PMATH 351: Real Analysis

Johnew Zhang

November 4, 2018

Contents

1	Axiom of Choice & Cardinality			
	1.1	Notation	2	
	1.2	Products & Axiom of Choice	2	
	1.3	Relations and Zorn's Lemma	3	
	1.4	Equivalence Relations & Cardinality	5	
	1.5	Cardinal Arithmetic	$\overline{7}$	
		1.5.1 Sums of Cardinals	$\overline{7}$	
		1.5.2 Product of cardinals	7	
		1.5.3 Exponentiation of Cardinals	7	
2	Metric spaces 8			
	2.1	Topology of Metric Spaces	12	
	2.2	Boundaries, interiors and closures	13	
	2.3	Convergence of sequences and topology in a metric space	15	
	2.4	Induced metric and the relative topology	15	
	2.5	Continuity	16	
	2.6	Complete Metric Spaces: Cauchy sequences	17	
	2.7	Completeness of \mathbb{R}, \mathbb{R}^n and l_p	17	
	2.8	Completeness of $(\mathcal{C}_b(X), \ \cdot\ _{\infty})$	18	
	2.9	Characterizations of Complete Metric Spaces	18	
	2.10	Completion of Metric Space	20	
	2.11	Banach Contractive Mapping Theorem	21	
	2.12	Baire's Category Theorem	22	
	2.13	Compactness	24	
	2.14	Compactness and Continuity	27	
3	The Space $(C(X), \ \cdot\ _{\infty})$ 2			
	3.1	Weierstrass Approximation Theorem	28	
	3.2	Stone-Weierstrass Theorem	29	
	3.3	Complex Version	31	
	3.4	Compactness in $(C(X), \ \cdot\ _{\infty})$ and the Ascoli-Arzela Theorem	31	

1 Axiom of Choice & Cardinality

1.1 Notation

- \mathbb{N} set of natural numbers, $\{1, 2, 3, \dots\}$
- \mathbb{Z} set of integers, {..., -3, -2, -1, 0, 1, 2, 3, ...}
- \mathbb{Q} set of rationals, $\{\frac{a}{b} : a \in \mathbb{Z}, b \in \mathbb{N}, gcd(a, b) = 1\}$
- ${\mathbb R}\,$ set of reals
- **inclusion** $A \subset \text{or } A \subseteq B$

proper inclusion $A \subsetneq B$

Definition. • Let X be a set $P(X) = \{A | A \subset X\}$ is the power set of X.

• A, B sets. The union of A and B is $A \cup B = \{x | x \in A \text{ or } x \in B\}$. If $I \neq \emptyset$, $\{A_{\alpha}\}_{\alpha \in I}$ are sets, $A_{\alpha} \subseteq X, \forall \alpha$,

$$\bigcup_{\alpha \in I} A_{\alpha} = \{ x | x \in A_{\alpha} \text{ for some } \alpha \in I \}$$

- Similarly for intersections
- Let $A, B \in X, B \setminus A = \{b \in B | b \notin A\}$. If $B = X, X \setminus A = A^C$ is the complement of A (in X). Note: $(A^C)^C = A, A^C = B^C \iff A = B$

Theorem. De Morgan's Laws:

1.
$$(\bigcup_{\alpha \in I})A_{\alpha})^{C} = \bigcap_{\alpha \in I} A_{\alpha}^{C}$$

Proof. $x \in (\bigcup_{\alpha \in I})A_{\alpha})^{C} \iff x \notin \bigcup_{\alpha \in I})A_{\alpha} \iff \forall \alpha \in I, x \notin A_{\alpha} \iff x \in \bigcap_{\alpha \in I} A_{\alpha}^{C}$

2. $(\bigcap_{\alpha \in I})A_{\alpha})^{C} = \bigcup_{\alpha \in I} A_{\alpha}^{C}$

1.2 Products & Axiom of Choice

Definition. Let X, Y be sets. The product of X and Y is $X \times Y = \{(x, y) | x \in X, y \in Y\}$. Let X_1, X_2, \ldots, X_n be sets. The product of $\{X_1, X_2, \ldots, X_n\}$ is

$$X_1 \times X_2 \cdots \times X_n = \prod_{i=1}^n X_i = \{(x_1, x_2, \dots, x_n) | x_i \in X_i, \forall i = 1, 2, \dots \}$$

An element (x_1, \ldots, x_n) is called an *n*-tuple and x_i is called the *i*th coordinate.

Theorem. If $X_i = X, \forall i = 1, \dots, n, \prod_{i=1}^n X_i = X^n$. If X is a set, |X| is the number of elements of X. If $\{X_1, \dots, X_n\}$ is a finite collection of sets

$$\left|\prod_{i=1}^{n} X_{i}\right| = \prod_{i=1}^{n} |X_{i}|$$

If $X_i = X, \, \forall i, |X^n| = |X|^n$

How do we define the product of an arbitrary family of sets? $(x_1, \ldots, x_n) \in \prod_{i=1}^n X_i$, then (x_1, x_2, \ldots, x_n) determines a function

$$f_{(x_1,\dots,x_n)}: \{1,2,\dots,n\} \to \bigcup_{i=1}^n X_i$$

i.e. $f_{(x_1,...,x_n)}(i) = X_i$

On the other hand, if we have a function

$$f: \{1, 2, 3, \dots, n\} \to \bigcup_{i=1}^{n} X_i$$

with $f(i) \in X_i$. We define $(x_1, \ldots, x_n) \in \prod_{i=1}^n X_i$ by $x_i \in X_i = f(i), \forall i = 1, \ldots, n$

$$\prod_{i=1}^{n} X_{i} = \left\{ f\{1, 2, \dots, n\} \to \bigcup_{i=1}^{n} X_{i} | f(i) \in X_{i} \right\}$$

Definition. Given a collection $\{X_{\alpha}\}_{\alpha \in I}$ of sets, we define

$$\prod_{\alpha \in I} X_{\alpha} := \{ f : I \to U_{\alpha \in I} X_{\alpha} | f(\alpha) \in X_{\alpha} \}$$

Axiom. Zermlo's Axiom of Choice. Given a non-empty collection $\{X_{\alpha}\}_{\alpha \in I}$ if non-empty sets, $\prod_{\alpha \in I} X_{\alpha} = \emptyset$.

Axiom. Axiom of Choice: Given a non-empty set X, there exists a function $f : \mathcal{P}(x) \setminus \emptyset \to X$ for every $A \subseteq X, A \neq \emptyset, f(A) \in A$

1.3 Relations and Zorn's Lemma

Definition. X, Y are sets A relation is a subset of $X \times Y$. We write xRy if $(x, y) \in R$.

- 1. Reflexive if $xRx, \forall x \in X$
- 2. Symmetric if $xRy \implies yRx$
- 3. Anti-symmetric xRy and $yRx \implies x = y$
- 4. Transitive if xRy and $yRz \implies xRz$

Example:

- 1. $x = \mathbb{R}, xRy \iff x \subseteq y$. It is reflexive, antisymmetric, transitive.
- 2. X set. We define a relation on $\mathcal{P}(X)$. ARB $\iff A \subseteq B$
- 3. R^* relation on $\mathcal{P}(x)$. $ARB \iff A \supseteq B$

Definition. A relation R on a set X is a partial order if it is reflexive, anti-symmetric and transitive. (X, R) is a partially order set or poset.

A partial relation R on X is a total order if $\forall x, y \in X$, either xRy or yRx. (X, R) is a totally order set or a chain.

Definition. (X, \leq) poset. Let $A \in X$. $x \in X$ is an upper bound for A if $a \leq x, \forall a \in A$. A is bounded above if it has an upper bound. $x \in X$ is the least upper bound (or supermum) for A if x is an upper bound and y is an upper bound, then $x \leq y$. x = lub(A) = sup(A). If x = lub(A) and $x \in A \implies x = max(A)$ is the maximum of A. **Axiom.** Least Upper bound axiom for \mathbb{R} : Consider \mathbb{R} with usual order $\leq A \subseteq \mathbb{R}$, $A \neq \emptyset$. If A is bounded above, the A has a least upper bound.

Example

- 1. $(\mathcal{P}(X), \subseteq)$, $\{A_{\alpha}\}_{\alpha \in I}, A_{\alpha} \subseteq X, A_{\alpha} \neq \emptyset$. X is an upper bound for $\{A_{\alpha}\}_{\alpha \in I}$. \emptyset is a lower bound, $lub(\{A_{\alpha}\}_{\alpha \in I}) = \bigcup_{\alpha \in I} A_{\alpha}$, and $glb(\{A_{\alpha}\}_{\alpha \in I}) = \bigcap_{\alpha \in I} A_{\alpha}$
- 2. $(\mathcal{P}(X), \supseteq)$

Definition. (X, \leq) poset, $x \in X$ is maximal if $x \leq y$ implies x = y.

- (\mathbb{R}, \leq) has no maximal element
- $(\mathcal{P}(X), \leq) \implies X$ is maximal.
- $(\mathcal{P}(X), \geq) \implies \emptyset$ is maximal.

Proposition. Every finite, non-empty poset has a maximal element but there are poset with no maximal element.

Lemma. Zorn's Lemma: (X, \leq) non-empty poset. If every totally order subset \mathcal{C} of X has an upper bound, then (X, \leq) has a maximal element. Let \mathcal{V} be a non-zero vector space. Let $\mathcal{L} = \{A \leq \mathcal{V} | A \text{ is linearly independent} \}$.

Note: A basis B for \mathcal{P} is a maximal element on (\mathcal{L}, \leq) .

Theorem. Every non-zero vector space \mathcal{V} has a basis.

Proof. Let $\mathcal{C} = \{A_{\alpha} | \alpha \in I\}$ be a chain in \mathcal{L} .

Let $A = \bigcup_{\alpha \in I} A_{\alpha}$. Claim: A is linearly independent. Let $\{x_1, x_2, \dots, x_n\} \subseteq A, \{\beta_1, \beta_2, \dots, \beta_n\} \subseteq \mathbb{R}$. Then $\beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n = 0$.

For each $i = 1, 2, \cdots, n, \exists \alpha_i | x_i \in A_{\alpha_i}$.

Assume, $A_{\alpha_1} \subseteq A_{\alpha_2} \subseteq \cdots \subseteq A_{\alpha_n}$ (\mathcal{L} is a chain, change name of index if needed). Therefore, $\{x_1, x_2, \cdots, x_n\} \subseteq A_{\alpha_n}$ and A_{α_n} is linearly independent. Hence, $\{x_1, x_2, \cdots, x_n\}$ is linearly independent. Lastly, $\beta_i = 0, \forall i$. Then A is linearly independent. A is an upper bound for \mathcal{C} on \mathcal{L} . By Zorn's lemma, \mathcal{L} has a maximal element.

Definition. A poset (X, \leq) is well-ordered, if every non-empty subset A has a least element.

Examples

- (\mathbb{N}, \leq) is well-ordered.
- $\mathbb{Q} = \{\frac{n}{m} | n \in \mathbb{Z}, m \in \mathbb{N}, gcd(n, m) = 1\}.$

We can construct a well-order on \mathbb{Q} . $\phi : \mathbb{Q} \to \mathbb{N}$ by $\phi(\frac{n}{m}) = \begin{cases} 2^n 3^m & n > 0\\ 1 & n = 0. \ \phi \text{ is 1-to-1. } \frac{n}{m} \leq \frac{p}{q} \iff 5^{-n}7^m & n < 0 \end{cases}$

 $\begin{array}{l} \phi(\frac{n}{m}) \leq \phi(\frac{p}{q}) \\ (\mathbb{Q}, \leq) \text{ is well-ordered.} \end{array}$

Axiom. Well-ordering principle: Given any set $X \neq \mathbb{Q}$, there exists a partial order \leq such that (X, \leq) is well-ordered.

Theorem. TFAE:

- 1. Axiom of Choice
- 2. Zorn's lemma
- 3. Well-ordering principle

1.4 Equivalence Relations & Cardinality

Definition. A relation \sim on a set X is an equivalence relation if

- 1. Reflexive
- 2. Symmetric
- 3. Transitive

Given $x \in X$, let $[x] = \{y \in X | x \sim y\}$ be the equivalence class of x.

Proposition. Let \sim be an equivalence relation on X

- 1. $[x] \neq \emptyset, \forall x \in X$
- 2. For each $x, y \in X$, either [x] = [y] or $[x] \cap [y] = \emptyset$.

3.
$$X = \bigcup_{x \in X} [x]$$

Definition. If X is a set, a partition of X is a collection $\mathcal{P} = \{A_{\alpha} \subseteq X | \alpha \in I\}$.

- 1. $A_{\alpha} \neq \emptyset, \forall \alpha$.
- 2. If $\beta \neq \alpha \implies A_{\alpha} \cup A_{\beta} = \emptyset$
- 3. $X = \bigcup_{\alpha \in I} A_{\alpha}$.

Note:

Given \sim on X $\implies \sim$ induces a partition on X. Given a partition on X ($\mathcal{P} = \{A_{\alpha} | \alpha \in I\}$) we define an equivalence relation on X:

 $x \sim y \iff x, y \in A_{\alpha}$, for some α

Example: Define ~ on $\mathcal{P}(X)$ by $A \sim B \iff \exists$ a 1-to-1 and onto function $f : A \to B$. ~ is an equivalence relation.

Definition. Two sets X and Y are equivalent if there exists a 1-to-1 and onto function $f : X \to Y$. In this case, we write $X \sim Y$. We say that X and Y have the same cardinality, |X| = |Y|.

A set X is finite if $X = \text{or } X \sim \{1, 2, \dots, n\}$ for some $n \in \mathbb{N}, |X| = n$. Otherwise, X is infinite.

Can X be equivalent to both $\{1, 2, \dots, n\}$ and $\{1, 2, \dots, m\}$, with $n \neq m$? If $X \sim \{1, 2, \dots, n\}$ and $X \sim \{1, 2, \dots, m\} \implies \{1, 2, \dots, n\} \sim \{1, 2, \dots, m\}$.

Proposition. The set $\{1, 2, \dots, m\}$ is not equivalent to any proper subset of itself.

Proof. Induction on m

m = 1: The only proper subset of $\{1\}$ is \emptyset . and $\{1\} \sim \emptyset$.

m = k Statement holds for $\{1, 2, \dots, k\}$. Assume $\exists S \subsetneq \{1, 2, \dots, k, k+1\}$ and $f : \{1, 2, \dots, k+1\} \rightarrow S$, 1-to-1 and onto.

Two cases:

- 1. If $k+1 \in S \implies f_{\{1,2,\cdots,k\}} : \{1,2,\cdots,k\} \to S \setminus \{f(k+1)\} \subsetneq \{1,2,\cdots,k\}$. This is impossible.
- 2. If $k + 1 \in S$, f(k + 1) = k + 1, then $f_{\{1,2,\dots,k\}}\{1,2,\dots,k\} \to S \setminus \{k + 1\} \subsetneq \{1,2,\dots,k\}$. This is impossible.

If
$$f(k+1) = j$$
 and $f(i) = k+1$. Define $f^* : \{1, 2, \dots, k+1\} \to S, f^*(l) = \begin{cases} k+1 & l=k+1\\ j & l=i\\ f(l) & \text{otherwise} \end{cases}$. This

is impossible

Corollary. If X is finite, then X is not equivalent to any proper subset of itself.

Example:

 $f: \mathbb{N} \to \mathbb{N} \setminus \{1\} = n \to n+1 \text{ is 1-to-1 and onto. Hence } \mathbb{N} \sim \mathbb{N} \setminus \{1\}.$

Definition. A set X is countable if X is finite or $X \sim \mathbb{N}$. Otherwise, uncountable X is countable infinite if $X \sim \mathbb{N}, |X| = |\mathbb{N}| = \aleph_0$

Proposition. Every infinite set contains a countable infinite subsets.

Proof. By Axiom of Choice, $\exists f : \mathcal{P}(X) \setminus \emptyset \to X, f(A) \in A$. $x_1 = f(X)$ and $x_2 = f(X \setminus \{x_1\}) \cdots x_{n+1} = f(X)$ $f(X \setminus \{x_1, x_2, \cdots, x_n\})$ $A = \{x_1, x_2, \cdots, x_{n+1}, \cdots\} X$ is countable infinite.

Corollary. A set X is infinite if and only if it is equivalent to a proper subset of itself.

Theorem. (Cantor-Schroeder-Berstein) (CSB) Assume that $A_2 \subseteq A_1 \subseteq A_0$. If $A_2 \sim A_0$, then $A_1 \sim A_0$.

Corollary. Assume $A_1 \subseteq A$ and $B_1 \subseteq B$. If $A \sim B_1$ and $B \sim A_1$, then $A \sim B$. $f: A \to B_1$ is 1-to-1 and onto and $g: B \to A_1$ is 1-to-1 and onto. $A_2 = g(f(A) = g(B) \subseteq A_1 \subseteq \text{ad } g \circ f$ is 1-to-1 and onto on A_2 . Hence $A_2 \sim A \to^{CSB} A_1 \sim A$ and $A_1 \sim B$. Hence $A \sim B$.

Corollary. An infinite set X is countable infinite if and only if there exists a 1-to-1 function $f: X \to \mathbb{N}$.

Proposition. Assume there exists $g: X \to Y$ onto. Then there exists a 1-to-1 function $f: Y \to X$.

Proof. By axiom of choice, $\exists h : \mathcal{P}(x) \setminus \emptyset \to X, h(A) \in A, A \neq \emptyset, A \subseteq X. \forall y \in Y, define f(y) =$ $h(g^{-1}(\{y\})) \in X. f: Y \to X.$ Check f is 1-to-1.

Corollary. X, Y sets. TFAE

- 1. $\exists f: X \to Y$, 1-to-1
- 2. $\exists q: Y \to X$, is onto
- 3. $|Y| \succeq |X|$

Theorem. [0,1] is uncountable.

Proof. Assume [0, 1] is countable

$$[0,1] = \{a_1, a_2, \cdots, a_n, \cdots\}$$

each real number has a unique decimal expansion if we don't allow .99 $\overline{9}$ (∞ times 9)

$$a_1 = 0.a_{11}a_{12}a_{13}\cdots$$

 $a_2 = 0.a_{21}a_{22}a_{23}\cdots$
 $a_3 = 0.a_{31}a_{32}a_{33}\cdots$

Let $b \in [0,1)$, $b = 0.b_1b_2\cdots$ where $b_n := \begin{cases} 1 & a_{n1} \neq 1 \\ 2 & a_{nn} = 1 \end{cases}$ Well, $b \neq a_n, \forall n$. It is impossible. Then [0,1] is uncountable.

Corollary. \mathbb{R} is uncountable. $\mathbb{R} \sim (0, 1)$. Note $|\mathbb{R}| = c$.

Theorem. Comparability theorem for cardinals: Given X, Y sets, either $|X| \leq |Y|$ or $|Y| \leq |X|$.

1.5 Cardinal Arithmetic

1.5.1 Sums of Cardinals

Definition. Let X, Y be disjoint sets, then

$$|X| + |Y| = |X \cup Y|$$

Examples

1.
$$X = \{1, 3, 5, \dots\}, Y = \{2, 4, 6, \dots\}. |X| + |Y| = \aleph_0 + \aleph_0 = \aleph_0.$$

Theorem. If X is infinite, then

$$|X| + |Y| = max\{|X|, |Y|\}$$

In particular,

$$|X| + |X| = |X|$$

 X_1, \dots, X_n countable sets. Then $|\bigcup_{i=1}^n X_i| = \aleph_0$.

Theorem. $\{X_i\}_{i=1}^{\infty}$ countable collection of countable sets, then $X = \bigcup_{i=1}^{\infty} X_i$ is countable.

Note: we can assume $X_i \cap X_j = \emptyset$ if $i \neq j$. Otherwise, let $E_1 = X_1, E_2 = X_2 \setminus X_1, \cdots, E_n = X_n \setminus \bigcup_{i=1}^{n-1} X_i$. Assume $\{X_i\}_{i=1}^{\infty}$ is pairwise disjoint if $X_i \neq \emptyset$, let $X_i = \{x_{i1}, x_{i2}, \cdots\}$ countable. Let $f : X = \bigcup_{i=1}^{\infty} X_i \to \mathbb{N}$ 1-to-1 such that $f(x_{ij}) = 2^i 3^j$.

1.5.2 Product of cardinals

Let X, Y be two sets

$$|X| \cdot |Y| = |X \times Y|$$

Theorem. If X is infinite and $Y \neq \emptyset$, then

$$|X| \cdot |Y| = \max\{|X|, |Y|\}$$

In particular,

$$|X| \cdot |X| = |X|$$

1.5.3 Exponentiation of Cardinals

Recall: Given a collection $\{Y_x\}_{x \in X}$ of non-empty sets, we defined

$$\prod_{x \in X} Y_x = \{f : X \to \bigcup_{x \in X} Y_x | f(x) \in Y_x\}$$

If $\forall x \in X, Y_x = Y$ for some set Y, $Y^X = \prod_{x \in X} Y_x = \prod_{x \in X} Y = \{f : X \to Y\}.$

Definition. Let X, Y non empty sets, we define

$$|Y|^{|X|} = |Y^X|$$

Theorem. X, Y, Z non-empty sets.

1. $|Y|^{|X|}|Y|^{|Z|} = |Y|^{|X|+|Z|}$ 2. $(|Y|^{|X|})^{|Z|} = |Y|^{|X|+|Z|}$ Example $(2^{\aleph_0} = c) \ 2^{\aleph_0} = |\{0,1\}^{\mathbb{N}}| = |\{\{a_n\}_{n \in \mathbb{N}} | a_n = 0 \text{ or } a_n = 1\}.$ $2^{\aleph_0} \leq c: \ f\{0,1\}^{\mathbb{N}} \to [0,1] \text{ is 1-to-1 such that } \{a_n\} \to \sum_{n=1}^{\infty} \frac{a_n}{3^n}.$ $2^{\aleph_0} \geq c: \ g: [0,1] \to \{0,1\}^{\mathbb{N}} \text{ is 1-to-1. } \alpha = \sum_{n=1}^{\infty} \frac{a_n}{2^n} \to \{a_n\}.$ Hence done. Given a set X, we want to find $|\mathcal{P}(X)| = 2^{|X|}.$

Let $A \subseteq X$, $\chi_A : X \to \{0,1\}$, such that $\chi_A(x) = \begin{cases} 1 & x \in A \\ 0 & x \notin A \end{cases}$. This is called characteristics function of A. $X_A \in \{0,1\}^X$. If $f \in \{0,1\}^X$, $A = \{x \in X | f(x) = 1\}$. Hence $\chi_A = f$. Let $\Gamma : P(X) \to \{0,1\}^{\mathbb{N}}$. Hence Γ is a bijection. Therefore $|\mathcal{P}(X)| = 2^{|X|}$.

Theorem. $|\mathcal{P}(X)| \succ |X|$ for any $X \neq \emptyset$ (Russel's Paradox)

It is enough to show that there is no onto function $X \to \mathcal{P}(X)$. Assume to the contrary: there exists $f: X \to \mathcal{P}(X)$ onto.

 $A = \{x \in X | x \notin f(X)\}$. $\exists x_0 \in X | f(x_0) = A$. If $X_0 \in A$: $\implies x_0 \notin f(x_0) = A$. Impossible. If $X \notin A : \implies x_0 \in f(x_0) = A$. OK

2 Metric spaces

Definition. Let $X \neq \emptyset$. A metric on X is a function $d: X \times X \to \mathbb{R}$.

- $1. \ d(x,y) \ge 0, \forall x,y \in X. \ d(x,y) = 0 \implies x = y.$
- 2. $d(x,y) = d(y,x), \forall x, y \in X.$
- 3. $d(x,y) \leq d(x,z) + d(z,y), \forall x, y, z \in X.$

(X, d) is a metric space.

Examples

- 1. $X = \mathbb{R} d(x, y) = |x y|$ "usual metric on \mathbb{R} "
- 2. X any non-empty set $d(x,y) = \begin{cases} 0 & x = y \\ 1 & x \neq y \end{cases}$ "discrete metric"
- 3. $X = \mathbb{R}^n$. $d_2((x_1, x_2, \dots, x_n), (y_1, y_2, \dots, y_n)) = \sqrt{\sum_{i=1}^n (x_i y_i)^2}$. d_2 verifies 1), 2). This is called "Euclidean Metric".

Definition. Let V be a vector space. A norm on V is a function $\|\cdot\|: V \to \mathbb{R}$ such that

- 1. $||x|| \ge 0, \forall x \in V. ||x|| = 0 \iff x = 0$
- 2. $\|\alpha x\| = |\alpha| \|x\|, \forall \alpha \in \mathbb{R}, \forall x \in V.$
- 3. $||x + y|| \le ||x|| + ||y||, \forall x, y \in V$

 $(V, \|\cdot\|)$ is normed vector space.

Remark: $(V, \|\cdot\|)$ normed vector space. $\|\cdot\|$ induces a metric on V. $d_{\|\cdot\|}(x, y) = \|x - y\|$

1. $d_{\|\cdot\|}(x,y) = \|x-y\| \ge 0, \forall x, y \in V. \|x-y\| = 0 \implies x = y.$

2.
$$d_{\|\cdot\|}(x,y) = \|x-y\| = |-1|\|y-x\| = d_{\|\cdot\|}(y,x)$$

3. $d_{\|\cdot\|}(x,y) = \|x-y\| \le \|x-z\| + \|z-y\|$

Examples

- 1. $X = \mathbb{R}^n$, $||(x_1, \dots, x_n)||_2 = (\sum_{i=1} |x_i|^2)^{1/2}$. $d_{||\cdot||_2} = d_2$. This is a 2-norm or Euclidean norm.
- 2. $X = \mathbb{R}^n, 1 . <math>||(x_1, x_2, \dots, x_n)||_p = (\sum_{i=1}^n |x_i|^p)^{1/p}$ This is called p-norm.
- 3. $X = \mathbb{R}^n$, $||(x_1, \cdots, x_n)||_{\infty} = \max\{|x_i|\}$. This is called ∞ -norm.
- 4. $||(x_1, \dots, x_n)||_1 = \sum_{i=1}^n |x_i|$. This is called 1-norm.

Remark: Let p, $1 , and <math>q, \frac{1}{p} + \frac{1}{q} = 1$. Then $1 + \frac{p}{q} = p \implies \frac{p}{q} = p - 1 \implies \frac{p}{p-1} = q \implies \frac{q}{p} = q - 1 \implies \frac{1}{p-1} = \frac{q}{p} = q - 1$.

Lemma. Let $\alpha, \beta > 0, 1 . If <math>\frac{1}{p} + \frac{1}{q} = 1$, then $\alpha\beta \leq \frac{\alpha^p}{p} + \frac{\beta^q}{q}$ (Young's inequality) $u = t^{p-1} \implies t = u^{\frac{1}{p-1}} = u^{q-1}$. $\alpha\beta \leq \int_0^\alpha t^{p-1}dt + \int_0^\beta u^{q-1}du = \frac{\alpha^p}{p} + \frac{\beta^q}{q}$.

Theorem. Hdder's Inequality: Let (a_1, \dots, a_n) and $(b_1, \dots, b_n) \in \mathbb{R}^n$. Let $1 and <math>\frac{1}{p} + \frac{1}{q} = 1$. Then

$$\sum_{i=1}^{n} |a_i b_i| \le (\sum_{i=1}^{n} |a_i|^p)^{1/p} (\sum_{i=1}^{n} |b_i|^q)^{1/q}$$

Proof. Assume $a \neq 0 \neq b$. Note: $\alpha, \beta > 0$,

$$\sum_{i=1}^{n} |(\alpha a_i)(\beta b_i)| = \alpha \beta \sum_{i=1}^{n} |a_i b_i|$$
$$(\sum_{i=1}^{n} |\alpha a_i|^p)^{1/p} = \alpha (\sum_{i=1}^{n} |a_i|^p)^{1/p}$$
$$(\sum_{i=1}^{n} |\beta b_i|^q)^{1/q} = \beta (\sum_{i=1}^{n} |b_i|^q)^{1/q}$$

Then the inequality holds for $a, b \in \mathbb{R}^n \iff$ it holds for $\alpha a, \beta b \in \mathbb{R}^n$ for some $\alpha \beta > 0$. By scaling if needed, we can assume

$$\left(\sum_{i=1}^{n} |a_i|^p\right)^{1/p} = 1, \left(\sum_{i=1}^{n} |b_i|^q\right)^{1/q} = 1$$

Lemma.

$$|a_i b_i| \le \frac{|a_i|^p}{p} + \frac{|b_i|^q}{q}, \forall i = 1, \cdots, n$$

Hence $\sum_{i=1}^{n} |a_i b_i| \le \frac{\sum_{i=1}^{n} |a_i|^p}{p} + \frac{\sum_{i=1}^{n} |b_i|^q}{q} = \frac{1}{p} + \frac{1}{q} = 1$

Theorem. Minkowski's Inequality: Let $a = (a_1, a_2, \dots, a_n), b = (b_1, b_2, \dots, b_n) \in \mathbb{R}^n$. Let 1 , then

$$\left(\sum_{i=1}^{n} |a_i + b_i|^p\right)^{1/p} \le \left(\sum_{i=1}^{n} |a_i|^p\right)^{1/p} + \left(\sum_{i=1}^{n} |b_i|^p\right)^{1/p}$$

Proof. Assume $a \neq 0 \neq b$. Let $q/\frac{1}{p} + \frac{1}{q} = 1$.

$$\begin{split} \sum_{i=1}^{n} |a_i + b_i|^p &= \sum_{i=1}^{n} |a_i + b_i| |a_i + b_i|^{p-1} \\ &\leq \sum_{i=1}^{n} |a_i| |a_i + b_i|^{p-1} + \sum_{i=1}^{n} |b_i| |a_i + b_i|^{p-1} \\ \sum_{i=1}^{n} |a_i| |a_i + b_i|^{p-1} &\leq (\sum_{i=1}^{n} |a_i|^p)^{1/p} (\sum_{i=1}^{n} (|a_i + b_i|^{p-1})^q)^{1/q} = (\sum_{i=1}^{n} |a_i|^p)^{1/p} (\sum_{i=1}^{n} |a_i + b_i|^p)^{1/q} \\ \text{Similarly,} \sum_{i=1}^{n} |b_i| |a_i + b_i|^{p-1} &\leq (\sum_{i=1}^{n} |b_i|^p)^{1/p} (\sum_{i=1}^{n} |a_i + b_i|^p)^{1/q} \\ &\sum_{i=1}^{n} |a_i + b_i|^p &\leq ((\sum_{i=1}^{n} |a_i|^p)^{1/p} + (\sum_{i=1}^{n} |b_i|^p)^{1/p}) (\sum_{i=1}^{n} |a_i + b_i|^p)^{1/q} \\ &(\sum_{i=1}^{n} |a_i + b_i|^p)^{1-1/p} &\leq ||a||_p + ||b||_p \end{split}$$

Examples: sequence space

1. Let $l_1 = \{\{x_n\} | \sum_{i=1}^{\infty} |x_n| < \infty\}$ Then $\|\{x_n\}\|_1 = \sum_{i=1}^{\infty} |x_n|$. Let $\{x_n\}, \{y_n\} \in l_1$. Claim that $\{x_n + y_n\} \in l_1$. Let $k \in \mathbb{N}$

$$\sum_{n=1}^{k} |x_n + y_n| \le \sum_{n=1}^{k} |x_n| + \sum_{n=1}^{k} |y_n| \le \sum_{n=1}^{\infty} |x_n| + \sum_{n=1}^{\infty} |y_n| < \infty$$

By MCT, $\{\sum_{i=1}^{k} |x_n + y_n|\}$ convergent then $\sum_{n=1}^{\infty} |x_n + y_n|$ convergent. Hence $\{x_n + y_n\} \in l_1$. Moreover,

$$\|\{x_n + y_n\}\| \le \|\{x_n\}\|_1 + \|\{y_n\}\|_1$$

This implies $\|\cdot\|_1$ is a norm.

2. Let 1 ,

$$l_p = \{\{x_n\} | \sum_{i=1}^{\infty} |x_i|^p < \infty\}$$

 $\|\{x_n\}\|_p = (\sum_{i=1}^{\infty} |x_i|^p)^{1/p}$ Prove that $\{x_n\}, \{y_n\} \in l_p$ and then $\{x_n + y_n\} \in l_p$ and $\|\cdot\|_p$ is norm.

3. $l_{\infty} = \{\{x_n\}|sup\{|x_n|\} < \infty\}$. $\|\{x_n\}\|_{\infty} = sup\{|x_n|\}$. This is a norm.

Examples Continuous function space

1. $C([a,b]) = \{f : [a,b] \to \mathbb{R} | \text{ f is continuous} \}$. $||f||_{\infty} = \max\{|f(x)||x \in [a,b]\}$. Let $f, g \in C([a,b]), x \in [a,b]$.

$$\begin{split} |(f+g)(x)| &= |f(x) + g(x)| \le |f(x)| + |g(x)| \le \sup_{x \in [a,b]} |f(x)| + \max_{x \in [a,b]} |g(x)| = \|f\|_{\infty} + \|g\|_{\infty} \\ \|f+g\|_{\infty} &= \max_{x \in [a,b]} |f(x) + g(x)| \le \|f\|_{\infty} + \|g\|_{\infty} \end{split}$$

2. $\mathcal{C}([a,b]), ||f||_1 = \int_a^b |f(t)| dt.$

3. $\mathcal{C}([a,b]), ||f||_p = (\int_a^b |f(t)|^p dt)^{1/p}$

Theorem. Holder's inequality II: Let $1 . If <math>f, g \in \mathcal{C}[a, b]$.

$$\int_{a}^{b} |f(t)g(t)| dt \le (\int_{a}^{b} |f(t)|^{p} dt)^{1/p} (\int_{a}^{b} |g(t)|^{q} dt)^{1/q}$$

Theorem. Minkowski's Inequality II: If $f, g \in \mathcal{C}([a, b])$ and 1

$$\left(\int_{a}^{b} |(f+g)(t)|^{p} dt\right)^{1/p} \leq \left(\int_{a}^{b} |f(t)|^{p} dt\right)^{1/p} + \left(\int_{a}^{b} |g(t)|^{p} dt\right)^{1/p}$$

Then $f \neq 0 \neq g$.

Proof.

$$\begin{split} \int_{a}^{b} |f(t) + g(t)|^{p} dt &= \int_{a}^{b} |(f+g)(t)||(f+g)(t)|^{p-1} dt \\ &\leq \int_{a}^{b} |f(t)||(f+g)(t)|^{p-1} dt + \int_{a}^{b} |g(t)||(f+g)(t)|^{p-1} dt \\ &\leq (\int_{a}^{b} |f(t)|^{p} dt)^{1/p} (\int_{a}^{b} |f(t) + g(t)|^{(p-1)q} dt)^{1/q} \\ &+ (\int_{a}^{b} |g(t)|^{p} dt)^{1/p} (\int_{a}^{b} |f(t) + g(t)|^{(p-1)q} dt)^{1/q} \\ &\int_{a}^{b} |f(t) + g(t)|^{p} dt \leq [(\int_{a}^{b} |f(t)|^{p} dt)^{1/p} + (\int_{a}^{b} |g(t)|^{p} dt)^{1/p}] (\int_{a}^{b} |f(t) + g(t)|^{p} dt)^{1/q} \\ &(\int_{a}^{b} |f(t) + g(t)|^{p} dt)^{1-1/q} \leq ||f||_{p} + ||g||_{p} \end{split}$$

Example: Bounded operators

Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be normed linear spaces. Let $T : X \to Y$, linear. $\|T\| := \sup\{\|T(x)\|_Y | \|x\|_X \le 1, x \in X\}$. $B(X, Y) = \{T : X \to Y \text{ linear} | \|T\| < \infty\}$.

Claim: B(X, Y) is a vector space and $\|\cdot\|$ is a norm.

- $T, S \in B(X, Y) \implies T + S \in B(X, Y), x \in X, ||x||_X \leq$ $\begin{aligned} \|(T + S)(x)\|_Y &= \|T(x) + S(x)\|_Y \\ &\leq \|T(x)\|_Y + \|S(x)\|_Y \\ &\leq \|T\| + \|S\| \end{aligned}$ $\|T + S\| = \sup\|(T + S)(x)\| \leq \|T\| + \|S\| < \infty, x \in X, ||x||_X \leq 1$ $\implies T + S \in B(X, Y) \text{ and } \|T + S\| \leq \|T\| + \|S\|$
- $\alpha \in \mathbb{R}, T \in B(X, Y)$

$$\|\alpha T\| = \sup_{x \in X, \|x\|_X \le 1} \|\alpha T(x)\|_Y = |\alpha| \sup_{x \in X, \|x\|_X \le 1} \|T(x)\|_Y = |\alpha| \|T\| < \infty$$

$$\implies \alpha T \in B(X, Y) \text{ and } \|\alpha T\| = |\alpha| \|T\|$$

Note $B(X,Y) \leq \mathcal{L}(X,Y), 0 \in B(X,Y) \implies B(X,Y)$ subspace of $\mathcal{L}(X,Y)$. $||T|| \geq 0$ and $||T|| = 0 \iff ||T(x)||_Y = 0, \forall x \in X, ||x||_X \leq 1.$

2.1 Topology of Metric Spaces

Definition. Let (X, d) be a metric space. Let $x_0 \in X$ and $\epsilon > 0$. The open ball centered at x_0 with radius ϵ is

$$B(x_0,\epsilon) = \{x \in X | d(x,x_0) < \epsilon\}$$

The closed ball centered at x_0 with radius ϵ is

$$B[x_0, \epsilon] = \{x \in X | d(x, x_0) \le \epsilon\}$$

A subset $U \subseteq X$ is open if $\forall x \in U, \exists \epsilon > 0 | B(x, \epsilon) \subseteq U$. A subset $F \subseteq X$ is closed if F^C is open.

Proposition. Let (X, d) be a metric space. Then

- 1. X, \emptyset are open.
- 2. If $\{U_{\alpha}\}_{\alpha\in I}$ is a collection of open sets, then the union of all the sets in this collection is open =.
- 3. If $\{U_1, U_2, \cdots, U_n\}$ are open, then $\bigcap_{i=1}^n U_i$ is open.

Example

- 1. If $x \in X$, any $\epsilon > 0$, $B(x, \epsilon) \subseteq X \implies X$ is open. \emptyset is "trivially" open.
- 2. If $x \in \bigcup_{\alpha \in I} U_{\alpha}$, then $\exists \alpha \in I$ such that $x \in U_{\alpha_0}$. Since U_{α} is an open set and $x \in U_{\alpha_0}, \exists \epsilon > 0$ such that $B(x, \epsilon) \subseteq U_{\alpha} \subseteq \bigcup_{\alpha \in I} U_{\alpha} \implies \bigcup_{\alpha \in I} U_{\alpha}$ is open.
- 3. If $x \in \bigcap_{i=1}^{n} U_i$, $\forall i \in \{1, \cdots, n\}, \exists \epsilon < 0$ such that $B(x, \epsilon) \subseteq U$, let $\epsilon = \min\{\epsilon | i = 1, \cdots, n\} > 0, B(x, \epsilon) \subseteq B(x, \epsilon_i), \forall i \implies B(x, \epsilon_i) \subseteq \bigcap_{i=1}^{n} B(x, \epsilon_i) \subseteq \bigcap_{i=1}^{n} U_i$.

Proposition. Let (X, d) be a metric space. Then

- 1. X, \emptyset are closed
- 2. If $\{F_{\alpha}\}_{\alpha \in I}$ is addition of close sets, then $\cap_{\alpha \in I} F_{\alpha}$ is closed
- 3. If F_1, \dots, F_n are closed sets, then the union is also closed.

From this proposition, it flows that if (X, d) is a metric space. $\tau_j = \{U \subseteq X | U \text{ is open with respect to } d\}$. τ_j is a topology.

Proposition. Let (X, d) be a metric space, then

1. If $x_0 \in X, \epsilon > 0 \implies B(x_0, \epsilon)$ is open

- 2. $U \subseteq X$ is open \iff U is the union of open balls
- 3. If $x_0 \in X, \epsilon > 0 \implies B[x_0, \epsilon]$ is closed
- 4. If $x \in X, \{x\}$ is closed. Every finite subset is closed.
- *Proof.* 1. Let $x \in B(x_0, \epsilon)$, then $d(x, x_0) = \delta < \epsilon$ Let $\epsilon' = \epsilon \delta$. Claim $B(x, \epsilon') \subseteq B(x, \epsilon)$. Let $x \in B(x, \epsilon')$ and $d(x_0, z) \le d(x_0, x) + d(x, z) < \epsilon + \epsilon \delta = \epsilon$ This proves that $B(x_0, \epsilon)$ is open.
 - 2. \implies follows (1). \rightarrow If $x \in U, \exists \epsilon_x > 0$ such that $B(x, \epsilon_x) \subset U, \cup_{x \in U} B(x, \epsilon_x) = U$.
 - 3. Let $x \in (B[x_0,\epsilon])^C$. $d(x,x_0) = \delta > \epsilon$. Let $\epsilon' = \delta \cdot \epsilon$. Claim $B(x,\epsilon') \subseteq (B[x_0,\epsilon])^C$. Let $z \in B(x,\epsilon')$ assume $z \in B[x_0,\epsilon], d(x,x_0 \leq d(x,z) + d(z,x_0) < \epsilon' + \epsilon = \delta - \epsilon + \epsilon = \delta$. This implies $z \in (B[x_0,\epsilon])^C$.

4. If
$$y \in \{x\}^C$$
, then $y \neq x$ and $d(y, x) > 0$ and $B(y, d(x, y)) \implies \{x\}^C$ is open.

Open sets in \mathbb{R} . Recall $I \subseteq \mathbb{R}$ is an interval if $x, y \in I$ and z such that $x < z < y \implies z \in I$.

- Open finite intervals (a, b)
- Closed finite intervals [a, b].
- Half open finite set (a, b].
- Open rays (a, ∞)
- Closed rays

Example: Cantor set

 P_n is obtained from P_{n-1} by removing the open interval of length $1/3^n$ from the middle third of each of the 2^{n-1} subintervals of P_{n-1} . Each P_n is closed. It's the union of 2^n closed intervals of length $1/3^n$.

$$P = \bigcap_{n=1}^{\infty} P_n \text{Cantor (ternary) set})$$

- P is closed
- P is uncountable $(x \in P \to x = \sum_{n=1}^{\infty} \frac{a_n}{3^n}$ with $a_n = 0, 2$.
- P contains no interval of positive length

Example: Discrete metric

X set,
$$d(x,y) = \begin{cases} 1 & x \neq y \\ 0 & x = y \end{cases} x \in X, B(x,2) = X, B(x,1) = \{x\} \text{ is an open set.} \\ \text{If } U = X, U = U_{x \in U}\{x\} = U_{x \in U}B(x,1) \text{ open. U is also closed.} \end{cases}$$

2.2 Boundaries, interiors and closures

Definition. Let (X, d) metric space,

1. $A \subseteq \Longrightarrow$ The closure of A is

$$A = \cap \{ F \text{closed in } | A \subseteq F \}$$

It's the smallest closed set that contains A.

- 2. The interior of A is $int(A) = \bigcup \{ U \text{ is open in } X | U \subseteq A \}$. It is the largest open set inside A.
- 3. Let $x \in X, N \subseteq X$, we say that N is a neighborhood of $x (N \subset \mathcal{N}_x)$. If $x \in int(N)$.
- 4. Given $A \subseteq X, x \in X$ is a boundary point of A. If for every neighbor N of x, we have $N \cap A \neq \emptyset$ and $N \cap A^C \neq \emptyset$. Equivalently, x is a boundary point of A, if $\forall \epsilon > 0, B(x, \epsilon) \cap A \neq \emptyset$ and $B(x, \epsilon) \cap A^C \neq \emptyset$.

 $(\partial A)bdy(A) = \{x \in X | x \text{ is a boundary point of } A\}$

Proposition. (X, d) metric space, $A \subseteq X$

1. A is closed $\iff bdy(A) \subseteq A$

2. $\bar{A} = A \cup bdy(A)$.

- Proof. 1. (⇒) A is close if and only if A^C is open. If x ∈ A^C, ∃ε > 0 such that B(x,ε) ⊆ A^C and then B(x,ε) ∩ A = ∅ ⇒ x ∉ bdy(A).
 ← Let x ∈ A^C, then x ∉ bdy(A). This implies ∃ε > 0 such that B(x,ε) ∩ A = ∅. This implies B(x,ε) ⊆ A^C. By definition, A^C is open.
 - 2. Claim that $bdy(A) \subseteq \overline{A}$. Let $x \in (\overline{A})^C$. There exists $\exists \epsilon > 0$ such that $B(x, \epsilon) \cap \overline{A} = \emptyset$. This implies that $B(x, \epsilon) \cap A = \emptyset \implies x \notin bdy(A)$. This implies $F = bdy(A) \cup A \subseteq \overline{A}$. Claim that F is closed.

Definition. Let (X, d) metric space, $A \subseteq X$ and $x \in X$. We say that x is a limit point of A, if for all neighbor hood N of x, we have $N \cap (A \setminus \{x\}) \neq \emptyset$. Equivalently, $\forall \epsilon > 0, B(x, \epsilon) \cap (A \setminus \{x\}) \neq \emptyset$. The set of limit points of A is Lim(A) cluster points.

Note:
$$A = [0,1] \subseteq \mathbb{R}$$
, $bdy(A) = \{0,1\}$, $Lim(A) = A$. For $B = \{x\} \subseteq \mathbb{R}$, $bdy(B) = B$, $Lim(B) = \emptyset$.

Proposition. Let (X, d) metric space, $A \subseteq X$

- 1. A is closed $\iff Lim(A) \subseteq A$
- 2. $\overline{A} = A \cup Lim(A)$.

Proposition. 1. $\bar{A} \subseteq \bar{B}$.

- 2. $int(A) \subseteq int(A)$.
- 3. $int(A) = A \setminus bdy(A)$.

Proposition. Let $A, B \subseteq (X, d)$ metric space.

- 1. $\overline{A \cup B} = \overline{A} \cup \overline{B}$
- 2. $int(A \cup B) = int(A) \cap int(B)$

Proof. 1. $A \cup B \subseteq \overline{A} \cup \overline{B}$. Hence, $\overline{A \cup B} \subseteq \overline{A} \cup \overline{B}$

Conversely, $A \subseteq \overline{A \cup B} \implies \overline{A} \subseteq \overline{A \cup B}$. Similarly for B.

2. $int(A) \cap int(B) \subseteq A \cap B$. and $int(A) \cap int(B) \subseteq int(A \cap B)$. Conversely, $int(A \cap B) \subseteq A \implies int(A \cap B) \subseteq int(A)$. Similar for B.

Definition. Let (X, d) metric space. $A \subseteq X$ is dense in X if $\overline{A} = X$. We say that (X, d) is separable if X has a countable subset A such that $\overline{A} = X$. Otherwise, X is non-separable.

Examples:

- 1. \mathbb{R} is separable
- 2. \mathbb{R}^n is separable.
- 3. l_1 is separable
- 4. l_{∞} is non-separable.

Question: Is $(C[a, b], ||||_{\infty})$ separable?

2.3 Convergence of sequences and topology in a metric space

Definition. (X, d) metric space, $\{x_n\} \subseteq X$ sequence. We say that $\{x_n\}$ converges to a point $x_0 \in X$ if $\forall \epsilon > 0, \exists n_0 \in \mathbb{N}$ such that if $n \ge n_0$, then $d(x_n, x_0) < \epsilon$. Then x_0 is the limit of $\{x_n\}$, $\lim_n x_n = x_0, x_n \to x_0$. Equivalently, $\lim_n x_n = x_0 \iff \lim_n d(x_0, x) = 0$.

Proposition. (X, d) metric space, $\{x_n\} \subseteq X$. If $\lim x_n = x_0 = y_0$

Proposition. 1. $x_0 \in bdy(A) \iff \exists \text{ sequence } \{x_n\} \subseteq A, \{y_n\} \subseteq A^c \text{ such that } x_n \to x_0, y_n \to x_0.$

2. A is closed \iff whenever $\{x_n\} \subseteq A$ with $x_n \to x_0 \implies x_0 \subseteq A$.

- $\begin{array}{ll} \textit{Proof.} & 1. \ x_0 \in bdy(A), x_n \in B(x_0, \frac{1}{n}) \cap A. \ y_n \in B(x_0, \frac{1}{n}) \cap A^c. \ \text{Conversely, suppose} \ \{x_n\} \subseteq A, \{y_n\} \subseteq A^c, x_n \to x_0, y_n \to x_0. \ \text{Given} \ \varepsilon > 0, \exists N \in \mathbb{N}, \text{ such that } x_n \in B(x_0, \varepsilon), \forall n \ge N \implies B(x_0, \epsilon) \cap A \neq \emptyset. \\ \exists N' \in \mathbb{N}, \text{ such that } x_n \in B(x_0, \varepsilon), \forall n \ge N' \implies B(x_0, \varepsilon) \cap A^c \neq \emptyset. \ \text{This implies} \ x_0 \in bdy(A). \end{array}$
 - 2. A is closed, $\{x_n\} \subseteq A, x_n \to x_0$. Suppose $x_0 \in A^c \implies \exists \varepsilon > 0$, such that $B(x_0, \varepsilon) \cap A = \emptyset$ but since $x_n \to x_0, \exists N \in \mathbb{N}$, such that $d(x_0, x_n) < \varepsilon, \forall n \ge N$. Contradiction. Then $x_0 \in A$.

Conversely, suppose A is not closed, Then $x_0 \in bdy(A) \setminus A$. By (1), $\exists \{x_n\} \subseteq A$ such that $x_n \to x_0 \implies x_0 \in A$. This is a contradiction. Then A is closed.

Proposition. Let (X, d) metric space, $\{x_n\} \subseteq X$. If $x_0 = \lim_{n \to \infty} x_n = y_0$, then $x_0 = y_0$.

Proof. Suppose $x_0 \neq y_0 \implies d(x_0, y_0) = \epsilon > 0$. $\frac{\epsilon}{2} > 0, \exists N \in \mathbb{N}$ such that $d(x_n, x_0) < \frac{\epsilon}{2}, \forall n \ge N, \exists N' \in \mathbb{N}$ such that $d(x_n, x_0) < \frac{\epsilon}{2}, \forall n \ge N'$. If $n = \max\{N, N'\}, \epsilon = d(x_0, y_0) \le d(x_0, x_n) + d(x_n, y_0) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$. \Box

Definition. We say that x_0 is a limit point of $\{x_n\}$ if \exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that $x_{n_k} \to x_0$. $lim^*(\{x_n\}) = \{x_0 \in X | x_0 \text{ is a limit point of } \{x_n\}\} lim(\{x_n\}) \leftarrow \{x_n\}$ subset of X.

Example, $x_n = (-1)^n \ .lim^*(\{x_n\}) = \{-1, 1\}. \ lim(\{x_n\}) = \emptyset.$

Proposition. (X, d) metric space, $A \subseteq X$. $x_0 \in lim(A) \iff \exists \{x_n\} \subseteq A$, with $x_n \neq x_0$ and $x_n \to x_0$.

Proof. Let $x_0 \in lim(A), \forall n \in \mathbb{N}, \exists x_n \in N \text{ such that } \{x_n\} \cap B(x_0, \frac{1}{n}) \text{ Hence } \{x_n\} \subseteq A, x_n \neq x_0, x_n \to x_0.$ Conversely. $\forall \epsilon > 0, A \setminus \{x_0\} \cap B(x_0, \epsilon) \neq \emptyset$. Since $\exists N \in \mathbb{N}$, such that $x_n \neq x_0 \in B(x_0, \epsilon), \forall n \geq N$. \Box

2.4 Induced metric and the relative topology

Definition. Let (X, d) metric space, $A \subseteq X$. Define $d_A : A \times A \to \mathbb{R}$ such that $d_A(x, y) = d(x, y), \forall x, y \in A$. d_A is a mtreic, and its called the induced metric. Let $\tau_A = \{W \subset A | W = U \cap A \text{ for some U open in X}\}$. τ_A is a topology in A called the relative topology in A inherited from τ_d on X.

Theorem. (X, d) metric space, $A \subseteq X$, Then $\tau_A = \tau_{d_A}$.

Proof. Let $W \subseteq A, W \in \tau_A$ and $x \in W$. $\exists U$ open in X such that $U \cap A = W$. $x \in U \implies \exists \epsilon > 0$ such that $B_d(x,\epsilon) \subseteq U$. $x \in B_{d_A}(x,\epsilon) \subseteq B_d(x,\epsilon) \subseteq U$. $x \in B_{d_A}(x,\epsilon) \subseteq U \cap A = W \in \tau_{d_A}$. Let $W \subseteq A, W \in \tau_{d_A}, \forall x \in W, \exists \epsilon_x > 0$ such that $B_{d_A}(x,\epsilon_x) \in W$.

$$W = \bigcup_{x \in W} B_{d_A}(x, \epsilon_x)$$

$$X \supseteq U = \bigcup_{x \in W} B_d(x, \epsilon_x)$$
 open in X

Now $W = A \bigcap U \implies W \in \tau_A$.

2.5 Continuity

 $(X, d_x), (Y, d_y)$ metric spaces, $f : X \to Y$ function f(x) is continuous at $x_0 \in X$ if $\forall \epsilon > 0, \exists \delta > 0$ such that $x \in B(x_0, \delta)$ then $f(x) \in B(f(x_0), \epsilon)$. Otherwise, f(x) is discontinuous at x_0 f(x) is continuous if it is continuous at x_0 , for all $x_0 \in X$.

Theorem. $(X, d_x), (Y, d_y)$ metric space, $f : X \to Y$ TFAE

- 1. f(x) is continuous at $x_0 \in X$.
- 2. If W is a neighborhood of $g = f(x_0)$, then $v = f^{-1}(W)$ is a neighborhood of x_0 .

Proof. From (1) to (2): $\exists \epsilon > 0$ such that $B(f(x_0), \epsilon) \subseteq W$. This implies $\exists \delta > 0$ such that $d(z, x_0) < \delta \implies d_X(f(z), f(x_0)) < \epsilon$. Therefore, $f(B(x_0, \delta)) \subseteq B(f(x_0), \epsilon) \subseteq W$. But $V = f^{-1}(W)$ Hence $x_0 \in B(x_0, \delta) \subseteq V \implies x_0 \in int(V)$.

From 2 to 1, let $\epsilon > 0$, Therefore, $B(f(x_0), \epsilon) = W$ neighborhood of $f(x_0)$. Then $f^{-1}(W)$ is a neighborhood of x_0 , i.e. $x_0 \in int(f^{-1}(W))$ Therefore, $\exists \delta > 0$ such that $B(x_0, \delta) \subseteq f^{-1}(W)$.

Theorem. Sequential Characterization of continuous $(X, d_x), (Y, d_y)$ metric space, $f: X \to Y$, TFAE

- 1. f(x) is continuous at $x_0 \in X$.
- 2. If $\{x_n\} \subseteq X, x_n \to x_0 \implies f(x_n) \to f(x_0)$.

Proof. From 1 to 2, f(x) is continuous at x_0 , $\{x_n\} \subseteq X$, $x_n \to x_0$. Fix $\epsilon > 0$, then $\exists \delta > 0$ such that $d_x(x, x_0) < \delta \implies d_y(f(x), f(x_0)) < \epsilon$. Since $x_n \to x_0$. $\exists N \in \mathbb{N}$, such that if $n \ge N, d_x(x_n, x_0) < \delta \implies d_y(f(x_n), f(x_0)) < \epsilon$.

From 2 to 1, assume f(x) is not continuous at x_0 . $\exists \epsilon_0 > 0$, for every ball $B_x(x_0, \delta)$, $\exists x_\delta \in B_x(x_0, \delta)$ such that $d_Y(f(x_\delta), f(x_0) \ge \epsilon_0$. In particular, for each $n \in \mathbb{N}$, $x_n \in B_x(x_0, \frac{1}{n})$ Note: $x_n \to x_0$ but $d_Y(f(x_n), f(x_0)) \ge \epsilon_0$ i.e. $f(x_n)$ does not converge to $f(x_0)$.

Theorem. $(X, d_x), (Y, d_y)$ metric space, $f : X \to Y$, TFAE

- 1. f(x) is continuous
- 2. If $W \subseteq Y$ is open, then $f^{-1}(W) = V \subseteq X$ is open
- 3. If $\{x_n\} \subseteq X, x_n \to x_0$ for some $x_0 \in X$, then $f(x_n) \to f(x_0) \in Y$.

Proof. 3 to 1 is done

1 to 2: Let $W \subseteq Y$ open and $V = f^{-1}(W)$. Let $x_0 \in V', f(x_0) \in W$ open. Therefore, W is a neighborhood of $f(x_0)$. By 1, $f^{-1}(W) = V$ is a neighborhood of x_0 i.e. $x_0 \in int(V)$ Then V = int(V) is open.

2 to 3: let $\{x_n\} \subseteq X, x_n \to x_0$. Let $y_0 = f(x_0)$. Fix $\epsilon > 0$, if $W = B_y(y_0, \epsilon)$ open in Y. Then $f^{-1}(W) \subseteq X$ open. Note: $x_0 \in V \implies \exists \delta > 0$, such that $B_x(x_0, \delta) \subseteq V$. Since $x_n \to x_0, \exists N$ such that if $n \ge N$, then $d_x(x_n, x_0) < \delta$, i.e. $x_n \in V, \forall n \ge N$. Hence $f(x_n) \subseteq W, \forall n \ge N$. i.e. $d_y(f(x_n), f(x_0)) < \epsilon \iff f(x_n) \to f(x_0)$.

Example: X a set, d discrete metric (Y, d_x) metric space, $f(X, d) \to (Y, d_Y)$ is continuous.

Definition. $f(X, d_X) \to (X, d_y)$: f is a homeomorphism if f is one-to-one and onto, and both f and f^{-1} are continuous. We say that (X, d_X) and (Y, d_Y) are homeomorphic.

Remark: $f: X \to Y$ is homeomorphic, $U \subseteq X$ is open $\iff f(U) \subseteq Y$ is open.

Two metric spaces (X, d_X) and (Y, d_Y) are equivalent if \exists a one-to-one and onto map $f: X \to Y$ and two constants, $c_1, c_2 > 0$, such that $c_1 d_X(x_1, x - 2) \leq d_Y(f(x_1), f(x_2)) \leq c_2 d_X(x_1, x_2), \forall x_1, x - 2 \in X$. Remark: If X and Y are equivalent, then they are homeomorphic.

2.6 Complete Metric Spaces: Cauchy sequences

Note: If $\{x_n\} \subset (X, d_X), x_n \to x_0 \in X$ then $\forall \epsilon > 0, \exists N \in \mathbb{N}$ such that if $n \ge N \implies d(x_0, x_n) < \epsilon/2$, If $n, m \ge N, d(x_n, x_m) \le d(x_n, x_0) + d(x_0, x_m) < \epsilon/2 + \epsilon/2 < \epsilon$.

Definition. A sequence $\{x_n\} \subseteq (X, d_x)$ is cauchy in (X, d_x) if $\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall n, m \ge N, d(x_n, x_m) < \epsilon$.

Theorem. Let $\{x_n\} \subseteq (X, d_x)$ be a convergent sequence then $\{x_n\}$ is Cauchy.

Does every Cauchy sequence converge? $x_n = \frac{1}{n}, X = (0, 2)$ used metric $\{x_n\}$ is Cauchy but it does not converge.

Definition. A metric space (X, d_x) is complete if every Cauchy sequence converges. A set $A \subseteq X$ is bounded if $\exists M > 0$, and $x_0 \in X$ such that $A \subseteq B[x_0, M]$.

Proposition. Every Cauchy sequence is bounded $\{x_n\}$ is Cauchy. This implies $\exists N \in \mathbb{N}$ such that $\forall n, m \geq N$, $d(x_n, x_m) < 1$. In particular, $d(x_N, x_m) < 1$, $\forall m \geq N$. $M = \max\{d(x_1, x_N), \cdots, d(x_{N-1}, x_N), 1\}$. This implies $\{x_n\} \subseteq B[x_N, M]$.

Proposition. Assume $\{x_n\}$ is a Cauchy sequence with a subsequence $\{x_{n_k}\}$ such that $x_{n_k} \to x_0$. Then $x_n \to x_0$. Then $x_n \to x_0$. Let $\epsilon > 0 \implies \exists N \in \mathbb{N}$ such that $n, m \ge N, d(x_n, x_m) < \epsilon/2$ since $x_{n_k} \to x_0, \exists k \in \mathbb{N}$ such that $\forall n_k \ge k, d(x_{n_k}, x_0) < \epsilon/2$. $M = \max\{N, k\}, \forall n \ge M, d(x_n, x_0) \le d(x_n, x_{n_k}) + d(x_{n_k}, x_0) < \epsilon/2 + \epsilon/2 < \epsilon$. Pick $n_k > M$.

2.7 Completeness of \mathbb{R}, \mathbb{R}^n and l_p

Theorem. Bolzano-Weierstrass Theorem: every bounded sequence in \mathbb{R} has a convergent subsequence.

Theorem. Completeness Theorem for \mathbb{R} . Every Cauchy sequence in \mathbb{R} converges. $\{x_n\}$ is Cauchy \implies $\{x_n\}$ is bounded \implies $\{x_n\}$ has a convergent subsequence \implies Then $\{x_n\}$ is convergent.

Theorem. Let $1 \leq p \leq \infty$, every Cauchy sequence in $(\mathbb{R}^n, \|\cdot\|_p)$ converges.

Lemma. Let $1 \le p < \infty$, let $\{x_k\}$ be a Cauchy sequence in $(l_p, \|\cdot\|_p)$. Then for each $i \in \mathbb{N}$, the component sequence $\{x_{k,2}\}_k$ is Cauchy in \mathbb{R} .

Proof. Assume $\{x_k\}_{k\in\mathbb{N}} \subseteq (l_p, \|\cdot\|_p)$ is Cauchy. $x_k = \{x_{k,1}, \cdots, x_{k,n}\}$ Since each component sequence $\{x_{k,i}\}_k$ is Cauchy on \mathbb{R} . and \mathbb{R} is complete. Let $x_{0,i} = l_m x_{k,i} \in \mathbb{R}$ Let $x_0 = \{x_{0,1}, \cdots, x_{0,i}, \cdots\}$. Claim: $x_0 \in l_p$ and $x_k \to x_0$. Let $\epsilon > 0$, $\exists N_0 \in \mathbb{N}$ such that $k, m \ge N_0, \|x_m - x_k\|_p < \frac{\epsilon}{2}$.

Case 1 Let $p = \infty$, $k \ge N_0$, $|x_{m,i} - x_{k,i}| \le ||x_m - x_k||_\infty$, $\forall m \ge N_0, \forall i \in \mathbb{N}$. $k \ge N_0, |x_{0,i} - x_{k,i}| = \lim_{m \to \infty} |x_{m,i} - x_{k,i}| \le \frac{\epsilon}{2} < \epsilon, \forall i \in \mathbb{N}$. This implies $\{x_{0,i} - x_{k,i}\}_i \in l_\infty$. Well $\{x_{k,i}\} \in l_\infty$. This implies $\{x_{0,i}\} \in l_\infty$. Therefore, $||x_0 - x_k||_\infty < \epsilon, \forall k \ge N_0$. This implies $x_k \to x_0$.

Case 2 Let $k \ge N_0$. For each $j \in \mathbb{N}$ such that $(\sum_{i=1}^j |x_{m,i} - x_{k,i}|^p)^{1/p} \le ||x_m - x_k||_{[} < \frac{\epsilon}{2}$. $(\sum_{i=1}^j |x_{0,i} - x_{k,i}|^p)^{1/p} = \lim_m (\sum_{i=1}^j |x_{m,i} - x_{k,i}|^p)^{1/p} \le \frac{\epsilon}{2}$.

$$\left(\sum_{i=1}^{\infty} |x_{0,i} - x_{k,i}|^p\right)^{1/p} \le \frac{\epsilon}{2} < \epsilon, \forall k \ge N_0$$

Then this implies $\{x_{0,i} - x_{k,i}\} \in l^p$ and $\{x_{k,i}\}_i \in l^p$. Then $\{x_{0,i}\} = x_0 \in l^p$. then $||x_0 - x_k||_p < \epsilon, \forall k \ge N_0$, then $x_k \to x_0$.

2.8 Completeness of $(\mathcal{C}_b(X), \|\cdot\|_{\infty})$

Definition. $(X, d_x), (Y, d_y)$ metric space $\{f_n\}$ sequence of functions $f_n : X \to Y$. $\{f_n\}$ converges pointwise to $f_0 : X \to Y$ if $\lim_n f_n(x_0) = f_0(x_0), \forall x_0 \in X$. $\{f_n\}$ converges uniformly to $f_0 : X \to Y$ if $\forall \epsilon > 0, \exists N_0 \in \mathbb{N}$ such that $n \ge N_0, d_Y(f_n(x), f_0(x)) < \epsilon, \forall x \in X$.

Remark: $\{f_n\}$ such that $f_n \to uniform f_0 \implies f_n \to pointwise f_0(x), \forall x$. Let $f_n(x) = x^n$ on [0, 1]. $f_n(x) \to f_0(x), \forall x$, for $f_0(x) = 1, x = 1$ otherwise 0.

Theorem. $(X, d_x), (Y, d_y)$ metric space, $\{f_n\}$ such that $f_n : X \to Y$ and $f_n \to^{unit} f_0 : X \to Y$. If each f_n is continuous at x_0 , so is f_0 .

 $f_n \to^{unit} f_0$. This implies $\exists N_0 \in \mathbb{N}$ such that $n \ge N_0, d_y(f_n(x), f_0(x)) < \frac{\epsilon}{3}, \forall x \in X$.

 f_n continuous at $x_0, \forall n \implies$ in particular f_{N_0} is continuous at x_0 . This means $\exists \delta > 0$ such that $x \in B(x_0, \delta) \implies d_y(f_{N_0}(x_0), f_{N_0}(x)) < \frac{\epsilon}{3}$.

Proof. If $x \in B(x_0, \delta)$,

$$d_Y(f_0(x_0), f_0(x)) \le d_Y(f_0(x_0), f_{N_0}(x_0)) + d_Y(f_{N_0}(x_0), f_{N_0}(x)) + d_Y(f_{N_0}(x), f_0(x)) < \frac{\epsilon}{3} \times 3 = \epsilon$$

Definition. (X, d_x) metric space, $\mathcal{C}_b(X) := \{f : X \to \mathbb{R} | f \text{ is continuous on } X \text{ and } f(x) \text{ is bounded} \}.$

$$||f||_{\infty} = \sup\{|f(x)|x \in X\}$$

 $(\mathcal{C}_b(X), \|\cdot\|_{\infty})$ is a normed linear space.

Remark: let $\{f_n\} \subseteq \mathcal{C}_b(X), f_n(X, d_x) \to (\mathbb{R}, \text{usual metric}).$ $f_n \to^{\parallel\parallel_{\infty}} f_0 \iff f_n \to^{uniform} f_0.$

Theorem. Completeness for $(\mathcal{C}_b(X), \|\cdot\|_{\infty}), (\mathcal{C}_b(X), \|\cdot\|_{\infty})$ is complete.

Let $\{f_n\}$ be a Cauchy sequence. For each $x_0 \in X$, $|f_n(x_0) - f_m(x_0)| \leq ||f_n - f_m||_{\infty}$. It follows, that $\{f_n(x_0)\}$ is Cauchy in \mathbb{R} , $\forall x_0 \in X$. $f_0(x) = \lim_{n \to \infty} f_n(x), \forall x \in X$. Claim: $f_n \to f_0$.

Let $\epsilon > 0$, choose N_0 such that $n, m \ge N_0 \implies ||f_n - f_m||_{\infty} < \frac{\epsilon}{2}$. If $n \ge N_0$ and $x \in X$, then $|f_n(x) - f_0(x)| = \lim_{m \to \infty} |f_n(x) - f_m(x)| \le \frac{\epsilon}{2} < \epsilon$. Therefore, $f_n \to f_0 \implies f_0$ is continuous.

 f_0 is bounded. $\{f_n\}$ is Cauchy, then $\{f_n\}$ is bounded. $\exists M > 0$ such that $\|f_n\|_{\infty} < M, \forall n \in \mathbb{N}$. $\exists n_0$ such that $|f_0(x) - f_{n_0}(x)| < 1, \forall x \in X$. Then $|f_0(x)| \le f_0(x) - f_{n_0}(x)| + |f_{n_0}(x)| < 1 + M, \forall x \in X$. Hence $f_0 \in \mathcal{C}_b(X)$ and $f_n \to f_0$.

Remark: \mathbb{N} , discrete metric space. $(\mathcal{C}_b(\mathbb{N}), \|\cdot\|_{\infty}) = (l_{\infty}, \|\|\|_{\infty})$ and $(\mathcal{C}_b(X), \|\cdot\|_{\infty}) \implies (l_{\infty}(X), \|\cdot\|_{\infty})$

2.9 Characterizations of Complete Metric Spaces

Note: Theorem fails if we consider open intervals $\{(0, 1/n)\}$. Note: Theorem fails if we consider unbounded intervals $\{[n, \infty)\}$.

Definition. Let $A \subseteq (X, d)$. $diam(A) := sup\{d(x, y) | x, y \in A\}$ is the diameter of A.

Proposition. Let $A \subseteq B \subseteq (X, d)$, Then:

- 1. $diam(A) \leq diam(B)$
- 2. $diam(A) = diam(\overline{A})$.

Proof. The second: \leq from (1). If $diam(A) = \infty \implies diam(\bar{A}) = \infty$. Let $\epsilon > 0$, let $x, y \in \bar{A}$. this implies $\exists x_0, y_0 \in A$ such that $d(x, x_0) < \frac{\epsilon}{2}, d(y, y_0) < \frac{\epsilon}{2}$. $d(x, y) \leq d(x_1, x_0) + d(x_0, y_0) + d(y_0, y) \leq diamA + \epsilon$. Hence $diamA \leq diam\bar{A} \leq diamA + \epsilon, \forall \epsilon > 0$.

Generalization of Nested Interval Theorem to (X, d) is complete.

Theorem. Cantor's Intersection Theorem: Let (X, d) be a metric space TFAE

- 1. (X, d) is complete.
- 2. (X, d) satisfies the following proposition.
 - If $\{F_n\}$ is a sequence of non-empty closed sets. such that $F_{n+1} \subseteq F_n, \forall n$, and $\lim_{n \to \infty} (diam F_n) = 0 \implies \bigcap_{n=1}^{\infty} F_n \neq \emptyset$.

Proof. 1 to 2: $\{F_n\}$ a sequence such that $F_n \neq \emptyset$, F_n is closed, $F_{n+1} \subseteq F_n$, $\lim(diamF_n) = 0$. For each n, choose $x_n \in F_n$. Let $\epsilon > 0$, $\exists N_0$ such that $diamF_{N_0} < \epsilon$. If $n, m \ge N_0$, $\implies x_n, x_m \in F_{N_0}$. $d(x_n, x_m) \le diam(F_{N_0}) < \epsilon$. Hence $\{x_n\}$ is a Cauchy sequence and (X, d) is complete. Then $x_n \to_n x_0 \in X$.

For each n, $\{x_n, x_{n+1}, \dots, x_{n+k}, \dots\} \subseteq F_n$. Then $x_{n+k} \to_k x_0$ and F_n closed so $x_0 \in F_n, \forall n$. This implies $x_0 \in \bigcap_{n=1}^{\infty} F_n$.

2 to 1: let $\{x_n\} \subseteq X$. Cauchy. For each n, $A_n := \{x_n, x_{n+1}, \dots\}$ Claim: $diam(A_n) \to_n 0$. Let $F_n = \bar{A}_n$, $A_{n+1} \subseteq A_n \implies F_{n+1} \subseteq F_n$. $diam(F_n) \to_n 0$.

This implies $\exists x_0 \in \bigcap_{n=1}^{\infty} F_n$, let $\epsilon > 0$, choose N_0 such that $diam F_{N_0} < \epsilon$. This implies $F_{N_0} \subseteq B(x_0, \epsilon)$. If $n \ge N_0$, $d(x_n, x_0) < \epsilon$. This implies $x_n \to_n x_0$.

Definition. Define $(X, \|\cdot\|)$ normed space. $\{x_n\} \subseteq X$. A series with terms $\{x_n\}$ is a formal sum $\sum_{n=1}^{\infty} x_n = x_1 + x_2 + \cdots$. For each $k \in \mathbb{N}$, define the kth-[artial sum of $\sum_{n=1}^{\infty} x_n$ by $s_k = \sum_{n=1}^k x_n \in X$. The series $\sum_{n=1}^{\infty} x_n$ converges if the sequence $\{s_k\}$ converges. Otherwise, diverge.

Definition. A normed linear space $(X, \|\cdot\|)$ which is complete under the metric induced is called a Banach space.

Theorem. Generalized Werestrass M-Test: Let $(X, \|\cdot\|)$ normed linear space TFAE

- 1. $(X, \|\cdot\|)$ is a Banach Space.
- 2. The space $(X, \|\cdot\|)$ satisfies the following property:

Let $\{x_n\} \subseteq X$. If $\sum_{n=1}^{\infty} \|x_n\|$ converges in $\mathbb{R} \implies \sum_{n=1}^{\infty} x_n$ converges in $(X, \|\cdot\|)$.

Proof. 1 to 2: Let $T_k = \sum_{n=1}^k ||x_n|| \implies \{T_k\}$ is Cauchy. Given $\epsilon > 0, \exists N_0$ such that $k > m > N_0$

$$\sum_{n=m+1}^{k} \|x_n\| = |T_k - T_m| < \epsilon$$

Let $s_k = \sum_{n=1}^k x_n$, let $k > m > N_0$.

$$||s_k - s_m|| = ||\sum_{n=m+1}^k x_n|| \le \sum_{n=m+1}^k ||x_n|| < \epsilon$$

Therefore $\{s_k\}$ is Cauchy. This implies $\{s_k\}$ converges and then $\sum_{n=1}^{\infty} x_n$ converges.

2 to 1: Assume 2 holds and $\{x_n\}$ is Cauchy. Choose n_1 if $i, j > n_1 \implies ||x_1 - x_j|| < \frac{1}{2}$ and choose n_2 , such that if $i, j > n_2 \implies ||x_i - x_j|| < \frac{1}{2^2}$.

If we have $n_k > n_{k-1} > \cdots > n_2 > n_1$ such that if $i, j > n_k \implies ||x_i - x_j|| < \frac{1}{2^k}$. Choose $n_{k+1} > n_k$ such that if $i, j > n_{k+1} \implies ||x_i - x_j|| < \frac{1}{2^{k+1}}$. By induction, $\{n_k\}_k$ is an increasing sequence of \mathbb{N} such that $i, j > n_k \implies ||x_i - x_j|| < \frac{1}{2^k}$. In particular $||x_{n_{k+1}} - x_{n_k}|| < \frac{1}{2^k} \implies g_k = x_{n_k} - x_{n_{k+1}} \in X, \forall k$.

$$\sum_{k=1}^{\infty} \|g_k\| = \sum_{k=1}^{\infty} \|x_{n_{k+1}} - x_{n_k}\| < \sum_{k=1}^{\infty} \frac{1}{2^k} = 1$$

Hence $\sum_{k=1}^{\infty} \|g_k\|$ converges. Hence $\sum_{k=1}^{\infty} g_k$ converges in $(X, \|\cdot\|) \iff \{s_k\}_k$ converges $s_k = \sum_{j=1}^k g_j$. $s_k = g_1 + g_2 + \dots + g_k = x_{n_1} - x_{n_2} + x_{n_2} - x_{n_3} + \dots + x_{n_k} - x_{n_{k+1}} = x_{n_1} - x_{n_{k+1}}$. $x_{n_{k+1}} \to x_{n_1} - \sum_{j=1}^{\infty} g_j$. Therefore $\{x_{n_k}\}$ converges and $\{x_n\}$ is Cauchy. Then $\{x_n\}$ converges.

Example:

A continuous, nowhere differentiable function

Let
$$\phi(x) = \begin{cases} x & x \in [0,1] \\ 2-x & x \in [1,2] \end{cases}$$
. Extend to \mathbb{R} by $\phi(x) = \phi(x+2)$. Let $f(x) = \sum_{n=0}^{\infty} (\frac{3}{4})^n \phi(4^n x)$.

1. Claim 1: f(x) is continuous on \mathbb{R} . $\sum_{n=1}^{\infty} (\frac{3}{4})^n \phi(4^n x) \leq \sum_{n=0}^{\infty} (\frac{3}{4})^n = L$. Then f(x) is defined. $\sum_{n=1}^k (\frac{3}{4})^n \phi(4^n x) \leq \sum_{n=0}^{\infty} (\frac{3}{4})^n \to f(x)$.

2.10 Completion of Metric Space

Proposition. (X, d) complete metric space, let $A \subseteq X$, then (A, d_A) is complete $\iff A$ is closed in X.

Proof. Converse: assume $A \subseteq X$ is closed, $\{x_n\} \subseteq A$ Cauchy in (A, d_A) . Then $\{x_n\}$ Cauchy in $(X, d) \Longrightarrow \exists x_0$ such that $x_n \to x_0$ and A is closed so $x_0 \in A$.

 \implies Suppose A is not closed. This implies $\exists x_0 \in bdy(A) \setminus A$. This implies $\exists \{x_n\} \subseteq A$ such that $x_n \to_n x_0$. This means $\{x_n\}$ is Cauchy (A, d_A) . This means A is not complete. Hence contradiction. \Box

Definition. $(X, d_x), (Y, d_y)$ metric spaces. A map $\phi : X \to Y$ is an isometry if $d_Y(\phi(x), \phi(y)) = d_X(x, y), \forall x, y \in X$. Note: If ϕ is an isometry, then ϕ is one-to-one. If ϕ is an isometry and ϕ is onto, we say that (X, d_X) and (Y, d_Y) are isometric. A completion of (X, d_X) is a pair $((Y, d_Y), \phi)$ such that (Y, d_Y) is a complete metric space, $\phi : X \to Y$ is an isometry and $\overline{\phi(X)} = Y$.

Theorem. (X, d) metric space. This implies \exists an isometry such that

$$\phi: X \to (C_b(X), \|\cdot\|_{\infty})$$

Proof. Fix $a \in X$, for $u \in X$, let $f_u : X \to \mathbb{R}$. Then $f_u(x) = d(u, x) - d(x, a)$. f_u is continuous such that f_u is bounded, $|f_u(x)| = |d(u, x) - d(x, a)| \le d(u, a)$. This implies $f_u \in C_b(X)$. Let $\phi : X \to C_b(X)$ such that $u \to f_u$.

$$d(f_u, f_v) = \|f_u - f_v\|_{\infty} = \sup_{x \in X} \{|f_u(x) - f_v(x)|\}$$

= $\sup_{x \in X} \{|d(u, x) - d(x, a) - d(v, x) + d(x, a)|\} \le d(u, v)$
 $|f_u(v) - f_v(v)| = d(u, v) \implies \|f_u - f_v\|_{\infty} = d(u, v)$

Corollary. Every metric space has a completion. Let $\phi : X \to (C_b(X), \|\cdot\|_{\infty})$ and $Y = \phi(x)$. $((Y, d_Y), \phi)$ is complete.

2.11 Banach Contractive Mapping Theorem

Question: can we find $f \in C[0,1]$ such that $f(x) = e^x + \int_0^x \sin(t)/2f(t)dt$? Strategy: define $\Gamma : C[0,1] \to C[0,1]$. $\Gamma(g)(x) = e^x + \int_0^x \sin(t)/2g(t)dt \in C([0,1])$. $\exists ! f \in C[0,1]$ such that Γ fixes f, i.e., $\Gamma(f) = f$.

Definition. (X, d_X) metric space, let $\Gamma : X \to X$. We call $x_0 \in X$ a fixed point of Γ if $\Gamma(x_0) = x_0$. We say that Γ is Lipchitz if $\exists \alpha \geq 0$ such that $d(\Gamma(x), \Gamma(y)) \leq \alpha d(x, y), \forall x, y \in X$ and Γ is a contraction if $\exists k$ such that $0 \leq k < 1$ such that $d(\Gamma(x), \Gamma(y)) \leq k d(x, y), \forall x, y \in X$.

Theorem. Banach Contractive Mapping Theorem (or Banach fixed point Theorem). Let (X, d) be a complete metric space. This implies Γ has a unique fixed point $x_0 \in X$.

- 1. If such x_0 exists, it's unique: suppose $\Gamma(x_0) = x_0$ and $\Gamma(y_0) = y_0$, $\Gamma \neq 0$. This implies $d(x_0, y_0) = d(\Gamma(x_0), \Gamma(y_0)) \le kd(x_0, y_0)$ This implies $d(x_0, y_0) = 0$.
- 2. Let $x_1 \in X$ and $x_2 = \Gamma(x_1), x_3 = \Gamma(x_2), \dots, x_{n+1} = \Gamma(x_n).$

$$d(x_2, x_3) = d(\Gamma(x_1), \Gamma(x_2)) \le kd(x_1, x_2)$$
$$d(x_4, x_3) = d(\Gamma(x_3), \Gamma(x_2)) \le kd(x_3, x_2) \le k^2 d(x_1, x_2)$$

By induction, $d(x_{n+1}, x_n) \leq k^{n-1}d(x_1, x_2)$. If m > n, $d(x_m, x_n) \leq d(x_m, x_{m-1}) + d(x_{m-1}, x_{m-2}) + \cdots + d(x_{n-2}, x_{n-1}) + d(x_{n-1}, x_n) \leq k^{m-2}d(x_2, x_1) + k^{m-3}d(x_2, x_1) + \cdots + k^n d(x_1, x_2) + k^{n-1}d(x_2, x_3) = \frac{k^{n-1}}{1-k}d(x_2, x_1).$

Remark: If $d(\Gamma(x), \Gamma(y)) < d(x, y)$, theorem fails. Example: Show that there exists a unique $f \in C[0, 1]$ such that

$$f(x) = e^x + \int_0^x \frac{\sin(t)}{2} f(t) dt$$

Let $\Gamma(g)(x) = e^x + \int_0^x \frac{\sin(t)}{2} g(t) dt$. $(C[0,1], \|\cdot\|_{\infty})$ is complete. Let $f(x), g(x) \in C[0,1]$ and $x \in [0,1]$.

$$\begin{aligned} |\Gamma(g)(x) - \Gamma(f)(x)| &= |e^x + \int_0^x \frac{\sin(t)}{2} g(t) dt - e^x - \int_0^x \frac{\sin(t)}{2} f(t) dt| \\ &= |\int_0^x \frac{\sin(t)}{2} (g(t) - f(t)) dt| \\ &\leq \int_0^x |\frac{\sin(t)}{2}| |g(t) - f(t)| dt \le \|g - f\|_\infty \int_0^1 \frac{1}{2} dt = \frac{1}{2} \|g - f\|_\infty \\ &\implies \|\Gamma(g) - \Gamma(f)\|_\infty \le \frac{1}{2} \|g - f\|_\infty \implies \text{Tis a contraction} \\ &\implies \exists |f(x) \in C[0, 1] \end{aligned}$$

Example: Show that there exists a unique $f_0(x) \in C[0, 1]$ such that

$$f_0(x) = x + \int_0^x t^2 f_0(t) dt$$

Find a power series representation for $f_0(x)$. Let $\Gamma(g)(x) = x + \int_0^x t^2 g(t) dt$ Note $(C[0,1], \|\cdot\|_{\infty})$ is complete. Let $f, g \in C[0,1], x \in [0,1]$.

$$\begin{split} |\Gamma(g)(x) - \Gamma(f)(x)| &= |\int_0^x t^2(g(t) - f(t))dt| \\ &\leq \int_0^1 t^2 |g(t) - f(t)|dt \le \|g - f\|_\infty \int_0^1 t^2 dt = \frac{1}{3} \|g - f\|_\infty, \forall x \in [0, 1] \\ &\|\Gamma(g) - \Gamma(f)\|_\infty \le \frac{1}{3} \|f - g\|_\infty, \forall f, g \in C[0, 1] \end{split}$$

Therefore, Γ is a contraction. By BCM theorem, $\exists ! f_0 \in C[0,1]$ such that $\Gamma(f_0) = f_0$. Let $f_1 = 0, f_{n+1} = \Gamma(f_n)$. Therefore,

$$f_2(x) = x + \int_0^x t^2 \theta dt = x$$
$$f_3(x) = x + \int_0^x t^2 t dt = x + \frac{x^4}{4}$$
$$\dots$$
$$f(x) = \sum_{n=0}^\infty \frac{x^{3n+1}}{1,47(3n+1)}$$

Theorem. Picard-Lindelof Theorem: Let $f : [0, 1] \times \mathbb{R} \to \mathbb{R}$ be continuous and Lipchitz in y, i.e., $1 > \alpha \ge 0$, such that

$$|f(t,y) - f(t,z)| \le \alpha |y-z|, \forall y, z \in \mathbb{R}$$

Let $y_0 \in \mathbb{R}$, $\Longrightarrow ! y(t) \in C[0, b]$ such that $y'(t) = f(t, y(t)) \forall t$ and $y(0) = y_0$.

2.12 Baire's Category Theorem

Example:

$$f(x) = \begin{cases} 0 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q} \\ \frac{1}{n} & \text{if } x = \frac{m}{n}, m \in \mathbb{Z}, n \in \mathbb{N}, m \neq 0, gcd(m, n) = 1 \\ 1 & x = 0 \end{cases}$$

f(x) is discontinuous at x = r, for all $r \in \mathbb{Q}$. f(x) is continuous at $x = \alpha$, for all $\alpha \in \mathbb{R} \setminus \mathbb{Q}$.

Definition. (X, d) metric space, $A \subseteq X$ is said to be on F_{σ} set if $A = \bigcup_{n=1}^{\infty} F_n$ where $\{F_n\}$ is a sequence of closed sets. This implies $A \subseteq X$ is said to be a G_{δ} set if $A = \bigcap_{n=1}^{\infty} U_n$ where $\{U_n\} \subseteq X$ is a sequence of open sets.

Remarks:

- 1. From DeMorgan's Law, A is $F_{\sigma} \iff A^c$ is G_{δ} .
- 2. [0,1) is both F_{σ} and G_{δ} . $[0,1) = \bigcup_{n=1}^{\infty} [0,1-\frac{1}{n}]$ and $[0,1) = \bigcap_{r=1}^{\infty} (-\frac{1}{n},1)$.
- 3. $F \subseteq X$ closed. This implies F is G_{δ} . $U \subseteq X$ open. This implies U is F_{σ} .

Definition. $(X, d_X), (Y, d_Y)$ metric spaces and $f: X \to Y$. $D(f) = \{x \in X | f \text{ is not continuous } \}$. $D_n(f) = \{x \in X | \forall \epsilon > 0, \exists y, z \in B(x, \delta) \text{ with } d_Y(f(y), f(z)) \ge \frac{1}{n} \}.$

Theorem. Let $f: (X, d_X) \to (Y, d_Y), \forall n \in \mathbb{N}, D_n(f)$ is closed in X. Moreover, $D(f) = \bigcup_{r=1}^{\infty} D_n(f)$. In particular, D(f) is F_{σ} .

Proof. $(D_n(f))^c$ open and $x \in (D_n(f))^c \implies \exists \delta > 0, \forall y, z \in B(x, \delta), d_Y(f(y), f(z)) < \frac{1}{n}$. Let $v \in B(x, \delta), \eta = \delta \cdot d_X(x, v)$. Let $y, z \in B(v, \eta)$ If $y \in B(v, \eta) \implies d(y, x) \le d(y, v) + d_X(v, x) < \delta - d_X(x, v) + d_X(v, x) < \delta$. This implies $y, z \in B(x, \delta) \implies d_Y(f(x), f(y)) < \frac{1}{n}$. Hence $B(x, \delta) \subseteq (D_n(f))^c \implies (D_n(f))^c$ is open.

Definition. (X,d) metric space. A set $A \subseteq X$ is nowhere dense if $int(\overline{A}) = \emptyset$. A is of first category in X if $A = \bigcup_{n=1}^{\infty} A_n$ where each A_n is nowhere dense. Otherwise, A is of second category in X. A set C is residual in X if C^c is of first category in X.

Recall: A set $A \subseteq X$ is dense if A = X. Equivalently, A is dense if $\forall W \subseteq X$ open, $W \cap A \neq \emptyset$. Suppose there exists $W \subseteq X$ open such that $W \cap A = \emptyset$. Let $x \in W \implies x \in X \setminus A$. But $\exists \delta$ such that $B(x, \delta) \subseteq W \implies x \notin \overline{A}$.

Let $x_0 \in X \setminus A$ (want $\exists \{x_n\} \subseteq A \setminus x_n \to x_0$) since $B(x, \frac{1}{n}) \cap A \neq \emptyset$. This implies $\exists x_n \in B(x, \frac{1}{n} \cap A \implies \{x_n\} \subseteq A, x_n \to x_0$.

Theorem. Baire Category Theorem 1, (X, d) complete metric space. Let $\{U_n\}$ be a sequence of open, dense sets. Then $\bigcap_{n=1}^{\infty} U_n$ is dense in X.

Proof. Let $W \subseteq X$ be open and non-empty. Then $\exists x_1 \in X$ and $r_1 < 1, B(x_1, r_1) \subseteq B[x_1, r_1] \subseteq W \cap U$. And $\exists x_2 \in X, r_2 < \frac{1}{2}$ such that $B(x_2, r_2) \subseteq B[x_2, r_2] \subseteq B(x_1, r_1) \cap U_2$

Recursively, we find sequences $\{x_n\} \subseteq X$ and $\{r_n\} \subseteq \mathbb{R}$ such that $0 < r_n < \frac{1}{n}$ and $B(x_{n+1}, r_{n+1}) \subseteq B[x_{n+1}, r_{n+1}] \subseteq B(x_n, r_n) \cap U_{n+1}, \forall n \ge 1$ but $r_n \to 0$, $B[x_{n+1}, r_{n+1}] \subseteq B[x_n, r_n]$, X is complete. By Cantor intersection theorem, there exists $x_0 \in \bigcap_{n=1}^{\infty} B[x_n, r_n] \subseteq W$ and $B[x_n, r_n] \subseteq U_n, \forall n$. This means $x_0 \in W \cap (\bigcap_{n=1}^{\infty} U_n)$. This implies $\bigcap_{n=1}^{\infty} U_n$ is dense.

Remarks:

- 1. The Cantor set is nowhere dense in \mathbb{R} , and has cardinality c.
- 2. A close set F is nowhere dense if and only if $U = F^c$ is dense.

Corollary. Baire Category Theorem II: every complete metric space (X, d) is of second category in itself. Assume X is of the first category, i.e. $\exists \{A_n\}$ sequence of nowhere dense sets such that $X = \bigcup_{n=1}^{\infty} A_n = \bigcup_{n=1}^{\infty} \bar{A}_n$. Let $U_n = (\bar{A}_n)^c \implies U_n$ is open and dense.

But $\bigcap_{n=1}^{\infty} U_n = \bigcap_{n=1}^{\infty} (\bar{A}_n)^c = (\bigcup_{n=1}^{\infty} \bar{A}_n)^c = X^c = \emptyset$. Hence contradiction.

Corollary. \mathbb{Q} is not a G_{δ} subset of \mathbb{R} . Suppose $\mathbb{Q} = \bigcap_{n=1}^{\infty} U_n$, where each U_n is open. Let $F_n = (U_n)^c, \forall n$. $\mathbb{Q} \subseteq U_n, \forall n \text{ and } \bar{Q} = \mathbb{R}$ then $\bar{U}_n = \mathbb{R}$. Therefore, F_n is nowhere dense, for all n. Consider $\mathbb{Q} = \{r_1, r_2, \cdots\}$ Let $S_n = F_n \cup \{r_n\}$ closed and nowhere dense. Then $\mathbb{R} = \bigcup_{n=1}^{\infty} S_n$.

Then $\mathbb{R} = \bigcup_{n=1}^{\infty} S_n$, if $x \in \mathbb{Q} \implies x = r_n$ for some n. This implies $x \in S_n$. If $x \in \mathbb{R} \setminus \mathbb{Q} \implies x \in \bigcup_{n=1}^{\infty} U_n^c$. Hence $x \in F_n$ for some n, $x \in S_n$.

Corollary. There is no function $f : \mathbb{R} \to \mathbb{R}$ for which $D(f) = \mathbb{R} \setminus \mathbb{Q}$.

Definition. $(X, d_x), (Y, d_y)$ metric space, $\{f_n : X \to Y\}$ sequence of function $f_n \to f_0$ pointwise on X. We say that f_n converges uniformly at $x_0 \in X$ if $\forall \epsilon > 0$, $\exists \delta > 0$ and $N_0 \in \mathbb{N}$ such that if $n, m \ge N_0$ and $d(x, x_0) < \delta \implies d_Y(f_n(x), f_m(x)) < \epsilon$.

Theorem. $(X, d_x), (Y, d_y)$ metric space, $\{f_n : X \to Y\}$ such that $f_n \to f_0$ point wise on X. Assume that f_n convergence uniformly at x_0 and $\{f_n\}$ is a sequence of continuous function at x_0 . This implies f_0 is continuous at x_0 .

Theorem. Let $f_n : (a, b) \to \mathbb{R}$ be a sequence of continuous functions that converges point wise to f_0 . This implies $\exists x_0 \in (a, b)$ such that f_n converges uniformly at x_0 .

Claim: There exists a closed interval $[\alpha_1, \beta_1] \subset (a, b)$ with $\alpha_1 < \beta_1$ and $N_1 \in \mathbb{N}$ such that if $n, m \ge N$, and $x \in [\alpha_1, \beta_1]$. Then $|f_n(x) - f_m(x)| \le 1$.

Inductively, we can construct a sequence $\{[\alpha_k, \beta_k]\}$ with $(a, b) \supset [\alpha_1, \beta_1] \supset (\alpha_1, \beta_1) \supset [\alpha_2, \beta_2] \supset (\alpha_2, \beta_2) \supset \cdots$ and a sequence $N_1 < N_2 < N_3 < \cdots$ such that $n, m \ge N_k$ and $x \in [\alpha_k, \beta_k]$. This implies $|f_n(x) - f_m(x)| \le \frac{1}{k}$. Let $x_0 \in \bigcap_{k=1}^{\infty} [\alpha_k, \beta_k]$. Given $\epsilon > 0$, if $\frac{1}{k} < \epsilon$, and $n, m \ge N_k$ and $x \in (\alpha_k, \beta_k)$, then $|f_n(x) - f_m(x)| \le \frac{1}{k} < \epsilon$. Pick $\delta > 0$ such that $(x_0 - \delta, x_0 + \delta) \subset (\alpha_k, \beta_k)$. For δ as above, and N_k , the definition of uniform convergence at x_0 is verified.

Corollary. $\{f_n\} \subset C[a, b]$ such that $f_n \to f_0$ point wise on [a, b]. This implies \exists a residual set $A \subset [a, b]$ such that f_0 is continuous at each $x \in A$. A^c is first category, i.e. $A^c = \bigcup_{n=1}^{\infty} A_n$, A_n nowhere dense.

 $A = \{x \in [a, b] | f_0 \text{ is continuous at } x\}.$

Claim: A is dense in [a, b], i.e. given any $(c, d) \subset [a, b]$, $(c, d) \cap A \neq \emptyset$. Let $(c, d) \subset [a, b]$, then $\exists x_0 \in (c, d)$ such that f_n converges uniformly at x_0 . But each f_n is continuous. Then f_0 is continuous at x_0 . This implies $x_0 \in A \cap (c, d)$. and $A^c = D(f_0)$ is $F_{\sigma} \implies A$ is G_{δ} . This implies $A = \bigcap_{n=1}^{\infty} U_n$, U_n open dense $\iff U_n^c$ closed, nowhere dense. i.e. $A^c = \bigcup_{n=1}^{\infty} U_n^c$, i.e., A is residual.

Corollary. Suppose f(x) is differentiable on \mathbb{R} . Then f'(x) is continuous for every point in a dense G_{δ} -subset of \mathbb{R} .

$$f_n(x) = \frac{f(x+1/n)-f(x)}{1/n}$$
 Then $f(x)$ pointwise. Apply Corollary

2.13 Compactness

Definition. An open cover for $A \subseteq X$ is a collection $\{U_{\alpha}\}_{\alpha \in I}$ of open sets for which $A \subseteq \bigcup_{\alpha \in i} U_{\alpha}$. Given a cover $\{U_{\alpha}\}_{\alpha \in I}$ for $A \subseteq X$, a sub cover is a sub collection $\{U_{\alpha}\}_{\alpha \in I}$, for $J \subseteq I$ such that $A \subseteq \bigcup_{\alpha \in I} U_{\alpha}$. A sub cover $\{U_{\alpha}\}_{\alpha \in I}$ is finite if I is finite. We say that $A \subseteq X$ i compact if every open cover of A has a finite sub cover. (X, d) is compact if X is compact. We say that $A \subseteq X$ is sequentially compact if every sequence $\{x_n\} \subseteq A$ has a converging subsequence converging to a point in A. (X, d) is sequentially compact if so is X. We say that X has the Bolzano-Weierstrass property (BWP) if every infinite subset in X has a limit point.

Theorem. (X, d) metric space, TFAE

- 1. X is sequentially compact
- 2. X has the BWP

Proof. 1 to 2: X sequentially compact and $S \subseteq X$ infinite. S has a countable infinite subset $\{x_1, x_2, \dots\}$. This implies $\exists \{x_{n_k}\}$ subsequence of $\{x_n\}$ such that $x_{n_k} \to x_0$. $\forall \epsilon > 0, (B(x_0, \epsilon) \cap S) \setminus \{x_0\}$ has infinitely many points. Hence $x_0 \in LIm(S)$.

2 to 1: Assume X has the BWP, and $\{x_n\} \subseteq X$. If $\exists x_0 \in X$ appearing infinitely many times in $\{x_n\}$, then $\{x_n\}$ has a constant, converging subsequence. If such an x_0 doesn't exists, viewed as a subset of X, $\{x_n\}$ is infinite. We can assume the terms of $\{x_n\}$ are distinct. Thus $\exists x_0 \in Lim(\{x_n\})$. This implies $\exists n_1 \in \mathbb{N}$ such that $d(x_0, x_{n_1}) < 1$. Find $n_2 > n_1$ such that $d(x_0, x_{n_2}) < \frac{1}{2}$ If we have $n_1 < n_2 < \cdots < n_k$ such that $d(x_0, x_k) < \frac{1}{k}$. Choose $n_{k+1} > n_k$ such that $d(x_0, x_{n_{k+1}} < \frac{1}{k+1}$ This implies $\{x_{n_k}\} \subseteq \{x_n\}$ such that $x_{n_k} \to x_0$

Proposition. (X, d) metric space, $A \subseteq X$.

- 1. A compact \implies A is closed and bounded.
- 2. If A is closed and X is compact, then so is A.
- 3. If A is sequentially compact. Then A is closed and bounded.

- 4. A is closed, X is sequentially compact. This implies A is sequentially compact.
- 5. If X is sequentially compact, then X is complete.
- Proof. 1. Bounded pick $x_0 \in A$. This implies $\{B(x_0, n)\}$ is an open cover of A. A compact \implies There exists a finite sub cover $\{B(x_0, n_k)\}$ let $M = \max\{n_j : j = 1, \dots, k\} \implies A \subset B(x_0, M)$ Closed: Suppose A is not closed $\implies \exists x_0 \in Lim(A) \setminus A, U_n = (B[x_0, \frac{1}{n}]^c, \{U_n\}$ open cover of A, with no finite sub cover but A compact. Then contradiction.
 - 2. Let $\{U_{\alpha}\}_{\alpha \in I}$ be an open cover of A. Then $\{U_{\alpha}\}_{\alpha \in I} \cup \{A^c\}$ is an open cover of X. This implies $\exists \alpha_1, \cdots, \alpha_n$ such that $\{U_{\alpha_1}, \cdots, U_{\alpha_n}\} \cup \{A^c\}$ covers X. Thus $\{U_{\alpha_n}\}$ covers A. A is compact.
 - 3. Bounded: Assume A is not bounded. Choose $x_1 \in A \implies \exists x_2 \in A, d(x_1, x_2) > 1$. Therefore, $\exists x_3 \in A$ such that $d(x_i, x_3) > 1, i = 1, 2$. Recursively, we define $\{x_n\}$ such that $d(x_n, x_m) > 1$, if $n \neq m$. Therefore, $\{x_n\}$ cannot have a convergent subsequence. Contradiction.

Closed: Assume A is not closed. This means $\exists \{x_n\} \subseteq A$ such that $x_n \to x_0$ but $x_0 \notin A$. $\implies \{x_n\}$ has no convergent subsequence in A. Contradiction.

Examples:

- $A \subseteq \mathbb{R}$, A is sequentially compact \iff A is closed and bounded.
- $A \subseteq \mathbb{R}^n$, works too.
- $A \subseteq \mathbb{R}^n$, A compact \iff A is closed and bounded.

Theorem. Heine-Borel Theorem: $A \subseteq \mathbb{R}^n$ is compact if and only if A is closed and bounded.

Notation:

A closed cell in \mathbb{R}^n is a set $[a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_n, b_n]$.

- Proof. 1. A is closed and bounded. Assume A is not compact. Let $F_1 = A$, J_1 be a closed cell such that $A \subseteq J_1$. Bisect each of the intervals $[a_i, b_i]$ of J_1 . This implies we obtain 2^n closed cells $\{J_{11}, J_{12}, \dots, J_{12^n}\}$. Exists some open cover $\{U_{\alpha}\}_{\alpha \in I}$ such that it does not have a finite sub cover. One of the subcells, call it J_2 , must be such that $F_2 = J_2 \cap A$ does not have a finite sub cover of $\{U_{\alpha}\}_{\alpha}$. Recursively, we construct a sequence of closed cells $\{J_n\}$ and closed sets $F_n = J_n \cap A$ such that
 - (a) $J_{n+1} \subseteq J_n, \forall n \implies F_{n+1} \subseteq F_n, \forall n.$
 - (b) Claim $(J_{n+1}) = \frac{1}{2} diam(J_n) \implies diam(F_{n+1}) \le \frac{diam(F_n)}{2}$.
 - (c) $F_n = J_n \bigcap A$ cannot be covered by finitely many U_{α} 's.
 - 2. By Cantor intersection theorem,

$$\bigcap_{n=1}^{\infty} F_n = \{x_0\} \implies x_0 \in A \implies \exists \alpha_0 | x_0 \in U_{\alpha_0} \implies \exists \epsilon > 0 | B(x_0, \epsilon) \subseteq U_{\alpha_0}$$

Pick n_0 such that $diam F_{n_0} < \epsilon$. Then $F_{n_0} \subseteq B(x_0, \epsilon) \subseteq U_{\alpha_0}$. $\{U_{\alpha}\}$ covers F_{n_0} . Contradiction.

Questions:

 $A \subseteq X$ is compact \iff A is closed and bounded?

No, X is infinite set, d is discrete metric space. X is bounded but not compact. But if it is compact, then it is also sequential compact.

Definition. X set, a collection $\{A_{\alpha}\}_{\alpha \in I}$, $A_{\alpha} \subseteq X, \forall \alpha$ has finite intersection.

Property: (FIP) if whenever $\{A_{\alpha}, \dots, A_{\alpha_n}\}$ is any finite sub collection, we have

$$\bigcap_{i=1}^{n} A_{\alpha_i} \neq \emptyset$$

Theorem. (X, d) metric space, TFAE

1. X is compact

2. If $\{F_{\alpha}\}_{\alpha \in I}$ is a collection of closed sets of X with the FIP then $\bigcap_{\alpha \in I} F_{\alpha} \neq \emptyset$.

Corollary. (X, d) compact metric space, $\{F_n\}$ of non-empty, closed sets such that $F_{n+1} \subseteq F_n, \forall n \in \mathbb{N} \implies \bigcap_{n \in \mathbb{N}} F_n \neq \emptyset$.

Corollary. (X, d) compact metric space. Then X has BWP (X is sequentially compact).

Proof. Assume X is compact. Let S be an infinite set. Then exists a sequence $\{x_n\} \subseteq S$ consisting of distinct points. Let $F_n = \{x_n, x_{n+1}, \dots\} \implies \{F_n\}$ has the FIP. Then $\bigcap_{n=1}^{\infty} F_n \neq \emptyset \implies \exists x_0 \in \bigcap_{n=1}^{\infty} F_n$. For all $\epsilon > 0, B(x_0, \epsilon) \bigcap \{x_n, x_{n+1}, \dots\} \neq \emptyset, \forall n \in \mathbb{N}$ This implies $B(x_0, \epsilon) \bigcap S \setminus \{x_0\} = \neq \emptyset \implies x_0 \in Lim(S)$. \Box

Theorem. $(X, d_x), (Y, d_y)$ metric space. Let $f : (X, d_x) \to (Y, d_y)$ contains. If (X, d_x) sequentially compact. this implies f(X) is sequentially compact. Let $\{y_n\} \subseteq f(X), \implies \forall n, \exists x_n \text{ such that } y_n = f(x_n)$. This implies $\{x_n\} \subseteq X \implies \exists \{x_{n_k}\}$ such that $x_{n_k} \to x_0 \in X$. Hence $f(x_{n_k}) \to f(x_0) \in f(X)$.

Corollary. Extreme Value Theorem:

Let $f: (X, d_x) \implies \mathbb{R}$ be continuous. If (X, d_x) is sequentially compact, then there exists $c, d \in X$ such that $f(c) \leq f(x) \leq f(d), \forall x \in X$.

Definition. Let $\epsilon > 0$. A collection $\{x_{\alpha}\}_{\alpha \in I} \subseteq X$ is an ϵ -net for X if $X = \bigcup_{\alpha \in I} B(x_{\alpha}, \epsilon)$. We say that (X, d) is totally bounded if for each $\epsilon > 0$, X has a finite ϵ -net. Given $A \subseteq X$, A is totally bounded if it is totally bounded in the induced metric. $\forall \epsilon > 0, \exists \{x_1, \cdots, x_n\} \subseteq A$ such that $\bigcup_{i=1}^{\infty} B(x, \epsilon) \supseteq A$.

Proposition. If X is sequentially compact, then X is totally bounded. Suppose X is not totally bounded: Then $\exists \epsilon_0 > 0$, with no finite ϵ_0 -net. Then \exists sequence $\{x_n\} \subseteq X$ such that $x_i \notin B(x_j, \epsilon_0)$ if $i \neq j$. Then $\{x_n\}$ has no convergent subsequence. Contradiction.

Remarks:

- 1. (\mathbb{N}, d) discrete metric (\mathbb{N}, d) is bounded but it is not totally bounded. Then there does not exist finite 1/2-net.
- 2. If $A \subseteq (X, d)$ is totally bounded. Then so is \overline{A} . If $\{x_1, \dots, x_n\}$ is an ϵ -net for \overline{A} . Then $\{x_1, \dots, x_n\}$ is an ϵ -net for \overline{A} .

Theorem. Lebesgue (X, d) compact metric space, $\{U_{\alpha}\}_{\alpha \in I}$ open cover of X. Then $\exists \epsilon > 0, \forall x \in X$ and $0 < \delta < \epsilon$. there exists $\alpha_0 \in I$ with $B(x, \delta) \subseteq U_{\alpha_0}$.

Proof. If $X = U_{\alpha}$ for some α , then any $\epsilon > 0$ would work. Assume $X \neq U_{\alpha}, \forall \alpha$. For each $x \in X$, let $\phi(x) = \sup\{r \in \mathbb{R} | B(x,r) \subseteq U_{\alpha_0}, \text{ for some } \alpha_0 \in I\}$. Then $\phi(x) = 0$. Also, $\phi(x) < \infty$: if $\phi(x) = \infty, \exists \{r_n\} \subseteq \mathbb{R}, \{\alpha_n\} \subseteq I | B(x_1, r_n) \subseteq U_{\alpha_n}, r_n \to \infty\}$. But X sequentially compact. This implies X is bounded and $\exists M > 0, B(x, M) = X$. Pick $r_n > M \implies B(x, r_n) = X \subseteq U_{\alpha_n}$ but $X \neq U_{\alpha_n}$. Contradiction.

If ϕ is continuous: if $x, y \in X, \phi(x) \le \phi(y) + d(x, y)$:

case 1 $\exists \alpha_0 \text{ and } r > 0 \text{ such that } B(x,r) \subseteq U_{\alpha_0} \text{ and } y \in B(x,r).$ $B(y,r-d(x,y)) \subseteq U_{\alpha_0} \implies \phi(y) \ge r-d(x,y) \implies \phi(x) \le d(x,y) + \phi(y).$

case 2 $\forall r \text{ and } \alpha \text{ such that } B(x,r) \subset U_{\alpha}, y \notin B(x,r). r \leq d(x,y), \phi(x) \leq d(x,y) \text{ and } \phi(x) \leq d(x,y) + \phi(y)$ and $|\phi(x) - \phi(y)| \leq d(x,y) \implies \phi$ is continuous. Therefore, by extreme value theorem, $\epsilon > 0$, such that $\phi(x) \geq \epsilon, \forall x \in X$.

Theorem. Borel-Lebesgue (X, d) metric space, TFAE

- 1. X is compact
- 2. X has the BWP
- 3. X is sequentially compact.

Proof. 3 to 1: Let $\{U_{\alpha}\}_{\alpha \in I}$ be an open cover for X. This implies $\{U_{\alpha}\}$ has a Lebesgue number $\epsilon > 0$. Since X is totally bounded, there exists finite subset $\{x_1, x_2, \dots, x_n\} \subseteq X$ such that $\bigcup_{i=1}^n B(x_i, \delta) = X$ where $0 < \delta < \epsilon$. But for each $i = 1, 2, \dots, n$, we can find $\alpha_i \in I$ such that $B(x_i, \delta) \subseteq U_{\alpha_i}$ This implies $\{U_{\alpha_i}\}_{i=1,\dots,n}$ is a finite sub cover. This implies X is compact.

Theorem. Heine Borel for metric space: (X, d) metric space TFAE

- 1. X is compact
- 2. X is complete and totally bounded.

Proof. 2 to 1 (X is sequentially compact). Let $\{x_n\}$ be a sequence in X. Since X is totally bounded, $\exists y_1, \dots, y_n \in X$ such that $\bigcup_{i=1}^n B(y_1, 1) = X$. Then there exists y_i such that $B(y_1, 1) = S_1$ contains infinitely many terms of $\{x_n\}$. Since X is totally bounded, $\exists y_1^2, \dots, y_{n_2}^2$ such that $\bigcup_{i=1}^n B(y_1^2, \frac{1}{2}) = X$. Therefore $\exists y_i^2 | B(y_i^2, 1/2) = S_2$ contains infinitely many terms of $\{x_n\}$ in S_1 . Then, we construct sequence of open balls $\{S_k = B(y^k, 1/k)\}$ and each S_{k+1} contains infinitely many terms of $\{x_n\}$ also in $S_1 \cap \dots \cap S_k$. In particular, we can choose $n_1 < n_2 < \dots$ such that $x_{n_k} \in S_1 \cap \dots \cap S_k$. But $diam(S_k) \to 0$, this implies $\{x_{n+k}\}$ is cauchy and X is complete. thus $\{x_{n_k}\}$ is convergent.

2.14 Compactness and Continuity

Theorem. Let $f: (X, d_x) \to (Y, d_y)$ be continuous. If (X, d_x) is compact. f(x) is compact.

Corollary. Extreme Value Theorem: Let $f : (X, d_x) \to \mathbb{R}$ be continuous. If (X, d_x) is compact. There exists $c, d \in X$ such that $f(x) \leq f(x) \leq f(d), \forall x \in X$.

Theorem. Sequential characterization of uniform continuity: suppose $f: (X, d_x) \to (Y, d_y)$ function TFAE

- 1. f is uniformly continuous on X
- 2. If $\{x_n\}, \{z_n\}$ in X with $\lim_n d(x_n, z_n) = 0 \implies \lim_n d_Y(f(x_n), f(x_n)) = 0$.

Theorem. $f: (X, d_X) \to (Y, d_y)$ continuous if (X, d_x) is compact. This implies f(x) is uniformly continuous. Suppose f(x) is not uniformly continuous. This implies $\exists \epsilon_0 > 0$ and $\{x_n\}, \{y_n\} \subseteq X$ such that $\lim_n d(x_n, z_n) = 0$ but $d_Y(f(x_n), f(z_n)) \ge \epsilon_0, \forall n \ge n_0$. X compact $\implies \exists \{x_{n_k}\}$ subsequence of $\{x_n\}$ such that it converges to x_0 . $\exists \{z_{n_k}\}$ subsequence of $\{z_n\}$ such that it converges to x_0 .

f is continuous, then $f(x_{n_k}) \to f(x_0)$ and $f(z_{n_k}) \to f(x_0)$. contradiction

Theorem. $(X, d_x), (Y, d_y)$ metric space, X is compact. Then let $\Phi : X \to Y$ be one-to-one, onto and continuous. then Φ^{-1} is also continuous.

If Φ is continuous $\iff (U \subseteq X \text{ open } \implies \Phi(U) \subseteq Y \text{ is open})$. $U \subseteq X$ is open, then $U^c = F \subseteq X$ closed and X is compact. Then F is compact. Therefore, $\Phi(F) \subseteq Y$ compact $\implies \Phi(F) \subseteq Y$ is closed there fore $\Phi(U^C) = (\Phi(U))^C$

3 The Space $(C(X), \|\cdot\|_{\infty})$

We assume (X, d) is a compact metric space. Then every continuous function is bounded $(C(X), \| \cdot \|_{\infty}) = (C_b(X), \| \cdot \|_{\infty})$. In C(X), unless otherwise stated, the norm is $\| \cdot \|_{\infty}$

3.1 Weierstrass Approximation Theorem

Problem: Given $h \in C([a, b])$ and $\epsilon > 0$. Exists p(x) polynomial on [a, b] such that $||h - p||_{\infty} < \epsilon$? Remarks

1. We can assume that [a, b] = [0, 1]. Assume $f, g \in C([0, 1])$ and $||f - g||_{\infty} < \epsilon$.

Define $\Phi : [a, b] \to [0, 1]$ and $\Phi(x) = \frac{x-a}{b-a}$, Φ is one-to-one, onto. Then $\Phi'[0, 1] \to [a, b]$ then $\Phi^{-1}(x) = (b-a)x + a$. Then $f \circ \Phi, g \circ \Phi \in C([a, b])$. In fact, $||f \circ \Phi - g \circ \Phi||_{\infty} = ||f - g||_{\infty}$. Then the map $\Gamma(C[0, 1], |||_{\infty}) \implies (C[a, b], ||||_{\infty})$. Then $\Gamma(f) = f \circ \Phi$ is an isometric isomorphism with inverse $\Gamma^{-1}(h) = h \circ \Phi^{-1}, \forall h \in C[a, b]$. Also, $\Gamma(p(x))$ is a polynomial if and only if p(x) is a polynomial.

2. We can assume f(0) = 0, f(1) = 0. If $f \in C[0, 1]$, let g(x) = f(x) - [(f(1) - f(0))x + f(0)]. Then $g(x) \in C[0, 1], g(0) = 0 = g(1)$. if we approximate g(x) uniformly with error at most ϵ by a polynomial, the n we can do so for f(x). $\epsilon > |g(x) - p(x)| = |f(x) - \{[(f(1) - f(0))x - f(0)] + p(x)\}| = |f(x) - p_1(x)|$

Lemma. If $n \in \mathbb{N}, (1 - x^2)^n \ge 1 - nx^2, \forall x \in [0, 1]$. Let $f(x) = (1 - x^2)^n - (1 - nx^2)$. $f(0) = 0, f'(x) = \cdots > 0$ on (0, 1). Then the inequality follows.

Theorem. Weierstrass Approximation Theorem: let $f \in C[a, b]$. Then there exists a sequence $\{p_n(x)\}$ of polynomials such that

$$p_n(x) \to f(x)$$
 uniformly on $[a, b]$

Proof. Assume that [a,b] = [0,1] and f(0) = 0 = f(1). We can extend f(x) to a uniformly continuous function on \mathbb{R} by setting f(x) = 0 if x in $(-\infty, 0) \cup (1, \infty)$. Note that $\int_{-1}^{1} (1-x^2)^n dx \neq 0, \forall n$. Pick c_n such that $\int_{-1}^{1} c_n (1-x^2)^n dx = 1$. Let $Q_n(x) = c_n (1-x^2)^n$. Since $(1-x^2)^n \geq 1 - nx^2, \forall x \in [0,1]$.

$$\int_{-1}^{1} (1-x^2)^n dx = 2 \int_0^1 (1-x^2)^n dx \ge 2 \int_0^{1/\sqrt{n}} 1 - nx^2 dx = \frac{4}{3\sqrt{n}} \ge 1/\sqrt{n}$$

Then $c_n > \sqrt{n}$. If $0 < \delta < 1 \implies \forall x \in [-1, \delta] \cup [\delta, 1]$,

$$c_n(1-x^2)^n \ge \sqrt{n}(1-\delta^2)^n$$

Let $p_n(x) = \int_{-1}^1 f(x+t)Q_n(t)dt = \int_{-x}^{1-x} f(x+t)Q_n(t)dt \begin{cases} t < -x \\ t + x < 0 \\ f(t+x) = 0 \end{cases} = \int_0^1 f(u)Q_n(u-x)du \begin{cases} u = x+t \\ du = dt \end{cases}$

$$p_n(x) = \int_0^1 f(u)Q_n(u-x)du$$
$$\frac{d^{2n+1}p(x)}{dx^{2n+1}} =_{\text{leibnizs rule}} \int_0^1 f(u)\frac{d^{2n+1}Q_n(u-x)}{dx^{2n+1}} = 0$$

 $p_n(x)$ is a polynomial of degree 2n + 14 or less. Let $M = ||f||_{\infty} \neq 0$. Let $\epsilon > 0$, choose $0 < \delta < 1$ so that if $|x - y| < \delta \implies |f(x) - f(y)| < \frac{\epsilon}{2}$. Since $\int_{-1}^{1} Q_n(t) dt = 1$, this implies $f(x) = \int_{-1}^{1} f(x)Q_n(t) dt$. If

$$\begin{aligned} x \in [0,1], \\ |p_n(x) - f(x)| &= |\int_{-1}^{1} f(x+t)Q_n(t)dt - \int_{-1}^{1} f(x)Q_n(t)dt| \\ &= |\int_{-1}^{1} (f(x+t) - f(x))Q_n(t)dt| \le \int_{-1}^{1} |f(x+t) - f(x))|Q_n(t)dt \\ &= \int_{-1}^{-\delta} |f(x+t) - f(x)|Q_n(t)dt + \int_{-\delta}^{\delta} |f(x+t) - f(x)|Q_n(t)dt + \int_{\delta}^{1} |f(x+t) - f(x)|Q_n(t)dt \\ &\le 2\sqrt{n}(1-\delta^2)^{n+1} \|f\|_{\infty} + \frac{\epsilon}{2} + 2\sqrt{n}(1-\delta^2)^{n+1} \|f\|_{\infty} \\ &\quad |P_n(x) - f(x)| \le 4M\sqrt{n}(1-\delta^2)^{n+1} + \frac{\epsilon}{2} \end{aligned}$$

Choose n large enough so that

$$4M\sqrt{n}(1-\delta 62)^{n+1} < \frac{\epsilon}{2} \implies ||p_n - f||_{\infty} < \epsilon$$

Corollary. Let $f(x) \in C[0,1]$ such that $\int_0^1 f(t)dt = 0, \int_0^1 f(t)t^n dt = 0, \forall n$. This implies $f(x) = 0, \forall x \in [0,1]$.

Corollary. $(C[a,b], \|\cdot\|_{\infty})$ is separable. $\forall n \in \mathbb{N},$

$$P_n = \{a_0 + a_1 x + \dots + a_n x^n | a_i \in \mathbb{R}\}$$
$$Q_n = \{r_0 + r_1 x + \dots + r_n x^n | r_1 \in \mathbb{Q}\} \implies \bar{Q}_n = P_n$$

but also

$$\bigcup_{n=1}^{\infty} P_n = C[a,b] \implies \overline{\bigcup Q_n} = C[a,b]$$

. Q_n is countable.

3.2 Stone-Weierstrass Theorem

(X, d) compact metric space:

Definition. (X, d) compact metric space, $\Phi \subseteq C(X)$ and Φ is a point separating if whenever $x, y \in X$ and $x \neq y$, there exists $f \in \Phi$ such that $f(x) \neq f(y)$.

Remarks

- 1. $a, b \in X, a \neq b$. $f(x) = d(x, a) \implies f(x) \in C(X)$ and $f(a) \neq f(b)$ Then C(X) is point separating.
- 2. Suppose X has at least 2 points and $\Phi \subseteq C(X)$. Suppose $f(x) = f(y), \forall f \in \Phi, \forall x, y \in X \implies g(x) = g(y), \forall g \in \overline{\Phi}, \forall x, y \in X$. Then if Φ is dense in C(X); Φ must be point separating.

Definition. A linear subspace $\Phi \subseteq C(X)$ is a lattice if $\forall f, g \in \Phi$ then $(f \lor g)(x) = \max\{f(x), g(x)\} \in \Phi$ and $(f \land g)(x) = \min\{f(x), g(x)\} \in \Phi$.

Remarks

Let $f, g \in C(X)$, $(f \lor g)(x) = \frac{(f(x)+g(x))+|f(x)-g(x)|}{2}$ and $(f \land g)(x) = -(f \lor g)(x) \implies f \lor g, f \land g \in C(X)$ Then C(X) is a lattice.

If $\Phi \subseteq C(X)$, Φ is a linear subspace. Then Φ is a lattice if $f \lor g \in \Phi, \forall f, g \in \Phi$. Examples $f: [a, b] \to \mathbb{R}$ is piecewise linear if there exists a partition $\mathcal{P} = \{a = t_0 < \cdots < t_n = b\}$ such that $f_{[t_{i-1}, t_i]} = m_i + d_i, \forall i = 1, \cdots, n.$

 $f: [a,b] \to \mathbb{R}$ is piecewise polynomial if $\exists \mathcal{P} = \{a = t_0 < \cdots < t_n = b\}$ such that $f_{[t_{i-1},t_i]} = c_{0,i} + c_{1,i}x + \cdots + c_{n,i}x^n$

Theorem. Stone-Weierstrass Theorem (Lattice version): (X, d) is compact metric space, $\Phi \subseteq (C(X), \| \cdots \|_{\infty})$ linear subspace such that

- 1. the constant function $1 \in \Phi$
- 2. Φ separates points.
- 3. If $f, g \in \Phi \implies (f \lor g) \in \Phi$

Hence, Φ is dense in C(X).

Note that if $\alpha, \beta \in \mathbb{R}$, and $x \neq y \in X$, then there exists $g \in \Phi$ such that $g(x) = \alpha$ and $g(y) = \beta$. Let $h \in \Phi$ such that $h(x) \neq h(y)$. Let $g(t) = \alpha + (\beta - \alpha) \frac{h(t) - h(x)}{h(y) - h(x)} \implies g \in \Phi$. Let $f \in C(X)$ and $\epsilon > 0$.

Step 1 Fix $x \in X$. For each $y \in X$, $\exists h_{x,y}(t) \in \Phi$ and $h_{x,y}(x) = f(x)$, $h_{x,y}(y) = f(y)$. Since $h_{x,y}(y) - f(y) = 0$, $\forall y$, we can find $\delta_y > 0$ such that $t \in B(y, \delta_y)$ and $-\epsilon < h_{x,y}(t) - f(t) < \epsilon$. $\{B(y, \delta_y)\}$ open cover of $X \implies \exists$ points y_1, y_2, \dots, y_n such that $\{B(y_i, \delta_{y_i})\}$ cover X.

$$h_x(t) = h_{x,y_1} \lor \dots \lor h_{x,y_n}$$

Now if $z \in X$, $\exists i$ such that $z \in B(y_i, \delta_{y_i})$. $f(z) - \epsilon < h_{x,y_i}(z) \le h_x(t)$.

Step 2 For each $x \in X$, $h_x(x) - f(x) = 0$. For each $x \in X$, $\exists \delta_x > 0$ such that $t \in B(x, \delta_x)$, then $-\epsilon < h_x(t) - f(t) < \epsilon$. As we did before, we can find $\{x_1, x_2, \cdots, x_k\}$ such that $\{B(x_j, \delta_{x_j})\}$ is a cover for X. Let $h(t) = h_{x_1} \land \cdots \land h_{x_k} \in \Phi$. Then if $z \in X$, then $f(z) - \epsilon < h(z) < f(z) + \epsilon$.

Corollary. Let $\Phi_1 = \{f \in C[a, b] | f \text{ is piecewise linear} \}$ and $\Phi_2 = \{f \in C[a, b] | f \text{ is piecewise polynomial} \}$. Then Φ_i is dense in C(X), $i = 1, 2, \cdots$.

Definition. A subspace $\Phi \subseteq C(X)$ is said to be a sub algebra if $f \cdot g \in \Phi$, for every $f, g \in \Phi$.

Example: If P is the collection of all polynomials on [a, b], P is a sub algebra of C([a, b]). Remark:

If $\Phi \subseteq C(X)$ is a sub algebra, then so is Φ . Let $\{f_n\}, \{g_n\} \subseteq \Phi | f_n \to f, g_n \to g$. Note that $fg \in C(X)$ Note also $\{g_n\}$ is bounded.

$$||f_n g_n - fg||_{\infty} = ||(f_n g_n - fg_n) + (fg_n - fg)||_{\infty} \le ||g_n||_{\infty} ||f_n - f||_{\infty} + ||f||_{\infty} ||g_n - g||_{\infty} \to 0$$

Theorem. Subalgebra version) Stone-Weierstrass: (X, d) compact metric space. Let Φ be a linear subspace of $(C(X), \|\|_{\infty})$ such that

- 1. $1 \in \Phi$.
- 2. Φ separates points
- 3. Φ is a subalgebra

Then Φ is dense in C(X).

Proof. Step 1 If $f \in \Phi$, then $|f| \in \Phi$. Fix $\epsilon > 0$, since X is compact, $\exists M > 0$ such that $|f(x)| < M, \forall x \in X$. We consider the function g(t) = |t| on [-M, M]. By W.A Theorem, $\exists p(t) = c_0 + c_1t + \cdots + c_nt^n$ such that

 $|g(t) - p(t)| = ||t| - p(t)| < \epsilon, \forall t \in [-M, M]$

but $pf = c_0 1 + c_1 f + c_2 f^2 + \dots + c_n f^n \in \Phi$. If $x \in X, f(x) \in [-M, M]$ and then $||f(x)| - p(f(x))| < \epsilon, \forall x \in X$. This implies $|f| \in \overline{\Phi}$.

Step 2 $hg \in \Phi \implies h \lor g \in \overline{\Phi}$. Then $g \lor h(x) = \frac{(g(x)+h(x))-|g(x)-h(x)|}{2} \in \overline{\Phi}$. Then

1. $1 \in \overline{\Phi}$

- 2. $\overline{\Phi}$ separates points
- 3. $\overline{\Phi}$ is a lattice.

Therefore, $\overline{\overline{\Phi}} = C(X) = \overline{\Phi}$.

3.3 Complex Version

 $C(X,\mathbb{C}) = \{f : X \to \mathbb{C} | f(x) \text{ is continuous on } X\}. \|f\|_{\infty} = \sup\{|f(x)|x \in X\} \text{ A subspace } \Phi \subseteq C(X,\mathbb{C}) \text{ is self-adjoint if } f \in \Phi \text{ implies that } \overline{f} \in \Phi.$

Theorem. Stone-Weirstrass \mathbb{C} -version (X, d) compact metric space. If $\Phi \subset C(X, \mathbb{C}$ is a self-adjoint linear subspace such that

1. $1 \in \Phi$

- 2. Φ separates points
- 3. Φ is a subalgebra

This implies $\overline{\Phi} = C(X, \mathbb{C}).$

Example

Let $\pi = \{\lambda \in \mathbb{C} | |\lambda| = 1\}$. Let $\phi : \pi \to [0, 2\pi), e^{i\Theta} \to \Theta$. On $[0, 2\pi)$ we consider the metric $d_*(\Theta_1, \Theta_2) =$ the shortest at-length between $e^{i\Theta_1}$ and $e^{i\Theta_2}$. Thus ϕ is a homeomorphism. This implies $([0, 2\pi), d_*)$ is compact. $C(\pi) \approx \{f \in C([0, 2\pi)) | f(0) = f(2\pi)\}$. A trigonometric polynomial is an element of

$$Trig_{\mathbb{C}}([0,2\pi)) = span\{f(\theta) = e^{in\theta} | n \in \mathbb{Z}\}$$

. This implies $\overline{Trig_{\mathbb{C}}([0,2\pi))} = C([0,2\pi)).$

 $\Psi = \{F(x,y) \in C([0,1] \times [0,1]) | F(x,y) = \sum_{i=1}^{k} f_1(x)g_i(y) \text{ for } f_i, g_i \in C[0,1]\}.$ Then to prove that $\bar{\Psi} = C([0,1] \times [0,1])$

3.4 Compactness in $(C(X), \|\cdot\|_{\infty})$ and the Ascoli-Arzela Theorem

Definition. (X, d) metric space. $A \subseteq X$ is relatively compact if \overline{A} is compact. Remark: Assume (X, d) is complete. Recall; if A is totally bounded, then \overline{A} is totally bounded. Then $A \subset X$ is relatively compact \iff A is totally bounded.

Theorem. Arzela-Ascoli Theorem: Let (X, d) be a compact metric space. Let $\mathcal{F} \subseteq (C(X), \|\cdot\|_{\infty})$. Then, TFAE:

- 1. \mathcal{F} is relative compact
- 2. \mathcal{F} is equicontinuous and pointwise bounded.

Proof. 1 to 2: \mathcal{F} is relative compact. This implies that \mathcal{F} is bounded. This implies \mathcal{F} is point wise bounded. Fix $\epsilon > 0$. \mathcal{F} is relative compact. This implies \mathcal{F} is totally bounded. This implies there exists an $\frac{\epsilon}{3}$ -net $\{f_1, \dots, f_n\} \subseteq \mathcal{F}$. Since $\{f_1, \dots, f_n\}$ is finite, it's equicontinuous. Given $\frac{\epsilon}{3}$, there exists $\delta > 0$ such that $d(x, y) < \delta$. This implies $|f_i(x) - f_i(y)| < \frac{\epsilon}{3}, \forall i = 1, 2, \dots, n$. Let $f \in \mathcal{F}$ and $x, y \in X$ such that $d(x, y) < \delta$. This implies $\exists i_0 \in \{1, \dots, n\}$ such that $||f_{i_0} - f|| < \frac{\epsilon}{3}$. Then $|f(x) - f(y)| \leq$ $|f(x) - f_{i_0}(x0| + |f_{i_0}(x) - f_{i_0}(y)| + |f_{i_0}(y) - f(y)| < \frac{\epsilon}{3} \times 3 = \epsilon$.

Definition. Compact operators $\Gamma : (X, \|\cdot\|_X) \to (Y, \|\cdot\|_Y)$ linear map is compact if $\Gamma(\{x \in X | \|x\|_X \le 1\})$ is relatively compact.

Remark:

 Γ is compact $\implies \Gamma$ is continuous.

Example: $(X, \|\cdot\|_X), (Y, \|\cdot\|_Y) = (C([a, b], \|\cdot\|_\infty))$. Let $K : [a, b] \times [a, b] \implies [a, b]$ continuous. If $f \in C([a, b])$. $\Gamma(f)(x) = \int_a^b k(x, y) f(y) dy$. Clearly, Γ is linear.

Claim: $\Gamma(f) \in C([a,b])$. If $f = \theta$, $\Gamma(f) \in C[a,b]$. If $f \neq \theta$, since K is uniformly continuous given $\epsilon > 0, \exists \delta > 0$ such that $||(x_1, y_1) - (x_2, y_2)||_2 < \delta \implies |K(x_1, y_1) - K(x_2, y_2)| < \frac{\epsilon}{(b-a)||f||_{\infty}}$. Now if $||x - z| < \delta$, then $|\Gamma(f)(x) - \Gamma(f)(z)| = |\int_a^b (K(x, y) - K(z, y))f(y)dy| \le \int_a^b |K(x, y) - K(z, y)||f(y)|dy < \frac{\epsilon}{(b-a)||f||_{\infty}} ||f||_{\infty}(b-a) = \epsilon$

Claim: $\Gamma(B_x[0,1])$ is uniformly equicontinuous. Fix $\epsilon > 0$. there exists $\delta_1 > 0$ such that $|x-z| < \delta_1 \implies |K(x,y) - K(z,y)| < \frac{\epsilon}{b-a}, \forall y \in [a,b].$

let $|x - z| < \delta_1$ and $f \in C([a, b])$ such that $||f||_{\infty} \le 1$. $|\Gamma(f)(x) - \Gamma(f)(z)| \le \int_a^b |K(x, y) - K(y, z)||f(y)|dy < \epsilon$

Claim: $\Gamma(B_x[\theta, 1])$ is uniformly bounded. Let M > 0 such that $|K(x, y)| \leq M, \forall (x, y) \in [a, b] \times [a, b]$. Let $f \in C[a, b]$ such that $||f||_{\infty} \leq 1$. $|\Gamma(f)(x)| \leq \int_a^b |K(x, y)| |f(y)| dy \leq M \int_a^b dy = M(b-a), \forall x \in [a, b]$. Therefore, for all $f \in [a, b]$ such that $||f||_{\infty} < 1$. This implies $\Gamma(B_x[\theta, 1])$ is relatively compact by Arzela Ascoli Theorem. Therefore, Γ is compact.

Theorem. Peano's Theorem: Let f be continuous on an open subset D of \mathbb{R}^2 . Let $(x_0y_0) \in D$. Then the differential equation y' = f(x, y) has a local solution through the point (x_0, y_0) . Let R be a closed rectangle, $R \subseteq D$, with $(x_0, y_0) \in int(R)$. f os continuous on R, R compact; then there exists $M \ge 1$ such that $|f(x, y)| \le M, \forall (x, y) \in R$. Let $W = \{(x, y) \in R | |y - y_0| \le M | x - x_0|\}$ and I = [a, b] = $\{x|(x, y) \in W \text{ for some } y\}$. By uniform continuity, given $\epsilon > 0, \exists 0 < \delta < 1$, such that if $(x_1, y_1), (x_2, y_2) \in$ $W, |x_1 - x_2| < \delta$ and $|y_1 - y_2| < \delta \implies |f(x_1, y_1) - f(x_2, y_2)| < \epsilon$. Choose $a = x_0 < x_1 < \cdots < x_n = b$, with $|x_j - x_{j-1}| < \frac{\delta}{M}, \forall j$. On $[x_0, b]$, we define a function $k_{\epsilon}(x)$: $k_{\epsilon}(x_0) = y_0$, and on $[x_0, x_1], k_{\epsilon}(x)$ is linear and has slope $f(x_0, y_0)$. On $[x_1, x_2], k_{\epsilon}(x)$ is linear and has slope $f(x, k_{\epsilon}(x_1))$ and proceed like this to define a piecewise linear function $k_{\epsilon}(x)$ on $[x_0, b]$.

Note: the graph of $k_{\epsilon}(x)$ is contained in W and $|k_{\epsilon}(x) - k_{\epsilon}(\bar{x})| \leq M|x - \bar{x}|, \forall x, \bar{x} \in [x_0, b]$. Let $x \in [x_0, b], x \neq x_j, j = 0, 1, \dots, n$. This implies there exists j such that $x_{j-1} < x < x_j$.

$$|k_{\epsilon}(x) - k_{\epsilon}(x_{j-1})| \le M|x - x_{j-1}| < M\frac{\delta}{M} = \delta$$

This implies by uniform continuity of f,

$$|f(x_{j-1}, k_{\epsilon}(x_{j-1}) - f(x, k_{\epsilon}(x))| < \epsilon$$

but $k_{\epsilon}^{\prime+}(x_{j-1}) = f(x_{j-1}, k_{\epsilon}(x_{j-1}))$ (slope approaching by the right). This implies $|k_{\epsilon}^{+\prime}(x_{j-1}) - f(x, k_{\epsilon}(x)| < \epsilon, \forall x \in [x_0, b]$ such that $x \neq x_1, i = 0, 1, \cdots, n$. Let $K = \{k_{\epsilon} | \epsilon > 0\}$. K is pointwise bounded: $(k_{\epsilon}(x) \in W \subseteq R \text{ compact})$ K is equicontinuous. (*) By Arzela-Asidli, K is compact. Let $x \in [x_0, b], k_{\epsilon}(x) = y_0 + \int_{x_0}^x k' \epsilon(t) dt = y_0 + \int_{x_0}^x f(t, k_{\epsilon}(t)) + [(k_{\epsilon}'(t) - f(t, k_{\epsilon}(t))] dt$. Consider the sequence $\{k_{\frac{1}{n}}(x)\}_n \subseteq \overline{K}$. This implies \exists subsequence $\{k_{\frac{1}{n_k}}(x)\}_k$ converging uniformly on $[x_0, b]$ to some k(x). f uniformly continuous on W. This implies $\{f(t, k_{\frac{1}{n_k}}(t)\}$ converges uniformly to f(t, k(t)) on $[x_0, b]$. $k_{\epsilon}(t) = y_0 + \int_{x_0}^x f(t, k(t)) dt$. This implies k(x) is a solution to the DE on $[x_0, b]$. Similarly we can find a solution $k^*(x)$ on $[a, x_0]$