Enumeration

September-12-11
1:36 PM

Geometric Series Expansion

$Q=1+z+z^{2}+z^{3}+\cdots$
$z Q=z+z^{2}+z^{3}+z^{4}+\cdots$
$Q-z Q=1$
$\therefore Q=\frac{1}{1-z}=1+z+z^{2}+z^{3}+\cdots$

Example
Let a_{n} be the number of subset of $\{1,2, \ldots, n\}$ that don't contain two consecutive numbers. Determine for all $n \geq 0$

n	subsets	a_{n}
0	\emptyset	1
1	$\emptyset,\{1\}$	2
2	$\emptyset,\{1\},\{2\}$	3
3	$\emptyset,\{1\},\{2\},\{3\},\{1,3\}$	5

Let A_{n} be the collection of all such subsets of $\{1,2, \ldots, n\}$
Let B_{n} be the collection of these sets $S \in A_{n}$ for which $n \in S$
Then $A_{n}=A_{n-1} \cup B_{n}$ is a disjoint union of subsets.
So $a_{n}=\left|A_{n}\right|=\left|A_{n-1}\right|+\left|B_{n}\right|$
The set B_{n} is in bijection with A_{n-2}
$S \in B_{n}$ corresponds to $S \backslash\{n\}$
$\left\{T \in A_{n-2}\right.$ corresponds to $T \cup\{n\} \in B_{n}$
Hence $\left|B_{n}\right|=\left|A_{n-2}\right|=a_{n-2}$
Hence $a_{n}=a_{n-1}+a_{n-2}$ for $n \geq 2$
Fibonacci Numbers
$f_{0}=1, f_{1}=1, f_{n}=f_{n-1}+f_{n-2}$ for $n \geq 2$
So for us, $a_{n}=f_{n+1}$ for $n \geq 0$
Get a formula for f_{n} as a function of n.
Generating Function
$F=F(x)=\sum_{n=0}^{\infty} f_{n} x^{n}$
From the initial conditions and the recurrence we get the following:
$F=f_{0}+f_{1} x+f_{2} x^{2}+f_{3} x^{3}+\cdots$
$=1+x+\sum_{n=2}^{\infty}\left(f_{n-1}+f_{n-2}\right) x^{n}$
$=1+x+\sum_{n=2}^{n=2} f_{n-1} x^{n}+\sum_{n=2}^{\infty} f_{n-2} x^{n}$
$=1+x+\sum_{i=1}^{\infty} f_{i} x^{i+1}+\sum_{j=0}^{\infty} f_{j} x^{j+2}$
$=1+x+x(F-1)+x^{2}(F)$
Hence
$F=1+x F+x^{2} F$
$F(x)=\sum_{n=2}^{\infty} f_{n} x^{n}=\frac{1}{1-x-x^{2}}$
Now get expression for individual terms
$1-x-x^{2}=(1-\alpha x)(1-\beta x)$
$x=\frac{1}{t} \Rightarrow t^{2}-t-1=(t-\alpha)(t-\beta)$
$\alpha, \beta=\frac{1 \pm \sqrt{1-4 \times 1 \times(-1)}}{2}=\frac{(1 \pm \sqrt{5})}{2}$
By partial fractions $\exists A, B \in \mathbb{C}$ such that
$\frac{1}{1-x-x^{2}}=\frac{A}{1-\alpha x}+\frac{B}{1-\beta x}$

$$
\begin{aligned}
& \sum_{n=0}^{\infty} f_{n} x^{n}=\frac{A}{1-\alpha x}+\frac{B}{1-\beta x}=A \sum_{n=0}^{\infty} \alpha^{n} x^{n}+B \sum_{n=0}^{\infty} \beta^{n} x^{n}=\sum_{n=0}^{\infty}\left(A \alpha^{n}+B \beta^{n}\right) x^{n} \\
& \text { So } \\
& f_{n}=A \alpha^{n}+B \beta^{n} \forall n \geq 0
\end{aligned}
$$

Initial Conditions
$f_{0}=1=A+B$
$f_{1}=1=A\left(\frac{1+\sqrt{5}}{2}\right)+B\left(\frac{(1-\sqrt{5})}{2}\right)$
Solve for A, B

$$
\begin{aligned}
& f_{1}=1=\frac{A+B}{2}+\frac{(A-B) \sqrt{5}}{2} \\
& 2=(1+\sqrt{5}) A+(1-\sqrt{5}) B \\
& B=1-A \\
& 2=(1+\sqrt{5}) A+(1-\sqrt{5})(1-A)=A+\sqrt{5} A+1-\sqrt{5}-A+\sqrt{5} A=1-\sqrt{5}+2 \sqrt{5} A=2 \\
& A=\frac{\sqrt{5}+1}{2 \sqrt{5}} \\
& B=1-A=\frac{2 \sqrt{5}-1-\sqrt{5}}{2 \sqrt{5}}=\frac{\sqrt{5}-1}{2 \sqrt{5}} \\
& f_{n}=\left(\frac{\sqrt{5}+1}{2 \sqrt{5}}\right)\left(\frac{1+\sqrt{5}}{2}\right)^{n}+\left(\frac{\sqrt{5}-1}{2 \sqrt{5}}\right)\left(\frac{1-\sqrt{5}}{2}\right)^{n}
\end{aligned}
$$

Generating Functions

September-14-11
1:28 PM
$H=H(x)=\sum_{n=0}^{\infty} h_{n} x^{n}=\frac{1+x+3 x^{2}}{1-3 x^{2}-2 x^{3}}$
Generating Function to Recurrence Relation
Convention: $h_{n}=0$ if $n<0$
Clear denominators
$\left(1-3 x^{2}-2 x^{3}\right) \sum_{n=-\infty}^{\infty} h_{n} x^{n}=1+x+3 x^{2}$
$\sum_{n} h_{n} x^{n}-3 \sum_{n} h_{n} x^{n+2}-2 \sum_{n} h_{n} x^{n+3}=\sum_{n} h_{n} x^{n}-3 \sum_{n} h_{n-2} x^{n}-2 \sum_{n} h_{n-3} x^{n}$
$=>\left(h_{n}-3 h_{n-2}-h_{n-3}\right) x^{n}=1+x+3 x^{2}$
$n=0 \quad h_{0}-3 h_{-2}-2 h_{-3}=1 \Rightarrow h_{0}=1$
$n=1 \quad h_{1}=1$
$n=2 \quad h_{2}-3 h_{0}=3=3 \Rightarrow h_{2}=6$
For all $n \geq 3, h_{n}-3 h_{n-2}-2 h_{n-3}=0$
Hence
$h_{0}=1, h_{1}=1, h_{2}=6$
For $n \geq 3$: $h_{n}=3 h_{n-2}+h_{n-3}$
Recurrence Relation to Generating Function
$h_{0}=1, h_{1}=1, h_{2}=6$
$h_{n}=3 h_{n-2}+2 h_{n-3}$
$h_{n}=0$ if $n<0$
$H=H(x)=\sum_{n} h_{n} x^{n}$
$1+x+6 x^{2}+\sum_{n=3}^{\infty}\left(3 h_{n-2}+2 h_{n-3}\right) x^{n}=1+x+6 x^{2}+\sum_{n=3}^{\infty} 3 h_{n-2} x^{n}+\sum_{n=3}^{\infty} 2 h_{n-2} x^{n}$
$=1+x+6 x^{2}+\sum_{i=1}^{\infty} 3 h_{i} x^{i+2}+\sum_{j=0}^{\infty} 2 h_{j} x^{j+3}$
$H=1+x+6 x^{2}+3 x^{2}(H-1)+2 x^{3} H$
$H(x)=\frac{1+x+3 x^{2}}{1-3 x^{2}-2 x^{3}}$
Generating Function to Coefficient Formula
Works only when $H(x)=\frac{P(x)}{Q(x)}$ with $\operatorname{deg} P<\operatorname{deg} Q$
Uses partial fraction expansion.

Factor the denominator, identifying inverse roots.
$1-3 x^{2}-2 x^{3}=(1-\alpha x)(1-\beta x)(1-\gamma x), \quad \alpha, \beta, \gamma \in \mathbb{C}$
$t^{3}-3 t-2=(t-\alpha)(t-\beta)(t-\gamma), \quad$ where $t=\frac{1}{x}$
$=(t+1)\left(t^{2}-t-2\right)=(t+1)^{2}(t-2)$
Since $\operatorname{deg}\left(1+x+3 x^{2}\right)<\operatorname{deg}\left(1-3 x^{2}-2 x^{3}\right) \exists A, B, C \in \mathbb{C}$:
$\frac{1+x+3 x^{2}}{1-3 x^{2}-2 x^{3}}=\frac{A}{1-2 x}+\frac{B}{1+x}+\frac{C}{(1+x)^{2}}$
$1+x+3 x^{2}=A(1+x)^{2}+B(1-2 x)(1+x)+c(1-2 x)$
$x=0: 1=A+B+C$
$x=-1: 3=0+0+3 C \Rightarrow C=1$
$x=\frac{1}{2}: \frac{9}{4}=\frac{9}{4} A+0+0 \Rightarrow A=1, B=-1$
$\frac{1+x+3 x^{2}}{1-3 x^{2}-2 x^{3}}=\frac{1}{1-2 x}-\frac{1}{1+x}+\frac{1}{(1+x)^{2}}$
Aside
$\frac{1}{(1-z)^{2}}=\frac{1}{1-z} \times \frac{1}{1-z}=\left(\sum_{i=0}^{\infty} z^{i}\right)\left(\sum_{i=0}^{\infty} z^{i}\right)=\sum_{i=0}^{\infty}\left(\sum_{j=0}^{\infty} z^{i+j}\right)=\sum_{n=0}^{\infty}(\underset{\substack{i+j=n \\ i \geq 0, j \geq 0}}{ } 1) z^{n}$
$=\sum_{n=0}^{\infty}\left(\sum_{i=0}^{n} 1\right) z^{n}=\sum_{n=0}^{\infty}(n+1) z^{n}$
$\frac{1}{(1+x)^{2}}=\sum_{n=0}^{\infty}(n+1)(-x)^{n}$
$H=\sum_{n=0}^{\infty} 2^{n} x^{n}-\sum_{n=0}^{\infty}(-1)^{n} x^{n}+\sum_{n=0}^{\infty}(n+1)(-1)^{n} x^{n}=\sum_{n=0}^{\infty}\left(2^{n}+n(-1)^{n}\right) x^{n}$
Thus

$$
h_{n}=2^{n}+n(-1)^{n} \forall n \geq 0
$$

Higher Powers
$\left.\left.\left.\frac{1}{(1-z)^{3}}=\right\rangle_{i=0}^{\infty}\right\rangle_{j=0}^{\infty}\right\rangle_{k=0}^{\infty} z^{i+j+k}$
The coefficient is the number of solutions (i, j, k) to the equation $i+j+k$ where $i \geq 0, j \geq 0, k \geq$ $0 \in \mathbb{Z}$

Partial Fractions

September-16-11
1:31 PM
Partial Fractions
$Q(x)=| |_{i}\left(1-\alpha_{i}\right)^{k_{i}}$
$P(x)$ has degree $\leq\rangle_{i} . k_{i}$
$\left.\frac{P(x)}{Q(x)}=\right\rangle_{i} \sum_{j=1}^{k_{i}} \frac{A_{i j}{ }^{i}\left(1-\alpha_{i}\right)^{j}}{}$
Generating Function
$\frac{1}{(1-x)^{t}}=>_{n=0}^{\infty}\binom{n+t-1}{t-1} x^{n}$
Multisets
Intuitively: sets with repeated elements t "types" of element
each type can occur any number of times.
size of multiset = total \# of occurrences of elements.
For each type of element $1 \leq i \leq t$ let m_{i} be the number of times that element of type i occurs in the multiset.

The size of the multiset is $m_{1}+m_{2}+\cdots+m_{t}$, where m is the multiplicity for element i
So the coefficient of $x^{3} \operatorname{in} \frac{1}{(1-x)^{3}}$ is
$\left|x^{3}\right| \frac{1}{(1-x)^{3}}=10$
We can regard a multiset of size n with elements of t types as its sequence of multiplicities.
$\left(m_{1}, m_{2}, \ldots, m_{t}\right) \in \mathbb{N}^{t}$ with $m_{1}+m_{2}+\cdots+m_{t}=n$
Fact
There are
$\binom{n}{k}=\frac{n!}{k!(n-k)!}$
k -element subsets of $\{1,2, \ldots, n\}$

Proposition

For $n \geq 0$ and $t \geq 1$ there are $\binom{n+t-1}{t-1}$ multisets of size n with elements of t types.

Partial Fractions Example

$\alpha, \beta, \gamma \in \mathbb{C}$ distinct non - zero
$Q(x)=(1-\alpha x)(1-\beta x)^{2}(1-\gamma x)^{3}$
$P(x)$ has degree ≤ 5
By partial fractions
$\exists A, B, C, D, E, F \in \mathbb{C}$ such that
$\frac{P(x)}{Q(x)}=\frac{A}{1-\alpha x}+\frac{B}{1-\beta x}+\frac{C}{(1-\beta x)^{2}}+\frac{D}{1-\gamma x}+\frac{E}{(1-\gamma x)^{2}}+\frac{F}{(1-\gamma x)^{3}}$

General Problem

$\frac{1}{(1-x)^{t}}$ as a power series in x .
$t=1: \frac{1}{1-x}=>_{i=0}^{\infty} x^{i}$
$t=2: \frac{1}{(1-x)^{2}}=>_{n=0}^{\infty}(n+1) x^{n}$
$\left.\left.\left.\frac{1}{(1-x)^{t}}=\left(\frac{1}{1-x}\right)^{t}=(\rangle_{m=0}^{\infty} x^{m}\right)^{t}=\left.\right|_{i=1} ^{t}\left|\left(\sum_{m_{i}=0}^{\infty}, x^{m_{i}}\right)=\right\rangle_{m_{1}}^{\infty}.\right\rangle_{m_{2}}^{\infty}, \cdots\right\rangle_{m_{t}}^{\infty} x^{m_{1}+m_{2}+\cdots+m_{t}}$
$=\quad>. \quad x^{m_{1}+m_{2}+\cdots+m_{t}}$
$\left(m_{1}, m_{2}, \ldots, m_{t}\right) \in \mathbb{N}^{t}$
$\left.\frac{1}{(1-x)^{t}}=\right\rangle_{n=0}^{\infty}\left(\underset{\substack{\left(m_{1}, m_{2}, \cdots, m_{t}\right) \in \mathbb{N}^{t} \\ m_{1}+m_{2}+\cdots+m_{t}=n}}{>} 1\right) x^{n}$
The coefficient of x^{n} in $\frac{1}{(1-x)^{t}}$ is the number of n-tuples $\left(m_{1}, m_{2}, \ldots, m_{t}\right) \in \mathbb{N}^{t}$ such that $\Sigma_{i=1}^{t} m_{i}=n$

Example of multisets

Multiset of size 3 with 3 types of elements: A, B, C
For each type of element $1 \leq i \leq t$ let m_{i} be the number of times that element of type I occurs in the multiset.

Multiset	$\boldsymbol{m}_{1}, \boldsymbol{m}_{2}, \boldsymbol{m}_{3}$
A,A,A	$3,0,0$
A,A,B	$2,1,0$
A,A,C	$2,0,1$
A,B,B	$1,2,0$
A,B,C	$1,1,1$
A,C,C	$1,0,2$
B,B,B	$0,3,0$
B,B,C	$0,2,1$
B,C,C	$0,1,2$
C,C,C	$0,0,3$

Proof of Proposition

Establish a bijection between the set of t-type multisets of size n and the set of $(t-1)$-element subsets of $\{1,2, \ldots, n+t-1\}$

Informally

Write a sequence of $n+t-1$ spaces.
Example: $n=7, t=4$
Cross out $t-1$ of those spaces. Count empty spaces between/around the X's
__ $X_{-} \mathrm{X}_{--} \mathrm{X}_{\text {-- }}$
This creates 4 groups with a total of 7 elements.
(2,1,2,2)
Formally
Let B be the set of $(t-1)$-element subsets of $\{1,2, \ldots, n+t-1\}$
Let A be the set of t-type multisets of size n .
$f: B \rightarrow A$
Input $S=\left\{s_{1}<s_{2}<\cdots<s_{t-1}\right\}$
Let $m_{1}=s_{1}-1, m_{i}=s_{i}-s_{i-1}-1$ for $2 \leq i \leq t-1$
$m_{t}=n+t-1-s_{t-1}$
Output ($m_{1}, m_{2}, \ldots, m_{t}$)
$g: A \rightarrow B$
Input $\left(m_{1}, m_{2}, \ldots, m_{t}\right) \in A$
For $1 \leq i \leq t-1$ let $s_{i}=m_{1}+m_{2}+\cdots+m_{i}+i$
Output $\left\{s_{1}, s_{2}, \ldots, s_{t-1}\right\}$
Check

* for all $\mu \in A$: $f(g(\mu))=\mu$
* for all $S \in B: g(f(S))=S$

Back to General Problem
We've seen that for all $t \geq 1$
$\frac{1}{(1-x)^{t}}=\sum_{n=0}^{\infty} \cdot\binom{n+t-1}{t-1} x^{n}$
Coefficient is a polynomial in n of degree $t-1$

$$
\begin{aligned}
& \frac{A}{1-\alpha x}+\frac{B}{1-\beta x}+\frac{C}{(1-\beta x)^{2}}+\frac{D}{(1-\beta x)^{3}} \\
& \left.\left.\left.=A\rangle_{(n=0)}^{\infty} \alpha^{n} x^{n}+B\right\rangle_{n=0}^{\infty} \beta^{n} x^{n}+C\right\rangle_{(n=0)}^{\sum_{n}}\binom{n+1}{1} \beta^{n} x^{n}+D\right\rangle_{n=0}^{\infty}\binom{n+2}{2} \beta^{n} x^{n} \\
& =\rangle_{n=0}^{\infty}\left(A a^{n}+\left(B c_{0}+C c_{1}+D c_{2}\right) \beta^{n}\right) x^{n} \\
& c_{i}=\binom{n+i}{i} \text { is a polynomial of degree } \leq i
\end{aligned}
$$

Binary Strings

September-19-11
1:30 PM

Binary Strings

$\{0,1\}^{*}$ is the set of all finite strings of 0 s and 1 s $\sigma=b_{1} b_{2} \ldots b_{n}$ with each $b_{i} \in\{0,1\}$ is a word
$\mathcal{L} \subseteq\{0,1\}^{*}$ is a language

Length

The length of a word $\sigma \in\{0,1\}^{*}$ is the number of letters in it, $l(\sigma)$

Language Generating Function

Generating Function of a language \mathcal{L} is
$L(x)=\sum_{\sigma \in \mathcal{L}} x^{l(\sigma)}=\sum_{n=0}^{\infty}\left(\sum_{\substack{\sigma \in \mathbb{L} \\ l(\sigma)=n}} 1\right) x^{n}$
For every $n \in \mathbb{N}$: the coefficient of x^{n} in $L(x)$ is the number of words in \mathcal{L} of length n.

Constructing Languages

Union
$A \cup B=\left\{\sigma \in\{0,1\}^{*}: \sigma \in A\right.$ or $\left.\sigma \in B\right\}$
Concatenations
$A B=\{\alpha \beta: \alpha \in A$ and $\beta \in B\}$
is the concatenation of A and B

Unambiguous Concatenation
The concatenation $A B$ is unambiguous if each word AB is constructed exactly once in the form $\sigma=\alpha \beta$ with $\alpha \in A, \beta \in B$.
That is, $A B$ is in bijection with $A \times B$

Iteration
If A is a language then A^{*} is the iteration of A, consisting of all words $\sigma=\alpha_{1} \alpha_{2} \ldots \alpha_{k}$ for some $k \in \mathbb{N}$, with $\alpha_{i} \in A$ for each $1 \leq i \leq k$

Ex: $\{0,1\}^{*}$ is an instance of iteration

Unambiguous Iteration
A^{*} is unambiguous if every word $\sigma \in A^{*}$ can be written as $\sigma=\alpha_{1} \alpha_{2} \ldots \alpha_{k}$ for a unique value of $k \in \mathbb{N}$ and $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k} \in A$.

Sum Lemma

If $A, B \subseteq\{0,1\}^{*}$ and $A \cap B=\emptyset$ then the generating function for $A \cup B=A(x)+B(x)$

Product Lemma

For $A, B \subseteq\{0,1\}^{*}$, if AB is unambiguous then the generating function for AB is $A(x) B(x)$

Iteration lemma

If $A \subseteq\{0,1\}^{*}$ and A^{*} is unambiguous, then the generating function for A^{*} is $\frac{1}{1-A(x)}$.

A game

- Player wagers n dollars
- Player flips a fair coin n times
- If Player hits a run of 3 (or more) heads, he wins $\$ 10$
- Otherwise he loses the wager (\$n)

1st question: What is the smallest value of n for which this is profitable for Player?
2nd question: Suppose House pays the player $w(n)$ dollars when Player hits HHH. What function $w(n)$ makes the game completely fair?

Example, n=3
Expected profit of Player is
$\frac{7 \times(-3)+1 \times(10)}{8}=-\frac{11}{8}$
$\mathrm{n}=4$
2^{4} outcomes
3 outcomes have ≥ 3 heads
Expected profit
$\frac{13 \times(-4)+3 \times(10)}{16}=-\frac{22}{16}=-\frac{11}{8}$
Let g_{n} be the number of binary strings of length n which do not contain 000 as a substring. $G \subseteq\{0,1\}^{*}$ is the set of all binary strings that don't contain 000 as a substring.

Proof of Sum Lemma

$$
\sum_{\sigma \in A \cup B} x^{l(\sigma)}=\sum_{\sigma \in A} x^{l(\sigma)}+\sum_{\sigma \in B} x^{l(\sigma)}=A(x)+B(x)
$$

Proof of Product Lemma

$\sum_{\sigma \in A B} x^{l(\sigma)}=\sum_{\alpha \in A} \sum_{\beta \in B} x^{l(\alpha)+l(\beta)}=\left(\sum_{\alpha \in A} x^{l(\alpha)}\right)\left(\sum_{\beta \in B} x^{l(\beta)}\right)=A(x) B(x)$

Proof of Iteration Lemma

Generating function for A^{*} is
$\sum_{\sigma \in A^{*}} x^{l(\sigma)}=\sum_{k=0}^{\infty} \sum_{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k} \in A^{k}} x^{l\left(\alpha_{1} \alpha_{2} \ldots \alpha_{k}\right)}=\sum_{(k=0)}^{\infty} \sum_{\alpha_{1} \in A} \sum_{\alpha_{2} \in A} \ldots \sum_{\alpha_{k} \in A} x^{l\left(\alpha_{1}\right)+l\left(\alpha_{2}\right)+\cdots+l\left(\alpha_{k}\right)}$
$=\sum_{k=0}^{\infty}\left(\sum_{\alpha \in A} x^{l(\alpha)}\right)^{k}=\sum_{k=0}^{\infty} A(x)^{k}=\frac{1}{1-A(k)}$

Language Expressions

September-21-11
1:32 PM

Rational Languages

- $\varnothing,\{0\},\{1\}$ are rational languages.
- If A, B are rational then so are $A \cup B, A B, A^{*}$

Regular Expression

Any expression involving $\{0\},\{1\}, \varnothing, \cup, \cdot{ }^{*}$ * that is well-formed. Every regular expression determines a rational language.

Unambiguous
Every string can be constructed in exactly one way

Theorem

Every rational language has an unambiguous regular expression.

Proof: Take a graduate CS course

Notation
$(0 \cup 1)^{*}$ instead of $(\{0\} \cup\{1\})^{*}$
$\epsilon=()$-string of length 0
$\emptyset=\{ \}$ - null set

Block

A block in a binary string $\sigma=b_{1} b_{2} \ldots b_{n}$ is a substring of consecutive equal letters that is maximal w.r.t length.

Note:
Maximal, not maximum
Blocks are always non-empty
Block Decompositions
$0^{*}\left(1^{*} 10^{*} 0\right)^{*} 1^{*}$ and $1^{*}\left(0^{*} 01^{*} 1\right)^{*} 0^{*}$ are block decompositions for the set of all binary strings. Block decompositions always unambiguous.

Examples of regular expressions

$\{0,1\}^{*}=(\{0\} \cup\{1\})^{*}$ is an unambiguous regular expression.
The generating function of $\{0\} \cup\{1\}$ is $2 x^{1}$
By iteration:
$\{0,1\}^{*}$ has generating function $\frac{1}{1-2 x}=\sum_{n=0}^{\infty} 2^{n} x^{n}$
$0^{*} 0$ is $\{0\}^{*}\{0\}=\{0,00,000,0000, \ldots\}$
has generating function
$=\frac{x}{1-x}=\frac{1}{1-x} \times x$

Blocks

Want to split a binary string into blocks. Can have a block of 1 s followed by a block of 0 s , all repeated.

Regular expression:
block of 0 s : $0^{*} 0$
block of 1s: 1*1
Block of 1 s followed by block of 0 s : (1*1)(0*0)
Therefore, the regular expression $\left(1^{*} 10^{*} 0\right)^{*}$ allows constructing of any string that does not start with 0 or end with 1

Claim: $0^{*}\left(1^{*} 10^{*} 0\right) * 1^{*}$ produces all strings unambiguously
Generating function:
$0^{*}, 1^{*} \rightarrow \frac{1}{1-x}$
$0^{*} 01^{*} 1 \rightarrow\left(\frac{x}{1-x}\right)^{2}$
$0^{*}\left(1^{*} 10^{*} 0\right) 1^{*}=\frac{1}{1-x} \cdot \frac{1}{1-\left(\frac{x}{1-x}\right)^{2}} \cdot \frac{1}{1-x}=\frac{1}{(1-x)^{2}-x^{2}}=\frac{1}{1-2 x}$

Coin Flipping Game

Let $G \subseteq\{0,1\}^{*}$ be the set of binary strings that don't contain 000 as a substring.
$(\epsilon \cup 0 \cup 00)\left(1^{*} 1(0 \cup 00)\right)^{*} 1^{*}$
A block decomposition for G
Generating function:
$\left(1+x+x^{2}\right) \cdot \frac{1}{1-\left(\frac{1}{1-x} \cdot\left(x+x^{2}\right)\right)} \cdot \frac{1}{1-x}=\frac{1+x+x^{2}}{1-x-x^{2}-x^{3}}=\sum_{n=0}^{\infty} g_{n} x^{n}$
Now use partial fractions to get a formula for g_{n}
$g_{0}=1$
$g_{1}-g_{0}=1 \Rightarrow g_{1}=2$
$g_{2}-g_{1}-g_{0}=1 \Rightarrow g_{2}=4$
$g_{n}=g_{n-1}+g_{n-2}+g_{n-3}$

Fair Game

- Player wages $\$ n$ to flip n coins
- If no HHH , then player loses $\$ n$
- If there is some HHH player wins R_{n} dollars

Chose R_{n} so that the game is fair - expected value is 0
$G \subseteq\{H, T\}^{*}$, strings that do not contain HHH
g_{n} : number of strings of length n in G
Block decomposition:
$T^{*}\left((H \cup H H) T^{*} T\right)^{*}(\varepsilon \cup H \cup H H)$
$G(x)=\sum_{n=0}^{\infty} g_{n} x^{n}=\frac{1+x+x^{2}}{1-x-x^{2}-x^{3}}$
Expected value of coin-flipping game, wagering \$n

$$
\begin{aligned}
& 0=\frac{1}{2^{n}}\left(\left(2^{n}-g_{n}\right) R_{n}+g_{n}(-n)\right) \\
& n g_{n}=\left(2^{n}-g_{n}\right) R_{n} \\
& R_{n}=\frac{n g_{n}}{2^{n}-g_{n}} \\
& 1-x-x^{2}-x^{3}=(1-\alpha x)(1-\beta x)(1-\gamma x) \\
& \alpha, \beta \approx-0.4196 \pm 0.6063 i \\
& \gamma \approx 1.839 \\
& \text { By partial fractions } \\
& g_{n}=A \alpha^{n}+B \beta^{n}+C \gamma^{n}, \text { for constants } A, B, C \\
& \text { Since }|\alpha|,|\beta|<|\gamma|<2 \\
& \frac{g_{n}}{2^{n}} \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

$$
R_{n}=n \frac{g_{n}}{2_{n}}\left(\frac{1}{1-\frac{g_{n}}{2_{n}}}\right) \rightarrow 0 \text { as } n \rightarrow \infty
$$

Since $\frac{n g_{n}}{2^{n}} \rightarrow 0$ as $n \rightarrow \infty$ l'Hopital's Rule
Fair reward for n coin flips is
$R_{n}=\frac{n g_{n}}{2^{n}-g_{n}} \rightarrow 0$

2-Variable Generating Function

Example

What is the expected number of blocks among all binary strings of length n ?
For each string, two pieces of information: the length $l(\sigma)$ and the \# of blocks $b(\sigma)$
Use Two-Variable generating function
$B(x, y)=\sum_{\sigma \in\{0,1\}^{*}} x^{l(\sigma)} y^{b(\sigma)}$
Block decomposition of $\{0,1\}^{*}: 0^{*}\left(1^{*} 10^{*} 0\right) 1^{*}$
$0^{*} 0$ and $1^{*} 1$ produce blocks of 0 s or 1 s respectively
$0^{*}=\varepsilon \cup 0^{*} 0$
$1^{*}=\varepsilon \cup 1^{*} 1$
Blocks of 0 s $0 * 0=\{0,00,000, \ldots\}$

$$
\rightarrow\left(x+x^{2}+x^{3}+\cdots\right) y=\frac{x y}{1-x}
$$

Blocks of $1 \mathrm{~s} 1^{*} 1=\{1,11,111, \ldots\}$

$$
\rightarrow \frac{x y}{1-x} \text { similarly }
$$

$0^{*} \rightarrow x^{0} y^{0}+\frac{x y}{1-x}=1+\frac{x y}{1-x}=\frac{1+x(y-1)}{1-x}$
$1^{*} \rightarrow$ same

From the block decomposition,
$B(x, y)=\left(1+\frac{x y}{1-x}\right)^{2}\left(\frac{1}{1-\left(\frac{x y}{1-x}\right)^{2}}\right)=\frac{(1-x+x y)^{2}}{(1-x)^{2}-(x y)^{2}}=\frac{1-x+x y}{1-x-x y}$
$B(x, 1)=\sum_{\sigma \in\{0,1\}^{*}} x^{l(\sigma)} 1^{b(\sigma)}=\sum_{\sigma \in\{0,1\}^{*}} x^{l(\sigma)}=\frac{1}{1-2 x}$
$\left.\frac{\delta}{\delta y} B(x, y)\right|_{y=1}=\left.\sum_{\sigma \in\{0,1\}^{*}} x^{l(\sigma)} b(\sigma) y^{b(\sigma)-1}\right|_{y=1}=\sum_{\sigma \in\{0,1\}^{*}} x^{l(\sigma)} b(\sigma)=\sum_{n=0}^{\infty}\left(\sum_{\substack{\sigma \in\{0,1\}^{*} \\ l(\sigma)=n}} b(\sigma)\right) x^{n}$
For every $n \in \mathbb{N}$, the total number of blocks among all binary string of length n is
$\left.\left|x^{n}\right| \frac{\delta}{\delta y} B(x, y)\right|_{y=1}$
$\left.\frac{\delta}{\delta y}\left(\frac{1-x+x y}{1-x-x y}\right)\right|_{y=1}=\left.\left(\frac{x}{1-x-x y}+\frac{(1-x+x y)(-1)(-x)}{(1-x-x y)^{2}}\right)\right|_{y=1}=\frac{x(1-2 x)+x}{(1-2 x)^{2}}=\frac{2 x-2 x^{2}}{(1-2 x)^{2}}$
$=\frac{2 x}{(1-2 x)^{2}}-\frac{2 x^{2}}{(1-2 x)^{2}}$
$\left.=2 \sum_{n=0}^{\infty}\binom{n+1}{1} 2^{n} x^{n+1}-2\right\rangle_{n=0}^{\infty}\binom{n+1}{1} 2^{n} x^{n+2}=0 x^{0}+2 x^{1}=\sum_{k=2}^{\infty}\left(k 2^{k}-(k-1) 2^{k-1}\right)$
So for $\mathrm{n} \geq 2$ the total \# of blocks among all binary strings of length n is $n 2^{n}-(n-1) 2^{n-1}=$ $(n+1) 2^{n-1}$
So the average \# of blocks per binary string of length n is
$\frac{(n+1) 2^{n-1}}{2^{n}}=\frac{n+1}{2}$
Alternate Method
Number of blocks, for string of length n
$b_{1} b_{2} b_{3} \ldots b_{n}$
First bit gives 2 possible blocks, every successive bit either is the same block or ads another block.
$\sum_{\sigma \in\{0,1\}^{n}} x^{b(\sigma)}=2 x(1+x)(1+x) \ldots(1+x)=2 x(1+x)^{n-1}$
$\left.\frac{d}{d x} 2 x(1+x)^{n-1}\right|_{x=1}=\left.2(1+x)^{n-1}\right|_{x=1}+\left.2 x(n-1)(x+1)^{n-2}\right|_{x=1}=2^{n}+2^{n-1}=(n+1) 2^{n-1}$
So average $b(\sigma)$ among all $2^{n} \sigma \in\{0,1\}^{n}$ is $\frac{n+1}{2}$
Similarly, for strings $\sigma \in\{1,2, \ldots, k\}^{n}$
$\sum_{\sigma \in\{1,2, \ldots, k\}} x^{b(\sigma)}=k x(1+(k-1) x)^{n-1}$
Average \# of blocks among all $\sigma=\{1,2, \ldots, k\}^{n}$ is
$\left.\frac{1}{k^{n}} \frac{d}{d x} k x(1+(k-1) x)^{n-1}\right|_{x=1}$

Context-Free Grammars

September-26-11
1:32 PM

Proposition

If $\mathcal{L} \subseteq\{0,1\}^{*}$ is a rational language, then
$L(x)=\sum_{\sigma \in \mathcal{L}} x^{l(\sigma)}$
is a rational function (quotient of two polynomials).
Context Free Grammars
Initial symbol I
Production rules
Binomial Series Expansion
For an $\alpha \in \mathbb{C}$
$(1+z)^{\alpha}=\sum_{n=0}^{\infty}\binom{\alpha}{n} z^{n}$
Where $\binom{\alpha}{n}=\frac{\alpha(\alpha-1) \ldots(\alpha-n+1)}{n!}$
Proof
Taylor series expansion of $(1+x)^{\alpha}$. Coefficient of x^{n} is $\left.\frac{1}{n!} \frac{d^{n}}{d x^{n}}(1+x)^{\alpha}\right|_{x=0}=\frac{1}{n!} \alpha(\alpha-1) \ldots(\alpha-n+1)=\binom{\alpha}{n}$

Proofoid of Proposition

$\mathcal{L}=A \cup B$ or $\mathcal{L}=A B$ or $\mathcal{L}=A^{*}$
By induction, $A(x), B(x)$ are rational functions. Each operation takes rational functions to rational functions, so $\mathcal{L}(x)$ is rational too.

Converse is false

$M=\{\varepsilon, 01,0011,000111, \ldots\}=\left\{0^{k} 1^{k}: k \in \mathbb{N}\right\}$
M is a set of binary strings with generating function $M(x)=\frac{1}{1-x^{2}}$ a rational function. But M is not a rational language.

Context Free Grammar Example

Initial symbol I
Production rule $I \rightarrow \epsilon \cup 0 I 1$
Terminal symbols 0,1
Replace I by either ϵ or OI1
Keep doing that until only terminal symbols remain
$\mathrm{I} \rightarrow 0 \mathrm{I} 1 \rightarrow 00 \mathrm{I} 11 \rightarrow 000 \mathrm{I} 111 \rightarrow$
$\epsilon \quad 010011000111$
Let $\mathcal{D} \in\{0,1\}^{*}$ be generated by the CFG:
$I \rightarrow \epsilon \cup 0 I 1 I$
$\epsilon, 01,0011,0101,010011,000111,001101, \ldots$
Equivalently replace 0 by (and 1 by)
$I \rightarrow \epsilon \cup$ (I)I
This generates all well-formed parenthesizations.
Let $D(x)=\rangle_{\sigma \in \mathcal{D}} x^{l(\sigma)}$
The CFG I $\rightarrow \in$ U0I1I implies that
$0 \rightarrow \mathrm{x}, \mathrm{I} \rightarrow D(x) 1 \rightarrow \mathrm{x}, \mathrm{I} \rightarrow D(x)$
$D(x)=1+x^{2}(D(x))^{2}$
$D=1+x^{2} D^{2}$
$0=x^{2} D^{2}-D+1$
$D=\frac{1 \pm \sqrt{1-4 x^{2}}}{2 x^{2}}$
How to expand $\sqrt{1-4 x^{2}}$ as a power series in x ?
$\sqrt{1-4 x^{2}}=\left(1-4 x^{2}\right)^{\frac{1}{2}}=\sum_{n=0}^{\infty}\left(\frac{1}{2}\right)(-4)^{n} x^{2 n}$
$n=0:\binom{\frac{1}{2}}{0}(-4)^{0}=1$
$n \geq 1$:
$\left(\frac{1}{2}\right)(-4)^{n}=\frac{\left(\frac{1}{2}\right)\left(\frac{1}{2}-1\right)\left(\frac{1}{2}-2\right) \ldots\left(\frac{1}{2}-n+1\right)}{n!}(-1)^{n} 2^{n} 2^{n}$
$=\frac{(1)(-1)(-3)(-5) \ldots(-2 n+3)}{n!}(-1)^{n} 2^{n}=-\frac{1 \times 3 \times 5 \times \cdots \times(2 n-3)}{n!} 2^{n} \times \frac{n!}{n!}$
$=-\frac{(1 \times 3 \times 5 \times \cdots \times(2 n-3)) \times(2 \times 4 \times 6 \times \cdots \times(2 n))}{n!n!}=\frac{(-2 n)(2 n-2)!}{n!n!}=-\frac{2}{n}\binom{2 n-2}{n-1}$
In summary
$\sqrt{1-4 x^{2}}=1-2 \sum_{n=1}^{\infty} \frac{1}{n}\binom{2 n-2}{n-1} x^{2 n}$
Take -ve sign in $D(x)$ to get nonnegative results
$D(x)=\frac{1}{2 x^{2}}\left(1-\left(1-2 \sum_{n=1}^{\infty} \frac{1}{n}\binom{2 n-2}{n-1} x^{2 n}\right)\right)=\sum_{n=1}^{\infty} \frac{1}{n}\binom{2 n-2}{n-1} x^{2 n-2}=\sum_{n=0}^{\infty} \frac{1}{n+1}\binom{2 n}{n} x^{2 n}$
Thus for all $n \in \mathbb{N}$ the number of well-formed parenthesizations with n '(' and n ')' is
$\frac{1}{n+1}\binom{2 n}{n}$

Paths

September-28-11
1:30 PM

Binomial Series
$(1+x)^{\alpha}=\sum_{n=0}^{\infty}\binom{\alpha}{n} x^{n}$
for any $\alpha \in \stackrel{n=0}{\mathbb{C}}$
$\binom{\alpha}{n}=\frac{\alpha(\alpha-1) \ldots(\alpha-n+1)}{n!}$

Special Cases

1.

$\alpha=d$ a positive integer
$\binom{d}{n}=0$ if $n>d$
So $(1+x)^{d}=\sum_{n=0}^{d}\binom{d}{n} x^{n}$
2.
$\alpha=-t$ a negative integer
$\frac{1}{(1-x)^{t}}=\sum_{m=0}^{\infty}\binom{m+t-1}{t-1} x^{m}$
Check that (exercise)
$(-1)^{m}\binom{-t}{m}=\binom{m+t-1}{t-1}$
Catalan Numbers
$\frac{1}{n+1}\binom{2 n}{n}$

Lattice Path

A path on the grid which can only move N or E .
There are $\binom{a+b}{b}=\binom{a+b}{a}$ lattice paths
from $(0,0)$ to (a, b)

Dyck Path

A lattice path which always stays above the $x=y$ line .
There are $\frac{1}{n+1}\binom{2 n}{n}$ Dyck paths from $(0,0)$ to (n, n)

Catalan Numbers

$\frac{1}{n+1}\binom{2 n}{n}$
is the formula for the Catalan numbers. e.g. the number of well-formed parenthesizations.
(() (O) ()) ()
Interpret as a lattice path
$(\rightarrow N:(x, y) \rightarrow(x, y+1)$
$) \rightarrow E:(x, y) \rightarrow(x+1, y)$
Start at $(0,0)$ and end at (n, n)
So the set of all well-formed parenthesizations is equivalent to the number of lattice paths from $(0,0)$ to (n, n) that stays above the $x=y$ line.
This is a Dyck Path.

Second Proof of \# of Dyck Paths
Consider $\mathcal{L}(n, n)$ the set of all lattice paths from $(0,0)$ to (n, n)
Let \mathcal{D}_{n} be the Dyck paths from $(0,0)$ to (n, n)
let \mathcal{G}_{n} be the others.
So $\mathcal{L}(n, n)=\mathcal{D}_{n} \cup \mathcal{G}_{n}$ is a disjoint union
$|\mathcal{L}(n, n)|=\binom{2 n}{n}$
We need only count $\left|\mathcal{G}_{n}\right|$ and subtract.
Consider any lattice path
$P: s_{1} s_{2} \ldots s_{2 n}$ in \mathcal{G}_{n}
Since $P \notin \mathcal{D}_{n}$ there is a first E step at which P goes below the diagonal $x=y$. Call it s_{b} for some $1 \leq b \leq 2 n$

Construct the path
$P^{*}: t_{1} t_{2} \ldots t_{2 n}$
s_{i} if $1 \leq i \leq b$
$t_{i}=\left\{\begin{array}{l}N \text { if } s_{i}=E \text { and } b+1 \leq 1 \leq 2 n \\ E \text { if } s_{i}=N \text { and } b+1 \leq 1 \leq 2 n\end{array}\right.$
Claim: P^{*} is a lattice path from $(0,0)$ to $(\mathrm{n}+1, \mathrm{n}-1)$
Conversely, every lattice path $Q: p_{1} p_{2} \ldots p_{2 n}$ from $(0,0)$ to $(\mathrm{n}+1, \mathrm{n}-1)$ has a first E step p_{j} that goes below the diagonal $\mathrm{x}=\mathrm{y}$. Reverse the procedure $Q \rightarrow Q^{*} \operatorname{Result} Q^{*}$ is in \mathcal{G}_{n} (exercise)

We have a bijection $\mathcal{G}_{n} \leftrightharpoons \mathcal{L}(n+1, n-1)$ hence $\left|\mathcal{G}_{n}\right|=|\mathcal{L}(n+1, n-1)|=\binom{2 n}{n-1}$
Hence finally
$\left|\mathcal{D}_{n}\right|=\binom{2 n}{n}-\binom{2 n}{n-1}=\frac{(2 n)!}{n!n!}-\frac{(2 n)!}{(n+1)!(n-1)!}=\binom{2 n}{n}-\frac{n}{n+1}\binom{2 n}{n}=\frac{1}{n+1}\binom{2 n}{n}$
Analogously, lattice paths from $(0,0)$ to (a, b) where $0 \leq a \leq b$ that stay on or above the line $x=y$ How many such paths are there?
There are $\binom{a+b}{b}$ lattice paths from $(0,0)$ to (a, b)
Consider such a lattice path P that does go below the line $x=y . P: s_{1} s_{2}, \ldots, s_{a+b}$
Let s_{i} be the first step at which P goes below the diagonal
Let $N=E$ and $E=N$ and $p^{*}: s_{1} \ldots s_{i} s_{i+1}, s_{i+2} \ldots s_{a+b}$
p^{*} ends at ($\mathrm{b}+1, \mathrm{a}-1$), strictly below $x=y$ since $a \leq b$
This is a bijection between bad lattice paths to (a, b) and all lattice paths to $(b+1, a-1)$
Hence the number of good lattice paths to (a, b) is $\binom{a+b}{b}-\binom{a+b}{b+1}$
Where $a=b$ equal formula for dyck path

Ternary Strings

September-30-11
1:47 PM

Example

Enumerate strings in $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}^{*}$ that don't contain aa as a substring
Look at block decomposition for binary string
$0^{*}\left(1^{*} 10^{*} 0\right)^{*} 1^{*}$
Interpret 0 as a, 1 as $b \cup c$
$a^{*}\left((b \cup c)^{*}(b \cup c) a^{*} a\right)^{*}(b \cup c)^{*}$
Is a regular expression for $\{a, b, c\}^{*}$ that produces as block by block.
Just need to modify this to avoid substring aa
$(\epsilon \cup a)\left((b \cup c)^{*}(b \cup c) a\right)^{*}(b \cup c)$
$\sum_{\sigma \in S} x^{l(\sigma)}=(1+x)\left(\frac{1}{1-\left(\frac{1}{1-2 x}\right)(2 x)(x)}\right)\left(\frac{1}{1-2 x}\right)=\frac{1+x}{1-2 x-2 x^{2}} \rightarrow$ partial fractions
or
$c_{n}-2 c_{n-1}-2 c_{n-2}= \begin{cases}1, & n=0 \\ 1, & n=1 \\ 0, & n \geq 2\end{cases}$
$c_{0}=1$
$c_{1}-2 c_{0}=1 \Rightarrow c_{1}=3$
$c_{n}=2 c_{n-1}+2 c_{n-2}$

n	0	1	2	3	4	5
c_{n}	1	3	8	22	60	164

Example

Enumerate strings in $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}^{*}$ with no two consecutive equal letters, \mathcal{D}
Low tech solution
$c_{0}=1$
$c_{1}=3$
$c_{n}=2 c_{n-1}=3 \times 2^{n-1}$ for $n \geq 1$
$\sum_{n=0}^{\infty} c_{n} x^{n}=1+3 \sum_{n=1}^{\infty} 2^{n-1} x^{n}=1+\frac{3 x}{1-2 x}=\frac{1+x}{1-2 x}$
More information
Keep track of \#a, \#b, \#c in string
$m_{a}(\sigma)=\#$ of a's in string σ
Similarly for m_{b}, m_{c}
$D(x, y, z)=\sum_{\sigma \in \mathcal{D}} x^{m_{a}(\sigma)} y^{m_{b}(\sigma)} z^{m_{c}(\sigma)}=\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} c_{i, j, k} x^{i} y^{j} z^{k}$
Consider any string $\sigma \in\{a, b, c\}$. "Squish" each block into a single letter.
E.g. $\sigma=$ bbcccaccbbbaaa $\operatorname{squish}(\sigma)=B C A C B A \in \mathcal{D}$

The set of words $\sigma \in\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}^{*}$ that get squished onto $\alpha \in \mathcal{D}$ is obtained by regarding A as a block of a's $A=a^{*} a, B=b * b, C=c^{*} c$
$(a \cup b \cup c)^{*}$ is a regular expression for $\{a, b, c\}^{*}$
$\frac{1}{1-(x+y+z)}=\sum_{\sigma \in\{a, b, c\}^{*}} x^{m_{a}(\sigma)} y^{m_{b}(\sigma)} z^{m_{c}(\sigma)}=\sum_{\alpha \in \mathcal{D}}\left(\sum_{\sigma \in \text { squish }^{-1}(\alpha)} x^{m_{a}(\sigma)} y^{m_{b}(\sigma)} z^{m_{c}(\sigma)}\right)$
$=\sum_{\alpha \in \mathcal{D}}\left(\frac{x}{1-x}\right)^{m_{A}(\alpha)}\left(\frac{y}{1-y}\right)^{m_{B}(\alpha)}\left(\frac{z}{1-z}\right)^{m_{C}(\alpha)}=D\left(\frac{x}{1-x}, \frac{y}{1-y}, \frac{z}{1-z}\right)$
Change variables
$X=\frac{x}{1-x}, Y=\frac{y}{1-y}, Z=\frac{z}{1-z}$
$X-x X=x \Rightarrow X=x+x X=x(1+X) \Rightarrow x=\frac{X}{1+X}$
$D(X, Y, Z)=\frac{1}{1-\left(\frac{X}{1+X}+\frac{Y}{1+Y}+\frac{Z}{1+Z}\right)}$
A quotient of polynomials in $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$
More generally for strings $\mathcal{D} \subseteq\{1,2, \ldots, b\}^{*}$ with no two consecutive equal letters
$\frac{1}{1-\left(x_{1}+x_{2}+\cdots+x_{b}\right)}=D\left(\frac{x_{1}}{1-x_{1}}, \frac{x_{2}}{1-x_{2}}, \ldots, \frac{x_{b}}{1-x_{b}}\right)$
$D\left(x_{1}, x_{2}, \ldots, x_{b}\right)=\left|1-\sum_{i=1}^{b} \frac{x_{i}}{1+x_{i}}\right|^{-1}$

n -ary Strings

October-03-11
1:33 PM

Example

Among all 2^{n} binary strings of length n, what is the average number of times that 011 occurs as a substring.

Block decomposition:
$1^{*}\left(0^{*} 01^{*} 1\right) 0^{*}$ is almost ideal, $1^{*}\left(0^{*} 01 \mathrm{u} 0^{*}(011) 1^{*}\right)^{*} 0^{*}$
$l(\sigma)$ length of sigma, $r(\sigma)$ number of 011 in σ
$G(x, y)=\sum_{\sigma \in\{0,1\}^{*}} x^{l(\sigma)} y^{r(\sigma)}=\left(\frac{1}{1-x}\right)\left(\frac{1}{1-\left(\frac{x^{2}}{1-x}+\frac{x^{3}}{(1-x)^{2}} y\right)}\right)\left(\frac{1}{1-x}\right)$
$=\left((1-x)^{2}-x^{2}(1-x)-x^{3} y\right)^{-1}=\left(1-2 x+x^{2}-x^{2}+x^{3}-x^{3} y\right)^{-1}=\frac{1}{1-2 x+x^{3}(1-y)}$
Sum of $r(\sigma)$ over all $\sigma \in\{0,1\}^{*}$ in
$\left.\left\lfloor x^{n}\right\rfloor \frac{\delta}{\delta y} G(x, y)\right|_{y=1}=\frac{(-1)\left(-x^{3}\right)}{(1-2 x)^{3}}=\frac{x^{3}}{(1-2 x)^{2}}=x^{3} \sum_{n=0}^{\infty}\binom{n+1}{1} 2^{n} x^{n}=\sum_{n=0}^{\infty}(n+1) 2^{n} x^{n+3}$
$=\sum_{n=3}^{\infty}(n-2) 2^{n-3} x^{n}$
Average \# of occurrences of 011 among all $\sigma \in\{0,1\}^{n}$ is
$\left\{\begin{array}{c}\frac{(n-2) 2^{n-3}}{2^{n}}=\frac{n-2}{8}, \quad n \geq 3 \\ 0, \quad 0 \leq n \leq 2\end{array}\right.$

Block Patterns for b-ary strings

$\mathcal{D} \subseteq\{1,2, \ldots, b\}^{*}$ strings with no two consecutive equal letters.
$x_{1}, x_{2}, \ldots, x_{b}$ variables
$m_{i}(\sigma)$ is the \# of times letter i occurs in σ
Notation: $x^{\sigma}=x_{1}^{m_{1}(\sigma)} x_{2}^{m_{2}(\sigma)} \ldots x_{b}^{m_{b}(\sigma)}$
$D\left(x_{1}, \ldots, x_{b}\right)=\sum_{\sigma \in \mathcal{D}} x^{\sigma}=\left(1-\sum_{i=1}^{b} \frac{x_{i}}{1+x_{i}}\right)^{-1}$
Proof:
squish: $\{1, \ldots, b\}^{*} \rightarrow \mathcal{D}$ by replacing each block of i's by a single i
For $\alpha \in \mathcal{D}$, the $\sigma \in\{1,2, \ldots, b\}^{*}$ that gets squished to α are obtained from α by replacing i by $i^{*} i$ for all $1 \leq i \leq b$ generating function for $i^{*} i$ is $\frac{x_{i}}{1-x_{i}}$
So
$\frac{1}{1-\left(x_{1}+x_{2}+\cdots+x_{b}\right)}=D\left(\frac{x_{1}}{1-x_{1}}, \frac{x_{2}}{1-x_{2}}, \ldots, \frac{x_{b}}{1-x_{b}}\right)$
Invert the variables $y_{i}=\frac{x_{i}}{1-x_{i}}$ iff $x_{i}=\frac{y_{i}}{1+y_{i}}$
So $D\left(y_{1}, y_{2}, \ldots, y_{b}\right)=\left(1-\sum_{i=1}^{b} \frac{y_{i}}{1+y_{i}}\right)^{-1}$
Strings in \mathcal{D} are block patterns. x_{i} in \mathcal{D} marks either

- A single i in $\alpha \in \mathcal{D}$
- A block of $i^{\prime} s$ in $\sigma \in\{1,2, \ldots, b\}^{*}$

Example

What is the generating function for S, strings $\sigma \in\{1,2,3\}^{*}$ such that

- Blocks of 1s have odd length
- Blocks of 2s have length ≤ 2
- Blocks of 3 s have length ≥ 2
$D\left(y_{1}, y_{2}, y_{3}\right)$ where y_{1} marks a block of is
(11)* $1 \Rightarrow y_{1}=\frac{x_{1}}{1-x_{1}^{2}}$
(2u22) $\Rightarrow y_{2}=x_{2}+x_{2}^{2}$
$3^{*} 33 \Rightarrow y_{3}=\frac{x_{3}^{2}}{1-x_{3}}$
$S\left(x_{1}, x_{2}, x_{3}\right)=D\left(y_{1}, y_{2}, y_{3}\right)=\left(1-\frac{x_{1}}{1-x_{1}^{2}}-\left(x_{2}+x_{2}^{2}\right)-\frac{x_{3}^{2}}{1-x_{3}}\right)^{-1}=\sum_{\sigma \in S} x^{\sigma}$
If we only want the length of each $\sigma \in S$ e.g. $x_{1}=x_{2}=x_{3}=t$
$S(t, t, t)=\sum_{\sigma \in S} t^{l(\sigma)}=\left(1-\frac{t}{(1-t)^{2}}-t(1+t)-\frac{t^{2}}{1-t}\right)=\frac{1-t^{2}}{1-2 t-3 t^{2}+t^{4}}$
$s_{n}-2 s_{n-1}-3 s_{n-2}+s_{n-4}=\left\{\begin{array}{cc}1, & n=0 \\ 0, & n=1 \\ -1, & n=2 \\ 0, & n \geq 3\end{array}\right.$
Keep going and get a recurrence relation.

Example

a_{n} crossings n steps from home on a rectangular grid (n is minimum distance)
$a_{0}=1$
$a_{1}=4$
$a_{2}=8$
$a_{n}= \begin{cases}1, & n=0 \\ 4 n, & n \geq 1\end{cases}$
$\sum_{n=0}^{\infty} a_{n} x^{n}=1+4 \frac{x}{(1-x)^{2}}$
a_{n} crossings n steps from home on a triangular grid (n is minimum distance)
$a_{0}=1$
$a_{1}=6$
$a_{2}=12$
$a_{n}=\left\{\begin{array}{l}1, \quad n=0\end{array}\right.$
$\sum_{n=0}^{\infty} a_{n} x^{n}=1+6 \frac{x}{(1-x)^{2}}$
Tile the plan with squares, 5 at a point.

Tessellations

October-05-11
2:03 PM

Regular Tessellations of the Plane
Let $k \geq 3$ and $d \geq 3$. Divide the plane into non-overlapping k-gons such that they meet along edges. At each corner d edges meet.

Question

Fix a "home vertex" v_{0} in the $k=4, d=5$ regular tessellation of the (hyperbolic) plane. How many vertices are at distance exactly n from v_{0} ? Call it a_{n}

n	0	1	2	3	4
a_{n}	1	5	15		

At distance 2 there are 2 kinds of vertices.

- Some have 1 neighbour at distance 1
- Some have 2 neighbours at distance 1

Showed geometrically can't have ≥ 3 neighbours closer to base
Let b_{n} be the number of vertices at distance n from the base, with 1 earlier neighbour Let c_{n} be the number of vertices at distance n from the base, with 2 earlier neighbours
For $n \geq 1, a_{n}=b_{n}+c_{n}$
$n \geq 1:\left\{\begin{array}{c}b_{n+1}=2 b_{n}+c_{n} \\ c_{n+1}=a_{n}=b_{n}+c_{n}\end{array}\right.$
$a_{0}=1$
$b_{1}=5, c_{1}=0$
Let $\left.\left.A(x)=\rangle_{\substack{n=0 \\ \infty}}^{\infty} a_{n} x^{n}, B(x)=\right\rangle_{n=1}^{\infty} b_{n} x^{n}, C(x)=\right\rangle_{n=1}^{\infty} c_{n} x^{n}$
$A(x)=1+>\left(b_{n}+c_{n}\right) x^{n}=1+B(x)+C(x)$
$B(x)=\sum_{n=1}^{\infty} b_{n}^{n=1} x^{n}=5 x+\sum_{n=2}^{\infty}\left(2 b_{n-1}+c_{n-1}\right) x^{n}=5 x+x \sum_{j=1}^{\infty}\left(2 b_{j}+c_{j}\right) x^{j}$
$=5 x+x(2 B(x)+C(x))$
$C(x)=\rangle_{n=1}^{\infty} c_{n} x^{n}=x(B(x)+C(x))$
$A=1+B+C$
$B=5 x+2 x B+x C$
$C=x B+x C$
Solve...
$C=\frac{5 x^{2}}{1-3 x+x^{2}}$
$B=\frac{5 x-5 x^{2}}{1-3 x+x^{2}}$
$A=\frac{1+2 x+x^{2}}{1-3 x+x^{2}}=1+\frac{5 x}{1-3 x+x^{2}}$
$1-3 x+x^{2}=(1-\alpha x)(1-\beta x)$
$\alpha, \beta=\frac{3 \pm \sqrt{5}}{2}$
$5 x=A(1-\beta x)+B(1-\alpha x)=(A+B)-(A \beta+B \alpha) x$
$A+B=0$
$A \beta+B \alpha=-5$
$A(\beta-\alpha)=-5 \Rightarrow A=\frac{5}{\alpha-\beta}, B=-\frac{5}{\alpha-\beta}$
$\alpha-\beta=\frac{3+\sqrt{5}}{2}-\frac{3-\sqrt{5}}{2}=\sqrt{5}$
$A=\sqrt{5}, B=-\sqrt{5}$
$A(x)=1+\frac{\sqrt{5}}{1-\alpha x}-\frac{\sqrt{5}}{1-\beta x}$
$\left.A(x)=1+\sqrt{5}\rangle_{n=0}^{\infty} \cdot\left(\frac{(3+\sqrt{5})}{2}\right)^{n} x^{n}-\sqrt{5}\right\rangle_{n=0}^{\infty} \cdot\left(\frac{3-\sqrt{5}}{2}\right)^{n} x^{n}$
$=1+\sum_{n=0}^{\infty}\left|\sqrt{5}\left(\frac{3+\sqrt{5}}{2}\right)^{n}=\sqrt{5}\left(\frac{3-\sqrt{5}}{2}\right)^{n}\right|^{n=0} x^{n}$
So for $n \geq 1$ the number of vertices in the $k=4, d=5$ hyperbolic tessellation at distance n from the base is
$a_{n}=\sqrt{5}\left(\frac{3+\sqrt{5}}{2}\right)^{n}=\sqrt{5}\left(\frac{3-\sqrt{5}}{2}\right)^{n} \Rightarrow$ Integer closest to $\sqrt{5}\left(\frac{3+\sqrt{5}}{2}\right)^{n}$

Example
$\mathrm{k}=5, \mathrm{~d}=4$
Four kinds of vertices in the $\mathrm{k}=5 \mathrm{~d}=4$ case

- Base vertex
- One nbr closer to base, not on an equality (connects to same \#) edge : p
- Two nbrs closer to base : q
- One nbr closer to base, is on an equality edge. : r
$p(x)=\rangle_{n=1}^{\infty} p_{n} x^{n}$ etc.
$p_{1}=4, q_{1}=r_{1}=0$
$p_{2}=4, q_{2}=0, r_{2}=8$
$q_{n+2}=r_{n}$

More Tessellations
October-12-11
1:31 PM

Matrix Method

5 'types' of object $0, A, B, C, D$ and some succession rules.

Initial population: $\{0\}$
$0 \rightarrow 4 A$
$A \rightarrow A, 2 B$
$B \rightarrow B, C$
$C \rightarrow A, B, \frac{1}{2} D$
$D \rightarrow 2 B$
$P_{0}=\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right]$
$M=\left[\begin{array}{lllll}0 & 0 & 0 & 0 & 0 \\ 4 & 1 & 0 & 1 & 0 \\ 0 & 2 & 1 & 1 & 2 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{2} & 0\end{array}\right]$
$P_{n}=M^{n} P_{0}$
$\mathrm{k}=5, \mathrm{~d}=4$
Vertex Types
0 : Origin
A: 1 neighbour closer to origin,
2 pentagons have apexes (unique vertex closest to origin) at this neighbour
B: 1 neighbour closer to origin, 1 neighbour at same distance
C : 1 neighbour closer to origin, that neighbour is of type B
D: 2 neighbours closer to origin
Descendants:
$0 \rightarrow\{4 A\}$
$A \rightarrow\{A, 2 B\}$
$B \rightarrow\{B, C\}$
$C \rightarrow\left\{A, B, \frac{1}{2} D\right\}$
$D \rightarrow\{2 B\}$
$K(x)=\sum_{n=0}^{\infty} k_{n} x^{n}$ where there are k_{n} vertices of type k at distance n from the origin
$O(x)=1$
For $\mathrm{n} \geq 0$
$a_{n+1}=4 o_{n}+a_{n}+c_{n}$
$A(x)=\sum_{n=0}^{\infty} a_{n+1} x^{n+1}=\sum_{n=0}^{\infty}\left(4 o_{n}+a_{n}+c_{n}\right) x^{n+1}=x\lfloor 4 O(x)+A(x)+C(x)\rfloor$
$b_{n+1}=2 a_{n}+b_{n}+c_{n}+2 d_{n}$
$B(x)=x[2 A(x)+B(x)+C(x)+2 D(x)]$
$C(x)=x\lfloor B(x)\rfloor$
$D(x)=x\left|\frac{1}{2} C(x)\right|$
Solve:
$A=x(4+A+C)$
$B=x(2 A+B+C+2 D)$
$C=x B$
$D=\frac{1}{2} x C$
$A=4 x+x A+x^{2} B$
$B=2 x A+x B+x^{2} B+x^{3} B$
$(1-x) A=4 x+x^{2} B$
$2 x A=\left(1-x-x^{2}-x^{3}\right) B$
$A=\frac{1-x-x^{2}-x^{3}}{2 x} B$
$\frac{(1-x)\left(1-x-x^{2}-x^{3}\right)}{2 x} B=4 x+x^{2} B$
$\left(1-2 x+x^{4}\right) B=8 x^{2}+2 x^{3} B$
$\left(1-2 x-2 x^{3}+x^{4}\right) B=8 x^{2}$
$B=\frac{8 x^{2}}{1-2 x-2 x^{3}+x^{4}}$
$A=\frac{\left(1-x-x^{2}-x^{3}\right) 4 x}{1-2 x-2 x^{3}+x^{4}}$
$C=\frac{8 x^{3}}{1-2 x-2 x^{3}+x^{4}}$
$D=\frac{4 x^{4}}{1-2 x-2 x^{3}+x^{4}}$
$G(x)=1+A+B+C+D=\frac{1+2 x+4 x^{2}+2 x^{3}+x^{4}}{1-2 x-2 x^{3}+x^{4}}=1+\frac{4\left(x+x^{2}+x^{3}\right)}{1-2 x-2 x^{3}+x^{4}}$

Matrix Method

October-14-11
1:29 PM

Matrix Method

Find a set of types $\{1,2, \ldots, t\}$
Succession Rules
For each type i, a weighted collection of successors:
$i \rightarrow\left\{c_{1} 1, c_{2} 2, \ldots, c_{t} t\right\}$
An object of type i gives rise to successors in the next generation:
c_{i} of type i
Initial Population
A column vector
$p_{0}=\left|\begin{array}{c}a_{1} \\ a_{2} \\ \vdots \\ a_{t}\end{array}\right|$
a_{i} objects of type $i,(1 \leq i \leq t)$ in the initial population.
Goal
Determining the number of objects of type i in the n-th generation for all $(1 \leq i \leq t)$ and all $n \geq 0$

Construction
For each $n \in \mathbb{N}$ let p_{n} be the column vertex of length I with i-th entry equal to the \# of type i objects in the n-th generation.
Let M be the $t \times t$ matrix such that $p_{n+1}=M p_{n} \forall n \in \mathbb{N}$
The j-th column of M has i-th entry equal to the number of objects of type i occurring as successors to an object of type j

Since $p_{n+1}=M p_{n} \forall n \in \mathbb{N}$
$P_{n}=M^{n} p_{0}$
Generating Function
Let $p(x)=\sum_{n=0}^{\infty} p_{n} x^{n}=\sum_{n=0}^{\infty} M^{n} p_{0} x^{n}=\left(\sum_{n=0}^{\infty}(x M)^{n}\right) p_{0}=(I-x M)^{-1} p_{0}$
Reasoning
$S=1+A^{2}+A^{3}+\cdots$
$A S=A+A^{2}+A^{3}+\cdots$
$S-A S=1$
$(1-A) S=1 \Rightarrow S=(1-A)^{-1}$
Total Population
$1_{t}=\left|\begin{array}{c}1 \\ 1 \\ \vdots \\ 1\end{array}\right|$
$P o p=1{ }_{t} p_{n}$
Generating function
$1_{t}(T-x M)^{-1} p_{0}$

Note

$A^{-1}=\frac{1}{\operatorname{det} A} \operatorname{adj}(A)$
$\operatorname{det}(I-x M) \neq 0$ so $I-x M$ is invertible since $I-x M$ is a polynomial in x and $\operatorname{det}(I-(1) M)=1$

Example

$t=3$ types $\{a, b, c\}$
Succession Rules $a \rightarrow\{a, b\}, b \rightarrow\{a, c\}, c \rightarrow\{a, a, a\}$
$p_{0}=\left|\begin{array}{l}1 \\ 0 \\ 0\end{array}\right|$
$M=\left|\begin{array}{lll}1 & 1 & 3 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right|$
$p_{n}=M^{n} p_{0}$
$I-x M=\left|\begin{array}{ccc}1-x & -x & -3 x \\ -x & 0 & 1 \\ 0 & -x & 1\end{array}\right|$
$\operatorname{det}(I-x M) \stackrel{0}{=} 1-x-x^{2}-3 x^{3}$
$\operatorname{adj}(I-x M)=\left|\begin{array}{ccc}1 & x+3 x^{2} & 3 x \\ x & 1-x & 3 x^{2} \\ x^{2} & x-x^{2} & 1-x-x^{2}\end{array}\right|$
$P(x)=(I-x M)^{-1} p_{0}$
$=\frac{1}{1-x-x^{2}-3 x^{3}}\left|\begin{array}{ccc}1 & x+3 x^{2} & 3 x \\ x & 1-x & 3 x^{2} \\ x^{2} & x-x^{2} & 1-x-x^{2}\end{array}\right|\left|\begin{array}{l}1 \\ 0 \\ 0\end{array}\right|$
$=\frac{1}{1-x-x^{2}-3 x^{3}}\left|\begin{array}{c}1 \\ x \\ x^{2}\end{array}\right|$
Total population generating function
$\frac{1+x+x^{2}}{1-x-x^{2}-3 x^{3}}$
Total population w_{n} at generation n satisfies $w_{n}=0$ if $n<0$ and
$w_{n}-w_{n-1}-w_{n-2}-3 w_{n-3}=\left\{\begin{array}{c}1, n=0,1,2 \\ 0, n \geq 3\end{array}\right.$
$w_{0}=1$
$w_{1}-w_{0}=1 \Rightarrow w_{1}=2$
$w_{2}-w_{1}-w_{0}=1 \Rightarrow w_{2}=4$
$w_{n}=w_{n-1}+w_{n-2}+3 w_{n-3}, n \geq 3$

Domino Tilings
October-14-11
2:09 PM

Domino Tilings

Count all ways of covering all squares of a $3 \times n$ rectangle with non-overlapping dominoes.

How
Consider all possible ways of covering the three leftmost squares:

Label the boundary types, but also keep track of the number of dominoes used in the subscript $A \rightarrow\left\{A_{3}, B_{2}, B_{2}\right\}$

$B \rightarrow\left\{B_{3}, A_{1}\right\}$
Instead of $x M$ we want a 2×2 matrix Q where $Q_{i j}$ is the sum of x^{k} over all transitions from boundary j to boundary i using k dominoes.
$M=\left|\begin{array}{cc}x^{3} & x \\ 2 x^{2} & x^{3}\end{array}\right|$
Start with a 3xn domino tiling. Remove all dominoes that intersect the leftmost column (together with any dominoes they "force")

Repeat this to decompose each domino tiling uniquely as a sequence of "successions" Two boundaries $\{\mathrm{A}, \mathrm{B}\}$
$A \rightarrow\left\{A_{3}, 2 B_{2}\right\}$
$B \rightarrow\left\{A_{1}, B_{3}\right\}$
$M=\left|\begin{array}{cc}x^{3} & x \\ 2 x^{2} & x^{3}\end{array}\right|$
The (I, J) entry of M^{n} is the generating function from boundary J to boundary I using exactly n successions.
Sum over all $n \in \mathbb{N}$ since \# of successions is arbitrary.
∞
$\sum_{n=0} M^{n}=(I-M)^{-1}$
The generating function we want is $(I-M)_{A A}^{-1}$
$\operatorname{det}(I-M)=\left|\begin{array}{cc}1-x^{3} & -x \\ -2 x^{2} & 1-x^{3}\end{array}\right|=\left(1-x^{3}\right)^{2}-2 x^{3}=1-4 x^{3}+x^{6}$
$\operatorname{adj}(I-M)_{A A}=1-x^{3}$
Generating function for $3 \times n$ domino tilings is
$G(x)=\rangle_{T} x^{\# \text { dominoes }}=\frac{1-x^{3}}{1-4 x^{3}+x^{6}}$
$2 * \#$ dominoes $=$ total $\#$ squares $=3 n$
$n=\frac{2}{3}$ (\# dominoes), let $x=t^{\frac{2}{3}}$
$\left.G(x)=\rangle_{T}, t^{\frac{2^{2} \# \text { dominoes }}{}}=\right\rangle_{n=0}^{\infty} c_{n} t^{n}=\frac{1-t^{2}}{1-4 t^{2}+t^{4}}$
c_{n} domino tilings of a $3 \times n$ rectangle.

Examples

October-17-11
1:55 PM

Example
Tilings of a 3 xn rectangle using dominoes and 1 x 1 squares.

Possible boundary shapes

$J \rightarrow K_{a, b}$ Succession from boundary J to boundary K using a dominoes and b squares
$A \rightarrow\left\{A_{0,3}, A_{3,0}, 2 D_{1,2}, E_{1,2}, 2 B_{2,1}, C_{2,1}, 2 A_{1,1}, 2 D_{2,0}\right\}$
$B \rightarrow\left\{A_{0,1}, D_{1,0}\right\}$
$C \rightarrow\left\{A_{0,1}, E_{1,0}\right\}$
$D \rightarrow\left\{A_{0,2}, A_{1,0}, B_{2,0}, D_{1,1}, E_{1,1}\right\}$
$E \rightarrow\left\{A_{0,2}, C_{2,0}, 2 D_{1,1}\right\}$
$M=\left[\begin{array}{ccccc}2 t u+t^{3}+u^{3} & u & u & t+u^{2} & u^{2} \\ 2 t^{2} u & 0 & 0 & t^{2} & 0 \\ t^{2} u & 0 & 0 & 0 & t^{2} \\ 2 t^{2}+2 t u^{2} & t & 0 & t u & 2 t u \\ t u^{2} & 0 & t & t u & 0\end{array}\right]$

Example
$A \subseteq\{a, b, c\}^{*}$ Blocks of c's have odd length and does not contain aa or ab as a substring. $a_{n}=\#$ of words of length n in A
Determine $\sum_{n=0}^{\infty} a_{n} x^{n}$
First determine the generating function for "block patterns" of A: the set of words in $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}^{*}$ not containing any of $\mathrm{aa}, \mathrm{bb}, \mathrm{cc}$, or ab .
$P(x, y, z)=\sum_{\alpha \in P} x^{m_{a}(\alpha)} y^{m_{b}(\alpha)} z^{m_{c}(\alpha)}$
Then replace each a in α with a block of a's, each b in α with a block of b 's and each c in α by a block of c's. Keep track of the lengths of the blocks.
The lengths of the blocks are constrained:
no aa substring \rightarrow block of a's is just $a \rightarrow t$
block of b's $\rightarrow \mathrm{b}^{*} \mathrm{~b} \rightarrow \frac{t}{1-t}$
block of $\mathrm{c}^{\prime} \mathrm{s} \rightarrow(\mathrm{cc})^{*} \mathrm{c} \rightarrow \frac{t}{1-t^{2}}$
$A(t)=\sum_{\sigma \in A} t^{l(\sigma)}=P\left(t, \frac{t}{1-t}, \frac{t}{1-t^{2}}\right)$

Matrix Method

Find $P(x, y, z)$ using matrix method
$P \subseteq\{a, b, c\} *$ words not containing $\mathrm{aa}, \mathrm{bb}, \mathrm{cc}$, or ab.
4 types: E,A,B,C: empty string, ends in a, ends in b, ends in c; respectively.
$E \rightarrow\{A, B, C\}$
$A \rightarrow\{C\}$
$B \rightarrow\{A, C\}$
$C \rightarrow\{A, B\}$
generate all the block patterns in A
$M_{K L}$ is the sum over all transitions from K to L
$M=\left|\begin{array}{llll}0 & 0 & 0 & 0 \\ x & 0 & x & x \\ y & 0 & 0 & y \\ z & z & z & 0\end{array}\right|$
$P(x, y, z)=\left[\begin{array}{llll}1 & 1 & 1 & 1 \\ \hline\end{array}(I-M)^{-1}\left|\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right|=\sum_{k=0}^{\infty} 11 \quad 1 \quad 1 \quad 1 \quad 1\right\rfloor M^{k}\left|\begin{array}{l}1 \\ 0 \\ 0\end{array}\right|=\sum_{k=0}^{\infty} \sum_{\substack{\sigma \in P \\ l(\sigma)=k}} x^{m_{a}(\sigma)} y^{m_{b}(\sigma)} z^{m_{c}(\sigma)}$
$A(t)=P\left(t, \frac{t}{1-t}, \frac{t}{1-t^{2}}\right)$
$Q=I-M=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ -t & 1 & -t & -t \\ -\frac{t}{1-t} & 0 & 1 & -\frac{t}{1-t} \\ -\frac{t}{1-t^{2}} & -\frac{t}{1-t^{2}} & -\frac{t}{1-t^{2}} & 1\end{array}\right]$

Example

Domino tiling. Start with A type boundary (straight line) and end with A type boundary.

Graph Theory

October-21-11
1:30 PM

Graph

A graph is a pair $G=(V, E)$ where V is a finite set, and E a set of 2-element subsets of V.
The elements of V are vertices and the elements of E are edges.

Isomorphism

An isomorphism φ from G to H is a function $\varphi: V(G) \rightarrow V(H)$ such that φ is a bijection (one-to-one and onto)

- φ is a bijection (one-to-one and onto)
- $\forall v, w \in V(G)$

$$
\{v, w\} \in E(G) \Leftrightarrow\{\varphi(v), \varphi(w)\} \in E(H)
$$

G and H are isomorphic, denoted by $G \cong H$, when there is an isomorphism φ from G to H .

Terminology

In a graph $G=(V, E)$
$v \in V$ is incident with $e \in E$ if $v \in e$
$v, w \in V$ are adjacent if $\{v, w\} \in E$
$e, f \in E$ are adjacent if $e \cap f=\{v\}$ for some $v \in V$
The degree of v is the number of edges incident with v.
Denoted $\operatorname{deg}_{G}(v)$
The degree sequence is the multiset $\left\{\operatorname{deg}_{G}(v): v \in V\right\}$

Fact

If $\varphi: V(G) \rightarrow V(H)$ is an isomorphism then $\operatorname{deg}_{H}(\varphi(v))=$ $\operatorname{deg}_{G}(v) \forall v \in G$

Corollary

If $G \cong H$ then the degree sequences of G and H are the same.

Subgraph

$G=(V, E)$ is a graph
$J=(W, F)$ is a subgraph of G if $W \subseteq V, F \subseteq E$ and J is a graph.

K-Regular

A graph G is k-regular if every vertex has degree k.

Cycle

A cycle in G is a connected 2-regular subgraph.

Hamilton Cycle

A Hamilton cycle is a cycle through all the vertices.

Bipartite

A graph G is bipartite if one can write $V=A \cup B$ with $A \cap B=\varnothing$ sucy that for erery edge $e \in E$ 保 $A \neq \varnothing$ and

Graph Example
$G=(\{1,2,3,4\},\{\{1,2\},\{1,3\},\{2,3\},\{2,4\}\})$
Picture of G :
4

Other graphs:

These are the same graph: same vertices same edges. So the graphs are equal.

$G \neq H$ but they have the "same shape". i.e. they are isomorphic.

In this case G (left) contains an odd cycle while H (right) does not. So $G \not \approx H$

Proof of Proposition
(a) Let (A, B) be a bipartition for G and let $H=(W, F)$ be a subgraph of G . Then $(W \cap A, W \cap B)$ is a bipartition for H .
(b) Let C_{n} be an odd cycle with vertices $v_{1}, v_{2}, \ldots, v_{n}$ (n odd) and edges
$\left\{v_{1}, v_{2}\right\},\left\{v_{2}, v_{3}\right\}, \ldots,\left\{v_{n-1}, v_{n}\right\},\left\{v_{n}, v_{1}\right\}$
Suppose that (A, B) is a bipartition of C_{n}. Wlog we can assume $v_{1} \in A$ (exchange A and B if necessary)
$\Rightarrow v_{2} \in B \Rightarrow v_{3} \in A \Rightarrow \cdots$
By induction from $1 \leq i \leq n$

$$
v_{i} \in A \text { if } \mathrm{i} \text { is odd }
$$

$v_{i} \in B$ if i is even
Since n is odd, $v_{n} \in A$. But then $\left\{v_{n}, v_{1}\right\} \subseteq A$ contradicting that (A, B) is a

Equivalently, you can colour the graph with 2 colours such that every edge has one vertex of one colour and the other vertex having the other colour.

Proposition

a) If G is bipartite then every subgraph of G is bipartite.
b) Odd cycles are not bipartite

Corollary

If G contains an odd cycle, then G is not bipartite.

Notation

Complete graph: K_{p}

$$
\begin{aligned}
& p \text { vertices } \\
& \binom{p}{2} \text { edges; Every pair of vertices has an edges } \\
& E=\left\{\left\{v_{i}, v_{j}\right\}: i \neq j\right\}
\end{aligned}
$$

bipartition of G .

Complete bipartite graph: $K_{a, b}$
$a+b$ vertices
$A=\left\{v_{1}, \ldots, v_{a}\right\}, B=\left\{w_{1}, \ldots, w_{b}\right\}$
$a b$ edges
$E=\left\{\left\{v_{i}, w_{j}\right\}: 1 \leq j \leq b, 1 \leq i \leq a\right\}$
Girth of G
if G has no cycles then $\operatorname{girth}(G)=+\infty$
If G has cycles then $\operatorname{girth}(G)=\min \{|E(C)|: C$ is a cyle in $G\}$

Connectedness

October-24-11
1:32 PM

Walk

A walk in a graph is a sequence: $v_{0} e_{1} v_{1} e_{2} v_{2} \ldots v_{k-1} e_{k} v_{k}$
Each $v_{i} \in V$, each $e_{i} \in E$ and $e_{i}=\left\{v_{i-1}, v_{i}\right\}$
Note that vertices and edges can be repeated.
Trail
A trail is a walk with no repeated edges

Path

A path is a walk with no repeated vertices.
Path \Rightarrow Trail, but Trail \nRightarrow Path

Closed \& Cycle

A walk is closed if $v_{0}=v_{k}$.
A cycle is (sometimes, incorrectly,) said to be a closed walk in which $v_{0}=v_{k}$ is the only repeated vertex.

Reach

Define a relation R on the set V of vertices. $v R w$ means there is a walk in G from v to $\mathrm{w}: v=v_{0} e_{1} v_{1} \ldots e_{k} v_{k}=w$.
Say "v reaches w"
Fact
R is an equivalence relation.
Proof
Reflexive, Symmetric, Transitive

Connected Components

The equivalence classes of R on V induce subgraphs of G called the connected components of G

Induced Subgraph

For $S \subseteq V$, the subgraph of G induced by S has the vertex-set S and the edge set $F=\{e \in E: e \subseteq S\}$

Connected

The graph G is connected if it has exactly one connected component.
For graphs with at least one vertex, this is equivalent to:
$\forall v, w \in V$ there is a path from v to $\mathrm{w}(v R w)$
Length of a Walk
The length of a walk is the number of edges in the walk.

Lemma

If there is a walk from v to w then there is a path from v to w .

Deleting an Edge

Deleting an edge from $G=(V, E)$ gives the graph $G \backslash \mathrm{e}=(V, E\{e\})$
Minimally Connected Graph
A graph is minimally connected if it is connected but $G \backslash \mathrm{e}$ is not connected $\forall e \in E$.

Let $c(G)$ be the number of connected components of G. $e \in E$ is a cutedge if $c(G \backslash \mathrm{e})>c(G)$

G is minimally connected if $c(G)=1$ and every edge is a cut-edge.

Lemma

Let $G=(V, E)$ be a graph. Let $e=\{x, y\} \in E$. Then e is a cut-edge of G iff e is not contained in a cycle of G.

Corollary

G is a minimally connected graph iff G is connected and contains no cycles.

Reach example

The green vertex can reach only the red vertices.

Proof of Lemma 1

Let $\mathrm{W}: v=v_{0} e_{1} v_{2} e_{2} \ldots e_{k} v_{k}=w$ be a walk from v to w which has a s few edges as possible.

If W has a repeated vertex $v_{i}=v_{j}$ with $0 \leq i<j \leq k$
Then W': $v_{0} e_{1} v_{1} \ldots e_{i} v_{i} e_{j+1} v_{j+1} \ldots e_{k} v_{k}$ is a walk from v to w with strictly fewer edges than W . This contradictions the choice of W , so W has no repeated vertices.

Proof of Lemma 2

Restricting attention to the connected component of G that contains e , we can assume that G is connected.
First assume that e is in a cycle C in G . Then $C \backslash$ e has two vertices x, y of degree 1 and the rest have degree 2.
$P: x=v_{0} e_{1} v_{1} \ldots e_{k} v_{k}=y$
To show that not a cut-edge, we show that $G \backslash \mathrm{e}$ is connect. Let $v, w \in V$. Since G is connected there is a walk $\operatorname{In} \mathrm{G}$ from v to w . By lemma there is a path Q from v to w in G.

If Q does not use the edge e, then Q is a path in $G \backslash \mathrm{e}$ from v to w .
If Q uses e, then replace the edge e with the path P to get a walk from v to win $G \backslash e$.
So there is also a path from v to w in $G \backslash \mathrm{e}$. So $G \backslash \mathrm{e}$ is connected, so e is not a cut-edge.
Conversely, assume that e is not a cut-edge.
Then $c(G \backslash \mathrm{e})=c(G)$ so $v R w$ in G iff $v R w$ in $G \backslash \mathrm{e}$
Let $e=\{x, y\}$. Clearly $x R y$ in G. Hence $x R y$ in $G \backslash \mathrm{e}$ as well.
$x=v_{0} e_{1} v_{1} e_{2} v_{2} \ldots e_{k} v_{k}=y$
Now $C=\left(\left\{v_{0}, v_{1}, \ldots, v_{k}\right\},\left\{e_{1}, e_{2}, \ldots, e_{k}, e\right\}\right)$ is a cycle containing edge e.
Examples of Minimally Connected Graphs

Trees

October-26-11
1:44 PM

Tree

A graph is a tree if it is connected and contains no cycles.

Lemma

Let T be a tree with $p \geq 2$ vertices. Then T has at least two vertices of degree 1 .

Lemma

Let G be a graph and let $v \in V$ be a vertex of degree

1. Let $G \backslash \mathrm{v}$ be the subgraph of G spanned by $V \backslash\{v\}$
a) G is connected iff $G \backslash v$ is connected
b) G contains a cycle iff $G \backslash \mathrm{v}$ contains a cycles.

Proof by observation

Proposition
Let T be a tree with p vertices and q edges. Then $q=p-1$

Handshake Lemma

Let $G=(V, E)$ be a graph. Then

$$
\rangle_{v \in V} \operatorname{deg}_{G} v=2 q
$$

Proof of Lemma

T is a connected graph with $p \geq 2$ vertices so T has $q \geq 1$ edge.
Let P be a path in T that is as long as possible. Then P has length ≥ 1, so the ends x, y of P are distinct: $x \neq y$

Claim
$\operatorname{deg}_{T}(x)=1$
Then $\operatorname{deg}_{T}(y)=1$ by symmetry
Suppose $\operatorname{deg}_{T}(x) \geq 1$. Let $P: v_{0} e_{1} v_{1} e_{2} \ldots e_{k} v_{k}=y$
Since e_{1} is incident with x , there is another edge $f=\{x, z\} \in E$ incident with X .
Since P is as long as possible $z f x e_{1} v_{1} e_{2} \ldots w_{k} v_{k}=y$ is not a path. It is a walk and has no repeated edges the only way it can fail to be a path is if $z \in\left\{v_{2}, \ldots, v_{k}\right\}$. This implies that T contains a cycle, a contradiction ■

Proof of Proposition

Induction on p .
Basis $p=1$. Thas 1 vertex and no edges. $\Rightarrow q=p-1$
Induction: Assume holds for a tree with $p-1$ vertices
$p \geq 2$. Thas a vertex v of degree 1 by Lemma 1 . By Lemma $2 T \backslash \mathrm{v}$ is connected and contains no cycles $\Rightarrow T \backslash \mathrm{v}$ is a tree with $p-1$ vertices. By induction hypothesis T with v deleted has $p-2$ edges. T with v deleted has 1 fewer vertiex, and 1 fewer edge so T has $(p-2)+1=p-1$ edges.

Proof of Handshake Lemma

Let X be the set of paris $X=\{(v, e) \in V \times E: v \in e\}$
$\left.|X|=\rangle_{w \in V}|\{e \in E: w \in e\}|=\right\rangle_{w \in V} \operatorname{deg}_{G}(w)$
$|X|=\sum_{f \in E}|\{v \in V: v \in f\}|=\sum_{f \in E} 2=2 q$

Spanning Trees

October-28-11
1:30 PM
Proposition
Let $G=(V, E)$, and $e=\{x, y\}$ a cut-edge of G.
Then $G \backslash \mathrm{e}$ has exactly 2 components X, Y with $x \in V(X), y \in$ $V(Y)$

Let $c(G)$ be the number of connected components of G
Corollary 1
$c(G) \leq c(G \backslash \mathrm{e}) \leq c(G)+1$
Corollary 2
If G has p vertices and q edges then $c(G) \geq p-q$.
Corollary 3
If G is connected with p vertices and q edges then $q \geq p-1$
The 2/3 Theorem (Trees)
Consider the following 3 conditions:

1) G is connected
2) G has no cycles
3) $q=p-1$

Then any two of these implies the remaining one.

Spanning Subgraph

Let $G(V, E)$ be a graph. A subgraph $H(W, F)$ of G is spanning if $W=V$. That is, H uses all the vertices of G .

Spanning Tree

A spanning tree is a spanning subgraph of G that is a tree.

Proposition

G has a spanning tree iff G is connected.

Proof of Proposition

Let X be the component of $G \backslash$ e containing x , an let Y be the component of $G \backslash$ e containing y .
We need to show that $X \neq Y$ and every $z \in V$ is either in X or in Y .
First, suppose that $\mathrm{X}=\mathrm{Y}$. Then $x R y$ in $G \backslash \mathrm{e}$
Then there is a path P in $G \backslash$ e from x to y
Now $(\mathrm{V}(\mathrm{P}), E(P) \cup\{e\})$ is a cycle in G containing e. Hence e is not a cut-edge of G ; contradiction.
Secondly, let $z \in V(G)$. Since G is connected, there is a path Q in G from x to z. If Q does not use the edge e then $x R z$ in $G \backslash \mathrm{e}$ so $z \in V(X)$ in this case.
If Q does use the edge e, then e is the first edge of Q (starting at x) since Q has no repeated vertices.
$Q: x e y \ldots e_{k} z$
The segment of Q from y to z is a path in $G \backslash \mathrm{e}$ from y to z , so $y R z$ in $G \backslash \mathrm{e}$, so $z \in V(Y)$

Proof of Corollary 2

Induction on q .
Basis: $q=0$, G has p vertices, 0 edges, p components.
$c(G)=p-0$ in this case.
Induction step, $q \geq 1$. Let $e \in E$
Then $c(G \backslash \mathrm{e}) \leq c(G)+1$
and $c(G \backslash \mathrm{e}) \geq p-(q-1)$ by induction so $c(G) \geq p-q$

Proof of Corollary 3

$1 \geq p-q$ by the previous corollary \boldsymbol{m}^{-}
Proof of 2/3 Theorem
$1 \& 2 \Rightarrow 3$
Proved last lecture
$1 \& 3 \Rightarrow 2$
Assume that G is connected and $q=p-1$. Suppose that G has a cycle C. Let e be an edge in C. Then e is not a cut-edge of G . So $G \backslash \mathrm{e}$ is connected with p vertices and $q=(p-1)-1=p-2$ edges.
This contradicts corollary 3
$2 \& 3 \Rightarrow 1$
G has no cycles and $q(G)=p(G)-1$
Let $G_{1}, G_{2}, \ldots, G_{c}$ be the connected components of G and let G_{i} have p_{i} vertices and q_{i} edges. Each G_{i} is a connected graph with no cycles. Since $1 \& 2 \Rightarrow 3$ we have that $q_{i}=p_{i}-1 \forall 1 \leq i \leq c$ Now $p(G)=p_{1}+p_{2}+\cdots+p_{c}, q(G)=q_{1}+q_{2}+\cdots+q_{c}$
$1=p(G)-q(G)=\left(p_{1}+\cdots+p_{c}\right)-\left(q_{1}+\cdots+q_{c}\right)=\left(p_{1}-q_{1}\right)+\left(p_{2}-q_{2}\right)+\cdots+\left(p_{c}-q_{c}\right)=c$ Since $c(G)=1, \mathrm{G}$ is connected

Proof of Proposition

If G has a spanning tree T then G is connected, since T is connected and spanning. Conversely, assume that G is connected. Proceed by induction on $q(G)$

Basis: $q=p-1$. This this case $2 / 3$ theorem implies that G is a tree. So it is a spanning tree of itself.

Induction Step: $q>p-1$. Then G has a cycle (otherwise it is a tree, and $q=p-1$). Let e be an edge in a cycle of G. Then $G \backslash$ e is still connected and has $q-1$ edges. By induction $G \backslash$ e has a spanning tree, which is also a spanning tree of G .

Search Trees

October-31-11
1:32 PM

Search Tree Algorithm

Let $G=(V, E)$ be a graph, and $v_{0} \in V$ be a "base" vertex.
Initially, let $W=\left\{v_{0}\right\}$ and let $F=\varnothing$
Let Δ be the set of edges with one end in W and one end not in W.

If $\Delta=\emptyset$ then output (W, F) and stop.
If $\Delta \neq \emptyset$ then let $e=\{x, y\} \in \Delta$ with $x \in W$ and $y \notin W$
Update: $W \leftarrow W \cup\{y\}, F \leftarrow F \cup\{e\}$ and goto *
Proposition
Let $G=(V, E)$ be a graph, v_{0} a vertex of G , and let $T=(W, F)$ be output by an application of the search tree algorithm to G and v_{0}. Then T is a spanning tree for the connected component of G containing v_{0}

Note

Note that the search tree algorithm gives a path from any vertex to the base vertex.

Specialize search tree algorithm so that for each $w \in W$ the path from w to v_{0} in T is a shortest path from w to v_{0} in G

Length of a path
\# of edges of the path

Distance between vertices

The distance from vertex x to vertex y is the minimum length of any path from x to y . Denoted $\operatorname{dist}_{G}(x, y)$

Breadth-First Search

Vertices in W are recorded in a queue.
Calculate Δ as before. If $\Delta \neq \emptyset$ let $e=\{x, y\} \in \Delta$ with $x \in W$ and $y \neq W$ and x as early in the queue as possible. y joins the end of the Δ queue.
$\operatorname{dist}_{T}\left(a_{0}, z\right)=\operatorname{dist}_{G}\left(a_{0}, z\right)$
Depth-First Search
Record the vertices in W in a stack.
Calculate Δ as before. Chose $e=\{x, y\} \in \Delta$ with x as close to top of the stack as possible. Add y to the top of the stack.

Proof of Proposition

(W, F) is a tree.
Induction on the number of iterations of the loop:

Basis of induction: $W=\left\{v_{0}\right\}, F=\emptyset$.
($\left\{v_{0}\right\}, \emptyset$) is connected and has no cycles - it is a tree.
Induction step: Assume that (W, F) is a tree.
$\Delta \neq \emptyset$ and $e=\{x, y\}$ and $W^{\prime}=W \cup\{y\}, F^{\prime}=F \cup\{e\}$
Since (W, F) is a tree, $x R w$ in $\left(W^{\prime}, F^{\prime}\right)$ for all $w \in W$
Also $x R y$ since $e \in F^{\prime}$ so $x R z \forall z \in W^{\prime}$
So (W^{\prime}, F^{\prime}) is connected.
Let $|W|=p$ and $|F|=q$ so that $q=p-1$ as (W, F) is a tree
Now $\left|W^{\prime}\right|=p+1$ and $\left|F^{\prime}\right|=q+1$ so $\left|F^{\prime}\right|=\left|W^{\prime}\right|-1$
From these and the $2 / 3$ algorithm we get that (W^{\prime}, F^{\prime}) is a tree.
End of induction, so (W, F) is a tree.
To see that (W, F) spans the component H of G containing v_{0} :
Since $v_{0} R w \forall w \in W(W, F)$ is a subgraph of H . Let z be any vector in H .
Suppose that $z \neq W$. Since $v_{0} R z$ in G there is a path P in G from v to z . Since $v_{0} \in W$ and $z \notin W$ there is an edge f of P with one end in W and one end not in W .
But then $f \in \Delta$ so $\Delta \neq \emptyset$ so the algorithm has not terminated yet. Contradiction $■$

Breadth-First Search

November-02-11
1:38 PM
Notation
$G=(V, E)$ and $v \in V$ let $E(v)$ be the set of edges of G incident with v.
$E(v)=\{e \in E: v \in e\}$
Symmetric Difference
For sets A, B, the symmetric difference of A and B is $A \bigoplus B=(A \backslash \mathrm{~B}) \cup(B \backslash \mathrm{~A})=$ $(A \cup B) \backslash(A \cap B)$ the set of elements in A or B but not both.

Breadth First Search
Input:
Graph $G=(V, E)$, vertex $v_{0} \in V$
Initialize:
$W=\left\{v_{0}\right\}, \quad F=\emptyset, \quad \Delta=E\left(v_{0}\right)$
Put v_{0} on front of queue Q .
While $\Delta \neq \varnothing$
Let v_{i} be the earliest vertex on Q such that $\Delta \cap E\left(v_{i}\right) \neq \emptyset$
Let $e=\left\{v_{i}, y\right\} \in \Delta \cap E\left(v_{i}\right)$ so $y \notin W$
Update:
$W \leftarrow W \cup\{y\}, \quad F \leftarrow F \cup\{e\}$
Put y on the end of Q
Level: $l(y)=l\left(v_{i}\right)+1$
Parent: $\operatorname{pr}(y)=v_{i}$
$\Delta \leftarrow \Delta \bigoplus E(y)$

Output ($(W, F), l, p r)$

Eventual Claim

The path in $T=(W, F)$ from v to v_{0} is a path in G from v to v_{0} that is a short as possible.
That is, $\operatorname{dist}_{G}\left(v, v_{0}\right)=l(v)$

Observation

1. When v joins the queue, earliest vertex on Q with $E\left(v_{i}\right) \cap \Delta \neq \emptyset$ is $\operatorname{pr}(v)$ Call v_{i}, the earliest vertex on the queue, the active vertex.
2. A vertex can become active, then stop being active, but then it never becomes active again.
3. If x occurs before y in Q (and neither one is v_{0}) then $\operatorname{pr}(x)$ occurs before $\operatorname{pr}(y)$ in Q or $\operatorname{pr}(x)=\operatorname{pr}(y)$.
4. If x occurs before y on Q then $l(x) \leq l(y)$

Proof of Observations

3rd Part
Suppose x occurs before y in Q but $\operatorname{pr}(y)$ occurs before $\operatorname{pr}(x)$ Since $\operatorname{pr}(x)$ is active when x joins the queue $E(\operatorname{pr}(y)) \cap \Delta=\emptyset$ By y joins Q after x so when x joins Q the edge $e=\{p r(y), y\}$ is in $E(p r(y)) \cap \Delta \neq \emptyset$. Contradiction ■

3 => 2
The active vertex moves from left to right along Q.
4th
By induction on the positions of y in the queue since x occurs before $\mathrm{y}, y \neq v_{0}$.
If $x=v_{0}$ then $0=l\left(v_{0}\right)=l(x) \leq l(y)$
So assume that $x \neq v_{0}$
Now by $3 \operatorname{pr}(x)$ occurs before $\operatorname{pr}(y)$ on Q . By induction $l(\operatorname{pr}(x)) \leq l(p r(y))$
So $l(x)=l(p r(x))+1 \leq l(p r(y))+1=l(y)$

Distance in Graphs

November-04-11
1:33 PM

Construct a Breadth First Search Tree

- $\operatorname{pr}(x)$ is active when x joins the queue
- If x occurs before y on the queue then $\operatorname{pr}(x)$ occurs before $\operatorname{pr}(y)$ in Q
- The active vertex moves left to right in Q
- The level of vertices increases from left to right on Q .

Fundamental Property of BFS
Let $G=(V, E)$ be a connected graph. Let T be a breadth first search tree for G. Let $l_{T}(v)$ be the level of $v \in V$ in T.

Let $e=\{x, y\} \in E$ be any edge of G . Then $\left|l_{T}(x)-l_{T}(y)\right| \leq 1$
Note:
Not true for search trees in general
Theorem
Let $G=(V, E)$ be a connected graph, $v_{0} \in V$, and let T be a BFST for G with base vertex v_{0} them for every $v \in V$
$\operatorname{dist}_{G}\left(v, v_{0}\right)=l_{T}(v)$
Facility Location Problem
Measure of v
$f(v)=\rangle_{w \in v} \operatorname{dist}_{G}(v, w)$
Find a vertex that minimizes $f(v)$
Algorithm
For each $v \in V$

- Compute a BFST T for G based at v
- $f(v)=\rangle_{w \in V} l_{T}(w)$

Computed Girth

For each $v \in V$ grow a GFST T of G based at v
For each edge $e=\{x, y\}$ in G but not in T let $m(e)=l_{T}(x)+l_{T}(y)+1$
Let $g(v)=\min _{e \in G T \mathrm{~T}} m(e)$
Let $\gamma=\min _{v \in V} g(v)$
Claim
γ is the girth of G
Correctness of this algorithms depends on if C is a cycle in G that is as short as possible and v is a vertex in C then $g(v)$ is the length of C

Test of Bipartness

Input a connected graph $G=(V, E)$. Grow a BFST based at any $v_{0} \in V$.
G is bipartite iff for every $e=\{x, y\} \in E\left|l_{T}(x)-l_{T}(y)\right|=1$
By partition: (even level, odd level)

Diameter of a Graph
$\operatorname{diam}(G)=\max _{v, w \in V} \operatorname{dist}_{G}(v, w)$

Proof of Fundamental Property of BFS
If $e=\{x, y\}$ is in T then either $x=\operatorname{pr}(y)$ or $y=\operatorname{pr}(x)$ so
$l_{T}(x)=l_{T}(y)-1$ or $l_{T}(x)=l_{T}(y)+1$
Suppose that $\left|l_{T}(x)-l_{t(y)}\right| \geq 2$
Assume that $l_{t}(x) \leq l_{T}(y)-2$
So $p r(x), x, \operatorname{pr}(y), y$ occur in that order on Q (since $l_{T}(x)$ is weakly increasing from left to right.)
$\operatorname{pr}(y)$ is active when y joins the queue, so $E(x) \cap \Delta=\emptyset$ when y joins the queue. But $e=\{x, y\} \in E(x) \cap \Delta$ when y joins the queue.

Proof
The unique path in T from v to v_{0} has $l_{T}(v)$ edges.
Thus $\operatorname{dist}_{G}\left(v, v_{0}\right) \leq l_{T}(v)$
Conversely, let P be any path in G from v to v_{0}
$P: v=z_{0} e_{1} z_{1} e_{2} z_{2} \ldots z_{k-1} e_{k} z_{k}=v_{0}$, say P has k edges
$\left.\left.l_{T}(v)=l_{T}(v)-l_{T}(v)=\right\rangle_{k=1}^{k}\left|l_{T}\left(z_{i-1}\right)-l_{T}\left(z_{i}\right)\right| \leq\right\rangle_{i=1}^{k} 1=k$
So every path from v to v_{0} has at least $l_{T}(v)$ edges.
So $\operatorname{dist}_{G}\left(v, v_{0}\right)=l_{T}$

Planar Graphs

November-07-11
1:30 PM

Graphs which can be drawn without crossing edges.

Planar Embedding

Let $G=(V, E)$ be a graph.

A plane embedding of G is a pair $\left\{p_{v}: v \in V\right\}$ and $\left\{\gamma_{e}: e \in E\right\}$ whose

- p_{v} are pairwise distinct points in \mathbb{R}^{2} (if $v \neq w$ then $p_{v} \neq p_{w}$) and
- γ_{e} are simple curves in \mathbb{R}^{2} (image of $10,1 \mid$ under some continuous function $f: I 0,1 \mid \rightarrow \mathbb{R}^{2}$ that is injective) i.e. γ_{e} does not intersect itself and
- if $e=\{x, y\} \in E$ then γ_{e} has end points p_{x} and p_{y} and
- If $\gamma_{e} \cap \gamma_{f} \neq \emptyset$ then both e and f are incident with a common vertex w and $\gamma_{e} \cap \gamma_{f}=\left\{p_{w}\right\}$
γ_{e} are images of functions (the set of points corresponding to the curve in \mathbb{R}^{2}

Planar Graph

A planar graph is a graph that has some plane embedding.
Faces
Let $\left\{p_{v}: v \in V\right\}$ and $\left\{\gamma_{e}: e \in E\right\}$ be a plane embedding of a graph $G=(V, E)$.
The faces of the embedding are the connected components of
\square
$\mathbb{R}^{2} \backslash \prod_{e \in E} \gamma_{e}$

Degree of a Face

The degree of a face is the number of edges on its boundary counted with multiplicities.
E.g.

The embeddings drawn for 'two plane embeddings' have 4 faces each.
Handshake Lemma for Faces
Let G be a graph property embedded in the plane, with q edges
). $\operatorname{deg}(F)=2 q$
F:a face

Proposition

Let $G=(V, E)$ be a plane edges. Let $e \in E$ and let the faces with e on their boundaries be F_{1} and F_{2}. Then $F_{1}=F_{2}$ iff e is a cut-edge.

Euler's Formula

Let G be a plane graph with p vertices, q edges, r faces, and c connected components.
Then $p-q+r=c+1$

Not Planar

Planar

Two plane embeddings of the same graph

First embedding is the same as:

Degree of Faces Example

Proof of Proposition

If e is not a cut-edge then e is contained in a cycle C .
Then $\int_{f \in E(C)} \gamma_{f}$ separates F_{1} from F_{2} so $F_{1} \neq F_{2}$

$$
f \in E(C)
$$

Conversely, if $F_{1} \neq F_{2}$ then walk around F_{1} starting and ending at the edge e - you get a closed walk containing e. Deleting subwalks between repeated vertices produces a cycle containing e. So e is not a cut-edge.

Platonic Solids

p	4	8	6	20	12
q	6	12	12	30	30
r	4	6	8	12	20

Proof of Euler's Formula
Induction on q :
Basis: $q=0$ Then $r=1$ and so
$p-1+r=p+1=c+1$. Good
Induction step:
Let $e \in E$ and consider $G^{\prime}=G \backslash \mathrm{e}$ with $p^{\prime}, q^{\prime}, r^{\prime}, c^{\prime}$ vertices, edges, faces, and components.

If e is a cut-edge then
$p=p, \quad q=q^{\prime}+1, \quad r=r^{\prime}, c=c^{\prime}-1$

$$
\begin{aligned}
& p-q+r=p^{\prime}-\left(q^{\prime}+1\right)+r^{\prime}=\left(p^{\prime}-q^{\prime}+r^{\prime}\right)-1=c^{\prime}+1-1 \\
& =c^{\prime}=c+1
\end{aligned}
$$

If e is not a cut-edge then
$p=p^{\prime}, \quad q=q^{\prime}+1, \quad r=r^{\prime}+1, \quad c=c^{\prime}$ $p-q+r=c+1$

Condition for Embedding

November-09-11
1:32 PM

Euler's Formula

Let G be embedded in \mathbb{R}^{2} with p vertices, q edges, r faces, and c components.
Then $p-q+r=c+1$

Corollary

Let G be a graph with p vertices and $q \geq 2$ edges. If G is planar then
$q \leq 3 p-6$
Note of Exception
If $q=1, p=2: 1 \nsubseteq 3 \times 2-6$
If $q=0, p=1: 0 \$ 3 \times 1-6$

Corollary

Let G be a bipartite graph with p vertices and $q \geq 2$ edges. If G is planar then
$q \leq 2 p-4$
Subdivision
Subdivision of an edge $e=\{x, y\}$ in a graph $G=(V, E)$
This is the graph $G \cdot e$ with vertex-set $V^{\prime}=V \cup\{z\}$ where $z \notin V$ and edge set $E^{\prime}=(E \backslash\{e\}) \cup\{\{x, z\},\{y, z\}\}$

Claim

G is planar iff $G \cdot e$ is planar.
Exercise
Two graphs related by a finite sequence of subdivisions or reverse subdivisions are either both planar or both not planar

Lemma

If H is a subgraph of G and G is planar then H is planar.

Corollary

Any graph that contains a (repeated) subdivision of K_{5} or $K_{3,3}$ is not planar.

Kuratowski's Theorem

A graph is planar iff it does not contain a subdivision of K_{5} or $K_{3,3}$ as a subgraph.

Proof

CO 342

Proof of Corollary

Consider any plane embedding of G, with r faces. Since $q \geq 2$ every face of the embedding has degree ≥ 3.
By the Handshake Lemma for faces:
$2 q=\rangle_{\text {face } F} \operatorname{deg}(F) \geq 3 r$
Since $q \geq 2, p \geq 1$ so $c \geq 1$ by Euler's Formula
$p-q+r=c+1 \geq 2$
$3 p-3 q+3 r \geq 6$
$3 p-3 q+2 q \geq 3 p-3 q+3 r \geq 6$
$3 p-q \geq 6$ so $q \leq 3 p-6$ ■

Proof of Corollary

Consider any plane embedding of G with r faces
Since $q \geq 2$ and G is bipartite, every face has degree ≥ 4
By Handshake lemma for faces, $2 q \geq 4 r \Rightarrow q \geq 2 r$
Since $q \geq 2, p \geq 1$, so $c \geq 1$
$p-q+r \geq 2$
$2 p-2 q+2 r \geq 4$
$2 p-2 q+q \geq 4$
$q \leq 2 p-4$

Numerology for Planar Graphs

November-11-11
1:32 PM

Vertex Degrees in a Planar Graph
Planar graph, p vertices, q edges $(q \geq 2), n_{k}$ vertices of degree $\mathrm{k}(k \geq 0)$
Then $q \leq 3 p-6$
$p=n_{0}+n_{1}+n_{2}+\cdots+n_{p-1}$
$2 q=\rangle_{k}, k n_{k}$
$\left.2 q \leq 6 p-12 \Rightarrow\rangle_{k}, k n_{k} \leq\right\rangle_{k}, 6 n_{k}-12$
$12 \leq \sum_{k=0}^{p-1}(6-k) n_{k}$
$\Rightarrow 12 \leq 6 n_{0}+5 n_{1}+4 n_{2}+3 n_{3}+2 n_{4}+n_{5}-n_{7}-2 n_{8}-3 n_{9}-\cdots$
$n_{5}+2 n_{4}+3 n_{3}+4 n_{2}+5 n_{1}+6 n_{0} \geq 12+n_{7}+2 n_{8}+3 n_{9}+\cdots$
In a planar graph of minimum degree ≥ 2
$n_{5}+2 n_{4}+3 n_{3}+4 n_{2} \geq 12$
In a simple planar graph there must be a vertex of degree ≤ 5
The Four-Colour Theorem
Conjecture made in 1851 by Guthrie
For any plane graph, the faces can be coloured with a most four colours so that neighbouring faces get different colours.
Proved in 1974 by Appel and Haken.
Planar Duality
G is a plane graph
G^{*} is its dual graph.
Draw one vertex of G^{*} on each face of G . Draw one edge of G^{*} across each edge of G

With this can end up with duplicate edges, or edges back to the same vertex.

Multigraph

$G=(V, E)$
V : set of vertices
E: multiset of 2 element multisubsets of V
e.g. $G=(\{1,2,3\},\{\{1,1\},\{2,3\},\{2,3\},\{1,2\},\{2,2\},\{2,2\}\})$

Proposition

G^{*} can be drawn on G without any edges of G^{*} crossing.
Proposition
$\left(G^{*}\right)^{*}=G$

Four Colour Theorem

Let G be a planar multigraph without loops. Then $V(G)$ can be coloured with ≤ 4 colours so that adjacent vertices get different colours.
$\chi(G) \leq 4$
Proper k-Colouring
Leg $G=(V, E)$ be a multigraph proper k-colouring.
$f: V \rightarrow\{1,2, \ldots, k\}$ such that if $\{v, w\} \in E$ then $f(v) \neq f(w)$.
Chromatic Number
The chromatic number of G is
$\chi(\mathrm{G})=\min \{k: G$ has a proper k-colouring $\}$

Spherical Projections

A graph can be drawn on a plane iff it can be drawn on a sphere.
You just need to avoid the north pole.

Exercise

$p \geq 3$ vertices, q edges, c components
No faces of degree 3
a) $q \leq 2 p-4 c$
b) Phrase this in terms of n_{k}

Proof of Proposition
By induction on $q=|E(G)|$
Basis
$q=0$ is trivial

Induction

If every edge of G is a cut-edge then G has no cycles, so it has only one face. G^{*} has one vertex, and one loop for each edge of G . Loops can be drawn without overlap.

If e is not a cut-edge of G then consider $\mathrm{G} \backslash \mathrm{e}$ and $(\mathrm{G} \backslash \mathrm{e})^{*}$ By induction can draw ($\mathrm{G} \backslash \mathrm{e}$)* without crossing edges. Can add in e without crossing.

Alternately

Put a vertex in each face. Can draw a half-edge to each edge of that face in G. Connect those half-edges at the edges of the faces and have no crossings.
G and G^{*} are both embedded in the plane. Edge e of G meets edge f^{*} of G^{*} if and only if $\mathrm{e}=\mathrm{f}$ in which case $e \cap e^{*}$ is a single point.

Colour Theorems

November-14-11
1:33 PM

Note

$\chi(G) \leq 2$ iff G is bipartite.
$\chi(G) \leq 1$ iff G has no edges
$\chi(G)=0$ iff G has no vertices
Six Colour Theorem
If G is a planar graph then $\chi(G) \leq 6$
Five Colour Theorem
If G is a planar graph then $\chi(G) \leq 5$

Graphs on Surfaces

Proof of The Six Colour Theorem
Induction on p , the number of vertices.
Base:
If $p \leq 6$ then give every vertex a different colour.
Induction:
Let G be planar with p vertices. G has a vertex of degree 5 or less, let v be such a vertex.

By induction, $G \backslash \mathrm{v}$ has a proper six-colouring $f: V \backslash \mathrm{e} \rightarrow\{1,2, \ldots, 6\}$
Let the neighbours of $\mathrm{vb} z_{1}, \ldots, z_{k}$ where $k \leq 5$. $\left\{f\left(z_{1}\right), \ldots, f\left(z_{k}\right)\right\}$ has at most 5 colours.
$\exists c \in\{1, \ldots, 6\}$ such that $c \notin\left\{f\left(z_{1}\right), \ldots, f\left(z_{k}\right)\right\}$ and set $f(v)=c$
Proof of the Five Colour Theorem
Induction on $p=|V(G)|$
Base
$p \leq 5$: give every vertex a different colour.
Induction Step:
Let G be planar with p vertices. Let $v \in V$ have degree ≤ 5.
Let $f: V \backslash\{v\} \rightarrow\{1,2,3,4,5\}$ be a proper 5 colouring of $G \backslash \mathrm{v}$.
Let the neighbours of v be z_{1}, \ldots, z_{k} and let $S=\left\{f\left(z_{1}\right), \ldots, f\left(z_{k}\right)\right\}$
If $S \neq\{1,2,3,4,5\}$ then $\exists c \in\{1,2,3,4,5\} \backslash S$ and we can set $f(v)=c$ to get a proper 5-colouring of G.
Remaining case: $S=\{1,2,3,4,5\}$
So v has 5 neighbours $z_{1}, z_{2}, z_{3}, z_{4}, z_{5}$. We can assume that G is embedded in the plane. WLOG z_{1}, \ldots, z_{5} occur in that order clockwise around v. Can also assume that $f\left(z_{i}\right)=i$

For $\{i, j\} \subseteq\{1,2,3,4,5\}$ let $H_{i j}$ be the subgraph of $G \backslash v$ induced by the set of vertices coloured either i or j by f. If K is a connected component of $H_{i j}$ then one can define a new 5-colouring of $G \backslash \mathrm{v}$ as follows:

For every $w \in V \backslash\{v\}, \quad g(w)= \begin{cases}f(w), \quad w \notin V(K) \\ i, & w \in V(K) \text { and } f(w)=j \\ j, & w \in V(K) \text { and } f(w)=i\end{cases}$
Check: g is a proper 5-colouring of $G \backslash \mathrm{v}$
If z_{1} and z_{3} are in different components of H_{13} then let K be the component of H_{13} containing z_{3}. Switch colours 3 and 1 on K to get g. Then $g\left(z_{3}\right)=g\left(z_{1}\right)=1$
So we can set $g(v)=3$ to get a proper 5-colouring of G .
If z_{1} and z_{3} are in the same connected component of H_{13} then there is a path in $G \backslash v$ from z_{1} to z_{3} in which every vertex is coloured 1 or 3 by f.

Since G is planar the path P with edges $\left\{v, z_{1}\right\},\left\{v, z_{3}\right\}$ forms a cycle that separates z_{2} from z_{4}. Thus z_{2} and z_{4} are in different connected components of H_{24}. Recolour the component of H_{24} that contains z_{4} and then give v colour 4 .

Surfaces

Torus $=$ rectangle with opposite sides identified

K5

Graphs on Surfaces

November-16-11
1:32 PM
Every graph can be embedded on some surface. You can add loops for every vertex.

For any surface, there are finitely many obstructions to embedding a graph on that surface. It is hard to determine the surface with the fewest number of holes which allows a given graph to be embedded.

Surface Representations

Every surface can be represented (possibly non-uniquely) by a polygon with pairs of sides identified with each other.

Klein Bottle

This is a non-orientable surface. There is no distinction between clockwise and counter clockwise.
Non-orientable surfaces cannot be embedded in 3 dimensions, require at least 4.

Matching Theory

November-16-11
2:00 PM

Matching

Let $G=(V, E)$ be a graph. A matching, M, is a set of edges so that (V, M) has maximum degree ≤ 1.
Every vertex is in at most one edge of M.

Problem

Given G , find a matching on G of maximum size.

Perfect

A matching is perfect if every vertex has degree 1 in (V, M)

Non-Perfect Matching

A 2 regular graph consisting of an odd cycle has no perfect matching.
"Let's consider the next value of 2 , which is $3 . "$

M-Saturated

$v \in V$ is M -saturated if v is on an edge of M $v \in V$ is M-unsaturated if v is not on any edge of M .

M-Alternating, M-Augmenting
Let $G=(V, E)$ be a graph.
M a matching of G
P a path in G, $p: v_{0} e_{1} v_{0} \ldots v_{k-1} e_{k} v_{k}$ is \mathbf{M}-alternating if either
$e_{i} \in M \Leftrightarrow i$ is odd or
$e_{i} \in M \Leftrightarrow i$ is even

P is \mathbf{M}-augmenting iff

$e_{i} \in M \Leftrightarrow i$ is even, and
P has an odd number of edges, and
v_{0} and v_{k} are M-unsaturated

Proposition

If M is a matching in G and P is an M -augmenting path then $M^{\prime}=M \oplus E(P)$ is a matching in G with one more edge than M.
$S \oplus T=(S \cup T) \backslash(S \cap T)$

Theorem

Let $G=(V, E)$ be a graph. $\mathrm{M} \subseteq E$ a matching. Then M is a maximum matching iff G does not have an M -augmenting path.

Vertex Cover

A vertex cover is a set $S \subseteq V$ such that every edge $e \in E$ has at least one end in S.

Matching	Vertex Cover
Set of edges M	Set of vertices S
Every $v \in V$ is on $\leq 1 e \in M$	Every $v \in V$ is on $\geq 1 e \in M$
Find a maximum matching	Find a minimum vertex cover

Proposition

Let G be a graph, M a matching, and S a vertex cover in G .
Then $|M| \leq|S|$
Example: Odd Cycle
$\max |M|=\left|\frac{n}{2}\right|$
$\min |S|=\left|\frac{n}{2}\right|$

Corollary

Let G be a graph, M a matching, S a vertex cover.
If $|M|=|S|$ then M is a maximum matching and S is a minimum vertex-cover.

For a non-bipartite graph, there may be a gap, as in odd cycles (but not necessarily).

Toy Application

> Processors Jobs

$\{p, j\}$ is an edge when processors in p can perform job j
Assign jobs to processors to maximize the number of busy processors.
\leq one job per processor
\leq one processor per job
3-Regular with no Perfect Matching

Example

Red are vertices in M, terminate on M-saturated vertices.
Blue is an M -augmenting path

Proof of Theorem

If P is an M -augmenting path in G , then $M^{\prime}=M \oplus E(P)$ is a matching on G with $\left|M^{\prime}\right|=1+|M|$ so M is not a maximum matching.

Conversely, assume that M is not a maximum matching. Let M^{*} be a maximum matching in G , so $\left|M^{*}\right|>|M|$
Consider the spanning subgraph (uses all the vertices) H of G with edges $M \cup M^{*}$.
In H, every vertex has degree 0,1 , or 2 . Every connected component is either a path or a cycle. The cycles all have even length. Since $\left|M^{*}\right|>|M|$, there is a component K of H that has more edges in M^{*} than in M. Since connected components alternate 1 edge in M with 1 edge in M^{*} this cannot be a cycle. This connected component must be a path with both end edges in M^{*} but not in M .
The end vertices of K are not saturated by M. Thus K is an M-augmenting path.

Proof of Proposition

Let $X=\{(v, e): v \in S, e \in M$ and $v \in e\}$
Since M is a matching, every $v \in S$ is in at most one $e \in M$ so
$\left.|X|=\rangle_{v \in S}\right\rangle_{e \in M}\left\{\begin{array}{ll}1, & v \in e \\ 0, & v \notin e\end{array}\right\rangle_{v \in S} 1=|S|$
Since S is a vertex cover, every $e \in M$ is incident with at least one $v \in S$
$\left.|X|=\rangle_{e \in M}, \sum_{v \in S}, \begin{array}{ll}1, & v \in e \\ 0, & v \notin e\end{array}\right\rangle_{e \in M} 1=|M|$
So $|M| \leq|X| \leq|S|$

König's Theorem

November-21-11
1:55 PM

König's Theorem

Let G be a bipartite graph.
Then $\max |M|=\min |S|$
(Maximum over matchings M of G , minimum over vertexcovers S of G)

Algorithmification of König's Theorem

How co compute a maximum matching in a bipartite graph.
Input: a graph G with bipartition (A, B).
Initialize: $M=\varnothing$

Computation:

- Compute the set $X \subseteq A, Y \subseteq B$ as in Claims 1,2,3.
- If $y \in Y$ is M -unsaturated, find an M -alternating path P from some $x_{0} \in X$ to y.
- Update $M \leftarrow M \oplus E(P)$,
- Repeat until there are no more M-unsaturated $y \in Y$.

Output: ($M, Y \cup(A \backslash \mathrm{X}))$
Computing the sets X, Y systematically. Input:

- Graph G with bipartition (A, B)
- Matching M in G

Initialize:

- X_{0} to the M-unsaturated vertices in A.
- Put all vertices in X_{0} on the front of queue Q .
- $X=X_{0}, Y=\varnothing$

Computation:
While $Q \neq \emptyset$ do the following:

- Let q be the first vertex in A
- If $q \in B$ and M-saturated then let $\{q, x\} \in M$, put x at the end of Q if x is not already in A . Delete q from the front of Q. $X \leftarrow X \cup\{x\}$
- If $q \in B$ and M -unsaturated then use q to find any M augmenting path.
- If $q \in A$ then choose any non-matching edge $e=\{q, b\}$ with b not already on the Q. Adjoin b to the end of the Q. If there is no such b, delete q from the front of Q. $Y \leftarrow Y \cup\{b\}$
Output: (X, Y)

Anatomy of a Matching in a Bipartite Graph
Let G have bipartition (A, B)
Let M be a matching in G
Let $X_{0} \subseteq A$ be the set of M -unsaturated vertices in A .
Let $X \subseteq A$ be the set of vertices reachable from some $x_{0} \in X_{0}$ by an M-alternating path.
Let $Y \subseteq B$ be the set of vertices in B reachable from some $x_{0} \in X_{0}$ by an M-alternating path.

Claim 1
If there is an M-unsaturated vertex $y \in Y$ then G has an M -augmenting path from some $x_{0} \in X_{0}$ to y.
Proof
Let $x_{0} \in X_{0}$ and let P be an M -alternating path from x_{0} to y in G . Since neither x_{0} nor y is saturated by M (and $x_{0} \neq y$) P is an M -augmenting path.

Claim 2
there are no edges of G between the sets X and $B \backslash \mathrm{Y}$
Proof
Suppose that $e=\{x, b\}$ with $x \in X$ and $b \in B$.
If $e \notin M$ then consider an M-alternating path P from some $x_{0} \in X_{0}$ to $x \in X$. Then $P e b$ is an M alternating path from x_{0} to b , so $b \in Y$ (since the last edge in P is in M)

If $e \in M$ then consider an M -alternating path P from some $x_{0} \in X_{0}$ to $x \in X$.
$P: x_{0} e_{1} x_{1} \ldots x_{k-1} e_{k} x_{k}=x$. P has an even number of edges, $e_{1} \notin M$ so $e_{k} \in M, e_{k}$ is the unique matching edge on x. So $e_{k}=e$ and $y=x_{k-1} \in Y$.

Claim 3
There are no edges of M between the sets Y and $A \backslash \mathrm{X}$.
Proof
Suppose that $e=\{a, y\}$ with $y \in Y$ and $a \in A \backslash \mathrm{X}$.
Let P be an M -alternating path from x_{0} to y. Then Pea is an M -alternating path from x_{0} to a. So $a \in X$, a contradiction.

König's Theorem

Let G be a bipartite graph. Let M be a maximum matching. Let S be a minimum vertex-cover.
Then $|M|=|S|$

Proof

Let M be a maximum matching in G and constructs sets X, Y as in claim 1,2,3.
Since M is a maximum matching, there are no augmenting paths.
By Claim 1, every vertex in Y is saturated by M .
By Claims 2, 3 every edge of M with one end in Y has its other end in X, and every edge of M with one end in $A \backslash \mathrm{X}$ as other end in $B \backslash \mathrm{Y}$.
Every vertex in $(A \backslash \mathrm{X}) \cup Y$ is M-saturated. Now $|M|=|S|$ with $S=(A \backslash \mathrm{X}) \cup Y$. (Since each edge has one adjacent vertex in S)
By Claim 2, S is a vertex cover of G (since G has no edges between X and $B \backslash \mathrm{Y}$, which are the only sets of M-unsaturated vertices.)

Hence S is a minimum size vertex-cover and $|S|=|M|$
Example Computation of X, Y

November-23-11
1:31 PM

A-Saturating

Let $G=(V, E)$ be a graph with bipartition (A, B). A matching M is A-saturating when every $a \in A$ is saturated by M.

Hall Condition

If G has an A -saturating matching M this defines an injective function $f: A \rightarrow B$ by saying that $f(a)=b$ iff $\{a, b\} \in M$.
If this exists then for all $S \subseteq A, f$ restricts to an injective function from S to $N(S)$.

Thus, if G has an A -saturating matching then $|S| \leq$ $|N(S)| \forall S \subseteq A$

Hall's Matching Theorem
Let $G=(V, E)$ be a graph with bipartition (A, B). Then G has an A-saturating matching iff $|S| \leq|N(S)| \forall S \subseteq A$.

Corollary

Let G be a k-regular graph with bipartition (A, B). If $k \geq 1$ then then G has a perfect matching.

Corollary

A k-regular bipartite graph can be partitioned into k edge-disjoint perfect matching.

Tutte Condition

Let $G=(V, E)$ be a graph.
For $S \subseteq V$ let $G \backslash$ S be the subgraph of G induced by vertices in $V \backslash$ S.
Let odd ($G \backslash S$) be the number of connected components of $G \backslash S$ with an odd number of vertices.

If G has a perfect matching then for every
$S \subseteq V,|S| \geq \operatorname{odd}(G \backslash \mathrm{~S})$.
Tutte's Matching Theorem
A graph has a perfect matching iff $\forall S \subseteq V, \quad|S| \geq \operatorname{odd}(G \backslash S)$

Which bipartite graphs have A-saturating matchings?

Does not have an A-saturating matching.
For each $S \subseteq A$, let $N(S)=\{b \in B:\{a, b\} \in E$ for some $a \in S\}$
This example has a set $S \subseteq A$ with $|S|=3$ and $|N(S)|=2$
If G has an A -saturating matching M this defines an injective function $f: A \rightarrow B$ by saying that $f(a)=b$ iff $\{a, b\} \in M$.

Proof
We've seen that if G has an A-saturating matching then $\forall S \subseteq A:|S| \leq|N(S)|$
Conversely, assume that there is no A-saturating matching. Let M^{*} be a maximum matching in
G. So $\left|M^{*}\right|<|A|$.

By König's Theorem, there is a vertex-cover A in G with $|Q|=\left|M^{*}\right|$.
Since Q is a vertex cover, there are no edges from $S=A \backslash Q$ to $B \backslash \mathrm{Q}$
In other words, $N(S) \subseteq Q \cap B$
$|Q \cap A|+|Q \cap B|=|Q|=\left|M^{*}\right|<|A|$
$|A|-|Q \cap A|>|Q \cap B|$
$|S|=|A \backslash Q|=|A|-|Q \cap A|>|A \cap B| \geq|N(S)| \Rightarrow|S|>|N(S)|$

Proof of Corollary

Since $k \geq 1$ we have $|A| \times k=q=|B| \times k$ so $|A|=|B|$
So every A -saturating matching is also a B -saturating matching.
Check Hall's Conditions
Let $S \subseteq A$ and consider $N(S)$. Counting edges of G with one end in S we get $k|S| \leq k|N(S)|$.
By Hall's Theorem there is an A-saturating matching.

Proof of Tutte's Condition

On homework

Problem

Consider a bipartite graph that is biregular. There are integers $a \geq 0, b \geq 0$ such that every vertex in A has degree a and every vertex in B has degree b.
Assume that $\operatorname{gcd}(a, b)=d$ and write $a=d a^{\prime}$ and $b=d b^{\prime}$.
Does G have a spanning subgraph that is (a^{\prime}, b^{\prime}) biregular?
Yes, true for all a and b.
Example: $a=4, b=2$
Note that when $a=b, d=a=b, a^{\prime}=b^{\prime}=1$ and $\left(a^{\prime}, b^{\prime}\right)$ biregular subgraph is a perfect matching.

Counting Spanning Trees

November-25-11
1:31 PM

Notation

$\kappa(G)$ is the number of spanning trees of G

$G \backslash e$ G delete e

$G / e \mathrm{G}$ contract e
"Shrink" the edge until the ends of it merge intro a single vertex.
Produces a multigraph.

Deletion-Contraction Recurrence

For any graph G and $e \in E$
$\kappa(g)=\kappa(G \backslash \mathrm{e})+\kappa(G / e)$

Cut-Vertex

A cut vertex is a vertex which, when deleted, increases the number of connected components in the graph.

If G has a cut-vertex v Then let $G_{1}, \ldots G_{c}$ be the components of $G \backslash v$ each with v joined back in. Then
$\kappa(G)=\left.\right|_{i=1} ^{c} \kappa\left(G_{i}\right)$

Cycle

The number of spanning trees for an n-cycle is n.
This is true even for cycles of length 1 or 2 .

Adjacency Matrix

The adjacency matrix $G=(V, E)$ A, indexed by $V \times V$
$A_{v, w}=\left\{\begin{array}{l}1 \text { if }\{v, w\} \in E \\ 0 \text { if }\{v, w\} \notin E\end{array}\right.$
more generally for multigraphs:
$A_{v, w}=\left\{\begin{array}{c}\# \text { edges joining } \mathrm{v} \text { and } \mathrm{w} \text { if } v \neq w \\ 2 \times \# \text { loops at } \mathrm{v} \text { if } w=v\end{array}\right.$
Δ square diagonal matrix indexed by $V \times V$
$\Delta_{v, w}=\left\{\begin{array}{c}0 \text { if } v \neq w \\ \operatorname{deg}_{G}(v) \text { if } v=w\end{array}\right.$
Laplacian Matrix
$L=\Delta-A$

Matrix-Tree Theorem

Let $v \in V$ be any vertex and let $L(v \mid v)$ be obtained by deleting row v and column v of L.
$\kappa(G)=\operatorname{det} L(v \mid v)$
Signed Incidence Matrix
Let $G=(V, E)$ be a connected multigraph
Draw an arrow on each edge $\{v, w\}$ in an arbitrary direction, either
$v \rightarrow w$ or $w \rightarrow v$
D is indexed by $V \times E$
$D_{v, e}=\left\{\begin{array}{l}+1 \text { if } e \text { points into } v \text { but not out } \\ -1 \text { if } e \text { points out of } v \text { but not in } \\ 0 \text { otherwise }\end{array}\right.$
Fact
For any orientation of G
$D D^{T}=\Delta-A$

Contracting, Deleting

\square

$G \backslash e$

\square / e

Example of Deletion-Contraction Recurrence

Example of Laplacian Matrix

$$
\begin{aligned}
& L=\left[\begin{array}{ccccc}
2 & -1 & 0 & 0 & -1 \\
-1 & 3 & -1 & 0 & -1 \\
0 & -1 & 3 & -1 & -1 \\
0 & 0 & -1 & 2 & -1 \\
-1 & -1 & -1 & -1 & 4
\end{array}\right] \\
& \operatorname{det} L(5 \mid 5)=\left|\begin{array}{cccc}
2 & -1 & 0 & 0 \\
-1 & 3 & -1 & 0 \\
0 & -1 & 3 & -1 \\
0 & 0 & -1 & 2
\end{array}\right|=2\left|\begin{array}{ccc}
3 & -1 & 0 \\
-1 & 3 & -1 \\
0 & -1 & 2
\end{array}\right|+\left|\begin{array}{ccc}
-1 & -1 & 0 \\
0 & 3 & -1 \\
0 & -1 & 2
\end{array}\right| \\
& =2(3|6-1|+(-2))-(6-1)=26-6+1=21
\end{aligned}
$$

Example of Signed Incidence Matrix

$$
\begin{aligned}
D & =\left|\begin{array}{ccccccc}
1 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 1 & 0 & -1 & 1 \\
0 & 0 & 0 & 0 & -1 & 1 & 0 \\
-1 & 0 & -1 & -1 & 1 & 0 & 0
\end{array}\right| \\
D D^{T} & =\left[\left.\begin{array}{ccccc}
-1 & 3 & 0 & 0 & -1 \\
0 & -1 & 3 & 0 & -1 \\
0 & 0 & -1 & 2 & -1 \\
-1 & -1 & -1 & -1 & 4
\end{array} \right\rvert\,=L(G)=\Delta-A\right.
\end{aligned}
$$

Matrix Tree Theorem

November-28-11
1:33 PM
$G=(V, E)$ a connected multigraph
A adjacency matrix indexed by $V \times V$
$A_{v, w}=\{\#$ edges with ends $\{v, w\}, \quad v \neq w$
$2 \times \#$ loops at $v, \quad v=w$
Degree matrix diagonal $V \times V$
$\Delta_{v, v}=\operatorname{deg}_{G}(v)$
Laplacian matrix: $L(G)=\Delta-A$
D is a $V \times E$ signed incidence matrix for G with respect to an arbitrary orientation of G
$D_{v, e}=\left\{\begin{array}{l}+1 \text { if } e \text { points into } v \text { but not out } \\ -1 \text { if } e \text { points out of } v \text { but not in }\end{array}\right.$
$L(G)=\Delta-A=D D^{T}$ if G has no loops
Matrix-Tree Theorem
For any vertex $w \in V, \kappa(G)=\operatorname{det} L(w \mid w)$
The Binet-Cauchy Identity
Let M be an $r \times m$ matrix and P be an $m \times r$ matrix. Then
$\operatorname{det}(M P)=\rangle_{S} \cdot \operatorname{det}(M(|S|) \cdot \operatorname{det}(P|S|))$
with summation over all r-element subsets $S \subseteq\{1,2, \ldots, m\}$
For a matrix Q and sets I, J of row and column indices, $Q I I|J|$ is the submatrix of Q indexed by rows $i \in I$ and columns $j \in J$. $Q(I \mid J)$ is the submatrix of Q indexed by rows $i \notin I$ and columns $j \notin J$ $M(\mid S)$ means delete no rows, keep only columns in S

Proposition
Let $G=(V, E)$ be a connected multigraph. Let $R \subseteq V$ and $S \subseteq E$ be such that $|R|+|S|=|V|$ and $R \neq \varnothing$
Consider $D(R|S|$.
Then $\operatorname{det} D(R|S|= \pm 1$ iff (V, S) is a forest has a unique vertex in R and $\operatorname{det} D(\mathrm{R} \mid \mathrm{S}]=0$ if not.

Example Laplacian Matrix

$T=\left|\begin{array}{cccc}2 & -1 & -1 & 0 \\ -1 & 2 & 0 & -1 \\ -1 & 0 & 3 & -2 \\ 0 & -1 & -2 & 3\end{array}\right|$
Setup of Matrix-Tree Theorem Proof Since $L=\Delta-A=D D^{T}$ use Binet-Cauchy $\left.\operatorname{det} L(w \mid w)=\operatorname{det} D D^{T}(w \mid w)=\operatorname{det} D(w \mid \bar{*}) D^{T}(\mid w)=\right\rangle_{s} \operatorname{det} D\left(w|S| \cdot \operatorname{det} D^{T}|S| w\right)$
Summation over all sets $S \subseteq E$ with $|S|=p-1$
$\operatorname{det} L(w \mid w)=\sum_{\substack{S \subseteq E \\|S|=p-1}} \mid \operatorname{det}\left(\left.D(w|S|)\right|^{2}\right.$
To prove the Matrix-Tree Theorem it suffices to show the proposition on the left (proof of that later).

Proof of Matrix-Tree Theorem
$\operatorname{det}(w \mid S \mathrm{I}= \pm 1 \mathrm{iff}(V, S)$ is a spanning tree of G (by the Proposition) Otherwise, det $D(w|S|=0$. Hence
$\left.\operatorname{det} L(w \mid w)=\rangle_{s} \operatorname{det} D\left(w|S| \times \operatorname{det} D^{T}|S| w\right)=\right\rangle_{S}, \mid \operatorname{det} D\left(\left.w|S|\right|^{2}=\kappa(G)\right.$
Proof of Proposition
Have $D_{(V \times E)}$. Every column has exactly one +1 and one -1 and the rest 0 .
Delete $|R|$ rows and keep $|S|$ columns. So there are $|V|-|R|=|S|$ rows and the submatrix $D(R|S|$ is square.

Consider the graph (V, S). Suppose it contains a cycle C. Consider the columns of D corresponding to edges in the set C . This set of columns is linearly dependent.

$D=\left[\begin{array}{cccccc}1 & -1 & 0 & 0 & 0 & 0 \\ -1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 & 1 \\ 0 & 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 & -1 & -1\end{array}\right]$
$\left.e+d-c-f=\left[\begin{array}{c}0 \\ 0 \\ 0 \\ 1 \\ 1 \\ -1\end{array}\right]+\left[\begin{array}{c}0 \\ 1 \\ 1 \\ 0 \\ -1 \\ -1\end{array}\right]+\left|\begin{array}{c}-1 \\ 0\end{array}\right| \begin{array}{c}1 \\ 0 \\ 0\end{array}\right]+\left[\begin{array}{c}0 \\ 0 \\ -1 \\ 0 \\ 1\end{array}\right]=0$
Sum the columns in C with ± 1 signs according to whether e agrees in direction with the orientation around C.

Missing Lectures, Extra Content

December-05-11
1:35 PM

Section 1 of "Combinatorics of Electrical Networks" Not on exam

Theorem (Euler)

A graph G has a trail T passing through every edge exactly once iff G has at most 2 vertices of odd degree.
(An Euler tour)

Plane Graph Numerology

Give examples of connected plane graphs with the following properties:

- 3-regular
- Every face has degree 4 or 7

Use handshake for faces and Euler's formula

