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Background

The first section is about making rational decisions, notion of uncertainty and probability density
functions. There will be assignments, a midterm and a final (Please find the weight of each component
on the syllabus).

1 Choice Under Constraint

Consumers are always going to choose the most rational decision (maximize their benefit) based on
cost constraints.

1.1 Consumer Choice

Define a choice set X. For a corporation, it wants the most profitable choices. In general, we need a
way to rank those choices so that we can figure out which one is the best choice. Thus we need to
define a preference ordering.

• x & y means “X is preferred or indifferent to y”.

• if x & y and y & x =⇒ x ∼ y.

• Ranking is complete if ∀x, y ∈ X, either x & y or y & x.

• Transitive x & y and y & z =⇒ x & z.

• Ranking (ordering) is rational if it is complete and transitive.

• Strict preference x > y if x & y and not y & x.

With the above, we can conclude a few properties.

Proposition 1. If & is rational, then

• > strict preference is transitive.

• ∼ is transitive.

• If x > y & z =⇒ x > z

Proof. • To prove x > y, y > z =⇒ x > z. x > y =⇒ x & y and y > z =⇒ y & z =⇒ x & z.
Assume x ∼ z, Let’s prove this by contradiction. x & z and z & x. Hence z & y (contradiction).

• x ∼ y, y ∼ z =⇒ x ∼ z. We know x & y, y & x, y & z, z & y. Therefore, x & z and z & x.
Therefore, z ∼ x.

• Assume not true, so z & x. Therefore, y & z & x =⇒ y & x. Contradiction.

Now, let’s assume two consumers are buying and selling commodities, N different commodities.
Choices are x ∈ RN where x = (x1, x2, x3, · · · , xN ). Prices are also a vector in RN . Cost of consumption
vector X is just P · x =

∑N
i=1 Pixi. Let’s also define the budget set B = {x ∈ RN : P · x ≤ W} where

W is wealth.
Problem: choose best point in B according to &.
Demand correspondence x(p,W ) = {x ∈ RN : x ∈ B and ∀y ∈ B, x & y}. x depends on p,W .

Maybe single point or a set of points. Here P · x = W is called the budget hyperplane. Price vector P
is orthogonal to the budget hyperplane P · x = W .

Proof. Suppose y satisfies P · y = W . Let x be in the hyperplane, x ∈ {z : P · z = W}. Then
P · (x− y) = P · x− P · y = w − w = 0.

3



Definition 1. Demand correspondence x(P,W ) is homogeneous of degree zero if

x(P,W ) = x(αP, αW )∀α > 0

{x : P · x ≤W} = {x : αP · x ≤ αW}.

Definition 2. Walras’s Law: demand correspondence x(P,W ) satisfies Walras’s Law if ∀P ≥ 0 and
W > 0. we have P · x = W, ∀x ∈ x(P,W ).

Assume that x(P,w) is a function, i.e. x(P,W ) is a single point, not a a set. Let x(P̄ ,W ), function
of x, P = P̄ vary W. Show how choice varies with respect to the income and wealth. This path is
sometimes called “Engel Curve”.

Dp(P,W ) = (
∂xi
∂Pj

)i,j

where each diagonal entry is called own price effect and the other entries are called cross price effects.
Price elasticity of demand (PED) is

εn,k =
∂xn(P,W )

∂Pk

Pk
xn(P,W )

=
∂xn
xn
∂Pk
Pk

Similarly, we can also at the income and call it income elasticity of demand

εn,W =
∂xn(P,W )

∂W

W

xn(P,W )
=

∂xn
xn
∂W
W

We call negative income elasticity of demand good inferior good.

Proposition 2. Sum of all elasticities for good n is zero.

Proof. x(αP, αW ), α > 0.
Differentiate the demand by α, set α = 1.

∂xn
∂α

=
∑
k

∂xn
∂α

∂αPk
∂α

+
∂xn
∂αW

∂αW

∂α

Set α = 1, then the above will be

= (
∂xn
∂P1

, · · · , ∂xn
∂PN

) · (P1, · · · , PN ) +
∂xn
∂W

W (1)

=
∑ ∂xn

∂Pk

Pk
xn

+
∂xnW

∂Wxn
= 0 (2)

Ordering & is monotone if x ∈ X and y � x =⇒ y > x. Strongly monotone if y & x and
y 6= x =⇒ y > x. & is locally non-satiated if for every x and every ε > 0. ∃y such that ‖x − y‖ < ε
and y > x. This means points that are arbitrarily close to x that are preferred to it.

Indifference set for x = {y : y ∼ x}. Upper contour set for x = {y : y & x}. Reversely, we have
lower contour set where {y : y . x}.

S is convex if for any x, y ∈ S, λx+ (1− λ)y ∈ S, ∀λ ∈ [0, 1].
S is strictly convex if for any x, y ∈ S, λx+ (1− λ)y is in the interior of S, 0 < λ < 1. Here, y ∈ S

is an interior point if there exists neighbourhoods of x containing only points in S.

Proposition 3. If upper contour sets are strictly convex, then x(P,W ) is a single point.

Proof. Assume not true. Assume x1(P,W ) and x2(P,W ) both satisfy definition of x(P,W ) and
x1(P,W ) 6= x2(P,W ). Then x3 = λx1(P,W ) + (1 − λ)x2(P,W ), 0 < λ < 1. Claim x3 > x1 or x2

(Contradiction)
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& is homothetic if x ∼ y =⇒ αx ∼ αy, for any α > 0. Once we know one indifference surface, we
know all of them.

Definition 3. Quasi-linearity with respect to good 1 if

1. all indifference surfaces are parallel displacements along axis of commodity 1, i.e. if x ∼ y =⇒
x+ αe1 ∼ y + αe1, 0 < α, e1 = (1, 0, · · · , 0).

& on X is continuous if its upper contour sets and its lower contour sets are closed.

Representation of & by a Normal-Valued Function

Let U : RN → R, x ∈ RN . U(x)→ R1, u(x) & u(y) ⇐⇒ x & y.

Theorem 1. If the order is rational and complete, then it is continuous.

Suppose we are lexicographical ordering on R2. Define & as x & y if either x1 > y1 or x1 = y1 and
x2 > y2. This is an argument that the upper contour sets are not closed.

Proposition 4. If u(x) represents & then so does φ(u(x)) for any increasing function φ : RN → R1. u
is unique up to an order preserving transformation.

Proof. Need to show Iu(x) = Iφ(u(x)). Iu(x) = {y : u(y) = u(x)}
and Iφ(u(x)) = {y : φ(u(y)) = φ(u(x))}. Suppose

u(x) = u(y) =⇒ φ(u(x)) = φ(u(y)) =⇒ Iu(x) ⊂ Iφ(u(x))

φ(u(x)) = φ(u(y)) =⇒ u(x) = u(y)

Iφ(u(x)) ⊂ Iu(x)

Proposition 5. Suppose u(x) represents & strictly convex and non-satiated. Then the demand function
x(P,W ) satisfies

1. Homogeneous of degree zero

2. Walras’ Law

1.2 Consumer Maximization Problem (UMP)

Choose x to maxu(x) subject to P · x = W .
We can solve the above using Lagrangean function such that L = u(x) + λ[w − p · x] where λ is

called the lagrange multiplier and sometimes it is called shadow price.
If ∃λ∗ ≥ 0 such that (x∗, λ∗) form a saddle point of L. Then x∗ solves the constrained max problem.

A saddle point means the local derivative of the point is zero, that is

x∗ maximize L(x, λ∗)

λ∗ minimize L(x∗, λ)

Proof. L(x∗, λ∗) = u(x∗)+λ∗[w−px∗]. Derivative with respect to λ = 0 here. That implies w−px∗ = 0.
This is the budget constrain.

L(x∗, λ∗) ≥ L(x, λ∗)∀x
. This implies u(x∗) + λ∗(w− px∗) ≥ u(x) + λ∗(w− px),∀x. Therefore, u(x∗) ≥ u(x) + λ∗[w− px],∀x.

Choose x to maxu(x), p ·x = w. L = u(x)+λ[w−p ·x]. Then ∂u
∂xi
−λpi = 0. Therefore, ∂u(x)

∂xi
= λpi

and ∂u(x)
∂xj

= λpj . Therefore, ∂u/∂xi
∂u/∂xj

= pi
pj
,∀i, j, i 6= j.

Side note: implicit derivative ∂y
∂x = −∂F/∂x

∂F/∂y
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1.2.1 Interpretation of λ

Suppose we make small changes in x,∆x. What’s the change in utility?

∆u =
∑
i

∂u

∂xi
∆xi,

∂u

∂xi
= λpi

∆u =
∑
i

λpi∆xi = λ
∑
i

pi∆xi( change u expenditure ∆w)

∆u = λ∆w

∆u

∆w
= λ

The above implies if λ is large, then the more change in wealth, the more utility.

1.3 Indirect Utility Function

u(x) through the constraint maximization problem u(x∗) depends on p, w.
We define V (p, w) = u(x∗). Here ∂V

∂w = λ; V
∂pn

= −λxn(p, w). Now let’s prove the second one.

Proof.
∂V

∂pn
=
∑
j

∂u

∂xj

∂xj
∂pn

=
∑
j

λpj
∂xj
∂pn

We know
∑
xjpj = w. λxn + λ

∑ ∂xj
∂pn

pj = 0. Therefore, the first equation is equal to −λxn.

Examples

Cobb-Douglas Utility Function u(x1, x2) = xα1x
1−α
2 . This function is homogenous. Choose x1, x2

to maximize. We will find that x1 = w α
p1

and x2 = w 1−α
p2

. The price elasticity to the demand is

constant (1). In other words, p1x1
w = α and p2x2

w = 1− α.

If we write this as an indirect utility function. Then V (p, w) = u(x∗) = w( αp1 )α(1−α
p2

)1−α.

Linear Utility u(x) = ax1 + bx2. The optimal point is always at the either side of corners depending
on the slope (corner solutions). In other words, the solution is dependent on the slopes of both
utility function and budget line.

Fixed Coefficient u(x1, x2) = min{ax1, bx2}. The solution will be x2 = x1
a
b .

Constant Elasticity Substitution u(x1, x2) = {xp1 + xp2}1/p. p1x1 + p2x2 − w = 0. First order
condition is

1

p
{xp1 + xp2}

1/p−1pxp−1
i = λpi, i = 1, 2

Divide i = 1, 2, then we get
x1

x2
=
p1

p2

1/p−1

Let ρ. = p
p−1 . Using the budget constraint, the solution is x1 = w

pρ−1
2

pρ1+ρr2
and x2 = w

pρ−1
1

pρ1+ρr2

In addition, the indirect utility function is V (p, w) = w(pρ1 + pρ2)
− 1
ρ .

1.4 Expenditure Minimization Problem (EMP)

Choose x to minimize p · x such that u(x) = ū. The EMP is dual of the UMP.

Definition 4. The expenditure function e(p, U) is the solution to the EMP problem for prices p and
required utility U .

In other words, e(p, U) = p · x∗(p, U).
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Example

Cobb-Douglas We can write U(x) = α lnx1 + (1−α) lnx2. Then we can use Lagaranean to solve the
constraint problem. Hence the expenditure function eU (p1α )α( p2

1−α)1−α.

Constant Elasticity Substitution Expenditure is U(pr1 + pr2)
1
r .

Definition 5. The optimal commodity vector in the EMP, denoted h(p, U): RN → RN , is known as
Hicksian or compensated demand function.

From the definition, we can see that

• x∗ = h(p, Ū) = x(p, e(p, U))

• U(h(p, U)) = U

• e(p, U) = p · h(p, U)

• h(p, U) = x(p, e(p, U).

• x(p,W ) = h(p, V (p, w)).

Hicksian compensated demand is the same as derivative of expenditure function with respect to
prices. In other words

∂e(p, U)

∂pn
=

∂

∂pn

∑
i

hi(p, U)pi =
∑
i

pi
∂hi(p, U)

∂pn
+ hn(p, u)

where
∑

i pi
∂hi(p,U)
∂pn

= 0.

λ
∑
i

∂ui
∂hi

∂hi
∂pn

=
dU

dpn
= 0

since Ū = u(h(p, Ū)).
Here we call the change in price with the same utility the substitution effect.

Proposition 6. Slutsky Equation:

∂xn(p, w)

∂pk
=
∂hn
∂pk
− ∂xn
∂w

xn(p, w)

The Slutsky is trying to separate the relative price effect and substitution effect out the demand
function. In other words, the uncompensated change in demand is the residual effect of the compensated
change in demand and change in income.

Proof. hn(p, U) = xn(p, e(p, U)). This implies

∂hn
∂pk

=
∂xn
∂pk

+
∂xn
∂w

∂e

∂pk
=
∂xn
∂pk

+
∂xn
∂w

hk(p, U) =
∂xn
∂pk

+
∂xn
∂w

xk

since ∂e
∂pk

= hk = xk.

To explain this more intuitively, we can first assume the price does not change, then the change in
the demand would be the change in income. Then because of price change, the optimal demand we
move away from the change in income. Therefore, the combined effect would result the demand change
in uncompensated utility.

The above equation can be rewritten as the following

∂xn/xn
∂pn/pn

=
∂hn/hn
∂pn/pn

.− ∂xn/xn
∂W/W

pnxn
W

that is, the price elasticity of uncompensated demand is the price elasticity of compensated demand
minus income expenditure of demand times the expenditure share.
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1.4.1 Labors Supply and Wage Rate

U(Y,L) where L is leisure and Y is the income. Let y = (K − L)w + A where K is the maximum
number of hours of work and A is the non-labor income. S = wK+A is the maximum possible income.
We can then write

U((K − L)w +A,L)

Solving using Lagrane, we can get xL(w, S) regular demand for leisure. We can write this using the
Slutsky equation,

∂xL
∂w

=
∂hL
∂w
− ∂xL

∂S
· L

∂xL
∂w
− ∂xL

∂S
K =

∂hL
∂w
− ∂xL

∂S
· L

∂xL
∂w

=
dhL
dw
−K∂xL

∂S
dxL
dw

=
dhL
dw

+
∂xL
∂S

(K − L)

If we assume Cobb-Douglas U(y, L) = yαL1−α, then the labor and wage will be independent.

1.5 Welfare Impact of A Price Change

Indirect utility function V (p,W ). If you change the price p0 → p1, then [V (p0,W ) − V (p1,W )]. We
can use the expenditure function e(p, U) is the minimum you have to spend to reach U at prices p;
[e(p, V (p1,W )− e(p, V (p0,W ))].

Let U0 = V (p0,W ), U1 = V (p1,W ). Then e(p0, U0) = e(p1, U1) = W .
Define

EV (p0, p1,W ) = e(p0, U1)− e(p0, U0) = e(p0, U1)−W = e(p0, U1)− e(p1, U1)

= −
∫ p1

p0

∂e

∂p1
(p, U1)dp

= −
∫ p1

p0

hi(p, U
1)dp

where EV is called the equivalent variation; the difference in cost of reaching U1 + U0 at prices p0.
Define

CV (p0, p1,W ). = e(p1, U1)− e(p1, U0) = W − e(p1, U0) = e(p0, U0)− e(p1, U0) = −
∫ p1

p0

hi(p, U
0)dp

where CV is called the compensated variation.
Hence

EV − CV =

∫ p0i

p1i

[hi(p, U
1)− hi(p, U0)]dpi

Sufficient condition for EV = CV is h(p, U0) = h(p, U1), i.e., h is independent of U .

Example

Suppose there are two goods 1 and 2, U(x1, x2) = f(x1) + x2.

min(p1x1 + p2x2)

s. t. f(x1) + x2 = Û

This is equivalent to
min p1x1 + p2(Û − f(x1)
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That is p1 = p2f
′(x1). This implies the solution is

x∗1 = (f ′)−1(
p1

p2
)

and
x∗2 = Û − f((f ′)−1(

p1

p2
))

.
The expenditure function is

p1(f ′)−1(
p1

p2
) + p2[Û − f(f ′)−1(

p1

p2
))]

Here good 2 always has the fixed demand.

1.5.1 Deadweight Loss From Commodity (Sales) Taxation

Suppose we have two goods (p0
1, p

0
2). Change p0

1 → (p0
1 + t) where t is the tax. The revenue raised

T = tx1(p1,W ) where p1 = (p0
1 + t, p0

2). We can compare this with tax T on wealth reducing this from
W to W − T .

Is EV (p1, p2,W ) bigger or less than −T?

−T − EV = e(p1, U1)− e(p0, U1)− th1(p1, U1)

=

∫ p01+t

p01

h1(p1, p2, U
1)dp1 − th1(p1, U

1)

=

∫ p01+t

p01

[h1(p1, p2, U
1)− h1(p0

1 + t, p2, U
1)]dp1 > 0

Hence this implies the welfare loss is more than the tax loss.

2 Preference & Demand Aggregation

Individual demand xi(p,Wi) for person i. The aggregate demand D =
∑

i xi(p,Wi). Can we write this
as

D(p,W1, · · · ,WI) as a function of D(p,
∑
i

Wi)

Consider changes ∆Wi in income levels such that
∑

i ∆Wi = 0.

D(p,
∑
i

Wi) = D(p,
∑
i

(Wi + ∆Wi))

D(p,W ) =
∑
i

xi(p,Wi) =⇒
∑
i

[xi(p,Wi + ∆Wi)− xi(p,Wi)] = 0, ∀
∑
i

∆Wi = 0

=⇒
∑
i

∂xi
∂Wi

∆Wi = 0 if
∑
i

∆Wi = 0 =⇒ ∂xi
∂Wi

= K,∀i or
∂xil
∂Wi

= λl, ∀i, l

=⇒
∑
i

K∆Wi = k
∑
i

∆Wi = 0

This is the sufficient condition but not if and only if. Preferences are homothetic and identical. For
example, the quasi-linear shows the same but it does not need to follow homothetic and identical.
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Quasi-Linear Case

ui(xi1, xi2) = xi1 + f(xi2)

considering budget constraints

p1x1 + p2x2 = Wi =⇒ xi1 = −xi2
p2

p1
+
Wi

p1

Therefore

u() = −xi2
p2

p1
+
Wi

p1
+ f(xi2)

f ′(xi2) =
p2

p1
, xi2 = (f ′)−1(

p2

p1
)

xi1 = −p2

p1
[(f ′)−1(

p2

p1
)] +

wi
p1

Population of N people,

x2 = N(f ′)−1(
p2

p1
)

x1 = −Np2

p1
(f ′)−1(

p2

p1
) +

∑
i

Wi

p1

2.1 Social Choice Theory

How to move from individual preferences to some “collective” or “social” preference? First, define a fi-
nite set of alternatives. Each person has a ranking of these�i. Let Π = set of all possible rankings of alternatives.
Social choice rule is defined as a mapping from φ(�1, · · · ,�n) → Π. For example, we can take three
people A,B,C with three alternatives α, β, γ.

A B C

α γ β
β α γ
γ β α

Vote between α and β. Vote between β and γ. Then α > β, β > γ and γ > α since γ beats α most
of the time. Hence it is not transitive. This example is from Condocet.

2.1.1 Conditions that a Social Choice Rules Should Satisfy

Should produce a transitive social ordering.

1. Unrestricted Domain: works whatever views and preferences.

2. Respect of Unanimity: if everyone prefers α to β, then society ranks α � β.

3. Independence of Irrelevant Alternatives: Social preferences between α and β depends only on
individuals preferences over (α, β) but not on their preferences about their alternatives.

For any α, β and any 2 sets of preferences �i,�′i, if �i, �′i all agree on α, β, the social choice is
the same for both sets of preferences.

4. None dictatorship: nobody decides the preference.

There is no social choice rule satisfying 1, 2, 3 and 4.

Theorem 2. Assuming the above four condition holds, for any alternative b, if everyone ranks b either
best or worst, then the society ranks b either best or worst.

Proof. Assume not true, then ∃a, c such that a � b � c by society. Let’s change the preference as
follows

10



• For anyone who ranks b at the top, move c to the second place.

• For anyone who ranks b at the bottom, move c to the top.

This does not change anyone’s ranking of b v.s. a. Hence social ranking of b, a is unchanged. Haven’t
changed anyone’s ranking of b v.s. c so social ranking of b v.s. c has not changed. Thus a � b, b � c
=⇒ a � c. But everyone ranks c � a so by respect of unanimity, it is impossible.

Theorem 3. Assume ∃ alternative b such that everyone ranks b best or worst.

Proof. Assume all rank b worst. Then society ranks b worst by respect of unanimity.
Now, we can start moving b to the top. Let’s suppose B is the first person to move b from the worst

to the best. Let’s construct four sets of preferences

1. Everyone from 1 to B − 1, they rank b top and the rest rank b bottom. Then society ranks b
worst. In other words, ∀a, a � b.

2. Everyone from 1 to B, they rank b top and the rest rank b bottom. Then society ranks b best.
In other words, ∀c, b � c.

3. From (4), we move a above b. Everyone from 1 to B − 1 ranks b top and everyone from B + 1 to
n ranks b bottom.

4. Suppose everyone ranks arbitrarily except that ∃a, c, person B ranks a over c.

Note, in (3), the society’s ranking of a and c remains the same. In other words, (1), (3), (4),
everyone’s ranking of a, c is unchanged. Society’s ranking of a, c remains the same in (3), (4). From (1)
to (3), ranking of a and b is the same. Therefore, a � b. Similarly, from (2) to (3), b � c. Therefore,
in (1), (2), (3), we will have the order a � b � c by the society. Hence B has to be a dictator.

2.2 Restoring Domain Of Preferences

An ordering on the line � is single-peaked if ∃m, such that for y, z > m, y � z if and only if z � y and
for m � y, z, y � z if and only if y � z.

Median agent k is median for preferences �i, i = 1, · · · , I, if N(i : mi ≥ mk) ≥ I
2 and N(i : mi ≤

mk) ≥ I
2 where N(X) is the number of things in set X.

Theorem 4. Median Voting Theorem: Suppose k is a median agent. Then in voting the peak of agent
k, mk, cannot be defeated by any other alternative.

Proof. Pick any alternative y, assume mk > y. Consider set of agents with peaks ≥ mk. {i : mi ≥
mk},mi ≥ mk ≥ y so i prefers mk to y.

Let’s define firms as y ∈ RN is a production plan. Sign convention: input is negative and output is
positive. The price vector is p ∈ RN and the profit is π = p · y =

∑
i piyi. Production possibility set

Y ∈ RN is the set of plans y open to firm. Technology and resources owned by firms may be affected
by legal constraints.

Firm’s aim to maximize profits. Pick y∗ ∈ Y such that p · y∗ ≥ p · y,∀y ∈ Y . Pick x such that
max p · (x, y) such that y = f(x) where f is the production function, y ∈ R, x ∈ RN−1.

Cobb-Douglas y = xα1x
β
2 where y is output and x1, x2 are inputs.

2.2.1 Assumptions about Y

Constant return to scale: y ∈ Y =⇒ αy ∈ Y,∀α > 0. Geometrically, Y is a cone. Decreasing returns
on scale then Y is strictly convex. Increasing returns on scale, then y ∈ Y =⇒ αy ∈ Y, α ≥ 1 and
∃y ∈ Y : βy /∈ Y, β ∈ (0, 1).
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2.3 Profit Maximization and Cost Minimization

Profit Max
max p · y

s.t.F (y) = 0

Profit function π(p) = maxy(p · y), y ∈ Y . The supply function is y(p) = {y : p · y = π(p)}.

Example

Input x and output y such that y = f(x), Prices px, py − π = pyy − pxx

max pyy − pxx

s.t.y = f(x)

π = pyf(x)− pxx

Therefore

py

∣∣∣∣∂f∂x
∣∣∣∣ = px

In other words, the price of the marginal product is the same as the price of the output.

2.3.1 Cost Minimization

x input vector, y is a single output. Look at

min
x
pxx, f(x) ≥ y

Therefore,
pxi
pxj

=
∂f

∂xi
/
∂f

∂xj

Cost function C(px, y)

Proposition 7. Yi, i = 1, · · · , I be production sets. Y =
∑

i Yi =
∑
p ∈ RN a price. Let y∗ max p·y, y ∈

Y and y∗i max p · yi, yi ∈ Yi, then
∑

i y
∗
i = y∗.

Proof.
∑

i y
∗
i ∈

∑
i Yi = Y . y ∈ Y can be written as y =

∑
i yi, yi ∈ Yi. We know p · y∗i ≥ p · yi∀yi ∈ Yi

for all i.
∑

i p · y∗i = p ·
∑

i y
∗
i ≥ p ·

∑
i yi,∀yi ∈ Yi, ∀i. p ·

∑
i y
∗
i ≥ p · y,∀y ∈ Y .

3 Choice Theory

Lottery, L, is a list of outcomes 1, · · · , N with probabilities pi, · · · , pn,
∑

n pn = 1, pn ≥ 0,∀n. (Von
Neumann&Morgenstein and Savage view). This is a simple lottery.

K simple lotteries Lk = (pk1, · · · , pkn). Choose lottery K with probability ak, 0 ≤ ak ≤ 1,
∑

k ak = 1.
This is a compound lottery. Reducing compound to simple lottery.

Probability of outcome j is
∑K

i=1 aip
i
j

Preference relation � on space of simple lotteries is continuous if for any l, l′ and l′′ ∈ L the sets
{α ∈ {0, 1} : al + (1− a)l′ � l′′} and a ∈ [0, 1] : l′′ � al + (1− a)l′} are closed.

Independence: For all l, l′, l′′ ∈ L, l � l′ ⇐⇒ αf + (1 − α)l′′ � αl′ + (1 − α)l′′,∀l′′,∀α ∈ [0, 1]. If
l ∼ l′ ⇐⇒ αl + (1− α)l′′ ∼ αl′ + (1− α)l′′.

Before we start our discussion, we assume that our lotteries follow the conditions below

• Continuity: consider l, l′, l′′, l � l′ � l′′ Then continuity if ∃α such that αl + (1 − α)l′′ ∼ l′, 0 ≤
α ≤ 1. Consider the following example, l � l′ ⇐⇒ either l1 � l′1 or l1 = l′1&l2 � l′2. It is similar
to the lexical-graphical order.
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• Independence (transitive; complete): the independence condition implies that indifferent curves
are parallel straight lines.

Proof. Indifference curve is a straight line if l1 ∼ l2 =⇒ αl1 + (1− α)l2 ∼ l1 ∼ l2, α ∈ [0, 1].

Assume it is not true, 0.5l1 + 0.5l2 � l2. Then 0.5l1 + 0.5l2 � 0.5l2 + 0.5l2. We know that l1 ∼ l2.
From the independence, we have

0.5l1 + 0.5l′′ ∼ 0.5l2 + 0.5l′′

Let’s l′′ = l2. Then 0.5l1 + 0.5l2 ∼ 0.5l2 + 0.5l2. This is a contradiction.

Definition 6. Utility has expected utility form if ∃ a set of numbers u1, · · · , uN assigned to the N
outcomes such that

U(l) =
∑
n

unpn

ln degenerate lottery if it yields outcome n probability 1.

Proposition 8. Utility U : L→ R has expected utility form if and only if

U

(
k∑
i=1

αklk

)
=

k∑
i=1

αkU(lk)

In other words, the utility of a compound lottery is the expectation of a set of simple lotteries.

Proof. Suppose U has linearity property

l = (p1, · · · , pn) as l =
∑
n

pnl
n

U(l) = U(
∑
n

pnl
n) =

∑
n

pnU(ln) =
∑
n

pnUn

Now suppose U is an expected utility. Compound lottery (l1, · · · , lk : a1, · · · , ak). Probability of
outcome

n = a1p
1
1 + a2p

2
n + · · · =

∑
k

akp
k
n = pn

U(
∑
k

aklk) =
∑
n

Un

[∑
n

akp
k
n

]
=
∑
k

akU(lk)

Proposition 9. Suppose U : L → R is an expected utility function for preference relation � on L.
Then Û : L→ R is an alternative such that if and if ∃ scalar β > 0, γ such that

Û(l) = βU(l) + γ

Proof. Choose 2 lotteries l̄, l such that l̄ � l � l, ∀l ∈ L. Suppose U is an expected utility function and
Û = βU + γ.

Û

(∑
k

aklk

)
= βU

(∑
k

aklk

)
+ γ = β

[∑
k

akU(lk)

]
+ γ =

∑
k

ak [βU(lk) + γ] =
∑
k

akÛ(lk)

Show that Û , U are the expected utilities, then Û is a affine transformation of U .

U(l) = λlU(l̄) + (1− λl)U(l) = U(λl l̄ + (1− λl)l)
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Therefore, we get

λl =
U(l)− U(l)

U(l̄)− U(l)

Since
λlU(l̄) + (1− λl)U(l) = U(λl l̄ + (1− λl)l)

=⇒ l ∼ λl l̄ + (1− λl)l

Hence
Û(l) = Û(λl l̄ + (1− λl)l) = λlÛ(l̄) + (1− λl)Û(l) = λl[Û(l̄)− Û(l) + Û(l)]

Û(l) = βU(l) + γ

where β = Û(l)−Û(l)

U(l̄)−U(l)
and γ = Û(l)− βU(l)

Let’s define U(l) =
∑

n pnUn. Then we know

U(l1)− U(l2) > U(l3)− U(l4)

Û is an alternative utility represent the same preferences

∃B > 0, γ, s.t.Û(l). = BU(l′) + γ

Therefore,
Û(l1)− Û(l2) = BU(l1) + γ −BU(l2)− γ = B(U(l1)− U(l2))

Û(l3)− Û(l4) = B(U(l3)− U(l4))

Proposition 10. Suppose � on L is rational continuous and satisfies independence. Then it admits
representation in the expected utility form.

However, in some experiments, we observe the inconsistency between people’s choices and mainly,
the discrepancy is derived from the ambiguity of the choices presented.

3.1 Risk Aversion

Lotteries over money, i.e.over R1. The probability of any outcome is defined by density function f(t),
t ∈ [0,∞] without loss of generality. There is a cumulative density function F (x) =

∫ x
0 f(t)dt. We say∫ x+∆x

x f(t)dt is the probability an outcome happens between x, x+ ∆x.
Let’s define u(x) be utility of outcome X increasing as x increases. Now the expected utility is now

defined as the following

U(F ) =

∫
u(x)dF (x) =

∫
u(x)f(x)dx

where f(x) is linear in probability and u(x) is not necessarily linear. In addition, it is used to be called
VN-M utility.

3.1.1 St. Petersburg Paradox

Argument about why U(x) is bounded above. Assume U(x) unbounded. xm be such that U(xm) > 2m.
Consider the following lottery: toss coin repeatedly till it comes up heads. When it comes up heads on
the mth toss you win xm. Then the expected winning is∑

m

u(xm)
1

2

m

>
∑
m

2m
1

2

m

>∞

This paradox can be found in Friedman and Savage.
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3.1.2 Risk Aversion Factor

Risk averses if any lottery F () the degenerate lottery yielding expected outcome
∫
xdF (x) with certainty

is at least as good as F (). In addition, certainty equivalent of lottery F () written C(U,F ) is amount
of money with certainty that person regards as equivalent to F ().

Certainty equivalent C of F is defined as

U(C) =

∫
u(x)dF (x)

The followings are equivalent

• Decision-maker is risk averse

• U() is concave

• C(U,F ) ≤
∫
xdF (x),∀F .

Define Arrow-Prutt coefficient of absolute risk aversion

(IAA) rA(x) =
−u′′(x)

u′(x)
> 0

3.1.3 Insurance

Suppose the initial wealth is W and a person can lose amount $D with probability π. Units of insurance
costs $q and pays $1 if loss occurs. Assume a units of insurance purchase. There are two possible
outcomes

1. No loss: wealth is (W − qa)(1− π).

2. If there is a loss: wealth is (W −D − qa+ a)π.

E[U ] = u(W − qa)(1− π) + u(W −D − qa+ a)π

Then by FOC, we get

∂E[U ]

∂a
= −(1− π)qu′(W − qa) + π(1− q)u′(W −D − qa+ a) ≤ 0

Suppose a ≥ 0. Assume q = π, then this insurance is actuarially fair. Therefore,

−u′(W − qa) + u′(W −D − qa+ a) ≤ 0

Suppose a = 0, then −u′(W ) + u′(W −D) ≤ 0. Therefore, we know that u′(W −D)− u′(W ) ≤ 0.
However, this is impossible.

Therefore, a > 0, then we get u′(W − qa) = u′(W −D − qa + a). Therefore, a = D. This is what
we call full insurance.

3.1.4 Investing in Risky Asset

Two assets safe returns 1/$ invested. Risky asset return Z/$ invested where Z is a random variable
distributed as F (Z) such that

∫
zdF (z) > 1. How much of risky assets to buy? Suppose a is the risky

asset purchased and b is the safe asset. We know a+ b = W (wealth). The overall problem is

max
a,b

∫
u(az + b)dF (z)

s.t. a+ b = W
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Hence we can solve this by replacing b with W − a

max
a

∫
u(a(z − 1) + w)dF (z)

That is
∂
∫
u(a(z − 1) + w)dF (z)

∂a
=

∫
u′(w + a(z − 1))(z − 1)dF (z) ≤ 0

Here if a < W , then ≤ 0; else ≥ 0 if a > 0.
Suppose a = 0, then the above FOC becomes u′(W )

∫
(z−1)dF (z) but

∫
(z−1)dF (z) > 0. Therefore,

it is impossible.

3.1.5 Absolute Risk Aversion

Proposition 11. The followings are equivalent:

(1) ΓA(x, u2) ≥ ΓA(x, u1),∀x.

(2) ∃ increasing concave function ψ(·), such that u2(x) = ψ(u1(x))

(3) c(F, u2) ≤ c(F, u1),∀F .

Proof. (1) ⇐⇒ (2) ∃ψ,ψ(u, (x)) = u2(x). Differentiate both side

ψ′u′1(x) = u′2(x)

Differentiate again
ψ′′(u′1)2

ψ′u′1
+
ψ′u′′1
ψ′u′1

=
u′′2
u′2

=⇒ −u
′′
2

u′2
= −u

′′
1

u′1
− ψ′′u′1

ψ

Hence

ΓA(2) = ΓA(1)− ψ′′u′1
ψ′
≥ ΓA(1),∀ψ

Consider two assets, one risky and one safe. For the safe asset, it costs b and returns 1. The risky
asset costs a and returns z with expectation

∫
zdF (z) > 1.

For individual i, she is solving the following

max
ai,bi

∫
ui(aiz + bi)dF (z)

Then the first order condition, we have

φi(ai) =

∫
u′i(wi + ai(z − 1))(z − 1)dF (z) = 0

We want to prove: assume 2 is more risk averse than 1, i.e. a2 < a1 or φ2(a1) < 0. Note that,
u′i(wi + ai(z − 1)) is decreasing in a.

Since 2 is more risk averse than 1, then there exists a increasing concave function θ such that
θ(u1(x)) = u2(x).

φ2(a2) =

∫
u′2(w + a2(z − 1))(z − 1)dF (z) = 0

φ1(a1) =

∫
u′1(w + a1(z − 1))(z − 1)dF (z) = 0

φ2(a1) =

∫
θ′(u1(w + a(z − 1)))u′1(w + a1(z − 1))(z − 1)dF (z) < max(θ′)φ1(a1) = 0
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3.1.6 Relative Risk Aversion

Relative risk aversion is −xu′′(x)
u′(x) . Constant relative risk aversion is u(x) = log(x). Another one is called

iso-elastic utility,

u(x) =

[
x1−η

1− η

]
3.2 Mean-Variance Analysis of Risks

Assume y random variable with mean y∗ and distributed as F (y). The expected utility is
∫
u(y)dF (y) =

EU .
Define x (i.e. cost of risk bearing) as follows

(i) u(y∗ − x) = EU =
∫
u(y)dF (y)

(ii) u(y∗−x)−u(y∗) =
∫

[u(y)−u(y∗)]dF (y) =
∫ [

u′(y∗)(y − y∗) + u′′(y∗)
2 (y − y∗)2

]
dF (y) = u′′(y∗)

2 V ar(y).

(iii) (ii) is equivalent to −u′(y∗)x = u′′(y∗)
2 σ2. Hence x =

[
−u′′(y∗)
u′(y∗)

]
σ2

2

(iv) EU =
∫
u(y)dF (y) = u(y∗ − x) = u(y∗) + 1

2u
′′(y∗)σ2. That is EU = G(y∗, σ2). Use the implicit

function theorem to get slopes of the indifference curve in y∗ → σ2 plane.

∂y∗

∂σ
= − u′′σ

u′ + 0.5σ2y∗u′′′
≈ −u

′′σ

u′
Assume u′′′ ≈ 0

3.3 Stochastic Dominance

3.3.1 First Order Stochastic Dominance

If every person who maximize E[µ] with µ′(x) > 0 prefers F to G, i.e.∫
µ(x)dF (x) ≥

∫
µ(x)dG(x)

Proposition 12. Distribution F is first order stochastic dominant over G if and only if

F (x) ≤ G(x)

Proof. F (x) ≤ G(x) =⇒ F FOSD G. Then

A =

∫ b

a
µ(x)dF (x) =

∫ b

a
µ(x)f(x) = [µ(x)F (x)|ba −

∫ b

a
µ′(x)F (x)d(x) = µ(b)−

∫ b

a
µ′(x)F (x)d(x)

B =

∫ b

a
µ(x)dG(x) = µ(b)−

∫ b

a
µ′(x)G(x)dx

A−B =

∫ b

a
µ′(x)(G(x)− F (x)dx ≥ 0

because µ(x)′ ≥ 0 and F (x) ≤ G(x). Thus F is FOSD over G.
On the other hand, suppose ∃x∗ : F (x∗) > G(x∗). Then A − B < 0 for an interval around x∗ and

µ′(x) ≥ 0 such that µ′ takes very large values in that interval and small elsewhere. This implies G
FOSD F so contradiction.
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3.3.2 Second Order Stochastic Dominance

Now we compare F,G with the same mean. Comparison with concave µ. F is second order stochastic
dominant over G (F less risky than than G if

∫
µ(x)dF (x) ≥

∫
µ(x)dG(x) for all µ with µ′ > 0 and

µ′′ < 0 where µ : RN+ → RN+
Alternative approach is mean preserving spread. G is a MPS of distribution F if G is the reduction

of a compound lottery made up of the distribution F with an additive lottery so that when F selects
the final outcome is x+ z, where E[z] = 0.

Proposition 13. Consider F,G with same mean. The following are equivalent:

1. F SOSD G

2. G is a MPS of F

3.
∫ x

0 G(t)dt ≥
∫ x

0 F (t)dt

3.4 Geometric Approach to Insurance

• Initial endowment: z1

• P [state1] = P1

• P [state2] = P2

• Expected unity at z1 is µ(z11)P1 + µ(z12)P2

• Indifference curve is µ(z11)P1 + µ(z12)P2 = k

• Slope is −µ′(z11)P1

µ′(z12)P1

• On the 45 degree line: slope is −P1/P2.

• Consider the move z1 → z2. You are selling z11 − z01 and buying z22 − z12

• Expected value of trans is −P1(z11 − z01) + P2(z22 − z12)

• Expected value is 0 when zero cost transaction.

P1

P2
=
z22 − z12

z11 − z01

Hence you afford to move to point z2 and as a risk aversion investor you prefer z2 than z1. You
always wants more.

4 Subjective Probabilities

de Finetti defined subjective probabilities. He used a more economist point of view. Here in this course,
we will use Savage’s view.

4.1 Savage Framework

Set of states S. s ∈ S is specific state. States are uncertain once know state, no remaining uncertainty.
Set of outcomes X, x ∈ X on outcome. Outcome is what affects your well-being. Acts (policies, state,
governments) F , f ∈ F is an act (policy). A choice of policy is f : S → X. f tells us what outcome x
is associated with my states. x = f(s). f, g are two policies A ⊂ S is called an event. Then

fgA(s) =

{
g(s) s ∈ A
f(s) s /∈ A i.e. S ∈ Ac
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4.2 Savage’s Axiom

(1) Preferences are a complete transitive relation on F .

(2) Savage Sure Thing Principle: A is an event, Ac its complement, f(s) = g(s),∀s ∈ Ac. f(s) 6=
g(s) some states in A. Introduce f ′(s), g′(s) such that f ′(s) = g′(s),∀s ∈ Ac. f ′(s) = f(s)+g′(s) =
g(s), ∀s ∈ A. f ′(s) 6= f(s), s ∈ Ac and g′(s) 6= g(s), s ∈ Ac. Therefore, f ≥ g ⇐⇒ f ′ ≥ g′.

(3) Let fxA be policy that produces outcome x for any s ∈ A, fxA(s) = x,∀s ∈ A. For every f ∈ F , every
A ⊂ S, x, y ∈ X such that

x ≥ y ⇐⇒ fxA ≥ f
y
A

(4) For every A,B ⊂ S, every x, y, z, w with x ≥ y, z ≥ w.

yxA ≥ yxB ⇐⇒ w2
A ≥ w2

B

(5) ∃, f, g such that f > g.

(6) Continuity: for any acts f(S) > g(S) and outcome x, ∃ a finite set of events {Ai}i whose union is
S such that

f >

{
x if S ∈ Ai
g(s) if S /∈ Ai

and {
x if S ∈ Aj
f(s) if S /∈ Aj

> g

Theorem 5. Savage Theorem: Assume X is finite. Preference ordering satisfies (1) to (6) if and only
if there exists probability p on states S and a non-constant utility U : X → R such that

f � g ⇐⇒
∫
S
U(f(s))dp(s) ≥

∫
S
U(g(s))dp(s)

4.2.1 Sure Thing Principle (2)

Horse race A as horse

Table 1: default

A wings A not wins

1 Paris Rome
2 London Rome
3 Paris LA
4 London LA

1 � 2 ⇐⇒ 3 � 4

4.3 Ambiguity

It is situation that people don’t have subjective probability. Here we will talk about risk vs known
probabilities and uncertainty vs unknown probabilities.

4.3.1 Ellsberg Paradox

2 Urns and 100 balls in each and they are black and red.

Option 1 In Urn 1, you have 50 black and 50 red. In Urn 2, you have 100 balls black and red. You
get paid $10 for black ball.

Option 2 In Urn 1, you have 50 black and 50 red. In Urn 2, you have 100 balls black and red. You
get paid $10 for red ball.
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4.3.2 MaxMin Approaches (Wald)

f is a policy, maps states S to outcomes x saying that

f ≥ g ⇐⇒ min
s∈S

f(s) ≥ min
s∈S

g(s)

Here we assume there is no probabilistic information at all.

4.3.3 MinMax Regret (Savage)

Regret associated with states
r(s, g) = max

f∈F
[f(x)]− g(s)

The Max regret is
max
s∈S

r(g) = max
s∈S
{max
f∈F

[f(s)]− g(s)}

You should choose a g to minimize the max regret.

min
g∈F

max
s∈S
{max
f∈F

[f(s)− g(s)]}

4.3.4 MaxMin Expected Utility (Gilboa and Schmildler)

1. Complete transitive ordering

2. Continuity: For every f, g, h ∈ F , if f > g > h then

∃α, β ∈ (0, 1) s.t. αf + (1− α)h > g > βf + (1− β)h

3. For every f, g, f(s) ≥ g(s),∀s ∈ S =⇒ f ≥ g.

4. Independence :For every f, g, every constant h ∈ F , ∀α ∈ (0, 1), f ≥ g ⇐⇒ αf + (1 − α)h ≥
αg + (1− α)h.

5. Uncertainty Aversion: ∀f, g ∈ F,∀α ∈ (0, 1), f ∼ g =⇒ αf + (1− α)g ≥ f ∼ g.

Preference satisfies assumptions if and only there exists closed convex sex of probabilities C and a
non-constant function u : X → R such that

min
p∈C

∫
u(f(S))dp(s) ≥ min

p∈C

∫
S
u(g(s))dp(s)

4.3.5 Smooth Ambiguity Aversion

Multiple probability distributions given arise naturally from different models of economy, stock market,
etc. Pi is distribution over states, i = 1, · · · , I. Each Pi comes from model Mi,

1. ∃u : X → R such that

f ≥ g ⇐⇒
∫
S
u(f(s))dPi ≥

∫
S
u(g(s))dPi

2. ∃ weights π(p) ≥ 0,
∫
P π(P ) = 1, a function φo : R→ R such that

f ≥ g ⇐⇒
∫
P
π(P )φ(EP (f))dπ ≥

∫
P
π(P )φ(Epg)dπ
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4.3.6 Ellsberg Paradox

2 Urns 100 balls each. 1 is 50 red and 50 yellow. 2 is 100 red and yellow. $10 if you select red. Urn 1:
0.5× 10 + 0.5× 0 = $5. Urn 2: Pn = probability of choosing red of n = # of red in urn 2 = n

100 .

πn = second order probability that # of red = n

u(x) = linear, u(x) = x

φ(x)linear, φ(x) = x

Value of bet on 2 is
100∑
n=0

πnpn10 =
100∑
n=0

πn
n

10
=

100∑
n=0

1

101

n

10
= 5

πn is uniform, i.e. πn = 1
100 ,∀n.

If the Ambiguity Aversion φ(x) =
√
x, then the bet over urn 2 is

100∑
n=0

πnφ(
n

10
) =

100∑
n=0

1

101
φ(
n

10
) =

1

101

100∑
n=0

√
n

10
= 2.1

The certainty equivalent is 4.4.

4.4 Models

A model mi is a map from policies f ∈ F to probability distributions over outcomes Pi(x|mi). Expected
utility of policy f contingent on model mi is E[u(f |mi)] =

∫
u(x)dPi(x|mi). πi is the estimate of

likelihood that mi is the right model. Choose f to maximize∑
i

πiφ(E[u(f |mi)])

Assume that the policy f is in R. Maximize with respect to f .∑
i

πiφ
′(E[u(f |mi)])E[u′(f |mi)] = 0

π′i =
πiφ
′(E[u(f |mi)])∑

j πjφ
′(E[u(f |mj)])

, π′i ∈ [0, 1]

If φ is linear, then π′i = πi.
Dividing FOC by denominators of π′i∑

i

π′iE[u′(f |mi)] = 0

Expectation of marginal expected utility must be zero.

4.4.1 Problem

University endowment: 2 advisors X and Y . They give different forecasts of movements of bonds B
and equity E. The table is in the notes. Allocate fraction e to equities and (1− e) to bonds. Expected
utility according to X,

x11u(1.1ew+1.1(1−e)w)+x12u(0.9ew+1.1(1−e)w)+x21u(1.1ew+0.9(1−e)w)+x22u(0.9ew+0.9(1−e)w)

To simplify, we get
EU = k + x12u(w(1.1− 0.2e)) + x21u(w(0.9 + 0.2e))
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We need to maximize with respect choice of e.

∂EU

∂e
= 0.2{x21u

′(c21)− x12u
′(c12)}

in general we need solve the following

max
e
{πxφ(E[Ux(e)) + πyφ(EUy(e))}

πxφ
′(EUx)E[u′x(e)] + πyφ

′(EUy)E[u′y(e)] = 0

Define the following

π′x =
πxφ

′(E[ux])

πxφ′(E[ux]) + πyφ′(E[uy])

Then the FOC is just
π′xE[u′x(e)] + π′yE[u′y(e)] = 0

Expected marginal utility is zero.

5 General Equilibrium

Firm i has a production possibility set Yi ⊂ RN , yi ∈ Yi production plan. (inputs are negative and
outputs are positive). Price vector p ∈ RN and profit is p ·yi. In addition, let’s only look at the relative
price so the price vector is normalized (i.e.

∑n
i=1 pi = 1). Firm’s objective is

max
yi∈Yi

p · yi

Consumers: consumption vector xj ∈ Xj . xj ⊂ RN+ consumption set. The utility function is

uf : RN → R

Consumers have endowments wj ∈ RN . They can also own shares in firms θji the fraction of the firm
i owned by consumer j. Budget constraint is

p · xj ≤ p · wj +
∑
i

θjiπi

maxuj(xj) s.t. pxj ≤ pwj +
∑
i

θijπi

Allocation: x∗j , j = 1, · · · , I is an allocation, feasible if∑
j

x∗j ≤
∑
j

wj +
∑
i

y∗i , yi, xj ∈ RN

∑
j

x∗ji ≤
∑
j

wj +
∑
i

y∗i

Pareto Efficient: An allocation x∗j , j = 1, · · · , J , y∗i , i = 1, · · · , I is Pareto efficient if it is feasible.
if there is no other feasible allocation x̂j , such that uj(x̂i) ≥ uj(x∗j ),∀j,∃k, such that uk(x̂k) > uk(x

∗
k).

Everyone is at least as well off as at x∗j sand someone is better off.
Pareto Superior: (x∗j , y

∗
i ) is Pareto superior to (x̂j , ŷi) if uj(x

∗
j ) ≥ uj(x̂j),∀j and there exists k such

that uk(x
∗
k) > uk(x̂k)

Competitive Equilibrium: price vector ∗, set of production plans y∗i and consumption vector x∗j such
that

• ∀i, y∗i maximizes p∗ · yi, yi ∈ Yi

• ∀j, x∗j maximizes uj(xj) such that p∗ · xj ≤ p∗ · wj +
∑

i θijπi

•
∑

i x
∗
j ≤

∑
j wj +

∑
i y
∗
i
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5.1 Edgewood Box

2 consumers a, b. Two goods, 1, 2. No firms. Under exchange economy, total endowment good i, wi,

wi = wai + wbi , i = 1, 2

Individual a has wa1 , wa2 and b has wb1 , wb2

Any point in the box represents a division of w1 and w2 between a, b.
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The graph above, it shows that A sells DE of 1 and buys AD of 2; B buys EG of good 1 and sells
EF of 2. Here we can notice that demand does not match the supply.

We can easily see that all competitive equilibrium are Pareto efficient.

Proposition 14. If preferences are monotone, then any competitive equilibrium (p∗, x∗j , y
∗
i ) is Pareto

Efficient.

Proof. 1. uj(xj) > uj(x
∗
j ) =⇒ p∗ · xj > p∗ · x∗j (utility maximization)

2. uj(xj) ≥ uj(x∗j ) =⇒ p∗ · xj ≥ p∗ · x∗j (non-satiation)

3. (x′j , y
′
i) be Pareto superior to (x∗j , y

∗
i )

From 1) and 2), p∗ · x′j ≥ p∗ · x∗j , ∀j and p∗ · x′j > p∗x∗j , for some j. Add up∑
j

p∗ · x′j >
∑
j

x∗j =
∑
j

p∗wj +
∑
i

p∗y∗i

4. Firms maximizes profits at y∗i
p∗ · y′i ≤ p∗ · y∗i ,∀i

p∗
∑
i

y′i ≤ p∗
∑
i

y∗i

∑
j

p∗ · x′k >
∑
j

p∗ · wj +
∑
i

p∗ · y∗i ≥
∑
j

p∗wj +
∑
i

p∗ · y′i

p∗
∑
j

x′j > p∗
∑

wj + p∗
∑
i

y′i
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∑
j

x′j ≤
∑
j

wj +
∑
i

y′i feasible

This contradicts.

5.2 Existence of Competitive Equilibrium

Z(p) =
∑
j

xj(p)−
∑
j

wj −
∑
i

yi(p)

where xj(p) is the utility maximization choice at price p and yi(p) is profit maximization at prices p.
Z(p) is the excess demand function. We have an equilibrium if Z(p) = 0. Is there a p∗ such that
Z(p∗) ≤ 0? Look at Z(p) map from prices to RN where

∑
n pn = 1, pn ≥ 0,∀n. And p ∈ Simplex SN

and Z(p) : SN → RN
Define Z+(p) where Z+

ρ (p) = max{Zρ(p), 0}. Note:

Z+(p) · Z(p) =
∑
ρ

max{Zρ, 0}Zρ = 0 =⇒ Z(p) ≤ 0

Let the following

a(p) =
∑
ρ

[pρ + Z+
ρ (p)] ∈ R

Raising the price of goods for which demand is bigger the supply (Zρ(p) > 0). Let’s define

f(p) =
1

a(p)
[p+ Z+(p)]

f(p) : SN → SN

There exists p∗ such that f(p∗) = p∗. Then

0 = p∗ · Z(p∗) = f(p∗) · Z(p∗)

=
1

a(p∗)
[p∗ + Z+(p∗)] · Z(p∗)

=
1

a(p∗)
[p∗ · Z(p∗) + Z+(p∗) · Z(p∗)]

=
1

a(p∗)
Z+(p)∗Z(p∗)

Here p ·Z(p) is the value of demand minus the value of endowments minus the profits. It equals to
the sum of all individuals’ budget constraints. With non-satiation

Z(p∗) = 0

otherwise it is less than equal to 0.

5.3 Public Goods (Private Goods)

Non-excludable and non-rival goods. People who benefit from a public good but don’t pay for it are
“free rider”. Non-rival means one person’s consumption does not influence others’. Public good has
both non-excludable and non-rival properties.
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5.3.1 Efficient Provision of Public Goods

Public good either provided or not [0, 1] choice. Two people i, i = 1, 2. Private good, xi is i’s consump-
tion of private good.

xi + gi = wi

where xi = spending on private on, wi = wealth and gi is contribution to the cost of the public good.
The rule for provision g1 + g2 > cost. = c, it is provided and g1 + g2 < c, not provided.

Utility =

{
ui(1, wi − gi) g1 + g2 > c

ui(0, wi) g1 + g2 < c

When is the first Pareto superior to the second?
True if there are g1, g2 such that g1 + g2 > c and ui(1, wi − gi) > ui(0, wi), i = 1, 2.
Willingness-to-pay for public good (WTP) is defined as ri such that (maximum it would make sense

to pay)
ui(1, wi − ri) = ui(0, wi)

u1(1, w1 − g1) > u1(0, w1) = u1(1, w1 − r1)

u2(1, w2 − g2) > u2(0, w2) = u2(1, w2 − r2)

Then w1−g1. > w1−r1 and w2−g2 > w2−r2. Also we know that g1 < r1, g2 < r2 so r1+r2 > g1+g2 > c.
It is efficient to provide public good if and only if r1 + r2 > c, i.e., if sum of WTP’s exceeds costs.

Proof. Suppose r1 + r2 > c and choose gi such that gi < ri and g1 + g2 > c and

u1(1, w1 − g1) > u1(0, w1), u1(1, w1 − r1) = u1(0, w1)

5.4 Game Theory

5.4.1 Prisoner’s Dilemma

The Nash equilibrium is the confess/confess case but the silent/silent can be the best outcome. This
means that individually rational outcome is not Pareto efficient.

5.4.2 Nash Equilibrium

Players i, i = 1, · · · , I. Chooses a strategy si ∈ Si such that Si is the set of possible strategies.

S−i = (S1, S2, · · · , Si−1, Si+1, Si+2, · · · , SI)

(S∗i ), i = 1, · · · , I

forms a Nash Equilibrium if ∀i, S∗i maxsi∈Si ui(Si, S
∗
−i)

Reaction function fi(s−i) is a person i’s best response to the list of moves S−i by others.

(S∗1 , · · · , S∗I )

such that f∗i (S∗−i) = S∗i
Suppose there are two people, i = 1, 2. Public good, cost is c. Each person offers o1 or o2 towards

cost. Good is provided if o1 + o2 > c. r1 + r2 > c. People will offer oi < ri. (0 ≤ oi ≤ ri). Suppose
person 1 offers o1 < .c. Choose o2 = c− o1, then good is provided. The option is u2(1, w2− (c− o1)) >
u2(0, r2) = u2(0, w2).
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5.4.3 The General Case

Proposition 15. Suppose that the consumption vectors x∗j minimize the weighted utility sum
∑

j αjUj(xj),∑
j xj ∈ (

∑
i Yi +

∑
j wj) where αj ≥ 0. Then x∗j are Pareto efficient.

Proof. Suppose not. There exists x′j feasible Pareto Superior, i.e. uj(x
′
j) ≥ uj(x

∗
j ),∀j and for some j:

uj(x
′
j) > uj(x

∗
j ). Therefore ∑

j

αjuj(x
′
j) >

∑
j

αjuj(x
∗
j )

contradicts assumption αj = 1, ∀j.

cj is j’s consumption of private good. wj is j’s endowment. gf is what j pays to provision public
good. cj + gj = wj and g = amount of public good and g = f(

∑
j gj).

How much will j offer for the public good? Pick cj , gj to maximize u(cj , g) such that cj + gj = wj
and g = f(

∑
j gj). First order condition:

∂uj/∂g

∂uj/∂cj
=

1

f ′

It shows the ratio of the marginal utility of the public good and marginal utility of private good. Above
is the necessary and sufficient condition for Pareto efficient.

Efficiency: max
∑

j αjuj(cj , g) such that g = f(
∑

j gj),
∑

f cf =
∑

j wj −
∑

j gj . If maximize the
weighted sum utility, then Pareto efficient.

α =
∑

uj(cj , g), λ(
∑

wj −
∑

gj −
∑

cj)

From first order condition we get ∑ ∂u/∂g

∂uj/∂cj
=

1

f ′

. Therefore, Nash equilibrium level of provision of public good is inefficient as ∂uj/∂cj <
∑

j ∂uj/∂cj .
Therefore, gNE < gPE .

For firm, revenue is g
∑

j pj . Then π = f(z)
∑

j pj−z where z is the input to public good. g = f(z),

f ′
∑

j pj = 1 and
∑

j pj = 1
f ′ . Therefore,

∑
j
∂uj/∂g
∂uj/∂cj

= 1
f ′ .

Market for public good, but with potential different price for all buyers (price discrimination). Each
person pays pj for each unit of public good.

maxuj(cj , g)

such that wj = cj + gpj . The FOC is just
∂uj/∂g
∂uj/∂cj

= pj
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