) = 0.

2. Let z1 € X and zo ='(21), 23 = T'(z2), -+ , xpny1 = T(2p).
d(xg,xg) = d(F(xl),F(xg)) S kd(ml,xg)

d(l‘4, .CC3) = d(P(xg), F(.CCQ)) S kd(l:g, .CCQ) S ]{72d(1}1, .1:2)

By induction, d(z,41,2,) < k" Vd(z1,22). If m > n, d(@m, ) < d(@m, Tm1) + d(Tm_1, Tm_2) +
vt d(Tn—2, Tn 1) Fd(@Tn_1,n) < K™ 2d(z9, 21) KT 3d(20, 1)+ -+ E (21, 29) +EV (22, 23) =

n—1

klfkd(xg, x1).

Remark: If d(I'(z),I'(y)) < d(x,y), theorem fails.
Example: Show that there exists a unique f € C[0,1] such that

f@) =" + /0 ’ Sinz(t) F(t)dt

Let T'(g)(z) = €” + [; =5 sin(t) g(t)dt. (C[0,1],] - |loo) is complete. Let f(z),g(x) € C[0,1] and z € [0, 1].

Dg)(x) ~T()()] = |e* / ) S“;(t)ga)dt e [P a

.y / S 6y — ()|
1
_/ (t) - <t>|dtsug—f||oo/ 2dt= g~ fll
0 0

= [[T'(g) = T(f)l|ec < §Hg flloo = Tis a contraction

= dJ|f(x) € C[0, 1]

Example: Show that there exists a unique fo(z) € C]0, 1] such that

fo(z) =z + /Ox 2 fo(t)dt

Find a power series representation for fo(z). Let ['(g)(x) = x+ [; t?g(t)dt Note (C[0,1], ||-||s) is complete.
Let f,g € C[0,1],2 € [0,1].
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o)) ~T(@] =1 [ a6 - o)
1 1
< [ Plat)) = £l < o= Pl [ £t = Sl Fls ¥ € 0.1

1
IT(9) = T(f)lloo < 311f = 9lloc, VS, 9 € C[0,1]
Therefore, I" is a contraction. By BCM theorem, 3!fy € C[0, 1] such that I'(fy) = fo.
Let f1 =0, fn41 = I'(fn). Therefore,

fa(x) —w—i-/xtQGdt—m

0

4

fa() :a:+/ 2dt = o + =
0 4
& $3n+1
fx) = 7;) 1,47(3n + 1)

Theorem. Picard-Lindelof Theorem: Let f : [0, 1] xR — R be continuous and Lipchitz in y, i.e., 1 > o > 0,
such that

|f(t7y) - f(t,Z)‘ S a’y - Z|7vy72 eR
Let yg € R, = ly(t) € C[0,b] such that y'(t) = f(¢,y(t))Vt and y(0) = yo.

2.12 Baire’s Category Theorem

Example:
0 ifzeR\Q
f(x): % if$:%7mEZ7nEN7m7§O7QCd(m’n):1
1 =0

f(z) is discontinuous at x = r, for all r € Q. f(x) is continuous at z = a, for all a € R\Q.

Definition. (X,d) metric space, A C X is said to be on Fj, set if A = (J;7, F;, where {F,} is a sequence
of closed sets. This implies A C X is said to be a G set if A = (72, U, where {U,} C X is a sequence of
open sets.

Remarks:
1. From DeMorgan’s Law, A is F, <= A®is Gs.
2. [0,1) is both F, and Gs. [0,1) = [J;24[0,1 — 4] and [0,1) = (22, (=1, 1).

3. F' C X closed. This implies F' is G5. U C X open. This implies U is F.

Definition. (X,dx), (Y, dy) metric spaces and f: X — Y. D(f) = {z € X|f is not continuous }.
Dy (f) = {x € X|Ve > 0,3y, z € B(x,6) with dy (f(y), f(2)) > £}.

Theorem. Let f : (X,dx) — (Y,dy),Vn € N,D,(f) is closed in X. Moreover, D(f) = |U;2; Dn(f). In
particular, D(f) is Fy.
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Proof. (Dn(f))¢ open and z € (Dy,(f))¢ = 36 > 0,Vy,z € B(z,0),dy(f(y),f(2)) < L. Let v €
B(3775)777 = 5dX(x7v) Let Y,z € B(Uﬂ?) Ify S B(”?“) = d(y,ﬂ?) < d(y,v)—i—dx(v,x) < (5—dX($,'U)+
dx(v,z) < 0. This implies y,z € B(z,0) = dy(f(z),f(y)) < % Hence B(z,d) C (D,(f)) =

(Dn(f))€ is open. O

Definition. (X,d) metric space. A set A C X is nowhere dense if int(A) = (). A is of first category in
X if A =J;2, A, where each A, is nowhere dense. Otherwise, A is of second category in X. A set C is
residual in X if C° is of first category in X.

Recall: A set A C X is dense if A = X. Equivalently, A is dense if VIW C X open, W N A # (.
Suppose there exists W C X open such that WNA=10. Let x € W = z € X\A. But 39 such that
B(z,0) CW = z ¢ A.

Let zg € X\A (want 3{z,} C A\z, — x0) since B(z, 1) N A # 0. This implies 3z, € B(z,1 N A =
{zp} C A,z — xp.

Theorem. Baire Category Theorem 1, (X,d) complete metric space. Let {U,} be a sequence of open,
dense sets. Then (2, U, is dense in X.

Proof. Let W C X be open and non-empty. Then Jz; € X and r; < 1, B(z1,71) C Blz,71] CWNU.
And daxs € X, 1o < % such that B(xzq,r2) C Blre, 2] C B(x1,71) N Us

Recursively, we find sequences {z,,} € X and {r,} C R such that 0 < r, < L and B(@p41,7n41) C
Blxpt1,Tnt1] € B(xp,mn) N Upt1,Vn > 1 but 7, — 0, Blzpy1,mn+1] © Blzp,rs], X is complete. By
Cantor intersection theorem, there exists zg € (\o—; Blzn, ] € W and B[z, ry] C Uy,,Vn. This means
zo € WN (o2, Uy). This implies (2, U, is dense. O

Remarks:
1. The Cantor set is nowhere dense in R, and has cardinality c.
2. A close set F' is nowhere dense if and only if U = F* is dense.

Corollary. Baire Category Theorem II: every complete metric space (X, d) is of second category in itself.
Assume X is of the first category, i.e. 3{A,} sequence of nowhere dense sets such that X = |2, A, =
U, Ay, Let Uy, = (A,)¢ = U, is open and dense.

But (02, Un =02, (A4)¢ = (U2, Ay)¢ = X¢ = (). Hence contradiction.

n=1

Corollary. Q is not a G5 subset of R. Suppose Q = (2, U,, where each U, is open. Let F,, = (U,)¢, Vn.

Q C Uy,,Vn and Q = R then U,, = R. Therefore, F,, is nowhere dense, for all n. Consider Q = {ry,72,---}
Let S, = F, U {r,} closed and nowhere dense. Then R = [J;7; Sp.

Then R = (J,2, Sy, if 2 € Q = 2z =1, for some n. This implies z € S,,. f z € R\Q = =z €
U,—, Us Hence x € F, for some n, z € Sy,.

Corollary. There is no function f : R — R for which D(f) = R\Q.

Definition. (X,d,), (Y, d,) metric space, {f, : X — Y} sequence of function f, — fy pointwise on X.
We say that f, converges uniformly at x¢p € X if Ve > 0, 30 > 0 and Ny € N such that if n,m > Ny and
d(z,z0) < = dy(fu(z), fm(z)) <€

Theorem. (X,d,), (Y,d,) metric space, {f, : X — Y} such that f, — fo point wise on X. Assume that
fn convergence uniformly at xy and {f,} is a sequence of continuous function at zy This implies fy is
continuous at xg.

Theorem. Let f, : (a,b) — R be a sequence of continuous functions that converges point wise to fy. This
implies Jz¢ € (a,b) such that f,, converges uniformly at xg.
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Claim: There exists a closed interval [aq, 51] C (a,b) with a3 < 81 and N7 € N such that if n,m > N,
and z € [a1, f1]. Then |fp(x) — f(z)] < 1.

Inductively, we can construct a sequence {[ag,Bk]} with (a,b) D [a1,81] D (a1,B1) D [ae,B2] D
(g, B2) D -+ and a sequence N; < Ny < N3 < --- such that n,m > Ny and x € [y, Bk]. This implies
| fa(@) = fin(z)] < 7. Let 20 € N2y o, B). Given e > 0, if 1 < ¢, and n,m > Ny and z € (ay;, B), then
|fa(@) = fm(z)] < 1 < e. Pick § > 0 such that (zg — 6,29 + 6) C (g, B). For § as above, and Ny, the
definition of uniform convergence at x is verified.

Corollary. {f,} C C[a,b] such that f, — fo point wise on [a,b]. This implies 3 a residual set A C [a, b]
such that fy is continuous at each x € A. A€ is first category, i.e. A°=J;~; An, A, nowhere dense.

A = {x € [a,b]| fo is continuous at z}.

Claim: A is dense in [a, ], i.e. given any (¢, d) C [a,b], (¢,d)NA # 0. Let (¢,d) C [a,b], then Jzy € (¢, d)
such that f, converges uniformly at xg. But each f,, is continuous. Then fy is continuous at zg. This
implies g € A(\(c,d). and A° = D(fo) is F; = A is G5. This implies A = (1,2, Up, U, open dense
<= Uf closed, nowhere dense. i.e. A°=J7, US, i.e., A is residual.

Corollary. Suppose f(z) is differentiable on R. Then f’(z) is continuous for every point in a dense
G5-subset of R.

fn(z) = W Then f(x) pointwise. Apply Corollary.

2.13 Compactness

Definition. An open cover for A C X is a collection {Uy }acr of open sets for which A C J,¢; Us. Given
a cover {Uq }aer for A C X, a sub cover is a sub collection {Uq}aer, for J C I such that A C {J,c;Ua A
sub cover {Uy }aer is finite if T is finite. We say that A C X i compact if every open cover of A has a finite
sub cover. (X, d) is compact if X is compact. We say that A C X is sequentially compact if every sequence
{zn} C A has a converging subsequence converging to a point in A. (X, d) is sequentially compact if so is
X. We say that X has the Bolzano-Weierstrass property (BWP) if every infinite subset in X has a limit

point.

Theorem. (X,d) metric space, TFAE
1. X is sequentially compact
2. X has the BWP

Proof. 1 to 2: X sequentially compact and S C X infinite. S has a countable infinite subset {z,z9, - }.
This implies 3{zy, } subsequence of {z,} such that z,, — z¢. Ve > 0,(B(zo,€)()S)\{zo} has infinitely
many points. Hence z¢g € LIm(S5).

2 to 1: Assume X has the BWP, and {z,,} C X. If 3x9 € X appearing infinitely many times in {x,,},
then {z,,} has a constant, converging subsequence. If such an zy doesn’t exists, viewed as a subset of X,
{z,} is infinite. We can assume the terms of {x,} are distinct. Thus Jxg € Lim({x,}). This implies
Iny € N such that d(zg,2,,) < 1. Find ny > nq such that d(zg, zn,) < 3 If we have ny < ng < -+ < ny,
such that d(zg, zx) < % Choose ny41 > ng such that d(zo, zn, , < kLH This implies {zy, } € {z,} such
that x,, — xo ]

Proposition. (X, d) metric space, A C X.
1. A compact = A is closed and bounded.
2. If A is closed and X is compact, then so is A.

3. If A is sequentially compact. Then A is closed and bounded.
24



4. A is closed, X is sequentially compact. This implies A is sequentially compact.
5. If X is sequentially compact, then X is complete.
Proof. 1. Bounded pick zp € A. This implies { B(xg,n)} is an open cover of A. A compact = There
exists a finite sub cover {B(zg,ny)} let M = max{n; :j=1,--- |k} = A C B(zo, M)
Closed: Suppose A is not closed = 3z € Lim(A)\A, U, = (Blzo, -]°. {U,} open cover of A,

with no finite sub cover but A compact. Then contradiction.

2. Let {Us}acr be an open cover of A. Then {Uy}aer U {A°} is an open cover of X. This implies
Jdag, - -+, such that {Uy,, -+, Uy, } U{A°} covers X. Thus {U,,, } covers A. A is compact.

3. Bounded: Assume A is not bounded. Choose x; € A = 3dJxy € A,d(z1,22) > 1. Therefore,
dzs € A such that d(z;,z3) > 1,7 = 1,2. Recursively, we define {z,,} such that d(x,,x,,) > 1, if
n # m. Therefore, {z,,} cannot have a convergent subsequence. Contradiction.
Closed: Assume A is not closed. This means 3{x,,} C A such that z, — z¢ but x0 ¢ A. = {z,}

has no convergent subsequence in A. Contradiction.
O

Examples:
e A CR, A is sequentially compact <= A is closed and bounded.
e A CR" works too.
e ACR" A compact <= A is closed and bounded.
Theorem. Heine-Borel Theorem: A C R™ is compact if and only if A is closed and bounded.

Notation:
A closed cell in R™ is a set [a1,b1] X [ag,ba] X -+ X [an, by].

Proof. 1. A is closed and bounded. Assume A is not compact. Let F; = A, Ji be a closed cell such
that A C J;. Bisect each of the intervals [a;, b;] of J;. This implies we obtain 2" closed cells
{J11, J12,- -+ , Jion }. Exists some open cover {U,}aer such that it does not have a finite sub cover.
One of the subcells, call it Js, must be such that F5, = Jo N A does not have a finite sub cover of
{Ua}a- Recursively, we construct a sequence of closed cells {J,,} and closed sets F,, = J, N A such
that

(a) Jn+1 C Jn,Vn — Fn+1 - Fn,Vn

(b) Claim (Jy41) = sdiam(J,) = diam(Fpi1) < dz’an;(Fn)_

(¢) F, = Jn[)A cannot be covered by finitely many U,’s.

2. By Cantor intersection theorem,

ﬂ F,={x0} = 20€ A = Fap|lrg € Uy, = Te > 0|B(x0,¢€) C Uy,

n=1

Pick ng such that diamF,, < e. Then F,,, C B(zg,€) C Uy,. {Ua} covers F,,. Contradiction.

Questions:
A C X is compact <= A is closed and bounded?
No, X is infinite set, d is discrete metric space. X is bounded but not compact. But if it is compact,
then it is also sequential compact.
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Definition. X set, a collection {Ag}acr, Ao € X, Va has finite intersection.
Property: (FIP) if whenever {A,, -, A, } is any finite sub collection, we have

n

() A #0

i=1
Theorem. (X, d) metric space, TFAE
1. X is compact
2. If {Fy}aer is a collection of closed sets of X with the FIP then [ c; Fo # 0.

Corollary. (X,d) compact metric space, {F},} of non-empty, closed sets such that F,,;1 C F,,,Vn e N =
ﬂnEN Fn 7é (b

Corollary. (X,d) compact metric space. Then X has BWP (X is sequentially compact).

Proof. Assume X is compact. Let S be an infinite set. Then exists a sequence {x,,} C S consisting of distinct
points. Let F,, = {@pn, xnt1, -} = {F,} has the FIP. Then ()2, F,, # 0 = 3z € [\, F5,. For all
€ > 0, B(zo,€) {xn, Tnt1, - } # 0,Yn € N This implies B(xg,€)[(\S\{zo} =# 0 = =x¢ € Lim(S). O

Theorem. (X,d;),(Y,d,) metric space. Let f : (X,d,;) — (Y,dy) contains. If (X,d,) sequentially
compact. this implies f(X) is sequentially compact. Let {y,} C f(X), = Vn, 3z, such that y, = f(zy).
This implies {z,} € X == 3{zp, } such that z,, — xo € X. Hence f(z,,) = f(z0) € f(X).

Corollary. Extreme Value Theorem:
Let f: (X,d;) = R be continuous. If (X,d,) is sequentially compact, then there exists ¢,d € X
such that f(c) < f(z) < f(d),Vz € X.

Definition. Let ¢ > 0. A collection {zq}acr € X is an e-net for X if X = J,c; B(za,€). We say that
(X, d) is totally bounded if for each € > 0, X has a finite e-net. Given A C X, A is totally bounded if it is
totally bounded n the induced metric. Ve > 0,3{z1, -+ ,2,} C A such that |J;2, B(z,¢) 2O A.

Proposition. If X is sequentially compact, then X is totally bounded. Suppose X is not totally bounded:
Then Jey > 0, with no finite ep-net. Then 3 sequence {x,,} C X such that z; ¢ B(z;,€) if i # j. Then
{z,,} has no convergent subsequence. Contradiction.

Remarks:

1. (N, d) discrete metric (N, d) is bounded but it is not totally bounded. Then there does not exist finite
1/2-net.

2. If A C (X,d) is totally bounded. Then so is A. If {x1,--- ,z,} is an e-net for A. Then {x1,--- ,2,}
is an e-net for A.

Theorem. Lebesgue (X, d) compact metric space, {Uy}acr open cover of X. Then Je > 0,Vz € X and
0 < 6 < e. there exists ag € I with B(z,0) C Uy, }-

Proof. If X = U, for some «, then any ¢ > 0 would work. Assume X # U,,Va. For each x € X,
let ¢(z) = sup{r € R|B(x,r) C U,,, for some ag € I}. Then ¢(x) = 0. Also, ¢(z) < oo: if ¢(z) =
oo, H{rn} € R, {an} C I|B(z1,7) C U,,,rn — o0}. But X sequentially compact. This implies X
is bounded and M > 0,B(x,M) = X. Pick r, > M = B(x,r,) = X C U,, but X # U,,.
Contradiction.

If ¢ is continuous: if z,y € X, ¢(z) < ¢(y) + d(z,y):

case 1 Jag and r > 0 such that B(z,r) C U, and y € B(x,r). B(y,r —d(z,y)) C Uy, = o(y) >
r—d(z,y) = o(r) < d(z,y) + 6(y).
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case 2 Vr and « such that B(z,r) C Uy, y ¢ B(x,r). r < d(z,y), ¢(x) < d(x,y) and ¢(x) < d(x,y) + ¢(y)
and |p(z) — ¢(y)| < d(xz,y) = ¢ is continuous. Therefore, by extreme value theorem, ¢ > 0, such
that ¢(z) > €,V € X.

O
Theorem. Borel-Lebesgue (X, d) metric space, TFAE
1. X is compact
2. X has the BWP
3. X is sequentially compact.

Proof. 3 to 1: Let {U,}acr be an open cover for X. This implies {U,} has a Lebesgue number € > 0.
Since X is totally bounded, there exists finite subset {z1,z2, -, 2} € X such that (J | B(z;,0) = X
where 0 < § < e. But for each i = 1,2,--- ,n, we can find o; € I such that B(z;,0) C U,, This implies
{Uq, }i=1,..- n is a finite sub cover. This implies X is compact. O

Theorem. Heine Borel for metric space: (X, d) metric space TFAE
1. X is compact
2. X is complete and totally bounded.

Proof. 2 to 1 (X is sequentially compact). Let {z,} be a sequence in X. Since X is totally bounded,
Jy1,--+ ,yn € X such that (J;, B(y1,1) = X. Then there exists y; such that B(y;,1) = S contains
infinitely many terms of {z,}. Since X is totally bounded, 3y7,--- ,y2, such that U, B(y},1) = X
Therefore Jy?|B(y?,1/2) = Sz contains infinitely many terms of {z,,} in S;. Then, we construct sequence
of open balls {Sx = B(y*,1/k)} and each Sy, contains infinitely many terms of {x,,} also in S; (- -[) Sk.
In particular, we can choose n; < ng < --- such that z,, € S1()---()Sk. But diam(Sy) — 0, this implies
{Zn4r} is cauchy and X is complete. thus {x,, } is convergent.

0

2.14 Compactness and Continuity
Theorem. Let f: (X, d;) — (Y,d,) be continuous. If (X,d;) is compact. f(z) is compact.

Corollary. Extreme Value Theorem: Let f : (X,d;) — R be continuous. If (X,d,) is compact. There
exists ¢,d € X such that f(z) < f(z) < f(d),Vz € X.

Theorem. Sequential characterization of uniform continuity: suppose f : (X,d;) — (Y, d,) function TFAE
1. f is uniformly continuous on X
2. If {zn}, {2z} in X with lim, d(zp, 2,) =0 = lim, dy (f(zn), f(z,)) = 0.

Theorem. f : (X,dx) — (Y,d,) continuous if (X,d,) is compact. This implies f(z) is uniformly con-
tinuous. Suppose f(z) is not uniformly continuous. This implies Jeg > 0 and {z,}, {y,} € X such that
limy, d(zn, 2,) = 0 but dy (f(zy), f(2n)) > €0,Vn > ng. X compact = F{z,, } subsequence of {x,} such
that it converges to xo. 3{zp, } subsequence of {z,} such that it converges to zg.

f is continuous, then f(x,,) — f(xo) and f(zn,) — f(xo). contradiction

Theorem. (X,d;),(Y,d,) metric space, X is compact. Then let & : X — Y be one-to-one, onto and
continuous. then ®~! is also continuous.

If @ is continuous <= (U C X open = &®(U) C Y is open). U C X is open, then U = F C X
closed and X is compact. Then F is compact. Therefore, ®(F) C Y compact — &(F) C Y is closed
there fore ®(UY) = (®(U))“
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3 The Space (C(X),| - ||s)

We assume (X,d) is a compact metric space. Then every continuous function is bounded (C(X),]|| -
lloo) = (Cp(X), | - loo)- In C(X), unless otherwise stated, the norm is || - ||

3.1 Weierstrass Approximation Theorem

Problem: Given h € C([a,b]) and € > 0. Exists p(z) polynomial on [a, b] such that ||h — p|lec < €7
Remarks

1. We can assume that [a,b] = [0, 1]. Assume f,g € C(]0,1]) and || f — g]|cc < €.
Define @ : [a,b] — [0,1] and ®(z) = =%, ® is one-to-one, onto. Then ®'[0,1] — [a,b] then &~ !(z) =
(b—a)xr+a. Then fo®,go® € C([a,b]). In fact, ||[fo® — go P|lew = ||f — glloc- Then the map
F( [0,1],]|/lc0) :> (Cla, b, |[llsc). Then I'(f) = f o ® is an isometric isomorphism with inverse
Y(h) = ho ®~1 Vh € Cla,b]. Also, I'(p(x)) is a polynomial if and only if p(z) is a polynomial.

2. We can assume f(0) = 0,f(1) = 0. If f € C[0,1], let g(z) = f(z) — [(f(1) — f(0)z + f(0)].
Then g(z) € C[0,1],9(0) = 0 = g(1). if we approximate g(z) uniformly with error at most € by a

polynomial, the n we can do so for f(x). € > |g(z) —p(z)| = [f(x) = {{(f (1) = f(0)z = f(0)|+p(z)}] =

[f(x) = pa()]
Lemma. If n € N, (1 — 23" > 1 — na?,Vo € [0,1]. Let f(z) = (1 —2®)™ — (1 — n2?). f(0) = 0,
f'(x)=--->0o0n (0,1). Then the inequality follows.

Theorem. Weierstrass Approximation Theorem: let f € C[a,b]. Then there exists a sequence {py(z)} of
polynomials such that
pn(z) = f(x) uniformly on [a, b]

Proof. Assume that [a,b] = [0,1] and f(0) = 0 = f(1). We can extend f(z) to a uniformly continuous
function on R by setting f(z) = 0if z in (—o0,0) U (1, 00). Note that fil(l —x?)"dz # 0,Vn. Pick ¢, such
that f_ll cn(1 —2%)dz = 1. Let Qu(z) = cp(1 — 2)™. Since (1 — 22)" > 1 — nz? Vz € [0,1].

1 1 1/vn
/_1(1—x2)"d$:2/0 (1—:U2)"dx22/0 1—n:c2dx:3\4/621/\/ﬁ
Then ¢, > /n. f0<0 <1 = Vze[-1,6]U[41],
c(l = 2?)" > v/n(1 = 6%)"
t< —x _ ’
Let pu(z) = [, Fe+D)Qut)dt = [ 27 FetD)Qut)dtd t+2 <0 = [} F(u)Qn(u—2)du {;‘ e
ft+2z)=0 v

= [ s@un -

d2n+1p( f d2n+1Qn(u o CC) 0
d$2n+l —leibnizs rule d$2n+1 -

pn(x) is a polynomial of degree 2n + 14 or less. Let M = ||f|loo #0. Let € > 0, choose 0 < 5 < 1 so that
if |t —y| <0 = |f(z) — f(y)] < §. Since f Qn(t)dt = 1, this implies f(z f f(z t)dt. If

28



x € 10,1],
1 1
)~ @)l =1 [ e+ 0@t - [ r@auba
1 1
=1 [ (0= 1@)Qu0i < [ 1@+ = f@)IQua
-

) 1
- / @+ t) — F(0)|Qnt)dt + / @+ ) — f(2)|Qu(t)dt + / @+ 1) — F(@)|Qu(t)dt
1 -5 é

< 2v/n(1 = 6" flloo + 5 + 201 = )"

€

|Py(2) — f(z)] < AMy/n(1 — 52"+ + ‘

Choose n large enough so that
AM/n(1 — §62)"H < % = lpn — flloo < €
O

Corollary. Let f(z) € C[0,1] such that fol ft)dt = 0,f01 f()t"dt = 0,¥n. This implies f(z) = 0,Vx €
[0,1].

Corollary. (C[a,b],| - |le) is separable. Vn € N,
P, ={ap+ a1z + -+ apz"|a; € R}

Qn="{ro+mrz+- - +ra"r1 €Q} = Qn=PF,

but also

U P =Cla,t] = [ JQn=Cla,})
n=1
. @y is countable.

3.2 Stone-Weierstrass Theorem
(X, d) compact metric space:

Definition. (X, d) compact metric space, ® C C(X) and ® is a point separating if whenever z,y € X and
x # vy, there exists f € ® such that f(x) # f(y).

Remarks
1. a,be X,a#b. f(x)=d(z,a) = f(z) € C(X) and f(a) # f(b) Then C(X) is point separating.

2. Suppose X has at least 2 points and ® C C(X). Suppose f(z) = f(y),Vf € ®,Vz,y € X = g(z) =
9(y),Vg € ®,Vz,y € X. Then if ® is dense in C(X); ¢ must be point separating.

Definition. A linear subspace ® C C(X) is a lattice if Vf, g € ® then (f V g)(z) = max{f(z),g(x)} € ®
and (f A g) () = min{f(z), g(x)} € ®.

Remarks

Let f,g € C(X), (fVg)(x) = LEHEHID=00] apq (£ rg)(2) = —(fVg)(x) = fVg,[Ag € C(X)
Then C(X) is a lattice.

If ® C C(X), ® is a linear subspace. Then ® is a lattice if f Vg € ®,Vf, g € P.

Examples
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f : [a,b] — R is piecewise linear if there exists a partition P = {a = ty < --- < t, = b} such that
f[tiflyti] =m; +d;,Vi=1,--- ,n.

[+ [a,b] — R is piecewise polynomial if 3P = {a = to < .-+ < t, = b} such that fy,_ ) =
Co,i + C1,4T +---+ cnyix"
Theorem. Stone-Weierstrass Theorem (Lattice version): (X, d) is compact metric space, ® C (C(X), |- |loc)
linear subspace such that

1. the constant function 1 € ®
2. ® separates points.

3. If f,ge® = (fVvyg ed
Hence, @ is dense in C'(X).

Note that if o, 5 € R, and = # y € X, then there exists g € ® such that g(z) = a and g(y) = 5. Let

h € ® such that h(z) # h(y). Let g(t) = a+ (6 — a)% = g€ ®. Let f € C(X)and € > 0.

Step 1 Fixx € X. Foreachy € X, 3h, ,(t) € ® and h,y(z) = f(x), hey(y) = f(y). Since hy y(y)—f(y) =
0,Vy, we can find 6, > 0 such that t € B(y,d,) and —e < hyy(t) — f(t) < e. {B(y,d,)} open cover
of X == d points yi,y2,- - ,yn such that {B(y;,d,,)} cover X.

ha(t) = hgy V-V hgy,
Now if z € X, 3i such that z € B(y;, dy,). f(2) —€ < hgy,(2) < hy(t).

Step 2 For each z € X, hy(x) — f(x) = 0. For each z € X, 36, > 0 such that ¢t € B(z,0;), then
—€ < hg(t) — f(t) < e. As we did before, we can find {z1, 2, , 71} such that {B(x;,0,,} is a cover
for X. Let h(t) = hgyy A--- A hy, € ®. Then if z € X, then f(z) —e < h(2) < f(2) + e

Corollary. Let ®; = {f € Cla, b]|f is piecewise linear} and @2 = {f € C[a,b]|f is piecewise polynomial}.
Then ®; is dense in C(X), i =1,2,---.

Definition. A subspace ® C C'(X) is said to be a sub algebra if f - g € ®, for every f,g € ®.

Example: If P is the collection of all polynomials on [a,b], P is a sub algebra of C([a, b]).

Remark:

If ® C C(X) is a sub algebra, then so is ®. Let {f,},{gn} C ®|f, — f,gn — g. Note that fg € C(X)
Note also {gy} is bounded.

”fngn - ngoo = H(fngn - fgn) + (fgn - fg)HOO S ”gn”oo”fn - fHOO + HfHOOHgn - gHoo —0

Theorem. Subalgebra version) Stone-Weierstrass: (X, d) compact metric space. Let ® be a linear subspace
of (C(X),||/lc) such that

1. 1.
2. ® separates points

3. ® is a subalgebra
Then ® is dense in C(X).

Proof. Step 1 If f € ®, then |f| € ®. Fix € > 0, since X is compact, IM > 0 such that |f(z)| < M,Vx €
X. We consider the function g(t) = |t| on [-M, M]. By W.A Theorem, 3p(t) = co + c1t + - - - + cpt™
such that

lg(t) —p()] = [It| = p(t)| < €,Vt € [-M, M]
but pf =col +e1f+caf?+- - +enff €@ If z € X, f(x) € [-M, M] and then ||f(z)| — p(f(x))| <
€,Vo € X. This implies |f| € ®.
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Step 2 hg € ® — hVge ®. Then gV h(z) = L Js@) M) ¢ . Then

1.1
2. ® separates points
3. @ is a lattice.

Therefore, ® = C(X) = ®.

3.3 Complex Version

C(X,C)={f: X — C|f(=) is continuous on X}. || f[lec = sup{|f(z)|z € X} A subspace ® C C(X,C)
is self-adjoint if f € ® implies that f € ®.

Theorem. Stone-Weirstrass C-version (X, d) compact metric space. If ® C C(X,C is a self-adjoint linear
subspace such that

1.1€®
2. ® separates points
3. ® is a subalgebra
This implies ® = C(X, C).
Example
Let m = {\ € C||\| = 1}. Let ¢ : 1 — [0,27),¢® — ©. On [0, 27) we consider the metric d,(01,0,) =

the shortest at-length between €’©1 and €'®2. Thus ¢ is a homeomorphism. This implies ([0,27), d,) is
compact. C(m) =~ {f € C([0,27))|f(0) = f(2m)}. A trigonometric polynomial is an element of

Trige([0,27)) = span{f(0) = e™|n € Z}

. This implies Trige([0,27)) = C([0, 27)).

Example:

U = {F(z,y) € C([0,1] x [0,1))|F(z,y) = Zle fi(x)gi(y) for fi,g; € C[0,1]}. Then to prove that
¥ = C([0,1] x [0,1])

3.4 Compactness in (C(X),| - ||o) and the Ascoli-Arzela Theorem

Definition. (X, d) metric space. A C X is relatively compact if A is compact. Remark: Assume (X, d) is
complete. Recall; if A is totally bounded, then A is totally bounded. Then A C X is relatively compact
<= A is totally bounded.

Theorem. Arzela-Ascoli Theorem: Let (X, d) be a compact metric space. Let F C (C(X), || - ||oo). Then,
TFAE:

1. F is relative compact
2. F is equicontinuous and pointwise bounded.

Proof. 1 to 2: F is relative compact. This implies that F is bounded. This implies F is point wise

bounded. Fix € > 0. F is relative compact. This implies F is totally bounded. This implies there

exists an §-net {f1,---, fn} € F. Since {f1,---, fn} is finite, it’s equicontinuous. Given g, there exists

d > 0 such that d(x,y) < 6. This implies |f;(z) — fi(y)| < §,Vi =1,2,--- ,n. Let f € F and z,y € X

such that d(x,y) < 6. This implies Jip € {1,---,n} such that ||f;; — f|| < §. Then |f(x) — f(y)| <

() = Fio(@0] + [fia(@) — Fia )] + o) — Fu)] < § x 3= 0
31



Definition. Compact operators I' : (X, |||l x) = (Y, ] |ly) linear map is compact if I'({z € X|||z||x < 1})
is relatively compact.

Remark:

T'is compact = T is continuous.

Example: (X, - |x), (Y,] - llv) = (C(la,b],] - ||oc)- Let K : [a,b] X [a,b] = [a,b] continuous. If
feC(a,b). T(f)(x) = fabk (z,y)f(y)dy. Clearly, T is linear.
Claim: I'(f) € C([a,b]). If f =6, I'(f) € Cla,b]. If f # 0, since K is uniformly continuous given
(

e > 0,30 > 0 such that H(wl,yl) z2, )2 < & = |K(x1,y1) — K(x2,92)| < m. Now if

= 2 < 4, then [I(f)(z) — T(f)(2)] = | (K (@) = K(z9)f()dy| < [} 1K (x,y) = K(z,9)l[£(y)ldy <
=) [Flles a)HfH [ flloc(b—a) =¢

Claim: I'(B.[0,1]) is uniformly equicontinuous. Fix € > 0. there exists 6; > 0 such that |z — z| <
0 = |K(z,y) — K(z,9)| < 5,V € [a,b].

let |x —z] < 61 and f € C([a,b]) such that [[fllcc < 1. |I(f)(z) — T(f)(2)] < f:|K(:L‘,y) -
K(y, 2)[|f(y)ldy < e

Claim: I'(Bg[6,1]) is uniformly bounded. Let M > 0 such that |K(z,y)| < M,Y(z,y) € [a,b] X [a,b].
Let f € Cla,b] such that || f]le < 1. |T(f)(2)] < [V |K(z,9)||f(y)ldy < M [*dy = M(b— a),Vz € [a,b].
Therefore, for all f € [a,b] such that ||f|l« < 1. This implies I'(B,[6,1]) is relatively compact by Arzela
Ascoli Theorem,. Therefore, I' is compact.

Theorem. Peano’s Theorem: Let f be continuous on an open subset D of R?. Let (zoyo) € D. Then
the differential equation ¥’ = f(z,y) has a local solution through the point (xg,40). Let R be a closed
rectangle, R C D, with (xg,yp) € int(R). f os continuous on R, R compact; then there exists M > 1
such that |f(z,y)| < M,¥(z,y) € R. Let W = {(z,y) € R|ly — vo| < M|x — x|} and I = [a,b] =
{z|(z,y) € W for some y}. By uniform continuity, given ¢ > 0,30 < § < 1, such that if (z1,91), (2, y2) €
W, |x1—w2| < dand |y1 —y2| <9 = |f(x1,9y1)— f(x2,9y2)| < €. Choose a =xp <1 < --- <z, = b, with
|v; —xj_1] < £,Vj. On [20,b], we define a function k(z): ke(zo) = yo, and on [zg,21], k() is linear and
has slope f(zo,y0). On [z1,x2], ke(x) is linear and has slope f(x, k(1)) and proceed like this to define a
piecewise linear function k.(x) on [z, b].

Note: the graph of k.(z) is contained in W and |kc(x) — k()| < M|x—Z|,Vz, T € [z9,b]. Let x € [0, ],

x # x;,j =0,1,--- ,n. This implies there exists j such that z; 1 <z < z;.
0
|ke(z) — ke(zj—1)| < M|z — 21| < MM =4

This implies by uniform continuity of f,

’f(xj—bke(xj—l) - f(x7 ke(x))‘ <€

but & (x;_1) = f(xj_1, ke(z;_1)) (slope approaching by the right). This implies [k} (z;_1) — f(z, kc(z)| <
¢,Vx € [zg,b] such that x # z1,i = 0,1,--- ,n. Let K = {kele > 0}. K is pointwise bounded: (k.(z) €
W C R compact) K is equicontinuous. (*) By Arzela-Asidli, K is compact. Let x € [x0,b], k(z) =
yo + [, Ke(t)dt =yo+ [ f(t, ke(t)) + [(kL(t) — f(t, ke(t))]dt. Consider the sequence {k1 ()}, € K. This
implies 3 subsequence {k_1 (x)}; converging uniformly on [z, b] to some k(z). f uniforr?aly continuous on
W. This implies {f(¢, k 1 (k)} converges uniformly to f(t,k(t)) on [z, b]. ke(t) = yo + f; f(t, k(t))dt. This

implies k(z) is a solutlon to the DE on [zo, b]. Similarly we can find a solution £*(x) on [a, zo]

32



