PMATH 351: Real Analysis

Johnew Zhang

November 4, 2018

Contents

1 Axiom of Choice \& Cardinality 2
1.1 Notation 2
1.2 Products \& Axiom of Choice 2
1.3 Relations and Zorn's Lemma 3
1.4 Equivalence Relations \& Cardinality 5
1.5 Cardinal Arithmetic 7
1.5.1 Sums of Cardinals 7
1.5.2 Product of cardinals 7
1.5.3 Exponentiation of Cardinals 7
2 Metric spaces 8
2.1 Topology of Metric Spaces 12
2.2 Boundaries, interiors and closures 13
2.3 Convergence of sequences and topology in a metric space 15
2.4 Induced metric and the relative topology 15
2.5 Continuity 16
2.6 Complete Metric Spaces: Cauchy sequences 17
2.7 Completeness of $\mathbb{R}, \mathbb{R}^{n}$ and l_{p} 17
2.8 Completeness of $\left(\mathcal{C}_{b}(X),\|\cdot\|_{\infty}\right)$ 18
2.9 Characterizations of Complete Metric Spaces 18
2.10 Completion of Metric Space 20
2.11 Banach Contractive Mapping Theorem 21
2.12 Baire's Category Theorem 22
2.13 Compactness 24
2.14 Compactness and Continuity 27
3 The Space $\left(C(X),\|\cdot\|_{\infty}\right)$ 28
3.1 Weierstrass Approximation Theorem 28
3.2 Stone-Weierstrass Theorem 29
3.3 Complex Version 31
3.4 Compactness in $\left(C(X),\|\cdot\|_{\infty}\right)$ and the Ascoli-Arzela Theorem 31

1 Axiom of Choice \& Cardinality

1.1 Notation

\mathbb{N} set of natural numbers, $\{1,2,3, \ldots\}$
\mathbb{Z} set of integers, $\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$
\mathbb{Q} set of rationals, $\left\{\frac{a}{b}: a \in \mathbb{Z}, b \in \mathbb{N}, \operatorname{gcd}(a, b)=1\right\}$
\mathbb{R} set of reals
inclusion $A \subset$ or $A \subseteq B$
proper inclusion $A \subsetneq B$
Definition. - Let X be a set $P(X)=\{A \mid A \subset X\}$ is the power set of X .

- A, B sets. The union of A and B is $A \cup B=\{x \mid x \in A$ or $x \in B\}$. If $I \neq \emptyset,\left\{A_{\alpha}\right\}_{\alpha \in I}$ are sets, $A_{\alpha} \subseteq X, \forall \alpha$,

$$
\bigcup_{\alpha \in I} A_{\alpha}=\left\{x \mid x \in A_{\alpha} \text { for some } \alpha \in I\right\}
$$

- Similarly for intersections
- Let $A, B \in X, B \backslash A=\{b \in B \mid b \notin A\}$. If $B=X, X \backslash A=A^{C}$ is the complement of A (in X). Note: $\left(A^{C}\right)^{C}=A, A^{C}=B^{C} \Longleftrightarrow A=B$

Theorem. De Morgan's Laws:

1. $\left.\left(\bigcup_{\alpha \in I}\right) A_{\alpha}\right)^{C}=\bigcap_{\alpha \in I} A_{\alpha}^{C}$

Proof. $\left.\left.x \in\left(\bigcup_{\alpha \in I}\right) A_{\alpha}\right)^{C} \Longleftrightarrow x \notin \bigcup_{\alpha \in I}\right) A_{\alpha} \Longleftrightarrow \forall \alpha \in I, x \notin A_{\alpha} \Longleftrightarrow x \in \bigcap_{\alpha \in I} A_{\alpha}^{C}$
2. $\left.\left(\bigcap_{\alpha \in I}\right) A_{\alpha}\right)^{C}=\bigcup_{\alpha \in I} A_{\alpha}^{C}$

1.2 Products \& Axiom of Choice

Definition. Let X, Y be sets. The product of X and Y is $X \times Y=\{(x, y) \mid x \in X, y \in Y\}$. Let $X_{1}, X_{2}, \ldots, X_{n}$ be sets. The product of $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ is

$$
X_{1} \times X_{2} \cdots \times X_{n}=\prod_{i=1}^{n} X_{i}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid x_{i} \in X_{i}, \forall i=1,2, \ldots\right\}
$$

An element $\left(x_{1}, \ldots, x_{n}\right)$ is called an n-tuple and x_{i} is called the i th coordinate.
Theorem. If $X_{i}=X, \forall i=1, \cdots, n, \prod_{i=1}^{n} X_{i}=X^{n}$. If X is a set, $|X|$ is the number of elements of X. If $\left\{X_{1}, \cdots X_{n}\right\}$ is a finite collection of sets

$$
\left|\prod_{i=1}^{n} X_{i}\right|=\prod_{i=1}^{n}\left|X_{i}\right|
$$

If $X_{i}=X, \forall i,\left|X^{n}\right|=|X|^{n}$

How do we define the product of an arbitrary family of sets?
$\left(x_{1}, \ldots, x_{n}\right) \in \prod_{i=1}^{n} X_{i}$, then $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ determines a function

$$
f_{\left(x_{1}, \ldots, x_{n}\right)}:\{1,2, \ldots, n\} \rightarrow \bigcup_{i=1}^{n} X_{i}
$$

i.e. $f_{\left(x_{1}, \ldots, x_{n}\right)}(i)=X_{i}$

On the other hand, if we have a function

$$
f:\{1,2,3, \ldots, n\} \rightarrow \bigcup_{i=1}^{n} X_{i}
$$

with $f(i) \in X_{i}$. We define $\left(x_{1}, \ldots, x_{n}\right) \in \prod_{i=1}^{n} X_{i}$ by $x_{i} \in X_{i}=f(i), \forall i=1, \ldots, n$

$$
\prod_{i=1}^{n} X_{i}=\left\{f\{1,2, \ldots, n\} \rightarrow \bigcup_{i=1}^{n} X_{i} \mid f(i) \in X_{i}\right\}
$$

Definition. Given a collection $\left\{X_{\alpha}\right\}_{\alpha \in I}$ of sets, we define

$$
\prod_{\alpha \in I} X_{\alpha}:=\left\{f: I \rightarrow U_{\alpha \in I} X_{\alpha} \mid f(\alpha) \in X_{\alpha}\right\}
$$

Axiom. Zermlo's Axiom of Choice. Given a non-empty collection $\left\{X_{\alpha}\right\}_{\alpha \in I}$ if non-empty sets, $\prod_{\alpha \in I} X_{\alpha}=$ \emptyset.

Axiom. Axiom of Choice: Given a non-empty set X , there exists a function $f: \mathcal{P}(x) \backslash \emptyset \rightarrow X$ for every $A \subseteq X, A \neq \emptyset, f(A) \in A$

1.3 Relations and Zorn's Lemma

Definition. X, Y are sets A relation is a subset of $X \times Y$. We write $x R y$ if $(x, y) \in R$.

1. Reflexive if $x R x, \forall x \in X$
2. Symmetric if $x R y \Longrightarrow y R x$
3. Anti-symmetric $x R y$ and $y R x \Longrightarrow x=y$
4. Transitive if $x R y$ and $y R z \Longrightarrow x R z$

Example:

1. $x=\mathbb{R}, x R y \Longleftrightarrow x \subseteq y$. It is reflexive, antisymmetric, transitive.
2. X set. We define a relation on $\mathcal{P}(X)$. $A R B \Longleftrightarrow A \subseteq B$
3. R^{*} relation on $\mathcal{P}(x) . A R B \Longleftrightarrow A \supseteq B$

Definition. A relation R on a set X is a partial order if it is reflexive, anti-symmetric and transitive. (X, R) is a partially order set or poset.

A partial relation R on X is a total order if $\forall x, y \in X$, either $x R y$ or $y R x .(X, R)$ is a totally order set or a chain.

Definition. (X, \leq) poset. Let $A \in X . x \in X$ is an upper bound for A if $a \leq x, \forall a \in A$. A is bounded above if it has an upper bound. $x \in X$ is the least upper bound (or supermum) for A if x is an upper bound and y is an upper bound, then $x \leq y . x=\operatorname{lub}(A)=\sup (A)$. If $x=\operatorname{lub}(A)$ and $x \in A \Longrightarrow x=\max (A)$ is the maximum of A.

Axiom. Least Upper bound axiom for \mathbb{R} : Consider \mathbb{R} with usual order $\leq . A \subseteq \mathbb{R}, A \neq \emptyset$. If A is bounded above, the A has a least upper bound.

Example

1. $(\mathcal{P}(X), \subseteq),\left\{A_{\alpha}\right\}_{\alpha \in I}, A_{\alpha} \subseteq X, A_{\alpha} \neq \emptyset$. X is an upper bound for $\left\{A_{\alpha}\right\}_{\alpha \in I}$. \emptyset is a lower bound, $\operatorname{lub}\left(\left\{A_{\alpha}\right\}_{\alpha \in I}\right)=\bigcup_{\alpha \in I} A_{\alpha}$, and $\operatorname{glb}\left(\left\{A_{\alpha}\right\}_{\alpha \in I}\right)=\bigcap_{\alpha \in I} A_{\alpha}$
2. $(\mathcal{P}(X), \supseteq)$

Definition. (X, \leq) poset, $x \in X$ is maximal if $x \leq y$ implies $x=y$.

- (\mathbb{R}, \leq) has no maximal element
- $(\mathcal{P}(X), \leq) \Longrightarrow X$ is maximal.
- $(\mathcal{P}(X), \geq) \Longrightarrow \emptyset$ is maximal.

Proposition. Every finite, non-empty poset has a maximal element but there are poset with no maximal element.

Lemma. Zorn's Lemma: (X, \leq) non-empty poset. If every totally order subset \mathcal{C} of X has an upper bound, then (X, \leq) has a maximal element. Let \mathcal{V} be a non-zero vector space. Let $\mathcal{L}=\{A \leq$ $\mathcal{V} \mid A$ is linearly independent $\}$.

Note: A basis B for \mathcal{P} is a maximal element on (\mathcal{L}, \leq).
Theorem. Every non-zero vector space \mathcal{V} has a basis.
Proof. Let $\mathcal{C}=\left\{A_{\alpha} \mid \alpha \in I\right\}$ be a chain in \mathcal{L}.
Let $A=\bigcup_{\alpha \in I} A_{\alpha}$. Claim: A is linearly independent. Let $\left\{x_{1}, x_{2}, \cdots, x_{n}\right\} \subseteq A,\left\{\beta_{1}, \beta_{2}, \cdots, \beta_{n}\right\} \subseteq \mathbb{R}$. Then $\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots+\beta_{n} x_{n}=0$.

For each $i=1,2, \cdots, n, \exists \alpha_{i} \mid x_{i} \in A_{\alpha_{i}}$.
Assume, $A_{\alpha_{1}} \subseteq A_{\alpha_{2}} \subseteq \cdots \subseteq A_{\alpha_{n}}$ (\mathcal{L} is a chain, change name of index if needed). Therefore, $\left\{x_{1}, x_{2}, \cdots, x_{n}\right\} \subseteq A_{\alpha_{n}}$ and $A_{\alpha_{n}}$ is linearly independent. Hence, $\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$ is linearly independent. Lastly, $\beta_{i}=0, \forall i$. Then A is linearly independent. A is an upper bound for \mathcal{C} on \mathcal{L}. By Zorn's lemma, \mathcal{L} has a maximal element.

Definition. A poset (X, \leq) is well-ordered, if every non-empty subset A has a least element.
Examples

- (\mathbb{N}, \leq) is well-ordered.
- $\mathbb{Q}=\left\{\left.\frac{n}{m} \right\rvert\, n \in \mathbb{Z}, m \in \mathbb{N}, \operatorname{gcd}(n, m)=1\right\}$.

We can construct a well-order on $\mathbb{Q} . \phi: \mathbb{Q} \rightarrow \mathbb{N}$ by $\phi\left(\frac{n}{m}\right)=\left\{\begin{array}{ll}2^{n} 3^{m} & n>0 \\ 1 & n=0 . \phi \text { is 1-to-1. } \frac{n}{m} \leq \frac{p}{q} \\ 5^{-n} 7^{m} & n<0\end{array} \Longleftrightarrow\right.$ $\phi\left(\frac{n}{m}\right) \leq \phi\left(\frac{p}{q}\right)$
(\mathbb{Q}, \leq) is well-ordered.
Axiom. Well-ordering principle: Given any set $X \neq \mathbb{Q}$, there exists a partial order \leq such that (X, \leq) is well-ordered.

Theorem. TFAE:

1. Axiom of Choice
2. Zorn's lemma
3. Well-ordering principle

1.4 Equivalence Relations \& Cardinality

Definition. A relation \sim on a set X is an equivalence relation if

1. Reflexive
2. Symmetric
3. Transitive

Given $x \in X$, let $[x]=\{y \in X \mid x \sim y\}$ be the equivalence class of x .
Proposition. Let \sim be an equivalence relation on X

1. $[x] \neq \emptyset, \forall x \in X$
2. For each $x, y \in X$, either $[x]=[y]$ or $[x] \cap[y]=\emptyset$.
3. $X=\bigcup_{x \in X}[x]$

Definition. If X is a set, a partition of X is a collection $\mathcal{P}=\left\{A_{\alpha} \subseteq X \mid \alpha \in I\right\}$.

1. $A_{\alpha} \neq \emptyset, \forall \alpha$.
2. If $\beta \neq \alpha \Longrightarrow A_{\alpha} \cup A_{\beta}=\emptyset$
3. $X=\bigcup_{\alpha \in I} A_{\alpha}$.

Note:
Given \sim on $\mathrm{X} \Longrightarrow \sim$ induces a partition on X . Given a partition on $\mathrm{X}\left(\mathcal{P}=\left\{A_{\alpha} \mid \alpha \in I\right\}\right)$ we define an equivalence relation on X :

$$
x \sim y \Longleftrightarrow x, y \in A_{\alpha}, \text { for some } \alpha
$$

Example: Define \sim on $\mathcal{P}(X)$ by $A \sim B \Longleftrightarrow \exists$ a 1-to-1 and onto function $f: A \rightarrow B . \sim$ is an equivalence relation.

Definition. Two sets X and Y are equivalent if there exists a 1-to-1 and onto function $f: X \rightarrow Y$. In this case, we write $X \sim Y$. We say that X and Y have the same cardinality, $|X|=|Y|$.

A set X is finite if $X=$ or $X \sim\{1,2, \cdots, n\}$ for some $n \in \mathbb{N},|X|=n$. Otherwise, X is infinite.
Can X be equivalent to both $\{1,2, \cdots, n\}$ and $\{1,2, \cdots, m\}$, with $n \neq m$? If $X \sim\{1,2, \cdots, n\}$ and $X \sim\{1,2, \cdots, m\} \Longrightarrow\{1,2, \cdots, n\} \sim\{1,2, \cdots, m\}$.
Proposition. The set $\{1,2, \cdots, m\}$ is not equivalent to any proper subset of itself.
Proof. Induction on m
$m=1$: The only proper subset of $\{1\}$ is \emptyset. and $\{1\} \sim \emptyset$.
$m=k$ Statement holds for $\{1,2, \cdots, k\}$. Assume $\exists S \subsetneq\{1,2, \cdots, k, k+1\}$ and $f:\{1,2, \cdots, k+1\} \rightarrow S$, 1-to-1 and onto.

Two cases:

1. If $k+1 \in S \Longrightarrow f_{\{1,2, \cdots, k\}}:\{1,2, \cdots, k\} \rightarrow S \backslash\{f(k+1)\} \subsetneq\{1,2, \cdots, k\}$. This is impossible.
2. If $k+1 \in S, f(k+1)=k+1$, then $f_{\{1,2, \cdots, k\}}\{1,2, \cdots, k\} \rightarrow S \backslash\{k+1\} \subsetneq\{1,2, \cdots, k\}$. This is impossible.
If $f(k+1)=j$ and $f(i)=k+1$. Define $f^{*}:\{1,2, \cdots, k+1\} \rightarrow S, f^{*}(l)=\left\{\begin{array}{ll}k+1 & l=k+1 \\ j & l=i \\ f(l) & \text { otherwise }\end{array}\right.$. This is impossible

Corollary. If X is finite, then X is not equivalent to any proper subset of itself.
Example:
$f: \mathbb{N} \rightarrow \mathbb{N} \backslash\{1\}=n \rightarrow n+1$ is 1 -to-1 and onto. Hence $\mathbb{N} \sim \mathbb{N} \backslash\{1\}$.
Definition. A set X is countable if X is finite or $X \sim \mathbb{N}$. Otherwise, uncountable. X is countable infinite if $X \sim \mathbb{N},|X|=|\mathbb{N}|=\aleph_{0}$

Proposition. Every infinite set contains a countable infinite subsets.
Proof. By Axiom of Choice, $\exists f: \mathcal{P}(X) \backslash \emptyset \rightarrow X, f(A) \in A . x_{1}=f(X)$ and $x_{2}=f\left(X \backslash\left\{x_{1}\right\}\right) \cdots x_{n+1}=$ $f\left(X \backslash\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}\right)$
$A=\left\{x_{1}, x_{2}, \cdots, x_{n+1}, \cdots\right\} X$ is countable infinite.
Corollary. A set X is infinite if and only if it is equivalent to a proper subset of itself.
Theorem. (Cantor-Schroeder-Berstein) (CSB) Assume that $A_{2} \subseteq A_{1} \subseteq A_{0}$. If $A_{2} \sim A_{0}$, then $A_{1} \sim A_{0}$.
Corollary. Assume $A_{1} \subseteq A$ and $B_{1} \subseteq B$. If $A \sim B_{1}$ and $B \sim A_{1}$, then $A \sim B . f: A \rightarrow B_{1}$ is 1-to-1 and onto and $g: B \rightarrow A_{1}$ is 1-to-1 and onto. $A_{2}=g\left(f(A)=g(B) \subseteq A_{1} \subseteq\right.$ ad $g \circ f$ is 1-to-1 and onto on A_{2}. Hence $A_{2} \sim A \rightarrow{ }^{C S B} A_{1} \sim A$ and $A_{1} \sim B$. Hence $A \sim B$.

Corollary. An infinite set X is countable infinite if and only if there exists a 1-to-1 function $f: X \rightarrow \mathbb{N}$.
Proposition. Assume there exists $g: X \rightarrow Y$ onto. Then there exists a 1-to-1 function $f: Y \rightarrow X$.
Proof. By axiom of choice, $\exists h: \mathcal{P}(x) \backslash \emptyset \rightarrow X, h(A) \in A, A \neq \emptyset, A \subseteq X . \forall y \in Y$, define $f(y)=$ $h\left(g^{-1}(\{y\})\right) \in X . f: Y \rightarrow X$. Check f is 1-to-1.

Corollary. X, Y sets. TFAE

1. $\exists f: X \rightarrow Y, 1$-to-1
2. $\exists g: Y \rightarrow X$, is onto
3. $|Y| \succeq|X|$

Theorem. $[0,1]$ is uncountable.
Proof. Assume $[0,1]$ is countable

$$
[0,1]=\left\{a_{1}, a_{2}, \cdots, a_{n}, \cdots\right\}
$$

each real number has a unique decimal expansion if we don't allow $.99 \overline{9}$ (∞ times 9)

$$
\begin{gathered}
a_{1}=0 . a_{11} a_{12} a_{13} \cdots \\
a_{2}=0 . a_{21} a_{22} a_{23} \cdots \\
a_{3}=0 . a_{31} a_{32} a_{33} \cdots \\
\vdots
\end{gathered}
$$

Let $b \in[0,1), b=0 . b_{1} b_{2} \cdots$ where $b_{n}:=\left\{\begin{array}{ll}1 & a_{n 1} \neq 1 \\ 2 & a_{n n}=1\end{array}\right.$ Well, $b \neq a_{n}, \forall n$. It is impossible. Then $[0,1]$ is uncountable.

Corollary. \mathbb{R} is uncountable. $\mathbb{R} \sim(0,1)$. Note $|\mathbb{R}|=c$.
Theorem. Comparability theorem for cardinals: Given X, Y sets, either $|X| \preceq|Y|$ or $|Y| \preceq|X|$.

1.5 Cardinal Arithmetic

1.5.1 Sums of Cardinals

Definition. Let X, Y be disjoint sets, then

$$
|X|+|Y|=|X \cup Y|
$$

Examples

1. $X=\{1,3,5, \cdots\}, Y=\{2,4,6, \cdots\} .|X|+|Y|=\aleph_{0}+\aleph_{0}=\aleph_{0}$.

Theorem. If X is infinite, then

$$
|X|+|Y|=\max \{|X|,|Y|\}
$$

In particular,

$$
|X|+|X|=|X|
$$

X_{1}, \cdots, X_{n} countable sets. Then $\left|\bigcup_{i=1}^{n} X_{i}\right|=\aleph_{0}$.
Theorem. $\left\{X_{i}\right\}_{i=1}^{\infty}$ countable collection of countable sets, then $X=\bigcup_{i=1}^{\infty} X_{i}$ is countable.
Note: we can assume $X_{i} \cap X_{j}=\emptyset$ if $i \neq j$. Otherwise, let $E_{1}=X_{1}, E_{2}=X_{2} \backslash X_{1}, \cdots, E_{n}=X_{n} \backslash \cup_{i=1}^{n-1} X_{i}$. Assume $\left\{X_{i}\right\}_{i=1}^{\infty}$ is pairwise disjoint if $X_{i} \neq \emptyset$, let $X_{i}=\left\{x_{i 1}, x_{i 2}, \cdots\right\}$ countable. Let $f: X=\cup_{i=1}^{\infty} X_{i} \rightarrow \mathbb{N}$ 1-to-1 such that $f\left(x_{i j}\right)=2^{i} 3^{j}$.

1.5.2 Product of cardinals

Let X, Y be two sets

$$
|X| \cdot|Y|=|X \times Y|
$$

Theorem. If X is infinite and $Y \neq \emptyset$, then

$$
|X| \cdot|Y|=\max \{|X|,|Y|\}
$$

In particular,

$$
|X| \cdot|X|=|X|
$$

1.5.3 Exponentiation of Cardinals

Recall: Given a collection $\left\{Y_{x}\right\}_{x \in X}$ of non-empty sets, we defined

$$
\prod_{x \in X} Y_{x}=\left\{f: X \rightarrow \bigcup_{x \in X} Y_{x} \mid f(x) \in Y_{x}\right\}
$$

If $\forall x \in X, Y_{x}=Y$ for some set $\mathrm{Y}, Y^{X}=\prod_{x \in X} Y_{x}=\prod_{x \in X} Y=\{f: X \rightarrow Y\}$.
Definition. Let X, Y non empty sets, we define

$$
|Y|^{|X|}=\left|Y^{X}\right|
$$

Theorem. X, Y, Z non-empty sets.

1. $|Y|^{|X|}|Y|^{|Z|}=|Y|^{|X|+|Z|}$
2. $\left(|Y|^{|X|}\right)^{|Z|}=|Y|^{|X|+|Z|}$

Example $\left(2^{\aleph_{0}}=c\right) 2^{\aleph_{0}}=\left|\{0,1\}^{\mathbb{N}}\right|=\mid\left\{\left\{a_{n}\right\}_{n \in \mathbb{N}} \mid a_{n}=0\right.$ or $\left.a_{n}=1\right\}$.
$2^{\aleph_{0}} \preceq c: f\{0,1\}^{\mathbb{N}} \rightarrow[0,1]$ is 1-to-1 such that $\left\{a_{n}\right\} \rightarrow \sum_{n=1}^{\infty} \frac{a_{n}}{3^{n}}$.
$2^{\aleph_{0}} \succeq c: g:[0,1] \rightarrow\{0,1\}^{\mathbb{N}}$ is 1-to-1. $\alpha=\sum_{n=1}^{\infty} \frac{a_{n}}{2^{n}} \rightarrow\left\{a_{n}\right\}$.
Hence done.
Given a set X, we want to find $|\mathcal{P}(X)|=2^{|X|}$.
Let $A \subseteq X, \chi_{A}: X \rightarrow\{0,1\}$, such that $\chi_{A}(x)=\left\{\begin{array}{ll}1 & x \in A \\ 0 & x \notin A\end{array}\right.$. This is called characteristics function of A. $X_{A} \in\{0,1\}^{X}$. If $f \in\{0,1\}^{X}, A=\{x \in X \mid f(x)=1\}$. Hence $\chi_{A}=f$. Let $\Gamma: P(X) \rightarrow\{0,1\}^{\mathbb{N}}$. Hence Γ is a bijection. Therefore $|\mathcal{P}(X)|=2^{|X|}$.

Theorem. $|\mathcal{P}(X)| \succ|X|$ for any $X \neq \emptyset$ (Russel's Paradox)
It is enough to show that there is no onto function $X \rightarrow \mathcal{P}(X)$. Assume to the contrary: there exists $f: X \rightarrow \mathcal{P}(X)$ onto.
$A=\{x \in X \mid x \notin f(X)\} . \exists x_{0} \in X \mid f\left(x_{0}\right)=A$. If $X_{0} \in A: \Longrightarrow x_{0} \notin f\left(x_{0}\right)=A$. Impossible. If $X \notin A: \Longrightarrow x_{0} \in f\left(x_{0}\right)=A$. OK

2 Metric spaces

Definition. Let $X \neq \emptyset$. A metric on X is a function $d: X \times X \rightarrow \mathbb{R}$.

1. $d(x, y) \geq 0, \forall x, y \in X . d(x, y)=0 \Longrightarrow x=y$.
2. $d(x, y)=d(y, x), \forall x, y \in X$.
3. $d(x, y) \leq d(x, z)+d(z, y), \forall x, y, z \in X$.
(X, d) is a metric space.
Examples
4. $X=\mathbb{R} d(x, y)=|x-y|$ "usual metric on \mathbb{R} "
5. X any non-empty set $d(x, y)=\left\{\begin{array}{ll}0 & x=y \\ 1 & x \neq y\end{array}\right.$ "discrete metric"
6. $X=\mathbb{R}^{n}$. $d_{2}\left(\left(x_{1}, x_{2}, \cdots, x_{n}\right),\left(y_{1}, y_{2}, \cdots, y_{n}\right)\right)=\sqrt{\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}}$. d_{2} verifies 1$\left.), 2\right)$. This is called "Euclidean Metric".

Definition. Let V be a vector space. A norm on V is a function $\|\cdot\|: V \rightarrow \mathbb{R}$ such that

1. $\|x\| \geq 0, \forall x \in V .\|x\|=0 \Longleftrightarrow x=0$
2. $\|\alpha x\|=|\alpha|\|x\|, \forall \alpha \in \mathbb{R}, \forall x \in V$.
3. $\|x+y\| \leq\|x\|+\|y\|, \forall x, y \in V$
$(V,\|\cdot\|)$ is normed vector space.
Remark: $(V,\|\cdot\|)$ normed vector space. $\|\cdot\|$ induces a metric on $\mathrm{V} . d_{\|\cdot\|}(x, y)=\|x-y\|$
4. $d_{\|\cdot\|}(x, y)=\|x-y\| \geq 0, \forall x, y \in V .\|x-y\|=0 \Longrightarrow x=y$.
5. $d_{\|\cdot\|}(x, y)=\|x-y\|=|-1|\|y-x\|=d_{\|\cdot\|}(y, x)$
6. $d_{\|\cdot\|}(x, y)=\|x-y\| \leq\|x-z\|+\|z-y\|$

Examples

1. $X=\mathbb{R}^{n},\left\|\left(x_{1}, \cdots, x_{n}\right)\right\|_{2}=\left(\sum_{i=1}\left|x_{i}\right|^{2}\right)^{1 / 2} . d_{\|\cdot\|_{2}}=d_{2}$. This is a 2-norm or Euclidean norm.
2. $X=\mathbb{R}^{n}, 1<p<\infty$. $\left\|\left(x_{1}, x_{2}, \cdots, x_{n}\right)\right\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}$ This is called p-norm.
3. $X=\mathbb{R}^{n},\left\|\left(x_{1}, \cdots, x_{n}\right)\right\|_{\infty}=\max \left\{\left|x_{i}\right|\right\}$. This is called ∞-norm.
4. $\left\|\left(x_{1}, \cdots, x_{n}\right)\right\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|$. This is called 1-norm.

Remark: Let $\mathrm{p}, 1<p<\infty$, and $q, \frac{1}{p}+\frac{1}{q}=1$. Then $1+\frac{p}{q}=p \Longrightarrow \frac{p}{q}=p-1 \Longrightarrow \frac{p}{p-1}=q \Longrightarrow \frac{q}{p}=$ $q-1 \Longrightarrow \frac{1}{p-1}=\frac{q}{p}=q-1$.

Lemma. Let $\alpha, \beta>0,1<p<\infty$. If $\frac{1}{p}+\frac{1}{q}=1$, then $\alpha \beta \leq \frac{\alpha^{p}}{p}+\frac{\beta^{q}}{q}$ (Young's inequality)

$$
u=t^{p-1} \Longrightarrow t=u^{\frac{1}{p-1}}=u^{q-1} . \alpha \beta \leq \int_{0}^{\alpha} t^{p-1} d t+\int_{0}^{\beta} u^{q-1} d u=\frac{\alpha^{p}}{p}+\frac{\beta^{q}}{q} .
$$

Theorem. Hdder's Inequality: Let $\left(a_{1}, \cdots, a_{n}\right)$ and $\left(b_{1}, \cdots, b_{n}\right) \in \mathbb{R}^{n}$. Let $1<p<\infty$ and $\frac{1}{p}+\frac{1}{q}=1$. Then

$$
\sum_{i=1}^{n}\left|a_{i} b_{i}\right| \leq\left(\sum_{i=1}^{n}\left|a_{i}\right|^{p}\right)^{1 / p}\left(\sum_{i=1}^{n}\left|b_{i}\right|^{q}\right)^{1 / q}
$$

Proof. Assume $a \neq 0 \neq b$.
Note: $\alpha, \beta>0$,

$$
\begin{aligned}
\sum_{i=1}^{n}\left|\left(\alpha a_{i}\right)\left(\beta b_{i}\right)\right| & =\alpha \beta \sum_{i=1}^{n}\left|a_{i} b_{i}\right| \\
\left(\sum_{i=1}^{n}\left|\alpha a_{i}\right|^{p}\right)^{1 / p} & =\alpha\left(\sum_{i=1}^{n}\left|a_{i}\right|^{p}\right)^{1 / p} \\
\left(\sum_{i=1}^{n}\left|\beta b_{i}\right|^{q}\right)^{1 / q} & =\beta\left(\sum_{i=1}^{n}\left|b_{i}\right|^{q}\right)^{1 / q}
\end{aligned}
$$

Then the inequality holds for $a, b \in \mathbb{R}^{n} \Longleftrightarrow$ it holds for $\alpha a, \beta b \in \mathbb{R}^{n}$ for some $\alpha \beta>0$. By scaling if needed, we can assume

$$
\left(\sum_{i=1}^{n}\left|a_{i}\right|^{p}\right)^{1 / p}=1,\left(\sum_{i=1}^{n}\left|b_{i}\right|^{q}\right)^{1 / q}=1
$$

Lemma.

$$
\left|a_{i} b_{i}\right| \leq \frac{\left|a_{i}\right|^{p}}{p}+\frac{\left|b_{i}\right|^{q}}{q}, \forall i=1, \cdots, n
$$

Hence $\sum_{i=1}^{n}\left|a_{i} b_{i}\right| \leq \frac{\sum_{i=1}^{n}\left|a_{i}\right|^{p}}{p}+\frac{\sum_{i=1}^{n}\left|b_{i}\right|^{q}}{q}=\frac{1}{p}+\frac{1}{q}=1$
Theorem. Minkowski's Inequality: Let $a=\left(a_{1}, a_{2}, \cdots, a_{n}\right), b=\left(b_{1}, b_{2}, \cdots, b_{n}\right) \in \mathbb{R}^{n}$. Let $1<p<\infty$, then

$$
\left(\sum_{i=1}^{n}\left|a_{i}+b_{i}\right|^{p}\right)^{1 / p} \leq\left(\sum_{i=1}^{n}\left|a_{i}\right|^{p}\right)^{1 / p}+\left(\sum_{i=1}^{n}\left|b_{i}\right|^{p}\right)^{1 / p}
$$

Proof. Assume $a \neq 0 \neq b$. Let $q / \frac{1}{p}+\frac{1}{q}=1$.

$$
\begin{aligned}
\sum_{i=1}^{n}\left|a_{i}+b_{i}\right|^{p} & =\sum_{i=1}^{n}\left|a_{i}+b_{i}\right|\left|a_{i}+b_{i}\right|^{p-1} \\
& \leq \sum_{i=1}^{n}\left|a_{i}\right|\left|a_{i}+b_{i}\right|^{p-1}+\sum_{i=1}^{n}\left|b_{i}\right|\left|a_{i}+b_{i}\right|^{p-1} \\
\sum_{i=1}^{n}\left|a_{i}\right|\left|a_{i}+b_{i}\right|^{p-1} & \leq\left(\sum_{i=1}^{n}\left|a_{i}\right|^{p}\right)^{1 / p}\left(\sum_{i=1}^{n}\left(\left|a_{i}+b_{i}\right|^{p-1}\right)^{q}\right)^{1 / q}=\left(\sum_{i=1}^{n}\left|a_{i}\right|^{p}\right)^{1 / p}\left(\sum_{i=1}^{n}\left|a_{i}+b_{i}\right|^{p}\right)^{1 / q} \\
\text { Similarly, } \sum_{i=1}^{n}\left|b_{i}\right|\left|a_{i}+b_{i}\right|^{p-1} & \leq\left(\sum_{i=1}^{n}\left|b_{i}\right|^{p}\right)^{1 / p}\left(\sum_{i=1}^{n}\left|a_{i}+b_{i}\right|^{p}\right)^{1 / q} \\
\sum_{i=1}^{n}\left|a_{i}+b_{i}\right|^{p} & \leq\left(\left(\sum_{i=1}^{n}\left|a_{i}\right|^{p}\right)^{1 / p}+\left(\sum_{i=1}^{n}\left|b_{i}\right|^{p}\right)^{1 / p}\right)\left(\sum_{i=1}^{n}\left|a_{i}+b_{i}\right|^{p}\right)^{1 / q} \\
\left(\sum_{i=1}^{n}\left|a_{i}+b_{i}\right|^{p}\right)^{1-1 / p} & \leq\|a\|_{p}+\|b\|_{p}
\end{aligned}
$$

Examples: sequence space

1. Let $l_{1}=\left\{\left\{x_{n}\right\}\left|\sum_{i=1}^{\infty}\right| x_{n} \mid<\infty\right\}$ Then $\left\|\left\{x_{n}\right\}\right\|_{1}=\sum_{i=1}^{\infty}\left|x_{n}\right|$. Let $\left\{x_{n}\right\},\left\{y_{n}\right\} \in l_{1}$. Claim that $\left\{x_{n}+y_{n}\right\} \in l_{1}$. Let $k \in \mathbb{N}$

$$
\sum_{n=1}^{k}\left|x_{n}+y_{n}\right| \leq \sum_{n=1}^{k}\left|x_{n}\right|+\sum_{n=1}^{k}\left|y_{n}\right| \leq \sum_{n=1}^{\infty}\left|x_{n}\right|+\sum_{n=1}^{\infty}\left|y_{n}\right|<\infty
$$

By MCT, $\left\{\sum_{i=1}^{k}\left|x_{n}+y_{n}\right|\right\}$ convergent then $\sum_{n=1}^{\infty}\left|x_{n}+y_{n}\right|$ convergent. Hence $\left\{x_{n}+y_{n}\right\} \in l_{1}$. Moreover,

$$
\left\|\left\{x_{n}+y_{n}\right\}\right\| \leq\left\|\left\{x_{n}\right\}\right\|_{1}+\left\|\left\{y_{n}\right\}\right\|_{1}
$$

This implies $\|\cdot\|_{1}$ is a norm.
2. Let $1<p<\infty$,

$$
l_{p}=\left\{\left.\left\{x_{n}\right\}\left|\sum_{i=1}^{\infty}\right| x_{i}\right|^{p}<\infty\right\}
$$

$\|\left.\left\{x_{n}\right\}\right|_{p}=\left(\sum_{i=1}^{\infty}\left|x_{i}\right|^{p}\right)^{1 / p}$ Prove that $\left\{x_{n}\right\},\left\{y_{n}\right\} \in l_{p}$ and then $\left\{x_{n}+y_{n}\right\} \in l_{p}$ and $\|\cdot\|_{p}$ is norm.
3. $l_{\infty}=\left\{\left\{x_{n}\right\} \mid \sup \left\{\left|x_{n}\right|\right\}<\infty\right\} .\left\|\left\{x_{n}\right\}\right\|_{\infty}=\sup \left\{\left|x_{n}\right|\right\}$. This is a norm.

Examples Continuous function space

1. $C([a, b])=\{f:[a, b] \rightarrow \mathbb{R} \mid \mathrm{f}$ is continuous $\} .\|f\|_{\infty}=\max \{\mid f(x) \| x \in[a, b]\}$. Let $f, g \in C([a, b]), x \in$ $[a, b]$.

$$
\begin{gathered}
|(f+g)(x)|=|f(x)+g(x)| \leq|f(x)|+|g(x)| \leq \sup _{x \in[a, b]}|f(x)|+\max _{x \in[a, b]}|g(x)|=\|f\|_{\infty}+\|g\|_{\infty} \\
\|f+g\|_{\infty}=\max _{x \in[a, b]}|f(x)+g(x)| \leq\|f\|_{\infty}+\|g\|_{\infty}
\end{gathered}
$$

2. $\mathcal{C}([a, b]),\|f\|_{1}=\int_{a}^{b}|f(t)| d t$.
3. $\mathcal{C}([a, b]),\|f\|_{p}=\left(\int_{a}^{b}|f(t)|^{p} d t\right)^{1 / p}$

Theorem. Holder's inequality II: Let $1<p<\infty, \frac{1}{p}+\frac{1}{q}=1$. If $f, g \in \mathcal{C}[a, b]$.

$$
\int_{a}^{b}|f(t) g(t)| d t \leq\left(\int_{a}^{b}|f(t)|^{p} d t\right)^{1 / p}\left(\int_{a}^{b}|g(t)|^{q} d t\right)^{1 / q}
$$

Theorem. Minkowski's Inequality II: If $f, g \in \mathcal{C}([a, b])$ and $1<p<\infty$

$$
\left(\int_{a}^{b}|(f+g)(t)|^{p} d t\right)^{1 / p} \leq\left(\int_{a}^{b}|f(t)|^{p} d t\right)^{1 / p}+\left(\int_{a}^{b}|g(t)|^{p} d t\right)^{1 / p}
$$

Then $f \neq 0 \neq g$.
Proof.

$$
\begin{aligned}
\int_{a}^{b}|f(t)+g(t)|^{p} d t & =\int_{a}^{b}|(f+g)(t)||(f+g)(t)|^{p-1} d t \\
& \leq \int_{a}^{b}|f(t)||(f+g)(t)|^{p-1} d t+\int_{a}^{b}|g(t)||(f+g)(t)|^{p-1} d t \\
& \leq\left(\int_{a}^{b}|f(t)|^{p} d t\right)^{1 / p}\left(\int_{a}^{b}|f(t)+g(t)|^{(p-1) q} d t\right)^{1 / q} \\
& +\left(\int_{a}^{b}|g(t)|^{p} d t\right)^{1 / p}\left(\int_{a}^{b}|f(t)+g(t)|^{(p-1) q} d t\right)^{1 / q} \\
\int_{a}^{b}|f(t)+g(t)|^{p} d t & \leq\left[\left(\int_{a}^{b}|f(t)|^{p} d t\right)^{1 / p}+\left(\int_{a}^{b}|g(t)|^{p} d t\right)^{1 / p}\right]\left(\int_{a}^{b}|f(t)+g(t)|^{p} d t\right)^{1 / q} \\
\left(\int_{a}^{b}|f(t)+g(t)|^{p} d t\right)^{1-1 / q} & \leq\|f\|_{p}+\|g\|_{p}
\end{aligned}
$$

Example: Bounded operators

Let $\left(X,\|\cdot\|_{X}\right)$ and $\left(Y,\|\cdot\|_{Y}\right)$ be normed linear spaces. Let $T: X \rightarrow Y$, linear. $\|T\|:=\sup \left\{\|T(x)\|_{Y} \mid\|x\|_{X} \leq\right.$ $1, x \in X\} . B(X, Y)=\{T: X \rightarrow Y$ linear $\mid\|T\|<\infty\}$.

Claim: $B(X, Y)$ is a vector space and $\|\cdot\|$ is a norm.

- $T, S \in B(X, Y) \Longrightarrow T+S \in B(X, Y), x \in X,\|x\|_{X} \leq$.

$$
\begin{aligned}
&\|(T+S)(x)\|_{Y}=\|T(x)+S(x)\|_{Y} \\
& \leq\|T(x)\|_{Y}+\|S(x)\|_{Y} \\
& \leq\|T\|+\|S\| \\
&\|T+S\|=\sup \|(T+S)(x)\| \leq\|T\|+\|S\|<\infty, x \in X,\|x\|_{X} \leq 1 \\
& \Longrightarrow T+S \in B(X, Y) \text { and }\|T+S\| \leq\|T\|+\|S\|
\end{aligned}
$$

- $\alpha \in \mathbb{R}, T \in B(X, Y)$

$$
\begin{gathered}
\|\alpha T\|=\sup _{x \in X,\|x\|_{X} \leq 1}\|\alpha T(x)\|_{Y}=|\alpha| \sup _{x \in X,\|x\|_{X} \leq 1}\|T(x)\|_{Y}=|\alpha|\|T\|<\infty \\
\Longrightarrow \alpha T \in B(X, Y) \text { and }\|\alpha T\|=|\alpha|\|T\|
\end{gathered}
$$

Note $B(X, Y) \leq \mathcal{L}(X, Y), 0 \in B(X, Y) \Longrightarrow B(X, Y)$ subspace of $\mathcal{L}(X, Y) .\|T\| \geq 0$ and $\|T\|=$ $0 \Longleftrightarrow\|T(x)\|_{Y}=0, \forall x \in X,\|x\|_{X} \leq 1$.

2.1 Topology of Metric Spaces

Definition. Let (X, d) be a metric space. Let $x_{0} \in X$ and $\epsilon>0$. The open ball centered at x_{0} with radius ϵ is

$$
B\left(x_{0}, \epsilon\right)=\left\{x \in X \mid d\left(x, x_{0}\right)<\epsilon\right\}
$$

The closed ball centered at x_{0} with radius ϵ is

$$
B\left[x_{0}, \epsilon\right]=\left\{x \in X \mid d\left(x, x_{0}\right) \leq \epsilon\right\}
$$

A subset $U \subseteq X$ is open if $\forall x \in U, \exists \epsilon>0 \mid B(x, \epsilon) \subseteq U$. A subset $F \subseteq X$ is closed if F^{C} is open.
Proposition. Let (X, d) be a metric space. Then

1. X, \emptyset are open.
2. If $\left\{U_{\alpha}\right\}_{\alpha \in I}$ is a collection of open sets, then the union of all the sets in this collection is open $=$.
3. If $\left\{U_{1}, U_{2}, \cdots, U_{n}\right\}$ are open, then $\cap_{i=1}^{n} U_{i}$ is open.

Example

1. If $x \in X$, any $\epsilon>0, B(x, \epsilon) \subseteq X \Longrightarrow X$ is open. \emptyset is "trivially" open.
2. If $x \in \cup_{\alpha \in I} U_{\alpha}$, then $\exists \alpha \in I$ such that $x \in U_{\alpha_{0}}$. Since U_{α} is an open set and $x \in U_{\alpha_{0}}, \exists \epsilon>0$ such that $B(x, \epsilon) \subseteq U_{\alpha} \subseteq \cup_{\alpha \in I} U_{\alpha} \Longrightarrow \cup_{\alpha \in I} U_{\alpha}$ is open.
3. If $x \in \cap_{i=1}^{n} U_{i}, \forall i \in\{1, \cdots, n\}, \exists \epsilon<0$ such that $B(x, \epsilon) \subseteq U$, let $\epsilon=\min \{\epsilon \mid i=1, \cdots, n\}>$ $0, B(x, \epsilon) \subseteq B\left(x, \epsilon_{i}\right), \forall i \Longrightarrow B\left(x, \epsilon_{i}\right) \subseteq \cap_{i=1}^{n} B\left(x, \epsilon_{i}\right) \subseteq \cap_{i=1}^{n} U_{i}$.

Proposition. Let (X, d) be a metric space. Then

1. X, \emptyset are closed
2. If $\left\{F_{\alpha}\right\}_{\alpha \in I}$ is addition of close sets, then $\cap_{\alpha \in I} F_{\alpha}$ is closed
3. If F_{1}, \cdots, F_{n} are closed sets, then the union is also closed.

From this proposition, it flows that if (X, d) is a metric space. $\tau_{j}=\{U \subseteq X \mid U$ is open with respect to d $\}$. τ_{j} is a topology.

Proposition. Let (X, d) be a metric space, then

1. If $x_{0} \in X, \epsilon>0 \Longrightarrow B\left(x_{0}, \epsilon\right)$ is open
2. $U \subseteq X$ is open $\Longleftrightarrow \mathrm{U}$ is the union of open balls
3. If $x_{0} \in X, \epsilon>0 \Longrightarrow B\left[x_{0}, \epsilon\right]$ is closed
4. If $x \in X,\{x\}$ is closed. Every finite subset is closed.

Proof. 1. Let $x \in B\left(x_{0}, \epsilon\right)$, then $d\left(x, x_{0}\right)=\delta<\epsilon$ Let $\epsilon^{\prime}=\epsilon-\delta$. Claim $B\left(x, \epsilon^{\prime}\right) \subseteq B(x, \epsilon)$. Let $x \in B\left(x, \epsilon^{\prime}\right)$ and $d\left(x_{0}, z\right) \leq d\left(x_{0}, x\right)+d(x, z)<\epsilon+\epsilon-\delta=\epsilon$ This proves that $B\left(x_{0}, \epsilon\right)$ is open.
2. \Longrightarrow follows (1). \rightarrow If $x \in U, \exists \epsilon_{x}>0$ such that $B\left(x, \epsilon_{x}\right) \subset U, \cup_{x \in U} B\left(x, \epsilon_{x}\right)=U$.
3. Let $x \in\left(B\left[x_{0}, \epsilon\right]\right)^{C} . d\left(x, x_{0}\right)=\delta>\epsilon$. Let $\epsilon^{\prime}=\delta \cdot \epsilon$. Claim $B\left(x, \epsilon^{\prime}\right) \subseteq\left(B\left[x_{0}, \epsilon\right]\right)^{C}$. Let $z \in B\left(x, \epsilon^{\prime}\right)$ assume $z \in B\left[x_{0}, \epsilon\right], d\left(x, x_{0} \leq d(x, z)+d\left(z, x_{0}\right)<\epsilon^{\prime}+\epsilon=\delta-\epsilon+\epsilon=\delta\right.$. This implies $z \in\left(B\left[x_{0}, \epsilon\right]\right)^{C}$.
4. If $y \in\{x\}^{C}$, then $y \neq x$ and $d(y, x)>0$ and $B(y, d(x, y)) \Longrightarrow\{x\}^{C}$ is open.

Open sets in \mathbb{R}.
Recall $I \subseteq \mathbb{R}$ is an interval if $x, y \in I$ and z such that $x<z<y \Longrightarrow z \in I$.

- Open finite intervals (a, b)
- Closed finite intervals $[a, b]$.
- Half open finite set $(a, b]$.
- Open rays (a, ∞)
- Closed rays

Example: Cantor set

P_{n} is obtained from P_{n-1} by removing the open interval of length $1 / 3^{n}$ from the middle third of each of the 2^{n-1} subintervals of P_{n-1}. Each P_{n} is closed. It's the union of 2^{n} closed intervals of length $1 / 3^{n}$.

$$
P=\bigcap_{n=1}^{\infty} P_{n} \text { Cantor (ternary) set) }
$$

- P is closed
- P is uncountable $\left(x \in P \rightarrow x=\sum_{n=1}^{\infty} \frac{a_{n}}{3^{n}}\right.$ with $a_{n}=0,2$.
- P contains no interval of positive length

Example: Discrete metric

X set, $d(x, y)=\left\{\begin{array}{ll}1 & x \neq y \\ 0 & x=y\end{array} x \in X, B(x, 2)=X, B(x, 1)=\{x\}\right.$ is an open set.
If $U=X, U=U_{x \in U}\{x\}=U_{x \in U} B(x, 1)$ open. U is also closed.

2.2 Boundaries, interiors and closures

Definition. Let (X, d) metric space,

1. $A \subseteq \Longrightarrow$ The closure of A is

$$
A=\cap\{F \text { closed in } \mid A \subseteq F\}
$$

It's the smallest closed set that contains A.
2. The interior of A is $\operatorname{int}(A)=\cup\{U$ is open in $X \mid U \subseteq A\}$. It is the largest open set inside A.
3. Let $x \in X, N \subseteq X$, we say that N is a neighborhood of $x\left(N \subset \mathcal{N}_{x}\right)$. If $x \in \operatorname{int}(N)$.
4. Given $A \subseteq X, x \in X$ is a boundary point of A. If for every neighbor N of x , we have $N \cap A \neq \emptyset$ and $N \cap A^{C} \neq \emptyset$. Equivalently, x is a boundary point of A , if $\forall \epsilon>0, B(x, \epsilon) \cap A \neq \emptyset$ and $B(x, \epsilon) \cap A^{C} \neq \emptyset$.

$$
(\partial A) b d y(A)=\{x \in X \mid x \text { is a boundary point of } \mathrm{A}\}
$$

Proposition. (X, d) metric space, $A \subseteq X$

1. A is closed $\Longleftrightarrow b d y(A) \subseteq A$
2. $\bar{A}=A \cup b d y(A)$.

Proof. 1. (\Longrightarrow) A is close if and only if A^{C} is open. If $x \in A^{C}, \exists \epsilon>0$ such that $B(x, \epsilon) \subseteq A^{C}$ and then $B(x, \epsilon) \cap A=\emptyset \Longrightarrow x \notin b d y(A)$.
\leftarrow Let $x \in A^{C}$, then $x \notin b d y(A)$. This implies $\exists \epsilon>0$ such that $B(x, \epsilon) \cap A=\emptyset$. This implies $B(x, \epsilon) \subseteq A^{C}$. By definition, A^{C} is open.
2. Claim that $b d y(A) \subseteq \bar{A}$. Let $x \in(\bar{A})^{C}$. There exists $\exists \epsilon>0$ such that $B(x, \epsilon) \cap \bar{A}=\emptyset$. This implies that $B(x, \epsilon) \cap A=\emptyset \Longrightarrow x \notin b d y(A)$. This implies $F=b d y(A) \cup A \subseteq \bar{A}$. Claim that F is closed.

Definition. Let (X, d) metric space, $A \subseteq X$ and $x \in X$. We say that x is a limit point of A, if for all neighbor hood N of x , we have $N \cap(A \backslash\{x\}) \neq \emptyset$. Equivalently, $\forall \epsilon>0, B(x, \epsilon) \cap(A \backslash\{x\}) \neq \emptyset$. The set of limit points of A is $\operatorname{Lim}(A)$ cluster points.

Note: $A=[0,1] \subseteq \mathbb{R}, b d y(A)=\{0,1\}, \operatorname{Lim}(A)=A$. For $B=\{x\} \subseteq \mathbb{R}, b d y(B)=B, \operatorname{Lim}(B)=\emptyset$.
Proposition. Let (X, d) metric space, $A \subseteq X$

1. A is closed $\Longleftrightarrow \operatorname{Lim}(A) \subseteq A$
2. $\bar{A}=A \cup \operatorname{Lim}(A)$.

Proposition. 1. $\bar{A} \subseteq \bar{B}$.
2. $\operatorname{int}(A) \subseteq \operatorname{int}(A)$.
3. $\operatorname{int}(A)=A \backslash b d y(A)$.

Proposition. Let $A, B \subseteq(X, d)$ metric space.

1. $\overline{A \cup B}=\bar{A} \cup \bar{B}$
2. $\operatorname{int}(A \cup B)=\operatorname{int}(A) \cap \operatorname{int}(B)$

Proof. 1. $A \cup B \subseteq \bar{A} \cup \bar{B}$. Hence, $\overline{A \cup B} \subseteq \bar{A} \cup \bar{B}$
Conversely, $A \subseteq \overline{A \cup B} \Longrightarrow \bar{A} \subseteq \overline{A \cup B}$. Similarly for B.
2. $\operatorname{int}(A) \cap \operatorname{int}(B) \subseteq A \cap B$. and $\operatorname{int}(A) \cap \operatorname{int}(B) \subseteq \operatorname{int}(A \cap B)$.

Conversely, $\operatorname{int}(A \cap B) \subseteq A \Longrightarrow \operatorname{int}(A \cap B) \subseteq \operatorname{int}(A)$. Similar for B.

Definition. Let (X, d) metric space. $A \subseteq X$ is dense in X if $\bar{A}=X$. We say that (X, d) is separable if X has a countable subset A such that $\bar{A}=X$. Otherwise, X is non-separable.

Examples:

1. \mathbb{R} is separable
2. \mathbb{R}^{n} is separable.
3. l_{1} is separable
4. l_{∞} is non-separable.

Question:
Is $\left(C[a, b],\| \|_{\infty}\right)$ separable?

2.3 Convergence of sequences and topology in a metric space

Definition. (X, d) metric space, $\left\{x_{n}\right\} \subseteq X$ sequence. We say that $\left\{x_{n}\right\}$ converges to a point $x_{0} \in X$ if $\forall \epsilon>0, \exists n_{0} \in \mathbb{N}$ such that if $n \geq n_{0}$, then $d\left(x_{n}, x_{0}\right)<\epsilon$. Then x_{0} is the limit of $\left\{x_{n}\right\}, \lim _{n} x_{n}=x_{0}, x_{n} \rightarrow x_{0}$. Equivalently, $\lim _{n} x_{n}=x_{0} \Longleftrightarrow \lim _{n} d\left(x_{0}, x\right)=0$.

Proposition. (X, d) metric space, $\left\{x_{n}\right\} \subseteq X$. If $\lim x_{n}=x_{0}=y_{0}$
Proposition. 1. $x_{0} \in b d y(A) \Longleftrightarrow \exists$ sequence $\left\{x_{n}\right\} \subseteq A,\left\{y_{n}\right\} \subseteq A^{c}$ such that $x_{n} \rightarrow x_{0}, y_{n} \rightarrow x_{0}$.
2. A is closed \Longleftrightarrow whenever $\left\{x_{n}\right\} \subseteq A$ with $x_{n} \rightarrow x_{0} \Longrightarrow x_{0} \subseteq A$.

Proof. 1. $x_{0} \in b d y(A), x_{n} \in B\left(x_{0}, \frac{1}{n}\right) \cap A . y_{n} \in B\left(x_{0}, \frac{1}{n}\right) \cap A^{c}$. Conversely, suppose $\left\{x_{n}\right\} \subseteq A,\left\{y_{n}\right\} \subseteq$ $A^{c}, x_{n} \rightarrow x_{0}, y_{n} \rightarrow x_{0}$. Given $\varepsilon>0, \exists N \in \mathbb{N}$, such that $x_{n} \in B\left(x_{0}, \varepsilon\right), \forall n \geq N \Longrightarrow B\left(x_{0}, \epsilon\right) \cap A \neq \emptyset$. $\exists N^{\prime} \in \mathbb{N}$, such that $x_{n} \in B\left(x_{0}, \varepsilon\right), \forall n \geq N^{\prime} \Longrightarrow B\left(x_{0}, \varepsilon\right) \cap A^{c} \neq \emptyset$. This implies $x_{0} \in b d y(A)$.
2. A is closed, $\left\{x_{n}\right\} \subseteq A, x_{n} \rightarrow x_{0}$. Suppose $x_{0} \in A^{c} \Longrightarrow \exists \varepsilon>0$, such that $B\left(x_{0}, \varepsilon\right) \cap A=\emptyset$ but since $x_{n} \rightarrow x_{0}, \exists N \in \mathbb{N}$, such that $d\left(x_{0}, x_{n}\right)<\varepsilon, \forall n \geq N$. Contradiction. Then $x_{0} \in A$.
Conversely, suppose A is not closed, Then $x_{0} \in b d y(A) \backslash A$. By (1), $\exists\left\{x_{n}\right\} \subseteq A$ such that $x_{n} \rightarrow$ $x_{0} \Longrightarrow x_{0} \in A$. This is a contradiction. Then A is closed.

Proposition. Let (X, d) metric space, $\left\{x_{n}\right\} \subseteq X$. If $x_{0}=\lim _{n \rightarrow \infty} x_{n}=y_{0}$, then $x_{0}=y_{0}$.
Proof. Suppose $x_{0} \neq y_{0} \Longrightarrow d\left(x_{0}, y_{0}\right)=\epsilon>0 . \frac{\epsilon}{2}>0, \exists N \in \mathbb{N}$ such that $d\left(x_{n}, x_{0}\right)<\frac{\epsilon}{2}, \forall n \geq N, \exists N^{\prime} \in \mathbb{N}$ such that $d\left(x_{n}, x_{0}\right)<\frac{\epsilon}{2}, \forall n \geq N^{\prime}$, If $n=\max \left\{N, N^{\prime}\right\}, \epsilon=d\left(x_{0}, y_{0}\right) \leq d\left(x_{0}, x_{n}\right)+d\left(x_{n}, y_{0}\right)<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon$.
Definition. We say that x_{0} is a limit point of $\left\{x_{n}\right\}$ if \exists a subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ such that $x_{n_{k}} \rightarrow x_{0}$. $\lim ^{*}\left(\left\{x_{n}\right\}\right)=\left\{x_{0} \in X \mid x_{0}\right.$ is a limit point of $\left.\left\{x_{n}\right\}\right\} \lim \left(\left\{x_{n}\right\}\right) \leftarrow\left\{x_{n}\right\}$ subset of X .

Example, $x_{n}=(-1)^{n} \cdot \lim ^{*}\left(\left\{x_{n}\right\}\right)=\{-1,1\} \cdot \lim \left(\left\{x_{n}\right\}\right)=\emptyset$.
Proposition. (X, d) metric space, $A \subseteq X . x_{0} \in \lim (A) \Longleftrightarrow \exists\left\{x_{n}\right\} \subseteq A$, with $x_{n} \neq x_{0}$ and $x_{n} \rightarrow x_{0}$.
Proof. Let $x_{0} \in \lim (A), \forall n \in \mathbb{N}, \exists x_{n} \in N$ such that $\left\{x_{n}\right\} \cap B\left(x_{0}, \frac{1}{n}\right)$ Hence $\left\{x_{n}\right\} \subseteq A, x_{n} \neq x_{0}, x_{n} \rightarrow x_{0}$.
Conversely. $\forall \epsilon>0, A \backslash\left\{x_{0}\right\} \cap B\left(x_{0}, \epsilon\right) \neq \emptyset$. Since $\exists N \in \mathbb{N}$, such that $x_{n} \neq x_{0} \in B\left(x_{0}, \epsilon\right), \forall n \geq N$.

2.4 Induced metric and the relative topology

Definition. Let (X, d) metric space, $A \subseteq X$. Define $d_{A}: A \times A \rightarrow \mathbb{R}$ such that $d_{A}(x, y)=d(x, y), \forall x, y \in A$. d_{A} is a mtreic, and its called the induced metric. Let $\tau_{A}=\{W \subset A \mid W=U \cap A$ for some U open in X$\}$. τ_{A} is a topology in A called the relative topology in A inherited from τ_{d} on X .

Theorem. (X, d) metric space, $A \subseteq X$, Then $\tau_{A}=\tau_{d_{A}}$.
Proof. Let $W \subseteq A, W \in \tau_{A}$ and $x \in W . \exists U$ open in X such that $U \cap A=W . x \in U \Longrightarrow \exists \epsilon>0$ such that $B_{d}(x, \epsilon) \subseteq U . x \in B_{d_{A}}(x, \epsilon) \subseteq B_{d}(x, \epsilon) \subseteq U . x \in B_{d_{A}}(x, \epsilon) \subseteq U \cap A=W \in \tau_{d_{A}}$.

Let $W \subseteq A, W \in \tau_{d_{A}}, \forall x \in W, \exists \epsilon_{x}>0$ such that $B_{d_{A}}\left(x, \epsilon_{x}\right) \in W$.

$$
\begin{gathered}
W=\bigcup_{x \in W} B_{d_{A}}\left(x, \epsilon_{x}\right) \\
X \supseteq U=\bigcup_{x \in W} B_{d}\left(x, \epsilon_{x}\right) \text { open in } \mathrm{X}
\end{gathered}
$$

Now $W=A \bigcap U \Longrightarrow W \in \tau_{A}$.

2.5 Continuity

$\left(X, d_{x}\right),\left(Y, d_{y}\right)$ metric spaces, $f: X \rightarrow Y$ function $f(x)$ is continuous at $x_{0} \in X$ if $\forall \epsilon>0, \exists \delta>0$ such that $x \in B\left(x_{0}, \delta\right)$ then $f(x) \in B\left(f\left(x_{0}\right), \epsilon\right)$. Otherwise, $f(x)$ is discontinuous at $x_{0} f(x)$ is continuous if it is continuous at x_{0}, for all $x_{0} \in X$.

Theorem. $\left(X, d_{x}\right),\left(Y, d_{y}\right)$ metric space, $f: X \rightarrow Y$ TFAE

1. $f(x)$ is continuous at $x_{0} \in X$.
2. If W is a neighborhood of $g=f\left(x_{0}\right)$, then $v=f^{-1}(W)$ is a neighborhood of x_{0}.

Proof. From (1) to (2): $\exists \epsilon>0$ such that $B\left(f\left(x_{0}\right), \epsilon\right) \subseteq W$. This implies $\exists \delta>0$ such that $d\left(z, x_{0}\right)<$ $\delta \Longrightarrow d_{X}\left(f(z), f\left(x_{0}\right)\right)<\epsilon$. Therefore, $f\left(B\left(x_{0}, \delta\right)\right) \subseteq B\left(f\left(x_{0}\right), \epsilon\right) \subseteq W$. But $V=f^{-1}(W)$ Hence $x_{0} \in B\left(x_{0}, \delta\right) \subseteq V \Longrightarrow x_{0} \in \operatorname{int}(V)$.

From 2 to 1 , let $\epsilon>0$, Therefore, $B\left(f\left(x_{0}\right), \epsilon\right)=W$ neighborhood of $f\left(x_{0}\right)$. THen $f^{-1}(W)$ is a neighborhood of x_{0}, i.e. $x_{0} \in \operatorname{int}\left(f^{-1}(W)\right)$ Therefore, $\exists \delta>0$ such that $B\left(x_{0}, \delta\right) \subseteq f^{-1}(W)$.

Theorem. Sequential Characterization of continuous $\left(X, d_{x}\right),\left(Y, d_{y}\right)$ metric space, $f: X \rightarrow Y$, TFAE

1. $f(x)$ is continuous at $x_{0} \in X$.
2. If $\left\{x_{n}\right\} \subseteq X, x_{n} \rightarrow x_{0} \Longrightarrow f\left(x_{n}\right) \rightarrow f\left(x_{0}\right)$.

Proof. From 1 to $2, f(x)$ is continuous at $x_{0},\left\{x_{n}\right\} \subseteq X, x_{n} \rightarrow x_{0}$. Fix $\epsilon>0$, then $\exists \delta>0$ such that $d_{x}\left(x, x_{0}\right)<\delta \Longrightarrow d_{y}\left(f(x), f\left(x_{0}\right)\right)<\epsilon$. Since $x_{n} \rightarrow x_{0} . \exists N \in \mathbb{N}$, such that if $n \geq N, d_{x}\left(x_{n}, x_{0}\right)<\delta \Longrightarrow$ $d_{y}\left(f\left(x_{n}\right), f\left(x_{0}\right)\right)<\epsilon$.

From 2 to 1 , assume $f(x)$ is not continuous at x_{0}. $\exists \epsilon_{0}>0$, for every ball $B_{x}\left(x_{0}, \delta\right), \exists x_{\delta} \in B_{x}\left(x_{0}, \delta\right)$ such that $d_{Y}\left(f\left(x_{\delta}\right), f\left(x_{0}\right) \geq \epsilon_{0}\right.$. In particular, for each $n \in \mathbb{N}, x_{n} \in B_{x}\left(x_{0}, \frac{1}{n}\right)$ Note: $x_{n} \rightarrow x_{0}$ but $d_{Y}\left(f\left(x_{n}\right), f\left(x_{0}\right)\right) \geq \epsilon_{0}$ i.e. $f\left(x_{n}\right)$ does not converge to $f\left(x_{0}\right)$.

Theorem. $\left(X, d_{x}\right),\left(Y, d_{y}\right)$ metric space, $f: X \rightarrow Y$, TFAE

1. $f(x)$ is continuous
2. If $W \subseteq Y$ is open, then $f^{-1}(W)=V \subseteq X$ is open
3. If $\left\{x_{n}\right\} \subseteq X, x_{n} \rightarrow x_{0}$ for some $x_{0} \in X$, then $f\left(x_{n}\right) \rightarrow f\left(x_{0}\right) \in Y$.

Proof. 3 to 1 is done
1 to 2: Let $W \subseteq Y$ open and $V=f^{-1}(W)$. Let $x_{0} \in V^{\prime}, f\left(x_{0}\right) \in W$ open. Therefore, W is a neighborhood of $f\left(x_{0}\right)$. By $1, f^{-1}(W)=V$ is a neighborhood of x_{0} i.e. $x_{0} \in \operatorname{int}(V)$ Then $V=\operatorname{int}(V)$ is open.

2 to 3: let $\left\{x_{n}\right\} \subseteq X, x_{n} \rightarrow x_{0}$. Let $y_{0}=f\left(x_{0}\right)$. Fix $\epsilon>0$, if $W=B_{y}\left(y_{0}, \epsilon\right)$ open in Y. Then $f^{-1}(W) \subseteq X$ open. Note: $x_{0} \in V \Longrightarrow \exists \delta>0$, such that $B_{x}\left(x_{0}, \delta\right) \subseteq V$. Since $x_{n} \rightarrow x_{0}, \exists N$ such that if $n \geq N$, then $d_{x}\left(x_{n}, x_{0}\right)<\delta$, i.e. $x_{n} \in V, \forall n \geq N$. Hence $f\left(x_{n}\right) \subseteq W, \forall n \geq N$. i.e. $d_{y}\left(f\left(x_{n}\right), f\left(x_{0}\right)\right)<\epsilon \Longleftrightarrow f\left(x_{n}\right) \rightarrow f\left(x_{0}\right)$.

Example: X a set, d discrete metric $\left(Y, d_{x}\right)$ metric space, $f(X, d) \rightarrow\left(Y, d_{Y}\right)$ is continuous.
Definition. $f\left(X, d_{X}\right) \rightarrow\left(X, d_{y}\right): \mathrm{f}$ is a homeomorphism if f is one-to-one and onto, and both f and f^{-1} are continuous. We say that $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ are homeomorphic.

Remark: $f: X \rightarrow Y$ is homeomorphic, $U \subseteq X$ is open $\Longleftrightarrow f(U) \subseteq Y$ is open.
Two metric spaces $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ are equivalent if \exists a one-to-one and onto map $f: X \rightarrow Y$ and two constants, $c_{1}, c_{2}>0$, such that $c_{1} d_{X}\left(x_{1}, x-2\right) \leq d_{Y}\left(f\left(x_{1}\right), f\left(x_{2}\right)\right) \leq c_{2} d_{X}\left(x_{1}, x_{2}\right), \forall x_{1}, x-2 \in X$. Remark: If X and Y are equivalent, then they are homeomorphic.

2.6 Complete Metric Spaces: Cauchy sequences

Note: If $\left\{x_{n}\right\} \subset\left(X, d_{X}\right), x_{n} \rightarrow x_{0} \in X$ then $\forall \epsilon>0, \exists N \in \mathbb{N}$ such that if $n \geq N \Longrightarrow d\left(x_{0}, x_{n}\right)<\epsilon / 2$, If $n, m \geq N, d\left(x_{n}, x_{m}\right) \leq d\left(x_{n}, x_{0}\right)+d\left(x_{0}, x_{m}\right)<\epsilon / 2+\epsilon / 2<\epsilon$.

Definition. A sequence $\left\{x_{n}\right\} \subseteq\left(X, d_{x}\right)$ is cauchy in $\left(X, d_{x}\right)$ if $\forall \epsilon>0, \exists N \in \mathbb{N}, \forall n, m \geq N, d\left(x_{n}, x_{m}\right)<\epsilon$.
Theorem. Let $\left\{x_{n}\right\} \subseteq\left(X, d_{x}\right)$ be a convergent sequence then $\left\{x_{n}\right\}$ is Cauchy.
Does every Cauchy sequence converge? $x_{n}=\frac{1}{n}, X=(0,2)$ used metric $\left\{x_{n}\right\}$ is Cauchy but it does not converge.

Definition. A metric space $\left(X, d_{x}\right)$ is complete if every Cauchy sequence converges. A set $A \subseteq X$ is bounded if $\exists M>0$, and $x_{0} \in X$ such that $A \subseteq B\left[x_{0}, M\right]$.

Proposition. Every Cauchy sequence is bounded $\left\{x_{n}\right\}$ is Cauchy. This implies $\exists N \in \mathbb{N}$ such that $\forall n, m \geq$ $N, d\left(x_{n}, x_{m}\right)<1$. In particular, $d\left(x_{N}, x_{m}\right)<1, \forall m \geq N . M=\max \left\{d\left(x_{1}, x_{N}\right), \cdots, d\left(x_{N-1}, x_{N}\right), 1\right\}$. This implies $\left\{x_{n}\right\} \subseteq B\left[x_{N}, M\right]$.

Proposition. Assume $\left\{x_{n}\right\}$ is a Cauchy sequence with a subsequence $\left\{x_{n_{k}}\right\}$ such that $x_{n_{k}} \rightarrow x_{0}$. Then $x_{n} \rightarrow x_{0}$. Then $x_{n} \rightarrow x_{0}$. Let $\epsilon>0 \Longrightarrow \exists N \in \mathbb{N}$ such that $n, m \geq N, d\left(x_{n}, x_{m}\right)<\epsilon / 2$ since $x_{n_{k}} \rightarrow x_{0}, \exists k \in \mathbb{N}$ such that $\forall n_{k} \geq k, d\left(x_{n_{k}}, x_{0}\right)<\epsilon / 2 . M=\max \{N, k\}, \forall n \geq M, d\left(x_{n}, x_{0}\right) \leq d\left(x_{n}, x_{n_{k}}\right)+$ $d\left(x_{n_{k}}, x_{0}\right)<\epsilon / 2+\epsilon / 2<\epsilon$. Pick $n_{k}>M$.

2.7 Completeness of $\mathbb{R}, \mathbb{R}^{n}$ and l_{p}

Theorem. Bolzano-Weierstrass Theorem: every bounded sequence in \mathbb{R} has a convergent subsequence.
Theorem. Completeness Theorem for \mathbb{R}. Every Cauchy sequence in \mathbb{R} converges. $\left\{x_{n}\right\}$ is Cauchy \Longrightarrow $\left\{x_{n}\right\}$ is bounded $\Longrightarrow\left\{x_{n}\right\}$ has a convergent subsequence \Longrightarrow Then $\left\{x_{n}\right\}$ is convergent.

Theorem. Let $1 \leq p \leq \infty$, every Cauchy sequence in $\left(\mathbb{R}^{n},\|\cdot\|_{p}\right)$ converges.
Lemma. Let $1 \leq p<\infty$, let $\left\{x_{k}\right\}$ be a Cauchy sequence in $\left(l_{p},\|\cdot\|_{p}\right)$. Then for each $i \in \mathbb{N}$, the component sequence $\left\{x_{k, 2}\right\}_{k}$ is Cauchy in \mathbb{R}.

Proof. Assume $\left\{x_{k}\right\}_{k \in \mathbb{N}} \subseteq\left(l_{p},\|\cdot\|_{p}\right)$ is Cauchy. $x_{k}=\left\{x_{k, 1}, \cdots, x_{k, n}\right\}$ Since each component sequence $\left\{x_{k, i}\right\}_{k}$ is Cauchy on \mathbb{R}. and \mathbb{R} is complete. Let $x_{0, i}=l_{m} x_{k, i} \in \mathbb{R}$ Let $x_{0}=\left\{x_{0,1}, \cdots, x_{0, i}, \cdots\right\}$.

Claim: $x_{0} \in l_{p}$ and $x_{k} \rightarrow x_{0}$.
Let $\epsilon>0, \exists N_{0} \in \mathbb{N}$ such that $k, m \geq N_{0},\left\|x_{m}-x_{k}\right\|_{p}<\frac{\epsilon}{2}$.
Case 1 Let $p=\infty, k \geq N_{0},\left|x_{m, i}-x_{k, i}\right| \leq\left\|x_{m}-x_{k}\right\|_{\infty}, \forall m \geq N_{0}, \forall i \in \mathbb{N} . k \geq N_{0},\left|x_{0, i}-x_{k, i}\right|=$ $\lim _{m \rightarrow \infty}\left|x_{m, i}-x_{k, i}\right| \leq \frac{\epsilon}{2}<\epsilon, \forall i \in \mathbb{N}$. This implies $\left\{x_{0, i}-x_{k, i}\right\}_{i} \in l_{\infty}$. Well $\left\{x_{k, i}\right\} \in l_{\infty}$. This implies $\left\{x_{0, i}\right\} \in l_{\infty}$. Therefore, $\left\|x_{0}-x_{k}\right\|_{\infty}<\epsilon, \forall k \geq N_{0}$. This implies $x_{k} \rightarrow x_{0}$.

Case 2 Let $k \geq N_{0}$. For each $j \in \mathbb{N}$ such that $\left(\sum_{i=1}^{j}\left|x_{m, i}-x_{k, i}\right|^{p}\right)^{1 / p} \leq\left\|x_{m}-x_{k}\right\|_{[}<\frac{\epsilon}{2}$. $\left(\sum_{i=1}^{j} \mid x_{0, i}-\right.$ $\left.\left.x_{k, i}\right|^{p}\right)^{1 / p}=\lim _{m}\left(\sum_{i=1}^{j}\left|x_{m, i}-x_{k, i}\right|^{p}\right)^{1 / p} \leq \frac{\epsilon}{2}$.

$$
\left(\sum_{i=1}^{\infty}\left|x_{0, i}-x_{k, i}\right|^{p}\right)^{1 / p} \leq \frac{\epsilon}{2}<\epsilon, \forall k \geq N_{0}
$$

Then this implies $\left\{x_{0, i}-x_{k, i}\right\} \in l^{p}$ and $\left\{x_{k, i}\right\}_{i} \in l^{p}$. Then $\left\{x_{0, i}\right\}=x_{0} \in l^{p}$. then $\left\|x_{0}-x_{k}\right\|_{p}<\epsilon, \forall k \geq$ N_{0}, then $x_{k} \rightarrow x_{0}$.

2.8 Completeness of $\left(\mathcal{C}_{b}(X),\|\cdot\|_{\infty}\right)$

Definition. $\left(X, d_{x}\right),\left(Y, d_{y}\right)$ metric space $\left\{f_{n}\right\}$ sequence of functions $f_{n}: X \rightarrow Y .\left\{f_{n}\right\}$ converges pointwise to $f_{0}: X \rightarrow Y$ if $\lim _{n} f_{n}\left(x_{0}\right)=f_{0}\left(x_{0}\right), \forall x_{0} \in X .\left\{f_{n}\right\}$ converges uniformly to $f_{0}: X \rightarrow Y$ if $\forall \epsilon>0, \exists N_{0} \in \mathbb{N}$ such that $n \geq N_{0}, d_{Y}\left(f_{n}(x), f_{0}(x)\right)<\epsilon, \forall x \in X$.

Remark: $\left\{f_{n}\right\}$ such that $f_{n} \rightarrow^{\text {uniform }} f_{0} \Longrightarrow f_{n} \rightarrow^{\text {pointwise }} f_{0}(x), \forall x$. Let $f_{n}(x)=x^{n}$ on $[0,1]$. $f_{n}(x) \rightarrow f_{0}(x), \forall x$, for $f_{0}(x)=1, x=1$ otherwise 0 .

Theorem. $\left(X, d_{x}\right),\left(Y, d_{y}\right)$ metric space, $\left\{f_{n}\right\}$ such that $f_{n}: X \rightarrow Y$ and $f_{n} \rightarrow^{\text {unit }} f_{0}: X \rightarrow Y$. If each f_{n} is continuous at x_{0}, so is f_{0}.
$f_{n} \rightarrow^{\text {unit }} f_{0}$. This implies $\exists N_{0} \in \mathbb{N}$ such that $n \geq N_{0}, d_{y}\left(f_{n}(x), f_{0}(x)\right)<\frac{\epsilon}{3}, \forall x \in X$.
f_{n} continuous at $x_{0}, \forall n \Longrightarrow$ in particular $f_{N_{0}}$ is continuous at x_{0}. This means $\exists \delta>0$ such that $x \in B\left(x_{0}, \delta\right) \Longrightarrow d_{y}\left(f_{N_{0}}\left(x_{0}\right), f_{N_{0}}(x)\right)<\frac{\epsilon}{3}$.

Proof. If $x \in B\left(x_{0}, \delta\right)$,

$$
d_{Y}\left(f_{0}\left(x_{0}\right), f_{0}(x)\right) \leq d_{Y}\left(f_{0}\left(x_{0}\right), f_{N_{0}}\left(x_{0}\right)\right)+d_{Y}\left(f_{N_{0}}\left(x_{0}\right), f_{N_{0}}(x)\right)+d_{Y}\left(f_{N_{0}}(x), f_{0}(x)\right)<\frac{\epsilon}{3} \times 3=\epsilon
$$

Definition. $\left(X, d_{x}\right)$ metric space, $\mathcal{C}_{b}(X):=\{f: X \rightarrow \mathbb{R} \mid f$ is continuous on X and $\mathrm{f}(\mathrm{x})$ is bounded $\}$.

$$
\|f\|_{\infty}=\sup \{|f(x)| x \in X\}
$$

$\left(\mathcal{C}_{b}(X),\|\cdot\|_{\infty}\right)$ is a normed linear space.
Remark: let $\left\{f_{n}\right\} \subseteq \mathcal{C}_{b}(X), f_{n}\left(X, d_{x}\right) \rightarrow$ (R, usual metric). $f_{n} \rightarrow\| \| \infty f_{0} \Longleftrightarrow f_{n} \rightarrow^{\text {uniform }} f_{0}$.
Theorem. Completeness for $\left(\mathcal{C}_{b}(X),\|\cdot\|_{\infty}\right),\left(\mathcal{C}_{b}(X),\|\cdot\|_{\infty}\right)$ is complete.
Let $\left\{f_{n}\right\}$ be a Cauchy sequence.For each $x_{0} \in X,\left|f_{n}\left(x_{0}\right)-f_{m}\left(x_{0}\right)\right| \leq\left\|f_{n}-f_{m}\right\|_{\infty}$. It follows, that $\left\{f_{n}\left(x_{0}\right)\right\}$ is Cauchy in $\mathbb{R}, \forall x_{0} \in X . f_{0}(x)=\lim _{n \rightarrow \infty} f_{n}(x), \forall x \in X$.

Claim: $f_{n} \rightarrow f_{0}$.
Let $\epsilon>0$, choose N_{0} such that $n, m \geq N_{0} \Longrightarrow\left\|f_{n}-f_{m}\right\|_{\infty}<\frac{\epsilon}{2}$. If $n \geq N_{0}$ and $x \in X$, then $\left|f_{n}(x)-f_{0}(x)\right|=\lim _{m \rightarrow \infty}\left|f_{n}(x)-f_{m}(x)\right| \leq \frac{\epsilon}{2}<\epsilon$. Therefore, $f_{n} \rightarrow f_{0} \Longrightarrow f_{0}$ is continuous.
f_{0} is bounded. $\left\{f_{n}\right\}$ is Cauchy, then $\left\{f_{n}\right\}$ is bounded. $\exists M>0$ such that $\left\|f_{n}\right\|_{\infty}<M, \forall n \in \mathbb{N}$. $\exists n_{0}$ such that $\left|f_{0}(x)-f_{n_{0}}(x)\right|<1, \forall x \in X$. Then $\left|f_{0}(x)\right| \leq f_{0}(x)-f_{n_{0}}(x)\left|+\left|f_{n_{0}}(x)\right|<1+M, \forall x \in X\right.$. Hence $f_{0} \in \mathcal{C}_{b}(X)$ and $f_{n} \rightarrow f_{0}$.

Remark: \mathbb{N}, discrete metric space. $\left(\mathcal{C}_{b}(\mathbb{N}),\|\cdot\|_{\infty}\right)=\left(l_{\infty},\| \|_{\infty}\right)$ and $\left(\mathcal{C}_{b}(X),\|\cdot\|_{\infty}\right) \Longrightarrow\left(l_{\infty}(X),\|\cdot\|_{\infty}\right)$

2.9 Characterizations of Complete Metric Spaces

Note: Theorem fails if we consider open intervals $\{(0,1 / n)\}$.
Note: Theorem fails if we consider unbounded intervals $\{[n, \infty)\}$.
Definition. Let $A \subseteq(X, d) . \operatorname{diam}(A):=\sup \{d(x, y) \mid x, y \in A\}$ is the diameter of A.
Proposition. Let $A \subseteq B \subseteq(X, d)$, Then:

1. $\operatorname{diam}(A) \leq \operatorname{diam}(B)$
2. $\operatorname{diam}(A)=\operatorname{diam}(\bar{A})$.

Proof. The second: \leq from (1). If $\operatorname{diam}(A)=\infty \Longrightarrow \operatorname{diam}(\bar{A})=\infty$. Let $\epsilon>0$, let $x, y \in \bar{A}$. this implies $\exists x_{0}, y_{0} \in A$ such that $d\left(x, x_{0}\right)<\frac{\epsilon}{2}, d\left(y, y_{0}\right)<\frac{\epsilon}{2} . d(x, y) \leq d\left(x_{1}, x_{0}\right)+d\left(x_{0}, y_{0}\right)+d\left(y_{0}, y\right) \leq \operatorname{diam} A+\epsilon$. Hence $\operatorname{diam} A \leq \operatorname{diam} \bar{A} \leq \operatorname{diam} A+\epsilon, \forall \epsilon>0$.

Generalization of Nested Interval Theorem to (X, d) is complete.
Theorem. Cantor's Intersection Theorem: Let (X, d) be a metric space TFAE

1. (X, d) is complete.
2. (X, d) satisfies the following proposition.

- If $\left\{F_{n}\right\}$ is a sequence of non-empty closed sets. such that $F_{n+1} \subseteq F_{n}, \forall n$, and $\lim _{n}\left(d i a m F_{n}\right)=$ $0 \Longrightarrow \bigcap_{n=1}^{\infty} F_{n} \neq \emptyset$.

Proof. 1 to 2: $\left\{F_{n}\right\}$ a sequence such that $F_{n} \neq \emptyset, F_{n}$ is closed, $F_{n+1} \subseteq F_{n}, \lim \left(\operatorname{diam} F_{n}\right)=0$. For each n, choose $x_{n} \in F_{n}$. Let $\epsilon>0, \exists N_{0}$ such that $\operatorname{diam} F_{N_{0}}<\epsilon$. If $n, m \geq N_{0}, \Longrightarrow x_{n}, x_{m} \in F_{N_{0}}$. $d\left(x_{n}, x_{m}\right) \leq \operatorname{diam}\left(F_{N_{0}}\right)<\epsilon$. Hence $\left\{x_{n}\right\}$ is a Cauchy sequence and (X, d) is complete. Then $x_{n} \rightarrow_{n} x_{0} \in X$.

For each $\mathrm{n},\left\{x_{n}, x_{n+1}, \cdots, x_{n+k}, \cdots\right\} \subseteq F_{n}$. Then $x_{n+k} \rightarrow_{k} x_{0}$ and F_{n} closed so $x_{0} \in F_{n}, \forall n$. This implies $x_{0} \in \bigcap_{n=1}^{\infty} F_{n}$.

2 to 1: let $\left\{x_{n}\right\} \subseteq X$. Cauchy. For each $\mathrm{n}, A_{n}:=\left\{x_{n}, x_{n+1}, \cdots\right\}$ Claim: $\operatorname{diam}\left(A_{n}\right) \rightarrow_{n} 0$. Let $F_{n}=\bar{A}_{n}$, $A_{n+1} \subseteq A_{n} \Longrightarrow F_{n+1} \subseteq F_{n} . \operatorname{diam}\left(F_{n}\right) \rightarrow_{n} 0$.

This implies $\exists x_{0} \in \bigcap_{n=1}^{\infty} F_{n}$, let $\epsilon>0$, choose N_{0} such that diam $F_{N_{0}}<\epsilon$. This implies $F_{N_{0}} \subseteq B\left(x_{0}, \epsilon\right)$. If $n \geq N_{0}, d\left(x_{n}, x_{0}\right)<\epsilon$. This implies $x_{n} \rightarrow_{n} x_{0}$.

Definition. Define $(X,\|\cdot\|)$ normed space. $\left\{x_{n}\right\} \subseteq X$. A series with terms $\left\{x_{n}\right\}$ is a formal sum $\sum_{n=1}^{\infty} x_{n}=x_{1}+x_{2}+\cdots$. For each $k \in \mathbb{N}$, define the kth-[artial sum of $\sum_{n=1}^{\infty} x_{n}$ by $s_{k}=\sum_{n=1}^{k} x_{n} \in X$. The series $\sum_{n=1}^{\infty} x_{n}$ converges if the sequence $\left\{s_{k}\right\}$ converges. Otherwise, diverge.

Definition. A normed linear space $(X,\|\cdot\|)$ which is complete under the metric induced is called a Banach space.

Theorem. Generalized Werestrass M-Test: Let $(X,\|\cdot\|)$ normed linear space TFAE

1. $(X,\|\cdot\|)$ is a Banach Space.
2. The space $(X,\|\cdot\|)$ satisfies the following property:

Let $\left\{x_{n}\right\} \subseteq X$. If $\sum_{n=1}^{\infty}\left\|x_{n}\right\|$ converges in $\mathbb{R} \Longrightarrow \sum_{n=1}^{\infty} x_{n}$ converges in $(X,\|\cdot\|)$.
Proof. 1 to 2: Let $T_{k}=\sum_{n=1}^{k}\left\|x_{n}\right\| \Longrightarrow\left\{T_{k}\right\}$ is Cauchy. Given $\epsilon>0, \exists N_{0}$ such that $k>m>N_{0}$

$$
\sum_{n=m+1}^{k}\left\|x_{n}\right\|=\left|T_{k}-T_{m}\right|<\epsilon
$$

Let $s_{k}=\sum_{n=1}^{k} x_{n}$, let $k>m>N_{0}$.

$$
\left\|s_{k}-s_{m}\right\|=\left\|\sum_{n=m+1}^{k} x_{n}\right\| \leq \sum_{n=m+1}^{k}\left\|x_{n}\right\|<\epsilon
$$

Therefore $\left\{s_{k}\right\}$ is Cauchy. This implies $\left\{s_{k}\right\}$ converges and then $\sum_{n=1}^{\infty} x_{n}$ converges.
2 to 1: Assume 2 holds and $\left\{x_{n}\right\}$ is Cauchy. Choose n_{1} if $i, j>n_{1} \Longrightarrow\left\|x_{1}-x_{j}\right\|<\frac{1}{2}$ and choose n_{2}, such that if $i, j>n_{2} \Longrightarrow\left\|x_{i}-x_{j}\right\|<\frac{1}{2^{2}}$.

If we have $n_{k}>n_{k-1}>\cdots>n_{2}>n_{1}$ such that if $i, j>n_{k} \Longrightarrow\left\|x_{i}-x_{j}\right\|<\frac{1}{2^{k}}$. Choose $n_{k+1}>n_{k}$ such that if $i, j>n_{k+1} \Longrightarrow\left\|x_{i}-x_{j}\right\|<\frac{1}{2^{k+1}}$. By induction, $\left\{n_{k}\right\}_{k}$ is an increasing sequence of \mathbb{N} such that $i, j>n_{k} \Longrightarrow\left\|x_{i}-x_{j}\right\|<\frac{1}{2^{k}}$. In particular $\left\|x_{n_{k+1}}-x_{n_{k}}\right\|<\frac{1}{2^{k}} \Longrightarrow g_{k}=x_{n_{k}}-x_{n_{k+1}} \in X, \forall k$.

$$
\sum_{k=1}^{\infty}\left\|g_{k}\right\|=\sum_{k=1}^{\infty}\left\|x_{n_{k+1}}-x_{n_{k}}\right\|<\sum_{k=1}^{\infty} \frac{1}{2^{k}}=1
$$

Hence $\sum_{k=1}^{\infty}\left\|g_{k}\right\|$ converges. Hence $\sum_{k=1}^{\infty} g_{k}$ converges in $(X,\|\cdot\|) \Longleftrightarrow\left\{s_{k}\right\}_{k}$ converges $s_{k}=\sum_{j=1}^{k} g_{j}$. $s_{k}=g_{1}+g_{2}+\cdots+g_{k}=x_{n_{1}}-x_{n_{2}}+x_{n_{2}}-x_{n_{3}}+\cdots+x_{n_{k}}-x_{n_{k+1}}=x_{n_{1}}-x_{n_{k+1}} \cdot x_{n_{k+1}} \rightarrow x_{n_{1}}-\sum_{j=1}^{\infty} g_{j}$. Therefore $\left\{x_{n_{k}}\right\}$ converges and $\left\{x_{n}\right\}$ is Cauchy. Then $\left\{x_{n}\right\}$ converges.

Example:
A continuous, nowhere differentiable function
Let $\phi(x)=\left\{\begin{array}{ll}x & x \in[0,1] \\ 2-x & x \in[1,2]\end{array}\right.$. Extend to \mathbb{R} by $\phi(x)=\phi(x+2)$. Let $f(x)=\sum_{n=0}^{\infty}\left(\frac{3}{4}\right)^{n} \phi\left(4^{n} x\right)$.

1. Claim 1: $f(x)$ is continuous on \mathbb{R}. $\sum_{n=1}^{\infty}\left(\frac{3}{4}\right)^{n} \phi\left(4^{n} x\right) \leq \sum_{n=0}^{\infty}\left(\frac{3}{4}\right)^{n}=L$. Then $f(x)$ is defined. $\sum_{n=1}^{k}\left(\frac{3}{4}\right)^{n} \phi\left(4^{n} x\right) \leq \sum_{n=0}^{\infty}\left(\frac{3}{4}\right)^{n} \rightarrow f(x)$.

2.10 Completion of Metric Space

Proposition. (X, d) complete metric space, let $A \subseteq X$, then $\left(A, d_{A}\right)$ is complete $\Longleftrightarrow A$ is closed in X .
Proof. Converse: assume $A \subseteq X$ is closed, $\left\{x_{n}\right\} \subseteq A$ Cauchy in $\left(A, d_{A}\right)$.Then $\left\{x_{n}\right\}$ Cauchy in $(X, d) \Longrightarrow$ $\exists x_{0}$ such that $x_{n} \rightarrow x_{0}$ and A is closed so $x_{0} \in A$.
\Longrightarrow Suppose A is not closed. This implies $\exists x_{0} \in b d y(A) \backslash A$. This implies $\exists\left\{x_{n}\right\} \subseteq A$ such that $x_{n} \rightarrow_{n} x_{0}$. This means $\left\{x_{n}\right\}$ is Cauchy $\left(A, d_{A}\right)$. This means A is not complete. Hence contradiction.

Definition. $\left(X, d_{x}\right),\left(Y, d_{y}\right)$ metric spaces. A map $\phi: X \rightarrow Y$ is an isometry if $d_{Y}(\phi(x), \phi(y))=$ $d_{X}(x, y), \forall x, y \in X$. Note: If ϕ is an isometry, then ϕ is one-to-one. If ϕ is an isometry and ϕ is onto, we say that $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ are isometric. A completion of $\left(X, d_{X}\right)$ is a pair $\left(\left(Y, d_{Y}\right), \phi\right)$ such that $\left(Y, d_{Y}\right)$ is a complete metric space, $\phi: X \rightarrow Y$ is an isometry and $\phi(X)=Y$.

Theorem. (X, d) metric space. This implies \exists an isometry such that

$$
\phi: X \rightarrow\left(C_{b}(X),\|\cdot\|_{\infty}\right)
$$

Proof. Fix $a \in X$, for $u \in X$, let $f_{u}: X \rightarrow \mathbb{R}$. Then $f_{u}(x)=d(u, x)-d(x, a) . f_{u}$ is continuous such that f_{u} is bounded, $\left|f_{u}(x)\right|=|d(u, x)-d(x, a)| \leq d(u, a)$. This implies $f_{u} \in C_{b}(X)$. Let $\phi: X \rightarrow C_{b}(X)$ such that $u \rightarrow f_{u}$.

$$
\begin{aligned}
d\left(f_{u}, f_{v}\right) & =\left\|f_{u}-f_{v}\right\|_{\infty}=\sup _{x \in X}\left\{\left|f_{u}(x)-f_{v}(x)\right|\right\} \\
& =\sup _{x \in X}\{|d(u, x)-d(x, a)-d(v, x)+d(x, a)|\} \leq d(u, v) \\
\left|f_{u}(v)-f_{v}(v)\right| & =d(u, v) \Longrightarrow\left\|f_{u}-f_{v}\right\|_{\infty}=d(u, v)
\end{aligned}
$$

Corollary. Every metric space has a completion. Let $\phi: X \rightarrow\left(C_{b}(X),\|\cdot\|_{\infty}\right)$ and $Y=\phi(x) .\left(\left(Y, d_{Y}\right), \phi\right)$ is complete.

2.11 Banach Contractive Mapping Theorem

Question: can we find $f \in C[0,1]$ such that $f(x)=e^{x}+\int_{0}^{x} \sin (t) / 2 f(t) d t$?
Strategy: define $\Gamma: C[0,1] \rightarrow C[0,1] . \Gamma(g)(x)=e^{x}+\int_{0}^{x} \sin (t) / 2 g(t) d t \in C([0,1]) . \exists!f \in C[0,1]$ such that Γ fixes f, i.e., $\Gamma(f)=f$.

Definition. $\left(X, d_{X}\right)$ metric space, let $\Gamma: X \rightarrow X$. We call $x_{0} \in X$ a fixed point of Γ if $\Gamma\left(x_{0}\right)=x_{0}$. We say that Γ is Lipchitz if $\exists \alpha \geq 0$ such that $d(\Gamma(x), \Gamma(y)) \leq \alpha d(x, y), \forall x, y \in X$ and Γ is a contraction if $\exists k$ such that $0 \leq k<1$ such that $d(\Gamma(x), \Gamma(y)) \leq k d(x, y), \forall x, y \in X$.

Theorem. Banach Contractive Mapping Theorem (or Banach fixed point Theorem). Let (X, d) be a complete metric space. This implies Γ has a unique fixed point $x_{0} \in X$.

1. If such x_{0} exists, it's unique: suppose $\Gamma\left(x_{0}\right)=x_{0}$ and $\Gamma\left(y_{0}\right)=y_{0}, \Gamma \neq 0$. This implies $d\left(x_{0}, y_{0}\right)=$ $d\left(\Gamma\left(x_{0}\right), \Gamma\left(y_{0}\right)\right) \leq k d\left(x_{0}, y_{0}\right)$ This implies $d\left(x_{0}, y_{0}\right)=0$.
2. Let $x_{1} \in X$ and $x_{2}=\Gamma\left(x_{1}\right), x_{3}=\Gamma\left(x_{2}\right), \cdots, x_{n+1}=\Gamma\left(x_{n}\right)$.

$$
\begin{gathered}
d\left(x_{2}, x_{3}\right)=d\left(\Gamma\left(x_{1}\right), \Gamma\left(x_{2}\right)\right) \leq k d\left(x_{1}, x_{2}\right) \\
d\left(x_{4}, x_{3}\right)=d\left(\Gamma\left(x_{3}\right), \Gamma\left(x_{2}\right)\right) \leq k d\left(x_{3}, x_{2}\right) \leq k^{2} d\left(x_{1}, x_{2}\right)
\end{gathered}
$$

By induction, $d\left(x_{n+1}, x_{n}\right) \leq k^{n-1} d\left(x_{1}, x_{2}\right)$. If $m>n, d\left(x_{m}, x_{n}\right) \leq d\left(x_{m}, x_{m-1}\right)+d\left(x_{m-1}, x_{m-2}\right)+$ $\cdots+d\left(x_{n-2}, x_{n-1}\right)+d\left(x_{n-1}, x_{n}\right) \leq k^{m-2} d\left(x_{2}, x_{1}\right)+k^{m-3} d\left(x_{2}, x_{1}\right)+\cdots+k^{n} d\left(x_{1}, x_{2}\right)+k^{n-1} d\left(x_{2}, x_{3}\right)=$ $\frac{k^{n-1}}{1-k} d\left(x_{2}, x_{1}\right)$.

Remark: If $d(\Gamma(x), \Gamma(y))<d(x, y)$, theorem fails.
Example: Show that there exists a unique $f \in C[0,1]$ such that

$$
f(x)=e^{x}+\int_{0}^{x} \frac{\sin (t)}{2} f(t) d t
$$

Let $\Gamma(g)(x)=e^{x}+\int_{0}^{x} \frac{\sin (t)}{2} g(t) d t .\left(C[0,1],\|\cdot\|_{\infty}\right)$ is complete. Let $f(x), g(x) \in C[0,1]$ and $x \in[0,1]$.

$$
\begin{aligned}
|\Gamma(g)(x)-\Gamma(f)(x)| & =\left|e^{x}+\int_{0}^{x} \frac{\sin (t)}{2} g(t) d t-e^{x}-\int_{0}^{x} \frac{\sin (t)}{2} f(t) d t\right| \\
& =\left|\int_{0}^{x} \frac{\sin (t)}{2}(g(t)-f(t)) d t\right| \\
& \leq \int_{0}^{x}\left|\frac{\sin (t)}{2}\|g(t)-f(t) \mid d t \leq\| g-f\left\|_{\infty} \int_{0}^{1} \frac{1}{2} d t=\frac{1}{2}\right\| g-f \|_{\infty}\right. \\
& \Longrightarrow\|\Gamma(g)-\Gamma(f)\|_{\infty} \leq \frac{1}{2}\|g-f\|_{\infty} \Longrightarrow \Gamma \text { is a contraction } \\
& \Longrightarrow \exists \mid f(x) \in C[0,1]
\end{aligned}
$$

Example: Show that there exists a unique $f_{0}(x) \in C[0,1]$ such that

$$
f_{0}(x)=x+\int_{0}^{x} t^{2} f_{0}(t) d t
$$

Find a power series representation for $f_{0}(x)$. Let $\Gamma(g)(x)=x+\int_{0}^{x} t^{2} g(t) d t$ Note $\left(C[0,1],\|\cdot\|_{\infty}\right)$ is complete. Let $f, g \in C[0,1], x \in[0,1]$.

$$
\begin{aligned}
|\Gamma(g)(x)-\Gamma(f)(x)| & =\left|\int_{0}^{x} t^{2}(g(t)-f(t)) d t\right| \\
& \leq \int_{0}^{1} t^{2}|g(t)-f(t)| d t \leq\|g-f\|_{\infty} \int_{0}^{1} t^{2} d t=\frac{1}{3}\|g-f\|_{\infty}, \forall x \in[0,1] \\
\|\Gamma(g)-\Gamma(f)\|_{\infty} & \leq \frac{1}{3}\|f-g\|_{\infty}, \forall f, g \in C[0,1]
\end{aligned}
$$

Therefore, Γ is a contraction. By BCM theorem, \exists ! $f_{0} \in C[0,1]$ such that $\Gamma\left(f_{0}\right)=f_{0}$.
Let $f_{1}=0, f_{n+1}=\Gamma\left(f_{n}\right)$. Therefore,

$$
\begin{gathered}
f_{2}(x)=x+\int_{0}^{x} t^{2} \theta d t=x \\
f_{3}(x)=x+\int_{0}^{x} t^{2} t d t=x+\frac{x^{4}}{4} \\
\cdots \\
f(x)=\sum_{n=0}^{\infty} \frac{x^{3 n+1}}{1,47(3 n+1)}
\end{gathered}
$$

Theorem. Picard-Lindelof Theorem: Let $f:[0,1] \times \mathbb{R} \rightarrow \mathbb{R}$ be continuous and Lipchitz in y, i.e., $1>\alpha \geq 0$, such that

$$
|f(t, y)-f(t, z)| \leq \alpha|y-z|, \forall y, z \in \mathbb{R}
$$

Let $y_{0} \in \mathbb{R}, \Longrightarrow!y(t) \in C[0, b]$ such that $y^{\prime}(t)=f(t, y(t)) \forall t$ and $y(0)=y_{0}$.

2.12 Baire's Category Theorem

Example:

$$
f(x)= \begin{cases}0 & \text { if } x \in \mathbb{R} \backslash \mathbb{Q} \\ \frac{1}{n} & \text { if } x=\frac{m}{n}, m \in \mathbb{Z}, n \in \mathbb{N}, m \neq 0, \operatorname{gcd}(m, n)=1 \\ 1 & x=0\end{cases}
$$

$f(x)$ is discontinuous at $x=r$, for all $r \in \mathbb{Q} . f(x)$ is continuous at $x=\alpha$, for all $\alpha \in \mathbb{R} \backslash \mathbb{Q}$.
Definition. (X, d) metric space, $A \subseteq X$ is said to be on F_{σ} set if $A=\bigcup_{n=1}^{\infty} F_{n}$ where $\left\{F_{n}\right\}$ is a sequence of closed sets. This implies $A \subseteq X$ is said to be a G_{δ} set if $A=\bigcap_{n=1}^{\infty} U_{n}$ where $\left\{U_{n}\right\} \subseteq X$ is a sequence of open sets.

Remarks:

1. From DeMorgan's Law, A is $F_{\sigma} \Longleftrightarrow A^{c}$ is G_{δ}.
2. $[0,1)$ is both F_{σ} and $G_{\delta} .[0,1)=\bigcup_{n=1}^{\infty}\left[0,1-\frac{1}{n}\right]$ and $[0,1)=\bigcap_{r=1}^{\infty}\left(-\frac{1}{n}, 1\right)$.
3. $F \subseteq X$ closed. This implies F is $G_{\delta} . U \subseteq X$ open. This implies U is F_{σ}.

Definition. $\left(X, d_{X}\right),\left(Y, d_{Y}\right)$ metric spaces and $f: X \rightarrow Y . D(f)=\{x \in X \mid f$ is not continuous $\}$.
$D_{n}(f)=\left\{x \in X \mid \forall \epsilon>0, \exists y, z \in B(x, \delta)\right.$ with $\left.d_{Y}(f(y), f(z)) \geq \frac{1}{n}\right\}$.
Theorem. Let $f:\left(X, d_{X}\right) \rightarrow\left(Y, d_{Y}\right), \forall n \in \mathbb{N}, D_{n}(f)$ is closed in X. Moreover, $D(f)=\bigcup_{r=1}^{\infty} D_{n}(f)$. In particular, $D(f)$ is F_{σ}.

Proof. $\left(D_{n}(f)\right)^{c}$ open and $x \in\left(D_{n}(f)\right)^{c} \Longrightarrow \exists \delta>0, \forall y, z \in B(x, \delta), d_{Y}(f(y), f(z))<\frac{1}{n}$. Let $v \in$ $B(x, \delta), \eta=\delta \cdot d_{X}(x, v)$. Let $y, z \in B(v, \eta)$ If $y \in B(v, \eta) \Longrightarrow d(y, x) \leq d(y, v)+d_{X}(v, x)<\delta-d_{X}(x, v)+$ $d_{X}(v, x)<\delta$. This implies $y, z \in B(x, \delta) \Longrightarrow d_{Y}(f(x), f(y))<\frac{1}{n}$. Hence $B(x, \delta) \subseteq\left(D_{n}(f)\right)^{c} \Longrightarrow$ $\left(D_{n}(f)\right)^{c}$ is open.
Definition. (X, d) metric space. A set $A \subseteq X$ is nowhere dense if $\operatorname{int}(\bar{A})=\emptyset$. A is of first category in X if $A=\bigcup_{n=1}^{\infty} A_{n}$ where each A_{n} is nowhere dense. Otherwise, A is of second category in X . A set C is residual in X if C^{c} is of first category in X .

Recall: A set $A \subseteq X$ is dense if $\bar{A}=X$. Equivalently, A is dense if $\forall W \subseteq X$ open, $W \cap A \neq \emptyset$. Suppose there exists $W \subseteq X$ open such that $W \cap A=\emptyset$. Let $x \in W \Longrightarrow x \in X \backslash A$. But $\exists \delta$ such that $B(x, \delta) \subseteq W \Longrightarrow x \notin \bar{A}$.

Let $x_{0} \in X \backslash A$ (want $\left.\exists\left\{x_{n}\right\} \subseteq A \backslash x_{n} \rightarrow x_{0}\right)$ since $B\left(x, \frac{1}{n}\right) \cap A \neq \emptyset$. This implies $\exists x_{n} \in B\left(x, \frac{1}{n} \cap A \Longrightarrow\right.$ $\left\{x_{n}\right\} \subseteq A, x_{n} \rightarrow x_{0}$.

Theorem. Baire Category Theorem 1, (X, d) complete metric space. Let $\left\{U_{n}\right\}$ be a sequence of open, dense sets. Then $\bigcap_{n=1}^{\infty} U_{n}$ is dense in X.

Proof. Let $W \subseteq X$ be open and non-empty. Then $\exists x_{1} \in X$ and $r_{1}<1, B\left(x_{1}, r_{1}\right) \subseteq B\left[x_{1}, r_{1}\right] \subseteq W \cap U$. And $\exists x_{2} \in X, r_{2}<\frac{1}{2}$ such that $B\left(x_{2}, r_{2}\right) \subseteq B\left[x_{2}, r_{2}\right] \subseteq B\left(x_{1}, r_{1}\right) \cap U_{2}$

Recursively, we find sequences $\left\{x_{n}\right\} \subseteq X$ and $\left\{r_{n}\right\} \subseteq \mathbb{R}$ such that $0<r_{n}<\frac{1}{n}$ and $B\left(x_{n+1}, r_{n+1}\right) \subseteq$ $B\left[x_{n+1}, r_{n+1}\right] \subseteq B\left(x_{n}, r_{n}\right) \cap U_{n+1}, \forall n \geq 1$ but $r_{n} \rightarrow 0, B\left[x_{n+1}, r_{n+1}\right] \subseteq B\left[x_{n}, r_{n}\right]$, X is complete. By Cantor intersection theorem, there exists $x_{0} \in \bigcap_{n=1}^{\infty} B\left[x_{n}, r_{n}\right] \subseteq W$ and $B\left[x_{n}, r_{n}\right] \subseteq U_{n}, \forall n$. This means $x_{0} \in W \cap\left(\bigcap_{n=1}^{\infty} U_{n}\right)$. This implies $\bigcap_{n=1}^{\infty} U_{n}$ is dense.

Remarks:

1. The Cantor set is nowhere dense in \mathbb{R}, and has cardinality c.
2. A close set F is nowhere dense if and only if $U=F^{c}$ is dense.

Corollary. Baire Category Theorem II: every complete metric space (X, d) is of second category in itself. Assume X is of the first category, i.e. $\exists\left\{A_{n}\right\}$ sequence of nowhere dense sets such that $X=\bigcup_{n=1}^{\infty} A_{n}=$ $\bigcup_{n=1}^{\infty} \bar{A}_{n}$. Let $U_{n}=\left(\bar{A}_{n}\right)^{c} \Longrightarrow U_{n}$ is open and dense.

$$
\text { But } \bigcap_{n=1}^{\infty} U_{n}=\bigcap_{n=1}^{\infty}\left(\bar{A}_{n}\right)^{c}=\left(\bigcup_{n=1}^{\infty} \bar{A}_{n}\right)^{c}=X^{c}=\emptyset \text {. Hence contradiction. }
$$

Corollary. \mathbb{Q} is not a G_{δ} subset of \mathbb{R}. Suppose $\mathbb{Q}=\bigcap_{n=1}^{\infty} U_{n}$, where each U_{n} is open. Let $F_{n}=\left(U_{n}\right)^{c}, \forall n$. $\mathbb{Q} \subseteq U_{n}, \forall n$ and $\bar{Q}=\mathbb{R}$ then $\bar{U}_{n}=\mathbb{R}$. Therefore, F_{n} is nowhere dense, for all n. Consider $\mathbb{Q}=\left\{r_{1}, r_{2}, \cdots\right\}$ Let $S_{n}=F_{n} \cup\left\{r_{n}\right\}$ closed and nowhere dense. Then $\mathbb{R}=\bigcup_{n=1}^{\infty} S_{n}$.

Then $\mathbb{R}=\bigcup_{n=1}^{\infty} S_{n}$, if $x \in \mathbb{Q} \Longrightarrow x=r_{n}$ for some n . This implies $x \in S_{n}$. If $x \in \mathbb{R} \backslash \mathbb{Q} \Longrightarrow x \in$ $\bigcup_{n=1}^{\infty} U_{n}^{c}$. Hence $x \in F_{n}$ for some n, $x \in S_{n}$.

Corollary. There is no function $f: \mathbb{R} \rightarrow \mathbb{R}$ for which $D(f)=\mathbb{R} \backslash \mathbb{Q}$.
Definition. $\left(X, d_{x}\right),\left(Y, d_{y}\right)$ metric space, $\left\{f_{n}: X \rightarrow Y\right\}$ sequence of function $f_{n} \rightarrow f_{0}$ pointwise on X . We say that f_{n} converges uniformly at $x_{0} \in X$ if $\forall \epsilon>0, \exists \delta>0$ and $N_{0} \in \mathbb{N}$ such that if $n, m \geq N_{0}$ and $d\left(x, x_{0}\right)<\delta \Longrightarrow d_{Y}\left(f_{n}(x), f_{m}(x)\right)<\epsilon$.

Theorem. $\left(X, d_{x}\right),\left(Y, d_{y}\right)$ metric space, $\left\{f_{n}: X \rightarrow Y\right\}$ such that $f_{n} \rightarrow f_{0}$ point wise on X. Assume that f_{n} convergence uniformly at x_{0} and $\left\{f_{n}\right\}$ is a sequence of continuous function at x_{0} This implies f_{0} is continuous at x_{0}.

Theorem. Let $f_{n}:(a, b) \rightarrow \mathbb{R}$ be a sequence of continuous functions that converges point wise to f_{0}. This implies $\exists x_{0} \in(a, b)$ such that f_{n} converges uniformly at x_{0}.

Claim: There exists a closed interval $\left[\alpha_{1}, \beta_{1}\right] \subset(a, b)$ with $\alpha_{1}<\beta_{1}$ and $N_{1} \in \mathbb{N}$ such that if $n, m \geq N$, and $x \in\left[\alpha_{1}, \beta_{1}\right]$. Then $\left|f_{n}(x)-f_{m}(x)\right| \leq 1$.

Inductively, we can construct a sequence $\left\{\left[\alpha_{k}, \beta_{k}\right]\right\}$ with $(a, b) \supset\left[\alpha_{1}, \beta_{1}\right] \supset\left(\alpha_{1}, \beta_{1}\right) \supset\left[\alpha_{2}, \beta_{2}\right] \supset$ $\left(\alpha_{2}, \beta_{2}\right) \supset \cdots$ and a sequence $N_{1}<N_{2}<N_{3}<\cdots$ such that $n, m \geq N_{k}$ and $x \in\left[\alpha_{k}, \beta_{k}\right]$. This implies $\left|f_{n}(x)-f_{m}(x)\right| \leq \frac{1}{k}$. Let $x_{0} \in \bigcap_{k=1}^{\infty}\left[\alpha_{k}, \beta_{k}\right]$. Given $\epsilon>0$, if $\frac{1}{k}<\epsilon$, and $n, m \geq N_{k}$ and $x \in\left(\alpha_{k}, \beta_{k}\right)$, then $\left|f_{n}(x)-f_{m}(x)\right| \leq \frac{1}{k}<\epsilon$. Pick $\delta>0$ such that $\left(x_{0}-\delta, x_{0}+\delta\right) \subset\left(\alpha_{k}, \beta_{k}\right)$. For δ as above, and N_{k}, the definition of uniform convergence at x_{0} is verified.

Corollary. $\left\{f_{n}\right\} \subset C[a, b]$ such that $f_{n} \rightarrow f_{0}$ point wise on $[a, b]$. This implies \exists a residual set $A \subset[a, b]$ such that f_{0} is continuous at each $x \in A$. A^{c} is first category, i.e. $A^{c}=\bigcup_{n=1}^{\infty} A_{n}, A_{n}$ nowhere dense.
$A=\left\{x \in[a, b] \mid f_{0}\right.$ is continuous at $\left.x\right\}$.
Claim: A is dense in $[a, b]$, i.e. given any $(c, d) \subset[a, b],(c, d) \cap A \neq \emptyset$. Let $(c, d) \subset[a, b]$, then $\exists x_{0} \in(c, d)$ such that f_{n} converges uniformly at x_{0}. But each f_{n} is continuous. Then f_{0} is continuous at x_{0}. This implies $x_{0} \in A \bigcap(c, d)$. and $A^{c}=D\left(f_{0}\right)$ is $F_{\sigma} \Longrightarrow \mathrm{A}$ is G_{δ}. This implies $A=\bigcap_{n=1}^{\infty} U_{n}, U_{n}$ open dense $\Longleftrightarrow U_{n}^{c}$ closed, nowhere dense. i.e. $A^{c}=\bigcup_{n=1}^{\infty} U_{n}^{c}$, i.e., A is residual.

Corollary. Suppose $f(x)$ is differentiable on \mathbb{R}. Then $f^{\prime}(x)$ is continuous for every point in a dense G_{δ}-subset of \mathbb{R}.

$$
f_{n}(x)=\frac{f(x+1 / n)-f(x)}{1 / n} \text { Then } f(x) \text { pointwise. Apply Corollary. }
$$

2.13 Compactness

Definition. An open cover for $A \subseteq X$ is a collection $\left\{U_{\alpha}\right\}_{\alpha \in I}$ of open sets for which $A \subseteq \bigcup_{\alpha \in i} U_{\alpha}$. Given a cover $\left\{U_{\alpha}\right\}_{\alpha \in I}$ for $A \subseteq X$, a sub cover is a sub collection $\left\{U_{\alpha}\right\}_{\alpha \in I}$, for $J \subseteq I$ such that $A \subseteq \bigcup_{\alpha \in I} U_{\alpha}$. A sub cover $\left\{U_{\alpha}\right\}_{\alpha \in I}$ is finite if I is finite. We say that $A \subseteq X$ i compact if every open cover of A has a finite sub cover. (X, d) is compact if X is compact. We say that $A \subseteq X$ is sequentially compact if every sequence $\left\{x_{n}\right\} \subseteq A$ has a converging subsequence converging to a point in $\mathrm{A} .(X, d)$ is sequentially compact if so is X. We say that X has the Bolzano-Weierstrass property (BWP) if every infinite subset in X has a limit point.

Theorem. (X, d) metric space, TFAE

1. X is sequentially compact
2. X has the BWP

Proof. 1 to 2: X sequentially compact and $S \subseteq X$ infinite. S has a countable infinite subset $\left\{x_{1}, x_{2}, \cdots\right\}$. This implies $\exists\left\{x_{n_{k}}\right\}$ subsequence of $\left\{x_{n}\right\}$ such that $x_{n_{k}} \rightarrow x_{0} . \forall \epsilon>0,\left(B\left(x_{0}, \epsilon\right) \cap S\right) \backslash\left\{x_{0}\right\}$ has infinitely many points. Hence $x_{0} \in \operatorname{LIm}(S)$.

2 to 1: Assume X has the BWP, and $\left\{x_{n}\right\} \subseteq X$. If $\exists x_{0} \in X$ appearing infinitely many times in $\left\{x_{n}\right\}$, then $\left\{x_{n}\right\}$ has a constant, converging subsequence. If such an x_{0} doesn't exists, viewed as a subset of X , $\left\{x_{n}\right\}$ is infinite. We can assume the terms of $\left\{x_{n}\right\}$ are distinct. Thus $\exists x_{0} \in \operatorname{Lim}\left(\left\{x_{n}\right\}\right)$. This implies $\exists n_{1} \in \mathbb{N}$ such that $d\left(x_{0}, x_{n_{1}}\right)<1$. Find $n_{2}>n_{1}$ such that $d\left(x_{0}, x_{n_{2}}\right)<\frac{1}{2}$ If we have $n_{1}<n_{2}<\cdots<n_{k}$ such that $d\left(x_{0}, x_{k}\right)<\frac{1}{k}$. Choose $n_{k+1}>n_{k}$ such that $d\left(x_{0}, x_{n_{k+1}}<\frac{1}{k+1}\right.$ This implies $\left\{x_{n_{k}}\right\} \subseteq\left\{x_{n}\right\}$ such that $x_{n_{k}} \rightarrow x_{0}$

Proposition. (X, d) metric space, $A \subseteq X$.

1. A compact $\Longrightarrow \mathrm{A}$ is closed and bounded.
2. If A is closed and X is compact, then so is A .
3. If A is sequentially compact. Then A is closed and bounded.
4. A is closed, X is sequentially compact. This implies A is sequentially compact.
5. If X is sequentially compact, then X is complete.

Proof. 1. Bounded pick $x_{0} \in A$. This implies $\left\{B\left(x_{0}, n\right)\right\}$ is an open cover of A. A compact \Longrightarrow There exists a finite sub cover $\left\{B\left(x_{0}, n_{k}\right)\right\}$ let $M=\max \left\{n_{j}: j=1, \cdots, k\right\} \Rightarrow A \subset B\left(x_{0}, M\right)$
Closed: Suppose A is not closed $\Longrightarrow \exists x_{0} \in \operatorname{Lim}(A) \backslash A, U_{n}=\left(B\left[x_{0}, \frac{1}{n}\right]^{c}\right.$. $\left\{U_{n}\right\}$ open cover of A, with no finite sub cover but A compact. Then contradiction.
2. Let $\left\{U_{\alpha}\right\}_{\alpha \in I}$ be an open cover of A. Then $\left\{U_{\alpha}\right\}_{\alpha \in I} \cup\left\{A^{c}\right\}$ is an open cover of X. This implies $\exists \alpha_{1}, \cdots, \alpha_{n}$ such that $\left\{U_{\alpha_{1}}, \cdots, U_{\alpha_{n}}\right\} \cup\left\{A^{c}\right\}$ covers X. Thus $\left\{U_{\alpha_{n}}\right\}$ covers A. A is compact.
3. Bounded: Assume A is not bounded. Choose $x_{1} \in A \Longrightarrow \exists x_{2} \in A, d\left(x_{1}, x_{2}\right)>1$. Therefore, $\exists x_{3} \in A$ such that $d\left(x_{i}, x_{3}\right)>1, i=1,2$. Recursively, we define $\left\{x_{n}\right\}$ such that $d\left(x_{n}, x_{m}\right)>1$, if $n \neq m$. Therefore, $\left\{x_{n}\right\}$ cannot have a convergent subsequence. Contradiction.
Closed: Assume A is not closed. This means $\exists\left\{x_{n}\right\} \subseteq A$ such that $x_{n} \rightarrow x_{0}$ but $x_{0} \notin A . \Longrightarrow\left\{x_{n}\right\}$ has no convergent subsequence in A. Contradiction.

Examples:

- $A \subseteq \mathbb{R}, \mathrm{~A}$ is sequentially compact $\Longleftrightarrow \mathrm{A}$ is closed and bounded.
- $A \subseteq \mathbb{R}^{n}$, works too.
- $A \subseteq \mathbb{R}^{n}$, A compact $\Longleftrightarrow \mathrm{A}$ is closed and bounded.

Theorem. Heine-Borel Theorem: $A \subseteq \mathbb{R}^{n}$ is compact if and only if A is closed and bounded.
Notation:
A closed cell in \mathbb{R}^{n} is a set $\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right] \times \cdots \times\left[a_{n}, b_{n}\right]$.
Proof. 1. A is closed and bounded. Assume A is not compact. Let $F_{1}=A, J_{1}$ be a closed cell such that $A \subseteq J_{1}$. Bisect each of the intervals $\left[a_{i}, b_{i}\right]$ of J_{1}. This implies we obtain 2^{n} closed cells $\left\{J_{11}, J_{12}, \cdots, J_{12^{n}}\right\}$. Exists some open cover $\left\{U_{\alpha}\right\}_{\alpha \in I}$ such that it does not have a finite sub cover. One of the subcells, call it J_{2}, must be such that $F_{2}=J_{2} \cap A$ does not have a finite sub cover of $\left\{U_{\alpha}\right\}_{\alpha}$. Recursively, we construct a sequence of closed cells $\left\{J_{n}\right\}$ and closed sets $F_{n}=J_{n} \cap A$ such that
(a) $J_{n+1} \subseteq J_{n}, \forall n \Longrightarrow F_{n+1} \subseteq F_{n}, \forall n$.
(b) Claim $\left(J_{n+1}\right)=\frac{1}{2} \operatorname{diam}\left(J_{n}\right) \Longrightarrow \operatorname{diam}\left(F_{n+1}\right) \leq \frac{\operatorname{diam}\left(F_{n}\right)}{2}$.
(c) $F_{n}=J_{n} \bigcap A$ cannot be covered by finitely many U_{α} 's.
2. By Cantor intersection theorem,

$$
\bigcap_{n=1}^{\infty} F_{n}=\left\{x_{0}\right\} \Longrightarrow x_{0} \in A \Longrightarrow \exists \alpha_{0}\left|x_{0} \in U_{\alpha_{0}} \Longrightarrow \exists \epsilon>0\right| B\left(x_{0}, \epsilon\right) \subseteq U_{\alpha_{0}}
$$

Pick n_{0} such that $\operatorname{diam} F_{n_{0}}<\epsilon$. Then $F_{n_{0}} \subseteq B\left(x_{0}, \epsilon\right) \subseteq U_{\alpha_{0}} .\left\{U_{\alpha}\right\}$ covers $F_{n_{0}}$. Contradiction.

Questions:

$A \subseteq X$ is compact $\Longleftrightarrow \mathrm{A}$ is closed and bounded?
No, X is infinite set, d is discrete metric space. X is bounded but not compact. But if it is compact, then it is also sequential compact.

Definition. X set, a collection $\left\{A_{\alpha}\right\}_{\alpha \in I}, A_{\alpha} \subseteq X, \forall \alpha$ has finite intersection.
Property: (FIP) if whenever $\left\{A_{\alpha}, \cdots, A_{\alpha_{n}}\right\}$ is any finite sub collection, we have

$$
\bigcap_{i=1}^{n} A_{\alpha_{i}} \neq \emptyset
$$

Theorem. (X, d) metric space, TFAE

1. X is compact
2. If $\left\{F_{\alpha}\right\}_{\alpha \in I}$ is a collection of closed sets of X with the FIP then $\bigcap_{\alpha \in I} F_{\alpha} \neq \emptyset$.

Corollary. (X, d) compact metric space, $\left\{F_{n}\right\}$ of non-empty, closed sets such that $F_{n+1} \subseteq F_{n}, \forall n \in \mathbb{N} \Longrightarrow$ $\bigcap_{n \in \mathbb{N}} F_{n} \neq \emptyset$.
Corollary. (X, d) compact metric space. Then X has BWP (X is sequentially compact).
Proof. Assume X is compact. Let S be an infinite set. Then exists a sequence $\left\{x_{n}\right\} \subseteq S$ consisting of distinct points. Let $F_{n}=\left\{x_{n}, x_{n+1}, \cdots\right\} \Longrightarrow\left\{F_{n}\right\}$ has the FIP. Then $\bigcap_{n=1}^{\infty} F_{n} \neq \emptyset \Longrightarrow \exists x_{0} \in \bigcap_{n=1}^{\infty} F_{n}$. For all $\epsilon>0, B\left(x_{0}, \epsilon\right) \bigcap\left\{x_{n}, x_{n+1}, \cdots\right\} \neq \emptyset, \forall n \in \mathbb{N}$ This implies $B\left(x_{0}, \epsilon\right) \bigcap S \backslash\left\{x_{0}\right\}=\neq \emptyset \Longrightarrow x_{0} \in \operatorname{Lim}(S)$.

Theorem. $\left(X, d_{x}\right),\left(Y, d_{y}\right)$ metric space. Let $f:\left(X, d_{x}\right) \rightarrow\left(Y, d_{y}\right)$ contains. If $\left(X, d_{x}\right)$ sequentially compact. this implies $f(X)$ is sequentially compact. Let $\left\{y_{n}\right\} \subseteq f(X) \Longrightarrow \forall n, \exists x_{n}$ such that $y_{n}=f\left(x_{n}\right)$. This implies $\left\{x_{n}\right\} \subseteq X \Longrightarrow \exists\left\{x_{n_{k}}\right\}$ such that $x_{n_{k}} \rightarrow x_{0} \in X$. Hence $f\left(x_{n_{k}}\right) \rightarrow f\left(x_{0}\right) \in f(X)$.

Corollary. Extreme Value Theorem:
Let $f:\left(X, d_{x}\right) \Longrightarrow \mathbb{R}$ be continuous. If $\left(X, d_{x}\right)$ is sequentially compact, then there exists $c, d \in X$ such that $f(c) \leq f(x) \leq f(d), \forall x \in X$.

Definition. Let $\epsilon>0$. A collection $\left\{x_{\alpha}\right\}_{\alpha \in I} \subseteq X$ is an ϵ-net for X if $X=\bigcup_{\alpha \in I} B\left(x_{\alpha}, \epsilon\right)$. We say that (X, d) is totally bounded if for each $\epsilon>0, X$ has a finite ϵ-net. Given $A \subseteq X, \mathrm{~A}$ is totally bounded if it is totally bounded n the induced metric. $\forall \epsilon>0, \exists\left\{x_{1}, \cdots, x_{n}\right\} \subseteq A$ such that $\bigcup_{i=1}^{\infty} B(x, \epsilon) \supseteq A$.

Proposition. If X is sequentially compact, then X is totally bounded. Suppose X is not totally bounded: Then $\exists \epsilon_{0}>0$, with no finite ϵ_{0}-net. Then \exists sequence $\left\{x_{n}\right\} \subseteq X$ such that $x_{i} \notin B\left(x_{j}, \epsilon_{0}\right)$ if $i \neq j$. Then $\left\{x_{n}\right\}$ has no convergent subsequence. Contradiction.

Remarks:

1. (\mathbb{N}, d) discrete metric (\mathbb{N}, d) is bounded but it is not totally bounded. Then there does not exist finite 1/2-net.
2. If $A \subseteq(X, d)$ is totally bounded. Then so is \bar{A}. If $\left\{x_{1}, \cdots, x_{n}\right\}$ is an ϵ-net for A. Then $\left\{x_{1}, \cdots, x_{n}\right\}$ is an ϵ-net for \bar{A}.

Theorem. Lebesgue (X, d) compact metric space, $\left\{U_{\alpha}\right\}_{\alpha \in I}$ open cover of X . Then $\exists \epsilon>0, \forall x \in X$ and $0<\delta<\epsilon$. there exists $\alpha_{0} \in I$ with $\left.B(x, \delta) \subseteq U_{\alpha_{0}}\right\}$.

Proof. If $X=U_{\alpha}$ for some α, then any $\epsilon>0$ would work. Assume $X \neq U_{\alpha}, \forall \alpha$. For each $x \in X$, let $\phi(x)=\sup \left\{r \in \mathbb{R} \mid B(x, r) \subseteq U_{\alpha_{0}}\right.$, for some $\left.\alpha_{0} \in I\right\}$. Then $\phi(x)=0$. Also, $\phi(x)<\infty$: if $\phi(x)=$ $\left.\infty, \exists\left\{r_{n}\right\} \subseteq \mathbb{R},\left\{\alpha_{n}\right\} \subseteq I \mid B\left(x_{1}, r_{n}\right) \subseteq U_{\alpha_{n}}, r_{n} \rightarrow \infty\right\}$. But X sequentially compact. This implies X is bounded and $\exists M>0, B(x, M)=X$. Pick $r_{n}>M \Longrightarrow B\left(x, r_{n}\right)=X \subseteq U_{\alpha_{n}}$ but $X \neq U_{\alpha_{n}}$. Contradiction.

If ϕ is continuous: if $x, y \in X, \phi(x) \leq \phi(y)+d(x, y)$:
case $1 \exists \alpha_{0}$ and $r>0$ such that $B(x, r) \subseteq U_{\alpha_{0}}$ and $y \in B(x, r) . B(y, r-d(x, y)) \subseteq U_{\alpha_{0}} \Longrightarrow \phi(y) \geq$ $r-d(x, y) \Longrightarrow \phi(x) \leq d(x, y)+\phi(y)$.
case $2 \forall r$ and α such that $B(x, r) \subset U_{\alpha}, y \notin B(x, r) . r \leq d(x, y), \phi(x) \leq d(x, y)$ and $\phi(x) \leq d(x, y)+\phi(y)$ and $|\phi(x)-\phi(y)| \leq d(x, y) \Longrightarrow \phi$ is continuous. Therefore, by extreme value theorem, $\epsilon>0$, such that $\phi(x) \geq \epsilon, \forall x \in X$.

Theorem. Borel-Lebesgue (X, d) metric space, TFAE

1. X is compact
2. X has the BWP
3. X is sequentially compact.

Proof. 3 to 1: Let $\left\{U_{\alpha}\right\}_{\alpha \in I}$ be an open cover for X. This implies $\left\{U_{\alpha}\right\}$ has a Lebesgue number $\epsilon>0$. Since X is totally bounded, there exists finite subset $\left\{x_{1}, x_{2}, \cdots, x_{n}\right\} \subseteq X$ such that $\bigcup_{i=1}^{n} B\left(x_{i}, \delta\right)=X$ where $0<\delta<\epsilon$. But for each $i=1,2, \cdots, n$, we can find $\alpha_{i} \in I$ such that $B\left(x_{i}, \delta\right) \subseteq U_{\alpha_{i}}$ This implies $\left\{U_{\alpha_{i}}\right\}_{i=1, \cdots, n}$ is a finite sub cover. This implies X is compact.

Theorem. Heine Borel for metric space: (X, d) metric space TFAE

1. X is compact
2. X is complete and totally bounded.

Proof. 2 to 1 (X is sequentially compact). Let $\left\{x_{n}\right\}$ be a sequence in X . Since X is totally bounded, $\exists y_{1}, \cdots, y_{n} \in X$ such that $\bigcup_{i=1}^{n} B\left(y_{1}, 1\right)=X$. Then there exists y_{i} such that $B\left(y_{1}, 1\right)=S_{1}$ contains infinitely many terms of $\left\{x_{n}\right\}$. Since X is totally bounded, $\exists y_{1}^{2}, \cdots, y_{n_{2}}^{2}$ such that $\bigcup_{i=1}^{n} B\left(y_{1}^{2}, \frac{1}{2}\right)=X$ Therefore $\exists y_{i}^{2} \mid B\left(y_{i}^{2}, 1 / 2\right)=S_{2}$ contains infinitely many terms of $\left\{x_{n}\right\}$ in S_{1}. Then, we construct sequence of open balls $\left\{S_{k}=B\left(y^{k}, 1 / k\right)\right\}$ and each S_{k+1} contains infinitely many terms of $\left\{x_{n}\right\}$ also in $S_{1} \bigcap \cdots \bigcap S_{k}$. In particular, we can choose $n_{1}<n_{2}<\cdots$ such that $x_{n_{k}} \in S_{1} \bigcap \cdots \bigcap S_{k}$. But $\operatorname{diam}\left(S_{k}\right) \rightarrow 0$, this implies $\left\{x_{n+k}\right\}$ is cauchy and X is complete. thus $\left\{x_{n_{k}}\right\}$ is convergent.

2.14 Compactness and Continuity

Theorem. Let $f:\left(X, d_{x}\right) \rightarrow\left(Y, d_{y}\right)$ be continuous. If (X, d_{x}) is compact. $f(x)$ is compact.
Corollary. Extreme Value Theorem: Let $f:\left(X, d_{x}\right) \rightarrow \mathbb{R}$ be continuous. If (X, d_{x}) is compact. There exists $c, d \in X$ such that $f(x) \leq f(x) \leq f(d), \forall x \in X$.

Theorem. Sequential characterization of uniform continuity: suppose $f:\left(X, d_{x}\right) \rightarrow\left(Y, d_{y}\right)$ function TFAE

1. f is uniformly continuous on X
2. If $\left\{x_{n}\right\},\left\{z_{n}\right\}$ in X with $\lim _{n} d\left(x_{n}, z_{n}\right)=0 \Longrightarrow \lim _{n} d_{Y}\left(f\left(x_{n}\right), f\left(x_{n}\right)\right)=0$.

Theorem. $f:\left(X, d_{X}\right) \rightarrow\left(Y, d_{y}\right)$ continuous if $\left(X, d_{x}\right)$ is compact. This implies $f(x)$ is uniformly continuous. Suppose $f(x)$ is not uniformly continuous. This implies $\exists \epsilon_{0}>0$ and $\left\{x_{n}\right\},\left\{y_{n}\right\} \subseteq X$ such that $\lim _{n} d\left(x_{n}, z_{n}\right)=0$ but $d_{Y}\left(f\left(x_{n}\right), f\left(z_{n}\right)\right) \geq \epsilon_{0}, \forall n \geq n_{0}$. X compact $\Longrightarrow \exists\left\{x_{n_{k}}\right\}$ subsequence of $\left\{x_{n}\right\}$ such that it converges to x_{0}. $\exists\left\{z_{n_{k}}\right\}$ subsequence of $\left\{z_{n}\right\}$ such that it converges to x_{0}.
f is continuous, then $f\left(x_{n_{k}}\right) \rightarrow f\left(x_{0}\right)$ and $f\left(z_{n_{k}}\right) \rightarrow f\left(x_{0}\right)$. contradiction
Theorem. $\left(X, d_{x}\right),\left(Y, d_{y}\right)$ metric space, X is compact. Then let $\Phi: X \rightarrow Y$ be one-to-one, onto and continuous. then Φ^{-1} is also continuous.

If Φ is continuous $\Longleftrightarrow(U \subseteq X$ open $\Longrightarrow \Phi(U) \subseteq Y$ is open $) . U \subseteq X$ is open, then $U^{c}=F \subseteq X$ closed and X is compact. Then F is compact. Therefore, $\Phi(F) \subseteq Y$ compact $\Longrightarrow \Phi(F) \subseteq Y$ is closed there fore $\Phi\left(U^{C}\right)=(\Phi(U))^{C}$

3 The Space $\left(C(X),\|\cdot\|_{\infty}\right)$

We assume (X, d) is a compact metric space. Then every continuous function is bounded $(C(X), \|$. $\left.\|_{\infty}\right)=\left(C_{b}(X),\|\cdot\|_{\infty}\right)$. In $C(X)$, unless otherwise stated, the norm is $\|\cdot\|_{\infty}$

3.1 Weierstrass Approximation Theorem

Problem: Given $h \in C([a, b])$ and $\epsilon>0$. Exists $p(x)$ polynomial on $[a, b]$ such that $\|h-p\|_{\infty}<\epsilon$? Remarks

1. We can assume that $[a, b]=[0,1]$. Assume $f, g \in C([0,1])$ and $\|f-g\|_{\infty}<\epsilon$.

Define $\Phi:[a, b] \rightarrow[0,1]$ and $\Phi(x)=\frac{x-a}{b-a}, \Phi$ is one-to-one, onto. Then $\Phi^{\prime}[0,1] \rightarrow[a, b]$ then $\Phi^{-1}(x)=$ $(b-a) x+a$. Then $f \circ \Phi, g \circ \Phi \in C([a, b])$. In fact, $\|f \circ \Phi-g \circ \Phi\|_{\infty}=\|f-g\|_{\infty}$. Then the map $\Gamma\left(C[0,1],\| \|_{\infty}\right) \Longrightarrow\left(C[a, b],\| \|_{\infty}\right)$. Then $\Gamma(f)=f \circ \Phi$ is an isometric isomorphism with inverse $\Gamma^{-1}(h)=h \circ \Phi^{-1}, \forall h \in C[a, b]$. Also, $\Gamma(p(x))$ is a polynomial if and only if $p(x)$ is a polynomial.
2. We can assume $f(0)=0, f(1)=0$. If $f \in C[0,1]$, let $g(x)=f(x)-[(f(1)-f(0)) x+f(0)]$. Then $g(x) \in C[0,1], g(0)=0=g(1)$. if we approximate $g(x)$ uniformly with error at most ϵ by a polynomial, the n we can do so for $f(x) . \epsilon>|g(x)-p(x)|=|f(x)-\{[(f(1)-f(0)) x-f(0)]+p(x)\}|=$ $\left|f(x)-p_{1}(x)\right|$

Lemma. If $n \in \mathbb{N},\left(1-x^{2}\right)^{n} \geq 1-n x^{2}, \forall x \in[0,1]$. Let $f(x)=\left(1-x^{2}\right)^{n}-\left(1-n x^{2}\right) . \quad f(0)=0$, $f^{\prime}(x)=\cdots>0$ on $(0,1)$. Then the inequality follows.

Theorem. Weierstrass Approximation Theorem: let $f \in C[a, b]$. Then there exists a sequence $\left\{p_{n}(x)\right\}$ of polynomials such that

$$
p_{n}(x) \rightarrow f(x) \text { uniformly on }[a, b]
$$

Proof. Assume that $[a, b]=[0,1]$ and $f(0)=0=f(1)$. We can extend $f(x)$ to a uniformly continuous function on \mathbb{R} by setting $f(x)=0$ if x in $(-\infty, 0) \cup(1, \infty)$. Note that $\int_{-1}^{1}\left(1-x^{2}\right)^{n} d x \neq 0, \forall n$. Pick c_{n} such that $\int_{-1}^{1} c_{n}\left(1-x^{2}\right)^{n} d x=1$. Let $Q_{n}(x)=c_{n}\left(1-x^{2}\right)^{n}$. Since $\left(1-x^{2}\right)^{n} \geq 1-n x^{2}, \forall x \in[0,1]$.

$$
\int_{-1}^{1}\left(1-x^{2}\right)^{n} d x=2 \int_{0}^{1}\left(1-x^{2}\right)^{n} d x \geq 2 \int_{0}^{1 / \sqrt{n}} 1-n x^{2} d x=\frac{4}{3 \sqrt{n}} \geq 1 / \sqrt{n}
$$

Then $c_{n}>\sqrt{n}$. If $0<\delta<1 \Longrightarrow \forall x \in[-1, \delta] \cup[\delta, 1]$,

$$
c_{n}\left(1-x^{2}\right)^{n} \geq \sqrt{n}\left(1-\delta^{2}\right)^{n}
$$

Let $p_{n}(x)=\int_{-1}^{1} f(x+t) Q_{n}(t) d t=\int_{-x}^{1-x} f(x+t) Q_{n}(t) d t\left\{\begin{array}{l}t<-x \\ t+x<0 \\ f(t+x)=0\end{array} \quad=\int_{0}^{1} f(u) Q_{n}(u-x) d u\left\{\begin{array}{l}u=x+t \\ d u=d t\end{array}\right.\right.$

$$
\begin{gathered}
p_{n}(x)=\int_{0}^{1} f(u) Q_{n}(u-x) d u \\
\frac{d^{2 n+1} p(x)}{d x^{2 n+1}}=\text { leibnizs rule } \int_{0}^{1} f(u) \frac{d^{2 n+1} Q_{n}(u-x)}{d x^{2 n+1}}=0
\end{gathered}
$$

$p_{n}(x)$ is a polynomial of degree $2 n+14$ or less. Let $M=\|f\|_{\infty} \neq 0$. Let $\epsilon>0$, choose $0<\delta<1$ so that if $|x-y|<\delta \Longrightarrow|f(x)-f(y)|<\frac{\epsilon}{2}$. Since $\int_{-1}^{1} Q_{n}(t) d t=1$, this implies $f(x)=\int_{-1}^{1} f(x) Q_{n}(t) d t$. If
$x \in[0,1]$,

$$
\begin{aligned}
\left|p_{n}(x)-f(x)\right|= & \left|\int_{-1}^{1} f(x+t) Q_{n}(t) d t-\int_{-1}^{1} f(x) Q_{n}(t) d t\right| \\
= & \left.\left|\int_{-1}^{1}(f(x+t)-f(x)) Q_{n}(t) d t\right| \leq \int_{-1}^{1} \mid f(x+t)-f(x)\right) \mid Q_{n}(t) d t \\
= & \int_{-1}^{-\delta}|f(x+t)-f(x)| Q_{n}(t) d t+\int_{-\delta}^{\delta}|f(x+t)-f(x)| Q_{n}(t) d t+\int_{\delta}^{1}|f(x+t)-f(x)| Q_{n}(t) d t \\
\leq & 2 \sqrt{n}\left(1-\delta^{2}\right)^{n+1}\|f\|_{\infty}+\frac{\epsilon}{2}+2 \sqrt{n}\left(1-\delta^{2}\right)^{n+1}\|f\|_{\infty} \\
& \left|P_{n}(x)-f(x)\right| \leq 4 M \sqrt{n}\left(1-\delta^{2}\right)^{n+1}+\frac{\epsilon}{2}
\end{aligned}
$$

Choose n large enough so that

$$
4 M \sqrt{n}(1-\delta 62)^{n+1}<\frac{\epsilon}{2} \Longrightarrow\left\|p_{n}-f\right\|_{\infty}<\epsilon
$$

Corollary. Let $f(x) \in C[0,1]$ such that $\int_{0}^{1} f(t) d t=0, \int_{0}^{1} f(t) t^{n} d t=0, \forall n$. This implies $f(x)=0, \forall x \in$ $[0,1]$.

Corollary. $\left(C[a, b],\|\cdot\|_{\infty}\right)$ is separable. $\forall n \in \mathbb{N}$,

$$
\begin{gathered}
P_{n}=\left\{a_{0}+a_{1} x+\cdots+a_{n} x^{n} \mid a_{i} \in \mathbb{R}\right\} \\
Q_{n}=\left\{r_{0}+r_{1} x+\cdots+r_{n} x^{n} \mid r_{1} \in \mathbb{Q}\right\} \Longrightarrow \bar{Q}_{n}=P_{n}
\end{gathered}
$$

but also

$$
\overline{\bigcup_{n=1}^{\infty} P_{n}}=C[a, b] \Longrightarrow \overline{\bigcup Q_{n}}=C[a, b]
$$

. Q_{n} is countable.

3.2 Stone-Weierstrass Theorem

(X, d) compact metric space:
Definition. (X, d) compact metric space, $\Phi \subseteq C(X)$ and Φ is a point separating if whenever $x, y \in X$ and $x \neq y$, there exists $f \in \Phi$ such that $f(x) \neq f(y)$.

Remarks

1. $a, b \in X, a \neq b . f(x)=d(x, a) \Longrightarrow f(x) \in C(X)$ and $f(a) \neq f(b)$ Then $C(X)$ is point separating.
2. Suppose X has at least 2 points and $\Phi \subseteq C(X)$. Suppose $f(x)=f(y), \forall f \in \Phi, \forall x, y \in X \Longrightarrow g(x)=$ $g(y), \forall g \in \Phi, \forall x, y \in X$. Then if Φ is dense in $C(X) ; \Phi$ must be point separating.

Definition. A linear subspace $\Phi \subseteq C(X)$ is a lattice if $\forall f, g \in \Phi$ then $(f \vee g)(x)=\max \{f(x), g(x)\} \in \Phi$ and $(f \wedge g)(x)=\min \{f(x), g(x)\} \in \Phi$.

Remarks
Let $f, g \in C(X),(f \vee g)(x)=\frac{(f(x)+g(x))+|f(x)-g(x)|}{2}$ and $(f \wedge g)(x)=-(f \vee g)(x) \Longrightarrow f \vee g, f \wedge g \in C(X)$ Then $C(X)$ is a lattice.

If $\Phi \subseteq C(X), \Phi$ is a linear subspace. Then Φ is a lattice if $f \vee g \in \Phi, \forall f, g \in \Phi$.
Examples
$f:[a, b] \rightarrow \mathbb{R}$ is piecewise linear if there exists a partition $\mathcal{P}=\left\{a=t_{0}<\cdots<t_{n}=b\right\}$ such that $f_{\left[t_{i-1}, t_{i}\right]}=m_{i}+d_{i}, \forall i=1, \cdots, n$.
$f:[a, b] \rightarrow \mathbb{R}$ is piecewise polynomial if $\exists \mathcal{P}=\left\{a=t_{0}<\cdots<t_{n}=b\right\}$ such that $f_{\left[t_{i-1}, t_{i}\right]}=$ $c_{0, i}+c_{1, i} x+\cdots+c_{n, i} x^{n}$
Theorem. Stone-Weierstrass Theorem (Lattice version): (X, d) is compact metric space, $\Phi \subseteq\left(C(X),\|\cdots\|_{\infty}\right)$ linear subspace such that

1. the constant function $1 \in \Phi$
2. Φ separates points.
3. If $f, g \in \Phi \Longrightarrow(f \vee g) \in \Phi$

Hence, Φ is dense in $C(X)$.
Note that if $\alpha, \beta \in \mathbb{R}$, and $x \neq y \in X$, then there exists $g \in \Phi$ such that $g(x)=\alpha$ and $g(y)=\beta$. Let $h \in \Phi$ such that $h(x) \neq h(y)$. Let $g(t)=\alpha+(\beta-\alpha) \frac{h(t)-h(x)}{h(y)-h(x)} \Longrightarrow g \in \Phi$. Let $f \in C(X)$ and $\epsilon>0$.
Step 1 Fix $x \in X$. For each $y \in X, \exists h_{x, y}(t) \in \Phi$ and $h_{x, y}(x)=f(x), h_{x, y}(y)=f(y)$. Since $h_{x, y}(y)-f(y)=$ $0, \forall y$, we can find $\delta_{y}>0$ such that $t \in B\left(y, \delta_{y}\right)$ and $-\epsilon<h_{x, y}(t)-f(t)<\epsilon .\left\{B\left(y, \delta_{y}\right)\right\}$ open cover of $\mathrm{X} \Longrightarrow \exists$ points $y_{1}, y_{2}, \cdots, y_{n}$ such that $\left\{B\left(y_{i}, \delta_{y_{i}}\right)\right\}$ cover X.

$$
h_{x}(t)=h_{x, y_{1}} \vee \cdots \vee h_{x, y_{n}}
$$

Now if $z \in X, \exists i$ such that $z \in B\left(y_{i}, \delta_{y_{i}}\right) . f(z)-\epsilon<h_{x, y_{i}}(z) \leq h_{x}(t)$.
Step 2 For each $x \in X, h_{x}(x)-f(x)=0$. For each $x \in X, \exists \delta_{x}>0$ such that $t \in B\left(x, \delta_{x}\right)$, then $-\epsilon<h_{x}(t)-f(t)<\epsilon$. As we did before, we can find $\left\{x_{1}, x_{2}, \cdots, x_{k}\right\}$ such that $\left\{B\left(x_{j}, \delta_{x_{j}}\right\}\right.$ is a cover for X. Let $h(t)=h_{x_{1}} \wedge \cdots \wedge h_{x_{k}} \in \Phi$. Then if $z \in X$, then $f(z)-\epsilon<h(z)<f(z)+\epsilon$.

Corollary. Let $\Phi_{1}=\{f \in C[a, b] \mid f$ is piecewise linear $\}$ and $\Phi_{2}=\{f \in C[a, b] \mid f$ is piecewise polynomial $\}$. Then Φ_{i} is dense in $C(X), i=1,2, \cdots$.
Definition. A subspace $\Phi \subseteq C(X)$ is said to be a sub algebra if $f \cdot g \in \Phi$, for every $f, g \in \Phi$.
Example: If P is the collection of all polynomials on $[a, b], \mathrm{P}$ is a sub algebra of $C([a, b])$.
Remark:
If $\Phi \subseteq C(X)$ is a sub algebra, then so is Φ. Let $\left\{f_{n}\right\},\left\{g_{n}\right\} \subseteq \Phi \mid f_{n} \rightarrow f, g_{n} \rightarrow g$. Note that $f g \in C(X)$ Note also $\left\{g_{n}\right\}$ is bounded.

$$
\left\|f_{n} g_{n}-f g\right\|_{\infty}=\left\|\left(f_{n} g_{n}-f g_{n}\right)+\left(f g_{n}-f g\right)\right\|_{\infty} \leq\left\|g_{n}\right\|_{\infty}\left\|f_{n}-f\right\|_{\infty}+\|f\|_{\infty}\left\|g_{n}-g\right\|_{\infty} \rightarrow 0
$$

Theorem. Subalgebra version) Stone-Weierstrass: (X, d) compact metric space. Let Φ be a linear subspace of $\left(C(X),\| \| \|_{\infty}\right)$ such that

1. $1 \in \Phi$.
2. Φ separates points
3. Φ is a subalgebra

Then Φ is dense in $C(X)$.
Proof. Step 1 If $f \in \Phi$, then $|f| \in \bar{\Phi}$. Fix $\epsilon>0$, since X is compact, $\exists M>0$ such that $|f(x)|<M, \forall x \in$ X. We consider the function $g(t)=|t|$ on $[-M, M]$. By W.A Theorem, $\exists p(t)=c_{0}+c_{1} t+\cdots+c_{n} t^{n}$ such that

$$
|g(t)-p(t)|=||t|-p(t)|<\epsilon, \forall t \in[-M, M]
$$

but $p f=c_{0} 1+c_{1} f+c_{2} f^{2}+\cdots+c_{n} f^{n} \in \Phi$. If $x \in X, f(x) \in[-M, M]$ and then $||f(x)|-p(f(x))|<$ $\epsilon, \forall x \in X$. This implies $|f| \in \bar{\Phi}$.

Step $2 h g \in \Phi \Longrightarrow h \vee g \in \bar{\Phi}$. Then $g \vee h(x)=\frac{(g(x)+h(x))-|g(x)-h(x)|}{2} \in \bar{\Phi}$. Then

1. $1 \in \bar{\Phi}$
2. $\bar{\Phi}$ separates points
3. $\bar{\Phi}$ is a lattice.

Therefore, $\bar{\Phi}=C(X)=\bar{\Phi}$.

3.3 Complex Version

$C(X, \mathbb{C})=\{f: X \rightarrow \mathbb{C} \mid f(x)$ is continuous on X$\} .\|f\|_{\infty}=\sup \{|f(x)| x \in X\}$ A subspace $\Phi \subseteq C(X, \mathbb{C})$ is self-adjoint if $f \in \Phi$ implies that $\bar{f} \in \Phi$.

Theorem. Stone-Weirstrass \mathbb{C}-version (X, d) compact metric space. If $\Phi \subset C(X, \mathbb{C}$ is a self-adjoint linear subspace such that

1. $1 \in \Phi$
2. Φ separates points
3. Φ is a subalgebra

This implies $\bar{\Phi}=C(X, \mathbb{C})$.

Example

Let $\pi=\{\lambda \in \mathbb{C} \| \lambda \mid=1\}$. Let $\phi: \pi \rightarrow[0,2 \pi), e^{i \Theta} \rightarrow \Theta$. On $[0,2 \pi)$ we consider the metric $d_{*}\left(\Theta_{1}, \Theta_{2}\right)=$ the shortest at-length between $e^{i \Theta_{1}}$ and $e^{i \Theta_{2}}$. Thus ϕ is a homeomorphism. This implies ($\left[0,2 \pi\right.$), d_{*}) is compact. $C(\pi) \approx\{f \in C([0,2 \pi)) \mid f(0)=f(2 \pi)\}$. A trigonometric polynomial is an element of

$$
\operatorname{Trig}_{\mathbb{C}}([0,2 \pi))=\operatorname{span}\left\{f(\theta)=e^{i n \theta} \mid n \in \mathbb{Z}\right\}
$$

. This implies $\overline{\operatorname{Trig}_{\mathbb{C}}([0,2 \pi))}=C([0,2 \pi))$.
Example:
$\Psi=\left\{F(x, y) \in C([0,1] \times[0,1]) \mid F(x, y)=\sum_{i=1}^{k} f_{1}(x) g_{i}(y)\right.$ for $\left.f_{i}, g_{i} \in C[0,1]\right\}$. Then to prove that $\bar{\Psi}=C([0,1] \times[0,1])$

3.4 Compactness in $\left(C(X),\|\cdot\|_{\infty}\right)$ and the Ascoli-Arzela Theorem

Definition. (X, d) metric space. $A \subseteq X$ is relatively compact if \bar{A} is compact. Remark: Assume (X, d) is complete. Recall; if A is totally bounded, then \bar{A} is totally bounded. Then $A \subset X$ is relatively compact $\Longleftrightarrow \mathrm{A}$ is totally bounded.

Theorem. Arzela-Ascoli Theorem: Let (X, d) be a compact metric space. Let $\mathcal{F} \subseteq\left(C(X),\|\cdot\|_{\infty}\right)$. Then, TFAE:

1. \mathcal{F} is relative compact
2. \mathcal{F} is equicontinuous and pointwise bounded.

Proof. 1 to 2: \mathcal{F} is relative compact. This implies that \mathcal{F} is bounded. This implies \mathcal{F} is point wise bounded. Fix $\epsilon>0 . \mathcal{F}$ is relative compact. This implies \mathcal{F} is totally bounded. This implies there exists an $\frac{\epsilon}{3}$-net $\left\{f_{1}, \cdots, f_{n}\right\} \subseteq \mathcal{F}$. Since $\left\{f_{1}, \cdots, f_{n}\right\}$ is finite, it's equicontinuous. Given $\frac{\epsilon}{3}$, there exists $\delta>0$ such that $d(x, y)<\delta$. This implies $\left|f_{i}(x)-f_{i}(y)\right|<\frac{\epsilon}{3}, \forall i=1,2, \cdots, n$. Let $f \in \mathcal{F}$ and $x, y \in X$ such that $d(x, y)<\delta$. This implies $\exists i_{0} \in\{1, \cdots, n\}$ such that $\left\|f_{i_{0}}-f\right\|<\frac{\epsilon}{3}$. Then $|f(x)-f(y)| \leq$ $\left\lvert\, f(x)-f_{i_{0}}\left(x 0\left|+\left|f_{i_{0}}(x)-f_{i_{0}}(y)\right|+\left|f_{i_{0}}(y)-f(y)\right|<\frac{\epsilon}{3} \times 3=\epsilon\right.\right.$. \right.

Definition. Compact operators $\Gamma:\left(X,\|\cdot\|_{X}\right) \rightarrow\left(Y,\|\cdot\|_{Y}\right)$ linear map is compact if $\Gamma\left(\left\{x \in X \mid\|x\|_{X} \leq 1\right\}\right)$ is relatively compact.

Remark:
Γ is compact $\Longrightarrow \Gamma$ is continuous.
Example: $\left(X,\|\cdot\|_{X}\right),\left(Y,\|\cdot\|_{Y}\right)=\left(C\left([a, b],\|\cdot\|_{\infty}\right)\right.$. Let $K:[a, b] \times[a, b] \Longrightarrow \quad[a, b]$ continuous. If $f \in C([a, b]) . \Gamma(f)(x)=\int_{a}^{b} k(x, y) f(y) d y$. Clearly, Γ is linear.

Claim: $\Gamma(f) \in C([a, b])$. If $f=\theta, \Gamma(f) \in C[a, b]$. If $f \neq \theta$, since K is uniformly continuous given $\epsilon>0, \exists \delta>0$ such that $\left\|\left(x_{1}, y_{1}\right)-\left(x_{2}, y_{2}\right)\right\|_{2}<\delta \Longrightarrow\left|K\left(x_{1}, y_{1}\right)-K\left(x_{2}, y_{2}\right)\right|<\frac{\epsilon}{(b-a)\|f\|_{\infty}}$. Now if $|x-z|<\delta$, then $|\Gamma(f)(x)-\Gamma(f)(z)|=\left|\int_{a}^{b}(K(x, y)-K(z, y)) f(y) d y\right| \leq \int_{a}^{b}|K(x, y)-K(z, y)||f(y)| d y<$ $\frac{\epsilon}{(b-a)\|f\|_{\infty}}\|f\|_{\infty}(b-a)=\epsilon$

Claim: $\Gamma\left(B_{x}[0,1]\right)$ is uniformly equicontinuous. Fix $\epsilon>0$. there exists $\delta_{1}>0$ such that $|x-z|<$ $\delta_{1} \Longrightarrow|K(x, y)-K(z, y)|<\frac{\epsilon}{b-a}, \forall y \in[a, b]$.
let $|x-z|<\delta_{1}$ and $f \in C([a, b])$ such that $\|f\|_{\infty} \leq 1 . \quad|\Gamma(f)(x)-\Gamma(f)(z)| \leq \int_{a}^{b} \mid K(x, y)-$ $K(y, z)||f(y)| d y<\epsilon$

Claim: $\Gamma\left(B_{x}[\theta, 1]\right)$ is uniformly bounded. Let $M>0$ such that $|K(x, y)| \leq M, \forall(x, y) \in[a, b] \times[a, b]$. Let $f \in C[a, b]$ such that $\|f\|_{\infty} \leq 1 .|\Gamma(f)(x)| \leq \int_{a}^{b}|K(x, y) \| f(y)| d y \leq M \int_{a}^{b} d y=M(b-a), \forall x \in[a, b]$. Therefore, for all $f \in[a, b]$ such that $\|f\|_{\infty}<1$. This implies $\Gamma\left(B_{x}[\theta, 1]\right)$ is relatively compact by Arzela Ascoli Theorem,. Therefore, Γ is compact.

Theorem. Peano's Theorem: Let f be continuous on an open subset D of \mathbb{R}^{2}. Let $\left(x_{0} y_{0}\right) \in D$. Then the differential equation $y^{\prime}=f(x, y)$ has a local solution through the point $\left(x_{0}, y_{0}\right)$. Let R be a closed rectangle, $R \subseteq D$, with $\left(x_{0}, y_{0}\right) \in \operatorname{int}(R)$. f os continuous on R , R compact; then there exists $M \geq 1$ such that $|f(x, y)| \leq M, \forall(x, y) \in R$. Let $W=\left\{(x, y) \in R \| y-y_{0}|\leq M| x-x_{0} \mid\right\}$ and $I=[a, b]=$ $\{x \mid(x, y) \in W$ for some $y\}$. By uniform continuity, given $\epsilon>0, \exists 0<\delta<1$, such that if $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in$ $W,\left|x_{1}-x_{2}\right|<\delta$ and $\left|y_{1}-y_{2}\right|<\delta \Longrightarrow\left|f\left(x_{1}, y_{1}\right)-f\left(x_{2}, y_{2}\right)\right|<\epsilon$. Choose $a=x_{0}<x_{1}<\cdots<x_{n}=b$, with $\left|x_{j}-x_{j-1}\right|<\frac{\delta}{M}, \forall j$. On $\left[x_{0}, b\right]$, we define a function $k_{\epsilon}(x): k_{\epsilon}\left(x_{0}\right)=y_{0}$, and on $\left[x_{0}, x_{1}\right], k_{\epsilon}(x)$ is linear and has slope $f\left(x_{0}, y_{0}\right)$. On $\left[x_{1}, x_{2}\right], k_{\epsilon}(x)$ is linear and has slope $f\left(x, k_{\epsilon}\left(x_{1}\right)\right)$ and proceed like this to define a piecewise linear function $k_{\epsilon}(x)$ on $\left[x_{0}, b\right]$.

Note: the graph of $k_{\epsilon}(x)$ is contained in W and $\left|k_{\epsilon}(x)-k_{\epsilon}(\bar{x})\right| \leq M|x-\bar{x}|, \forall x, \bar{x} \in\left[x_{0}, b\right]$. Let $x \in\left[x_{0}, b\right]$, $x \neq x_{j}, j=0,1, \cdots, n$. This implies there exists j such that $x_{j-1}<x<x_{j}$.

$$
\left|k_{\epsilon}(x)-k_{\epsilon}\left(x_{j-1}\right)\right| \leq M\left|x-x_{j-1}\right|<M \frac{\delta}{M}=\delta
$$

This implies by uniform continuity of f,

$$
\mid f\left(x_{j-1}, k_{\epsilon}\left(x_{j-1}\right)-f\left(x, k_{\epsilon}(x)\right) \mid<\epsilon\right.
$$

but $k_{\epsilon}^{\prime+}\left(x_{j-1}\right)=f\left(x_{j-1}, k_{\epsilon}\left(x_{j-1}\right)\right)$ (slope approaching by the right). This implies $\mid k_{\epsilon}^{+^{\prime}}\left(x_{j-1}\right)-f\left(x, k_{\epsilon}(x) \mid<\right.$ $\epsilon, \forall x \in\left[x_{0}, b\right]$ such that $x \neq x_{1}, i=0,1, \cdots, n$. Let $K=\left\{k_{\epsilon} \mid \epsilon>0\right\}$. K is pointwise bounded: $\left(k_{\epsilon}(x) \in\right.$ $W \subseteq R$ compact) K is equicontinuous. (*) By Arzela-Asidli, K is compact. Let $x \in\left[x_{0}, b\right], k_{\epsilon}(x)=$ $y_{0}+\int_{x_{0}}^{x} k^{\prime} \epsilon(t) d t=y_{0}+\int_{x_{0}}^{x} f\left(t, k_{\epsilon}(t)\right)+\left[\left(k_{\epsilon}^{\prime}(t)-f\left(t, k_{\epsilon}(t)\right)\right] d t\right.$. Consider the sequence $\left\{k_{\frac{1}{n}}(x)\right\}_{n} \subseteq \bar{K}$. This implies \exists subsequence $\left\{k_{\frac{1}{n_{k}}}(x)\right\}_{k}$ converging uniformly on $\left[x_{0}, b\right]$ to some $k(x)$.f uniformly continuous on W. This implies $\left\{f\left(t, k_{\frac{1}{n_{k}}}(t)\right\}\right.$ converges uniformly to $f(t, k(t))$ on $\left[x_{0}, b\right]$. $k_{\epsilon}(t)=y_{0}+\int_{x_{0}}^{x} f(t, k(t)) d t$. This implies $k(x)$ is a solution to the DE on $\left[x_{0}, b\right]$. Similarly we can find a solution $k^{*}(x)$ on $\left[a, x_{0}\right]$

