Review of Vectors on R™

September-12-11
11:43 AM

1.1 Notations
x =[x, ., x™)eRrR?
x'¥ = i-th component of the vector x

Operations with vectors
Addition: x as above,y = (y'V), ...,y'™)
Xy = (0 gyl xtm gy tm )

Scalar multiplication:

ax = (ax'V, ..., ax™), fora €R,x € R®

Standard inner product (dot product):

m
<xy>=xDyn) 4o g glmiym - > 'x‘“y‘“ €ER
i=1
Norm ("length") of a vector in R™:
m
llxll = V< x,x >= ) (x'9)2

-li=1

Observe that llxIl = 0, with equality holding iffx = 0 = (0, ...

1.2 Remark
Basic properties of standard inner product
Bilinearity :
X, X1, X2 y'yllyZERnr al'a2'ﬁllﬂ2 ER
<X F AXp, Y >=a, < Xq,Y > +ay, < x,Y >
<P+ By >=P1 <Xty > P, <%y, >
Symmetry:
<x,y>=<y,x>Vxy€eR"
Positivity
< x,x >2= 0Vx € R" with equality iffx = 0

1.3 Proposition

Cauchy-Schwarz inequality (C-S)
I<x,y>I<lxllxlyl, Vxy€R"

1.5 Corollary (Triangle Inequality) (T)
llx + ylIl < lixll + lyll, Vx,y € R"

1.6 Remark (Homogeneity) (H)
llaxll = lallixll,Va € R,x € R"

1.7 Distance
Forx = (xV,...,x'™)andy = (y'V, ...,y'™) in R™ define the
Euclidian distance between x and y to be

n
dix,y) = llx —yll = ) (i) — ytin)2
li=1

1.8 Corollary (TT)
dix,z) <dx,y)+dly,z),Vx,y,z € R"

1.9 Ball

Fora € R™ andr > 0 denote

Bla; r) =1x € R"ld(a, x) < r} - Open Ball
Bla; r) :=1ix € R"ldl(a,x) < rt- Closed Ball

1.11 Notation
Forx = (x'V, ..., x'™) e R®
1-Norm of x

n
xlly = ) |x'@|
i=1

co-Norm of x
X1l = max(|xV|, ..., [x"™])
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Proof of Cauchy-Schwarz inequality
Ify =0thenget0 =0
Will assume y # 0 hence that llyll > 0

Define f : R — R by
flt)=<x—ty,x—ty>VteR
Observe that f(t) > 0,Vt € R (By positivity of inner product)

On the other hand, use the bilinearity property to get:
flt) =<x,x>-<ty,x >—<x,ty >+ ty,ty >

= lIxl? — 2t < x,y > +t2Ilyll?

=a+ bt + ct?

So f is a quadratic function such that f(¢t) > 0Vt € R
For such f, the discriminant A = b2 — 4ac must satisfy A < 0

But whatis A?

A=Db%—4ac =4<x,y>)?—4xlxlIZ X llyl?
So

A< 0> (<xy>)? < Ixl? X lyl?

= 1< x,y > < lxll X iyl

QED

1.4 Exercise
Determine the cases when C-S holds with equality.

Comment about Triangle Inequality in R?
Q//

sl
l/ !

Proof of 1.5 Corollary

lx+yl2=<x+yx+y>

=< x,xX >+< X,y >+< y,x >+< Y,y >
=IxZ+2<x,y> +lyl?

(C = S) < NxZ + 20x121y1% + Nyl? = Ulxll + ||y|])?
llx + ylI2 < lixll + Iyl

QED

Proof of 1.6 Remark
laxll = V< ax,ax >=Va? < x,x >= lallixIl

Immediate consequence of (H): every vector x # 0 in R™ can be written uniquely in
the formx = r X u where r > 0 and u € R™ has llull = 1 (u is a unit vector)

Proof of 1.8 Corollary
dix,z) =llx—=zll=lllx—y)+(y=2z)I < llx =yl + lly — zll = d(x,y) + dly,z)

1.10 Exercise
Letx = (x'*, ..., x"™) be in R™. Prove that:
a) xP<uxnvi<i<n
n

b) lxlh < ) |x'?|

i=1

Solution - by immediate algebra



. H n i i .
Sequences in R" Will do R" versions oftwp important theorems from MATH 147:
Cauchy, and Bolzano-Weierstrass
September-14-11
11:30 AM Remark about Def 2.1
2.1 Sequences in R™ For (%)~ in R™, d € R™ have

. L - 1 (. — all =
(X ) pmq = X1, X, ey Xpgy o Xk oo @ S Xy — dll 9400 0

X, ER"d eR" .
Proof of proposition 2.4

Say that (X} )y, converges to d when the following happens: =
Knowx, - dinR
Ve > 0,3k, € N such that llx, — dll < € Vk >k, Want to know that x\" » a? vi<i<n
Fix i. Observe that forall k = 1
Note: 0< | —a?| = |6 — @) < 1%, — all > 0
Can also say W ) W )
d(Xy, d) < €,0r %, € Bld,€), instead of I, — dll < € By squeeze, |x,” —a'?| - 0= x> a'?
2.2 Cauchy Sequences in R™ <
(%) )k=1 Sequence in R" Know x\”) - a¥ in RV 1 < i < n.So have
Say that (¥ )~ is a Cauchy sequence when the following |Xli“ —a¥|>01<i<n
happens: n
Ve > 0 3ko € N such that ||x, — %4l < eVp,q = ko > |xl(<i) _ au)l 50
i=1
2.3 Component Sequences By exercise 1.10(b)
(%, ) =1 sequence in R" n W _
Write explicitly 0<%, —dll < >‘|ka _ au)l 50
X, = (x}(cl)'xl(f)' ...,x,(c")) -

Hence lI%, — dll - 0 by squeeze and hence X, — d

We get sequences in R
(I ® ) Proof of 2.6 (Cauchy Theorem)
(xk )k:1 forisisn (% ){p=1) cOnvergent in R™
They are called the component sequences of (¥ )y—; =
Conversely, with n sequences in R you can assemble them to

. e}
T h Each of (x,((”) is convergentin R
make a sequence in R k=1

=
2.4 Proposition Eachof (xy”) is Cauchyin R
(%), in R", d € R. Then o k=1

; R
X = dinR (% )j=, is Cauchy in R"
=

) i) . QSD
X, —a’inRV1i<i<n

- 2.8 Proof

2.5 Proposition Left as exercise
(X ) =1 sequence in R™. Then
(%) is Cauchy in R™ Proof of Lemma 2.11
=

. [ee]
(xl((i) )°° is Cauchy in R (Y )j=, convergentin R" = (x,(i) )k=1 convergesV1<i<n
=t (ti )iy is convergent = (xg*!), _ is convergent.

2.6 Cauchy Theorem in R" So have (x,(ci) )oo is convergent foreveryl <i<n+1

Let (X, )=, be a sequence in R™. k=1
Then (X} )5~ is convergent (to some limitd € R") iffitisa
Cauchy sequence.

Using reverse direction for Proposition 2.4 to conclude
(¥4 )=y is convergent in R™*1

Proof of Theorem 2.9 (BoIzano-Weierstrass)
H n
2.7 Bounded Sequences in R By induction on n.

Say that a sequence (x; )i~ in R™ is bounded when 37 > 0 Base case n=1. This is the B-W theorem from Math 147

such that I Il < 7, Vk € N. Induction. Assume the statement is true for n.

Let (¥ )5 be a bounded sequence in R™*1. For every k write

Note: , , Xx = (Vi ty) with y, € R" and t;, € R
Can write 1%, Il = ||, — 0| = d(,0)
Solléll <r = d(%,0)<r < x€B(0;r) Claim 1

(Y )=, is abounded sequence in R™
2.8 Proposition (tx)y=, is a bounded sequence in R

Let (%)%, be a sequence in R™. Then This follows from discussion about components of bounded sequences.

(X )j=1 is bounded in R™

PN Claim 2
11® e . Can find an infinite set of indices Q < N such that the subsequence
Each of the component sequences (xk )k=1 s (xk )k=1 is (Yi)keq IS convergent in R™
bounded in R Why? The induction hypothesis which says that B-W holds in R™
2.9 Bolzano-Weierstrass Theorem in R™ Claim 3
Let (x.'k)?;;:l) be a bounded sequence in R™. Then we can find Let Q be as in Claim 2. Can find infinite subset P € Q such that (tg)ep is
indices 1 < k(1) < k(2) < - < k(p) < - is convergentin R.

Such that the subsequence () ):—1 is convergent. We invoke the B-W theorem from Math 147 to the sequence (i )keq
Claim 4

That ic averv hnninded ceanence hac a ranveroent eith-

MATH 247 Page 2



LIUILED L = N\L) N N\&) N 777 NN\ N T

Such that the subsequence (X p) ):)0:1 is convergent.

That is, every bounded sequence has a convergent sub-
sequences.

2.10 Remarks

1.

For n = 1 this is the Bolzano-Weierstrass from MATH 147.
Here we want to prove that the same results holds in R™ for
every n. We will do this by induction on n.

2.

Notation: Subsequences and sub-subsequences of a sequence.
Given a sequence (X )(r1, in R™. Subsequences of (¥} )=,
are of the form (xk(p))p=1.

Giving a subsequence is equivalent to giving an infinite
subset P = tk(1),k(2),...,k(p), ..} EN

Instead of (% (p) ):=1) itis convenient to write (X )yep

With this notation, taking a sub-subsequence amounts to
dropping from (X )gep to (Xy)reo Where @ € P is an infinite
set.

3.
Note thatif X, — d in R™ then for any subsequence we will
have x'k(p) —)p—mo a

2.11 Lemma: Inductive Convergence
(%)%=, sequence in R*+1

For every k can write X, = (Y, tx) withy, € R, t;, € R

If (¥ ) =1 converges in R™ and if (¢, );~, converges in R then
(% )7~ converges in R**1
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We invoke the B-W theorem from Math 147 to the sequence (ty)keq

Claim 4

Let P € N be the set of indices from Claim 3. Then the subsequence of
(%) )kep is convergent in R™*?

Why? We have X} = (Y, ty),Vk € P

Havey, = b € R%,ty > s € R = %, > (b,s) € R**?

|



Open and Closed subsets of R™ Proof of Proposition 3.2

September-21-11 =" Know b € cl(A).

11:30 AM Then for every k € N have B (b;%) N A # 0, hence pickx, € B (b%) N A. This way we geta
A open and Closed sequence in A such that [[x, — bl < %,Vk >1
3.1 Definitions Have |lx; — bll =;_« 0 by squeeze, hence x;, = b
Let A be a subset of R
1. Avector a € Ais said to be an interior point of A when 3 " & " Know 3(x; )=, in Asuch that x;, — b
r> 0suchthat Bla;r) € A Letr > 0. Since x; — b can find k, € N such that ||x; — bll < r,Vk = k,

In particular have [lx,, — bll <7 = x;, € B(b;7)N A

The set of all interior points of A is called the interior of
SoB(b;r) N A # @, and done. QED

A denoted as int(A4)
2. Avector b € R" is said to be adherent to A when it has

the property that B(b;r) N A = @, Vr >0 3.3 Remark

int(A) € A, by definition of int(A4)
Accl(A)

The set of all adherent points of A s called the closure of For every a € A can find sequence (x)(,—;, in A such that x;, - a. Justtakex, = a,Vk > 1

A, denoted by cl(A4)

3.2 Proposition 3.4 Example
ACR™ b € R™ Then Sayn =2,letA=1ts,t):s,t ER,t > 0tUils,0):s €ER,s > 04
b € cllA)

o
3 sequence (xy )=, in A such that x;, = b ‘

3.3 Remark and Definition
For every A € R™ have int(4) € A < cl(4)

The set-difference cl(A) \ int(A) called the boundary of A,

denoted as bd(A) Then int(A) = 1(s,t):s,t € R, t > 0t .
For x = (s,t) with t > 0, can find r > 0 such that B(x;r) € A.E.g. taker = 3

3.4 Definition But x = (x, 0) is not interior to A - there isno r > 0 such that Bly,r) € A

Aset A € R" said to be open when it satisfied A = int(4)

A set A € R" said to be closed when it satisfies 4 = cl(A) cltd) =its,th:x,t eR,t = 0t

bd(A4) = int(A)\ cl(4) =1(s5,0):x € Rt
Warning
Most subsets A € R™ are neither open nor closed. So A not open
does not imply that A is closed.

3.6 Definition

Say that A € R™ has the "no-escape” property when the
following happens:

Whenever (x; )3, is a sequence in A such that x, - b € R"
then b must also belong to A.

3.7 Proposition
For A € R™ have
(A is closed) & (A has the'no — escape'property)

Proof: Exercise.

3.8 Remark
1. Forevery A € R™ have that int(A) is open. Moreover
int(A) is the largest possible open set which sites inside
A.
2. Forevery A € R™ we have that cl(A) is closed, and in fact
it is the smallest possible closed set which contains A.
Proof: in homework
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Compact subsets of R"

September-23-11
11:32 AM

B Compact Sets

3.9 Definition
A subset A € R" is said to be bounded when 3r > 0 such that
lIxll <r,vx €A

Note

"lixll < r,Vx € A" is equivalent to saying that A € B(0; ). Could also
use an open ball; pick 7’ > r then have lixll < r’,Vx € A hence

A S B(0,7)

3.10 Definition
A subset A € R" is said to be compact when it is both closed and
bounded.

Note
There are several equivalent descriptions of compactness (Some of
them extend to spaces more general than R™ - see PMath 351)

3.11 Definition

A subset A € R™ is said to be sequentially compact when the
following happens:

For every sequence (x;)z-, in A, one can find a convergent

subsequence (X ) ):;1 such that the limita = lim,_,, X ;) still

belongs to A

3.12 Theorem
For A € R™ have that A is compact iff A is sequentially compact.

C Duality Open < Closed

Via taking complements

3.13 Duality interior vs. closure
For every A € R™ have that

int(R*\ 4) = R"\ cl(4)

cl(R"\ A) = R"\ int(4)

2.14 Corollary (Duality open vs. closed)
For A € R™ have (Ais closed) & (R™ \ A is open)

3.15 Remark
We have one description for what it means that A € R" is open.
Aopen & A = int(Ad) & every a € Ais an interior point of A

We have three equivalent descriptions for what it means thatA € R" is

closed:
1. A =cl(A) (by Definition 3.5.2)
2. Ahas the "no-escape” property (Proposition 3.7)
3. R™\ Aisan open set (Corollary 3.14)
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Proof of Theorem 3.12

"=" Know that A is closed and bounded. Let (x; )5~ be a sequence in A.
Aisbounded = (x; ), is a bounded sequence = 3(xyp) ):;1 convergent.
Denote the lim,,_,, Xk(p) =: al€ R™)

Since A is closed, it has the no escape property, therefore a € A

me
Know A is sequentially compact. Want to prove that A is closed and bounded.
This is problem 7 in homework 2.

QED

Note
Theorem 3.12 is part of a theorem of Heine-Borel

Proof of Proposition 3.13
Will do first equality, second can by done by similar argument or the 2nd can be
deduced using the first.

So prove the first equality
ne

Take b € int(R" \ A).So3r > 0s.t. B(b;r) E R*"\ A
But then B(b; ) N A = @ and it follows that b is not adherent to A. Hence
b & cl(A). Hence b € R™\ cl(4)

e
Take b € R" \ cl(A) = b & cl(A) = b is not adherent to A.
From Def 3.1.2 it follows that 3r > 0 such that B(b;r)NA =0
Butif B(b;r) N A = @, then must have the B(b;r) € R" \ 4
Finally from B(b;r) € R™ \ A we conclude that b € int(R" \ A)
QED for first formula

Proof of Corollary 3.14
"=
Aclosed = cl(A) = A= int(R"\ A) =R" \ cl(4d) =R"\ A
= R™ \ A is open (itis equal to its interior)

=]
R™\ Aisopen = int(R"\ 4A) = R"\ A

= R"\ cl(4) = R"\ 4 = cl(A) = A (by taking complements again)
= Ais closed

]



Continuous Functions

September-26-11
11:30 AM

4.1 Definition
ACRYf:A->R™MA+0
1. Leta € A. Say that A is continuous at d when the following happens:
Ve > 0,38 > 0s.t. lIf (%) — fla)ll < e Vx € Awith ¥ —dll < &
2. Let B be a subset of A. Say that f is continuous on B when f is continuous
ateverya € B
Note
In particular, may have B=A, get definition for "f is continuous on A"

4.2 Remark
Given € > 0 have to find § > 0 such that
f(B(4;8)n A) € Bifta);e)

4.3 Definition

ACR" f:A— R™a € A. Say that f respects sequences in A which converge
to a when the following happens:

Whenever (X, )3-; is a sequence in A such that X, —y_., a it follows that

FOg) =psw f(@)

4.4 Proposition

ACR",f:A—> R™ d€ AThen

f respects sequences in A which converge to a
=

fis continuous at a

4.5 Definition

ACR" f:A— R™ Foreveryad € A, write explicitly
fla) = (fPa), .., f™))

Get n functions f'*), .., f™ : A > R

For 1 < j < m, the function fY: A - R s called the j-th component of f

4.6 Proposition
ACRYf:A>R™a€A
fis continuous at a

=

Each of the component functions f'%, ..., f™ is continuous at d
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Proof of Proposition 4.4

" = " Know f respects sequences convergent at a

Want f satisfies e — § ata

So fix an € > 0. Need to prove that 3§ > 0 such that

) lIfx) = flalll < eVX EAs.t.llx—all <§

Assume by contradiction that I cannot find a § > 0 such that (*)
holds. So no matter what § > 0 I try, (*) will fail.

Try § = 1, and it fails.

Hence 3x; € A s.t.llx; — all < 1, but nevertheless

If () — flai =1

Foreachk € N, take § = %, and it fails. 3x, € A s.t. llx, — all < %
but nevertheless ||(f (x,) — f(a)|| = €

Observe that in this way we get a sequence (X );-; in A where
llxy —all < %Vk € N = llxg — all 2,0 0, hence x =y, a
Andyet lIf(x) — fla)ll = &, Vk € N hence |If (x}) — fla)lll =

0, flx)! = f(a).
So f does not respect the sequence x, — a, contradiction with the
hypothesis.

Hence the assumption that there is no delta for which (*) works
leads to contradiction. Hence 34. Done with " = "

Proofof "& "
Exercise, on homework 3

Proof of Proposition 4.6

f continuous at a

=

f respects sequences in A which converge to a

S ()

Each of f'V, ..., f™ respects sequences in A which converge to a
=

Each off(“, ..,f("” is continuous at a

X
’(I‘a)ke (X )j=1 in Asuch thatx, — a

For every k € N, write f(x;) = (f M (xg), ..., f 7™ (%))
Know from prop 2.4 that f(x,) — fla) iff fYU) (%) > FY)(d)
Vi<j<m



Uniform Continuity

September-28-11
11:30 AM

5.1 Remark

ACR",f:A->R™

Suppose we want to discuss at the same time the continuity of f
at several points of A: a4, a5, ..., ap €A

Havee > 0,V1 <k <pwefind§, >0s.t.x € Allx —a,ll <
8 = If(x) — flag)ll < &

To find a single delta which works for all a; take
6 :==minidy: 1 < k < pt > 0and works Va;

But what happens if we did this for infinitely many points in A at
the same time, or all the points of A.

Here we can't always find a § > 0 good for all a’s at the same
time.

5.2 Uniform Continuity

ACRY,f:A->R™

Say that f is uniformly continuous on A when the following
happens:

Ve>0,36>0: lif(x)—flall<eVx,a€A:llx—al <d

5.4 Proposition

Let A € R™ be a compact set.

Let f: A - R™ be a function. If f is continuous on A then fis
uniformly continuous on A

5.5 Definition

B<S ACR"Y f:A—- R™, function

We say that f is uniformly continuous on B when the restriction
of F to B is uniformly continuous

Ve> 0,36 >0s.t.lf(x) = flb)ll <eVx,bEBs.t.[Ix—=>bll <6

Please us this definition in Problem 6(a) of Homework 3
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5.3 Example
f continuous on A, but not uniformly continuous on A

LetA =1(0,1) X (0,1) € R?
f:A-R, flts, t)) =

1%

Observe that f is continuous at every a = (s,t) € A

Indeed, check with sequences. Suppose x;, — a where x;, = (s, tx) € A
Thens, = s,t, = t

Take ratio of convergent sequence as in Calc 1, get

Sk S

ty t

Hence f(xy) - fla)

So have that f is continuous on A
Claim: But fi is not uniformly continuous on A

Opponent gives € = %
Canlfindé > 0s.t.

1
If(x) = flal <§ Vx,a € Awith llx — all

Assume 36 which satisfies the above.
1

. . 1
Consider the sequence (x; )z~ in A where x; = (;,

Note that llx, — X441l = 0
Hence 3kg € Ns.t. llxy — X411l < 8 Vk = ko. In particular [|x, — xx,4+11l < & so it should

follow that |f(Xk0) — f(xkoﬂ)l < %

But f(xy,) =7 = ko. Similarly f(x 41) = ko + 1

ENEES

1
If iy ) = fXpgra )l = Tkg — kg — 11 =1 <3

Contradiction, coming from the assumption that § exists.

Proof of Proposition 5.4
Given € > 0, Want to find 6 > 0 s.t.
x,a€Alx—all<e=2If(x)—flalli<e

Assume by contradiction that no such § exists.

Pickk € N,use§ = % We can find ay, xj, in A such that llx;, — agll < %but nevertheless
IIf(x) — flag)ll = & In this way we find two sequences in A, (X )i, and (ay )z—, is
compact and hence sequentially compact. So can find1 < k(1) < k(2) < --- < klp) < -
such that (X, ):=1 converges to a limitx, € A

Claim: For the same 1 < k(1) < k(2) < --- < k(p) < --- we have that
gl_‘)?o Akip) = Xo
For every p € N write
1
llakp) = xoll < Nlakp) = Xl + llxgp) — Xoll < P + lxpp) = xoll > 0+ 0=10
So by squeeze, |la,) — Xoll = 0. Done claim

Now, fis continuous at x, so it respects x,) = Xo and ayp) = Xo- SO f(Xg(p)) = flxo) and
flakg ) = flx)

f (Xkipy) = flag M < f (X)) = Flxll + lIf (xo) = flagp) Il 2 0+0=0
Contradiction with construction of x, a, which said [If (X)) — flagg )l =2 eVp €N

So assumption that I cannot find a § leads to contradiction. It remains that we can find 6.
QED



Extreme Value Theorem

September-30-11
12:05 PM

Supremum / Infemum

This is about global minimum and maximum of a continuous function on
a compact set. Will use the concepts inf(4) and sup(4) for a bounded
nonempty subset A € R.

inf(A) = smallest possible limit of a sequence in A

sup(B) = largest possible limit of a sequence in A

Have that inf(A) is the greatest lower bound (GLB) for A
i) infld) <a,Va€A
ii) If @ € R has the property that a < a,Va € 4, then it follows that
infld) > a
sup(A) is the lowest upper bound (LUB) for A

Note:
For a general bounded set A, inf A and sup A may or may not belong to A

6.1 Remark

K < R anonempty compact set.

Then K is bounded, hence can talk about ¢ = infK and § = sup K. We
were are certain thata, f € K

(Why? Because K is closed so it has "no-escape” property for sequences.

6.2 Definition
ACSRY, fiA—>R™
1. The image of f is the set f(A) =1y € R™I3x € A s.t. f(x) = yt
2. We say that f is bounded in A if f(A) is a bounded subset of R™.
Equivalently, this means that3r > 0st. lIf (X)) <rVx € A

6.3 Remark and Notation (special case m=1)
ACR™ f:A—- R Then

fisbounded = Ir > 0s.t. If(X)I <rvVx €A
Here f(A) is a bounded subset of R

So we can talk about inf and sup of the set F(A) € R™. We abbreviate
them as follows:
in(f) = infif(x)lx € At

sup(f) = supif(x)lx € At
A

Also, use the notation for the oscillation of fon A
0scy(f) = suplf) — igf(f)
A

6.4 Definition

A C R" f:A - Rabounded function.

An element a € A is said to be:
¢ A global minimum for f on A when f(a) = inf, (f)
¢ A global maximum for f on A when f(a) = sup,(f)

Note
A bounded function f on A may or may not have a global min/max and if
it does, then it may have one or several.

6.6 Theorem (EVT)
A € R"™ compact, f: A — R continuous. Then f is bounded, and has at
least one point of global max and at least one point of global min.

We will derive EVT from the following fact (important on its own)
6.7 Proposition

A € R" compact, f: A - R™ continuous. Then the image set f(4) € R™
is a compact set of R™.
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6.5 Example

A=1(01)%x1(0,1) € R?

f:A > Rdefined by f((s,t)) =1s—tIVO<s,t <1

f(A) =[0,1) hence infy(f) = 0,supa(f) =1

f has many points of global min: all points (s,s) with0 < s < 1

But f has no points of global max. There is no point a € A such that f(a) =1

Proof of Proposition 6.7

Denote f(A) =B € R™

We will verify that B is sequentially compact (know this this is equivalent to
compact - Theorem 3.12)

So let us fix a sequence (y );-; in B. Have to prove that (y; )~ has a
convergent subsequence with limit still in B.

For every k € N have y, € B = f(A), hence can find X, € As.t. f(xXg) = yi

A is compact by hypothesis, hence it is sequentially compact. So we can find
1<k(1)<k(2)<- <k(p)<-stXgp 2a€A

Function f is continuous on A, hence respects convergent sequences in A, so
have f (%)) - fld) =y, > fla) =b €B

So we have found a convergent subsequence (yyp) ):;1 of (yy)r=, which

converges to a value of B. QED

Proof of Proposition 6.6 (EVT)
Have A € R™ compact, f: 4 — R continuous
Want: f is bounded, and 3d4,d, € As.t.fldy) < f(x) < fldy) VX €A

Denote f(A) = K € R

Then K is compact by proposition 6.7

So we can talk about & = inf(K), = sup(K) and moreover «, § € K (By
Remark 6.1)

Sincea, € K = f(A) wecanfind d;,a, € As.t.flay) = a,flay) =
But then for every x € A we can write f(x) € K

a<fx)<B=fla)) <flx)<fla,)Vx €A

QED



Integration Intro

October-05-11
11:32 AM

Goal
A S R", f: A - R Want to associate to f a real number, called the
integral of f on A denoted

| Ferax
A

What kind of A € R™? A will be a bounded subset of R™

What kind of f? f will be in any case a bounded function. But need
more conditions.

Case of f continuous, but will also allow some discontinuities.
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Historical Note
¢ [deathata continuous function has an integral - Cauchy (~1820)
e Concept of integrable function - Riemann (~1850)



Rectangles and their divisions

October-05-11
11:41 AM

We prefer half-open rectangles

7.1 Definition

We call a half-open rectangle in R™ a set of the form

P =(ay, byl X (ay, byl X -+ X (a,, b,| where a; < b; V1 < i < n,and are in R
P=ix€RMa; <x¥ <hVvVi<i<n}

n n
ForP = | |(ai, b;1 we denote vol(P) = | |(bi —a;)
i=1 i=1
diam(P) = supillx — ylllx,y € Pt = ||b — a|
where a = (a4, ay, ...,a,) ,b = (by, by, ..., by,)

7.2 Notation and Remark
We denote by P, the collection of all half-open rectangles in R™
Note: P, is a set of sets

P € P,, means P is a half-open rectangle

Note that
P,QEP,PNQ+*0P=>PNQEPR,

Exercise: Verify this by algebra.

7.3 Definition
Let P € P,. By adivision of P we understand a set A = {Py, P,, ..., Pt of half-open
rectangles such that

T

| Jp=PandP NP =0Vi=j
i=1

Notation
Al = max(diam(P;),1 <i <)

7.4 Remark
Special case of division: grid divisions.
n

P = | |(ai,bi| E:Pn
i=1
A grid division of P is obtained by decomposing each (a;, b;| and then taking the
Cartesian products
T

3
W _ ) @) W W W W
b= " =10y 0 1 =%y e R
j=1
Then P is divided into r = ry1;, ... 13, rectangles of the form

(1) (2) (n)
S )PP X x T

withl<i;i <r,1<ip, <ny,

7.5 Definition

P € Py andletA =1Py, ..., B4, =1Q4, ..., Qs be divisions of O
Say that I refines A (denote I' < A)

When for every 1 < j < s there exists 1 < i < rsuchthatQ; S P;

7.6 Remark
IfT < Athen can write I' = {Qy1, Q15,, -, @r1, @r2s o) Qrs,
Where 1Q;y, .., Qjs, | is a division of P;

7.7 Remark

Let A =1{Py, ..., B-t be any division of P. One can find a grid-division I' such that T < A
Proof: Exercise

Geometric idea: extend lines of division for each sub-rectangle.

7.8 Proposition

Let P € P, and let A’, A" be two divisions of P. Then one can find a division T of P such
thatT' < A"andT < A",

Say that I' is a common refinement for A’ and A"

7.9 Remark
P € P,,A =1Py, ..., B-tis a division of P then
T

) vol(P;) = vol(P)

i=1
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Proof of Proposition 7.8

Write A" =1{P{, P, , ..., B'}

A" =3P, P}, .. Bt

Putl =1{pP; nPj”Il <i<r1<j<s,whereP NP+ @}

So I' consists of some q number of half-open rectangles, where g < r X s
Have that I is a division of .

Verification is by immediate Boolean algebra. Exercise.

We observe that I' < A". Indeed every rectangle P/ N P/ of T'is included in
arectangle of A’, namely P/ N P;" € P;. Same argument with P/ N P’ gives
T < A" QED

Proof of Remark 7.9
What do we so if A is not a grid division?
If A =1P;, ..., B-tis not a grid division then refine it to a grid division
I'=1Q4, ..., Qs then reduce
S T

> vol(Q;) = vol(P) to ) vol(P;) by suitably grouping terms

da=1 i=1



Definition of Integral

October-07-11
11:53 AM

Riemann integral - ~1850
We will use Darboux sums - ~1870

8.1 Definition
P € P, Let f: P > Rbe abounded function. LetA = {Py, ..., B-t bea
division of P
Then the upper Darboux sum for f and A is
T

UUf,A) = ) vol(P;) x sup(f)
; P;

=1
And the lower Darboux sum for fand A is
r

LUf,A) = ) voltP;) x inff)
i=1

8.2 Remark
P, f,A as defined above.
T

UUf,A) = LUf,A) = ) vol(P;) (supf —inff)
; P; i

i=1
r

= > vollP;) X oscp,(f) =0
i=1

8.3 Lemma

P € P,, f: P - Rbounded function.

Suppose A, T are divisions of P such thatT’' < A
Then U(f,T') < ULf,A) and LUf,T) = L(f,A)
= U(f,T) = LUf,T) S Uf,A) < LUf,A)

8.4 Proposition
P € B, f: P - Rbounded function. Let A", A”be two divisions. Then
LUf,A") S Uf,A")

8.5 Remark
P € P,, f: P - Rbounded. Consider the following set of real numbers:
S = {s € Ri3division A of L(f,A) = st
T = {t € RI3division A of P with U(f,A) = t}
Then Prop 8.4 saysthats <tVs € S,Vt €T
Make some observations from here:
a) Sisbounded above (since every t € T is an upper bound for S)
Hence can talk about sup(S)
Observe that sup(S) < t,Vt € T (since t is some upper bound for S,
while sup(S) is the smallest upper bound for S
b) Tis bounded below (e.g. sup(S)) is a lower bound for T. Hence can
consider inf(T), and will have inf(T) > sup(S)

Havesup S < infT
When can this hold with equality?
Some equivalent conditions for this:
1. supS =infT
2. Ve>03seSandteTs.t.s—t<eg
3. 3 sequences (s, )y, in S and (t )y~ in T such that t;, — s, - 0
Exercise

Now recall that we had S = {s € S13 division A of P with L(f,A) = s}
Hence sup(S) = supiL(f,A)IA division of Pt

Likewise

inf(T) = infiU(f, A)1A division of Pt

8.6 Definition
P € P, f: P - Rbounded function
e Two number supiL(f,A)IA division of Pt is called the lower
integral of f, denoted

’f or ’f(x)dx
4 2

e The numberinfiU(f,A)IA division of P} is called the upper
inEegral of f, denoted

’ for ' flx)dx
P P

8.7 Proposition

P €®P,, f:P - Rbounded

Then | ’ f<u ’ f Moreover, the following are equivalent:
P P

1) lLf=u Lf
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Proof of Lemma 8.3
Will show the inequality for U. L is similar.

Write A =1{Py, ..., B-1, T =1Qq,1, -, Q15+ Qr 1) v Qr 5, | Where

Qi1 V-UQis, =P Vi

Foreveryl <i <rand1 <j <s; have that suinJ.(f) < supp,(f) This is just
because Q; ; € P;

Then write
T Si T Si
Uf,T) = >( >‘vol(QiJ-)~sup(f)) < >( >‘vol(Qi_,-)sup(f))
i=1 j=1 Qij i=1 j=1 Pi
T Si r
= >( )lvol(QiJ-) )sup(f) = >‘vol(Pl-J -sup(f) = U(f,A)
i=1 j=1 Pi i=1 Pi
QED

Proof of Proposition 8.4
Can find division I of P such that ' < A"and I' < A" (from Lecture 7, prop 7.8)
Then LUf,A') < LUf,T) < ULF,T) < ULF,A")
Lemma 8.3, Remark 8.2, Lemma 8.3
QED

Proof of Proposition 8.7

The inequality L |, f < u |, f is just the inequality sup § < infT from remark 8.5
The equivalent conditions 1, 2, 3, are suitable re-writings of the "(inf=sup)"
equivalences in remark 8.5

However, condition 2 from (inf=sup) says less.Itsays 3s € S,t € T witht —s < ¢
That is, 3A’, A" divisions of P such that U(f,A”) — L(f,A") < ¢

But then let A be a division of P such that A < A’,A < A”". Then have U(f,A) <
Utf,A")and L(f,A = LUf,A") =2 U(f,A) = LUf,A) S UF,A") = LUf,A) < ¢
This is how 2 is fixed. Same for 3.

Proof of Proposition 8.9

Denote [ := ’f
P

Havel =1],f = supiltf,A)IA division of Pt
Hencel > L(f,Ay),Vk =1
Likewise
I=u ’ f =inRU(f,A)IA division of Pt
P

=1 <Uf,Ak),VEk =1
Sohave L(f,Ay) < I S Uf,A),Vk =1

Then II — L(f, M)l =1 = LUf,Ay) < UGS, Ap) — LUf,A,) > 0
So Il — L(f,A)l = Ohence L(f,Ay) = 1

Also Uf,A) = LUf, D) + (UL, A ) —LUf A ) ) » T +0=0
QED



2) Forevery € > 0 there exists a division A of P with U(f,A) —
L(f,A) <&

3) There exists a sequence of divisions (A )3, of P such that
U(f, Ak) - L(f, Ak) -0

8.8 Definition
P € P,, f: P - Rbounded.
Ifl ], f =ul, f then we say that f is integrable on P and we define its

integral to be the common value of L ], f,u |, f. Notation:

| 7

8.9 Proposition

P € P,, f: P - R bounded, integrable. Suppose (A, )} is a sequence of
divisions of P such that U(f, A ) — L(f,A;) = 0

Then we have

lim U(f,A) = | £ = lim L(f, A)
k—oo P k—oo
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Linear Combinations of Integrable Functions

October-14-11
11:54 AM

9.1 Remark

AC R, f,g: A = R, bounded

Considerthesumh = f 4+ g

h:A- R, hix)=flx)+glx),Vx€A

Have that sup, h < sup, f + sup, g andinfy h > inf, f +inf, g

9.2 Lemma

P E P, f,9: P = Rbounded

Consider the sum f + g. Then for every division A of P we have

U(f +9,A) <U(f,A) +Ulg,A)and L(f + g,A) = L{f,A) + L(g,A)

9.3 Proposition
P €®,, f,g:P - Rbounded, integrable.
Then f + g is also bounded and integrable,and has |, f + g = I, f + I, g

9.4 Remark
P € P, f: P - Rbounded, integrable.
Then af is bounded and integrable and has Jp af =al,f

9.5 Theorem
P € P,.Let Int,(P,R) = {f:p = RIf bounded and integrable}
Then Int, (P, R) is closed under linear combinations and the map

Int,(P,R) »> R: f = ’ f islinear
P

Question
What about f - g, for f, g € Int,(P,R)

9.6 Lemma
If f € Int,(P,R) then f2 € Int,(P,R)
Where f2: P - Ris defined by (f?)(x) = (f(x))2 Vx € P

9.7 Proposition

f,g € Int,(P,R) = f - g € Int,(P,R)
Where f - g: P —» Rdefined by (f - g)x) = f(x) - glx),x €P
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Remark 9.1
Addition
a = supl(f) = supi f(x)lx € A}
A
B = suplg) = suptg(x)ix € At
A
Foreveryx € Ahavehix) = f(x)+ gx) = a+f

So a + f is an upper bound for th(x)Ix € A}. Hence we have
suplh) < a + = suplf) + sup(g)
A A A

Same for inf

Proof of Lemma 9.2
Write A = {Py, ..., P-t. Then
r

.
UUf +g,8) = ) voltP) - sup(f +g) < ) vol(P) (sup(f) +suplg))
P; P; P;

i=1 i=1

r T
= ( >‘vol(Pi)sup(f))+( >‘vol(Pl-)sup(g)) =U(f,A)+Ulg,A)
P P;
i=1 t i=1 t

Inequality for L(f + g, A) done in the same way.

Proof of Proposition 9.3

Use the integrability criterion for fand for g.

Get sequences (A}, )y~ and (A} )i, of divisions of P such that

ULf,Ay) — LUf,A) » 0and Utlg, Ay) — Lig,A)) > 0

For every k = 1let Ay, be a division of P such that A, < Ay, A, < A}
Then also have

U(f,A,) — L(f,Ar) > 0and Ulg,Ag) — LLg,A,) = 0

For every k > 1 have

UGS + g, M) < UUE,Ag) + Ulg, Ay) and LUf + g, Ag) = LUf, A) + LUg, Ay)
U+ g,0,) — LU + g, 0p) < UL, Ay) — LUF, Ay) + Utlg, Ay) — Lig, Ay)
-0+0=0

So by squeeze, U(f + g,Ay) — LUf + g,Ax) = 0so f + g is integrable.

Moreover, Prop 8.9 says that

| f+g= lim Uf +g,8) = lim LUf + g,4)
P —00 —00

Uf +g,A,) S U D)+ Ulg, Ay)
LUf + g,A,) = LUf,Ap) + Lig, Ag)

But then just make k — o

Lf+ Lg < Lf+g < Lf+ Ly
So get

,f+g= ’f+ ’ g as claimed QED
P P P

9.4 Remark

P €P,f:P - Rbounded. Let a € R, consider new function af
(af: P — Rdefined by (af )(x) = af (x) Vx € P)

af is bounded (immediate)

Have3cases:a >0,a =0,a <0

Case 1:
For every division A of P get Ulaf,A) = aU(f,A) and Llaf,A) = aL(f,A)
Take infimum of U's and Supremum of L's.
u’af:a(u’f),l’af:a(l’f)

P P P P
In particular, if f is integrable then af is integrable as well with

o=l

Case 2:
Have af = 0. af is integrable with | af =0

Case 3:

For every division A of P have

Ulaf,A) = aLlf,A)

Llaf,A) = aL{f,A)

Problem 4. a) in homework 5. Have there case « = —1. General a < 0 is
treated in the same way.

This implies further that
ulaf=all] flandl |af =alu] f
or =alt]r)anat] ar = afu]r)
If f is integrable, still get conclusion that af is integrable with

|af =a|f

p

Proof of Theorem 9.5
Statement amounts to 2 things:
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1) Iff,g € Int,(P,R) thenf + g € Int,(P,R)and |, f+g=1,f+ 1,9
This is Proposition 9.3

2) Iff € Int,(P,R) and @ € Rthen af € Int,(P,R)and |, af =a |, f
This is Proposition 9.4

Proof of Lemma 9.6

f? bounded - immediate

Taker > 0st. If(x)I <r,Vx €P
Then If?(x)l <r%,Vx €EP

But why is £ integrable?

Recall thatif A = {Py, ..., P.t is a division of P then
T

UUf,A) = LUf,A) = ) vol(P,) - oscp,(f)
i=1

Claim 1
Letr > O besuchthatif(x)I <r,vx €P
Then for every @ # A € P we have oscy(f2) < 2r - 0scy(f)
Verification of Claim 1
Denote w = oscy(f)
Have w = sup If(x) — f(y)l

X, YEA
In particular, have that If (x) — f(y)I < wVx,y € A
But then for x,y € A write

200 — F1 = [(F)) = (F3)?] = 1) = FO)F) + £l

Proof of Proposition 9.7
f+gP=f*+2fg+g°
>fg=50U+g97-f=-g%

f+g € Int,(P,R) by 9.3

(f +9)% f? g% € Int,(P,R) by 9.6

((f +g)? — f2 - g?) € Int,(P,R) by 9.3
f-g=3f +g)? = f2 - g?) € Int,,(P,R) by 9.4
QED



Integrals Respect Inequalities Implications of Remark 10.1
October-21-11 If f(x) = c Vx,leta = B = c. Then fis integrable with J, f = c - vol(P)

11:18 AM If f is non-negative let @ = 0, then Assuming fis integrable a - vol(P) < |, f =20 < |, f

10.1 Remark
P € P,, f: P - Rbounded.
Suppose that a, f € Rsuchthata < f(x) < VX €EP
Then for every division A = {P;, ..., P of P we get
T

Proof of Propositions 10.2
Let h(x) = g(x) — f(x). his bounded and integrable and 1 h= lpg - JPf
Since g = f, h is non-negative,so |, h = 0.Hence |, g = |, f.

Ulf,A) = ) vollP;) - sup(f) < Bvol(P) and Proof of Proposition 10.3
i=1 Pi Verification of bounded f integrable will be on homework.
) Similar to proof of 9.6
LUf,0) = ) voltP,) - inflf) = a vol(P). —IfIx) = —If )l < If )1 = If1xX) VX € P So—If1 < f < |f| by prop 10.2
i=1
Then a voltP) < L], f <u |, f < Bvol(P). In particular, if f is |-ifi<|r<|ip=—|-n<|r<|ifi= H f| < i
P P P P P P P P

integrable a - vol(P) < |, f < Bvol(P).
This is like a "mean value theorem"

1
a< | r=b
P

~ vol(P)

10.2 Proposition
P € P, let f,g: P = R be bounded, integrable functions such
that f(x) < glx)Vx €EP (f < g).Then ), f < J, g

10.3 Proposition

P € P, f: P - Rbounded, integrable. Consider IfI: P - R
defined by If1(x) = If (x)I.

Then |f| is bounded and integrable and IJPfI <, Ifl
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Integrals over more general domains in R

October-21-11
11:31 AM

11.2 Lemma
P,Q € P,suchthatQ € P
. . ) _y9x), x€qQ
Letg:Q — Randlet f: P — R be defined by f(x) —% 0, xeQ
Then we have that
g is bounded and is integrable on Q
=
fis bounded and integrable on P
Moreover, if these conditions hold then have JQ g=1f

11.3 Definition and Proposition
Let A € R™ be a (nonempty and) bounded set, and let f:A - Rbea
bounded function. Pick a half-open rectangle P € 7, suchthat P 2 A
and extend f to a function:
f:P — Rdefined by

fx)ifxeA
fix) 0ifx e g
Then it makes sense to declare:
fis integrable on A
=

f is integrable on P
Moreover, if f is integrable them it makes sense to declare

|r=1r

11.4 Notation
A € R"is bounded
Denote Int,(4,R) = {f:A - R | f is bounded and integrable}

11.5 Theorem
A € R, bounded. Then the set of functions Int, (4, R) is closed under
linear combinations, and have

’af+ﬂg:a’f+[f , g vf,g € Inty(4,R),Va, B € R
A A A

11.6 Remark

Other properties of the integral also go through in the same way.
e f,g €Enty(4,R) = f - g€ Inty(4,R)
* fEIntAR)=IfI €Inty(A,R)and|], fl < ,If1

11.7 Remark
A € R" bounded, let f: 4 - Rbe defined by f(x) =1Vx € A
Can we be sure that f € Int,(4,R)?

Sayegn=2andA={(s,t) ER?|0<s,t<1st€EQ}
ThenA € P = (0,11 X (0,11
f extendsto f: P - R where

11, (s,t) €A
M=y (tea
Not integrable.
What was the problem?
One way to look at it: bd(A) was way too large
bd(A) = cl(A)/int(A) = 10,11 X 10,11

Will prove that things improve if we assume that bd(4) is "small"
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11.1 Example
n = 2. Look at the function f defined by the formula:

flis, t) =v1—(s2+¢?)
f:D->R,D=ils,t) € R:s?2 +t2 < 1t = B((0,0),1)

Range is half a sphere, Domain is not a rectangle, what do we do?

Proof of Lemma 11.2

Exercise

Direct verifications by using criterion with sequences of divisions. (Prop 8.7 and
Prop 8.9)

Proof of Proposition 11.3
Why does the definition make sense?

Must verify that the definition is independent of the choice of P. So suppose that
someone else picks P; € P, extends f to f;: P, = Rby

fx),ifxe€eA
(x) = P
f 0ifx € 71
Must verify that

f integrable on P & f; integrable on P;
Moreover, if these conditions hold then want |, f = ’P1 fi

DenoteQ =P NP.haveQ € P,andQ 2 A
Let f: Q = R be defined by
{f(x), x €A
0, X €EQ/A
Observe: Q € P and f extends g with 0.
Q S P; and f; extends g with 0.
Apply lemma 11.2 twice
f integrable on P <
g integrable on Q &
f1 integrable on P;
If these considerations hold then Lemma 11.2 also says

lr=1g=1%

glx) =

Proof of Theorem 11.5

Take P € P, suchthatP 2 A4

Extend f, g € Int,(A,R) to f, g € Int,(P,R), then we use Theorem 9.5 for f, g.
QED



Integrability for Continuous Functions Modulo Null Sets

October-24-11
11:28 AM

12.1 Definition

C < R"is a null set when the following happens:

Ve > 0,3 a finite family Q4, ..., Qs € P, such that
N

S

l JQS 2 Cand >‘vol(Qi) <eg

i=1 i=1

12.3 Remark
In definition 12.1 there were two requirements
N

D | Jes=2¢

i=1
2) ) wol(Q)<ce

i=1
But did not ask for
3) @iNQ;=0Vi+j
But observe that if C is a null set, then we can always arrange
Q4, ..., Qs to also satisfy (3). This is done by refining Qy, ..., Qs
as necessary.

11.4 Remark
These are some obvious properties satisfied by null sets
e IfC € R"isanull setandif D € C then D is a null set as
well
e IfCy,C, € R™ are null sets then C; U C;, is also a null set.

Lemma ('Two Ways of Being Small')

P € P,, f: P = R bounded function.
Suppose that Ve > 0 we can find a division
A=1Qy,...,Qu Ry, ..., Ryt
Such that (Way 1) + (Way 2) hold.
(Way 1):

u

> .val(Qj) <eg

j=1
(Way 2):

uschlf) <eVi<k<v
Then f is integrable on P

12.5 Theorem

A € R™ bounded (nonempty) set such that bd(A) is a null set.

Let f: A - R be a bounded function.
Suppose we found B, G € A (B-bad, G-good) such that
i) BUG=ABNG=0
ii) fiscontinuousateveryx € G
iii) Bisanull set
Then f is integrable on A

Note
For exam might need to know individual parts or the outline
of the whole proof of the above theorem.

12.6 Corollary (Special case B = @)

A € R™ bounded with bd(A) isanull set. f:A > Risa
bounded continuous function. Then f is integrable.
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12.2 Example of Null Set
C=ttt)ER?:0<t <1t
Claim: C is a null subset of R?
Verification of Claim: Given € > 0

. 1 £ . i-1 i i-1 i
PlekENS.t.E<E.FOI‘OSlSkletQiZ(T,E (T,E|EP2

k k k
1 k+1 2k 2
Then l JQiQC, '>‘VOI(Qi):.>‘k_2:7Sﬁ:E<£
i=0 =0 i=0
Comment

This example generalizes naturally to cases when C is the graph of a p-Lipschitz function
h:D - R"
D € R™withm <n

Proof of Lemma
Use integrability criterion from Prop 8.7, in the form with €. Given & > 0 have to find a
division A of P such that U(f,A) — L(f,A) < ¢

We apply the hypothesis for a suitable £’ > 0.
€
Letg =——«———
1+ vol(P) + oscp(f)
Hypothesis gives us A =1Q4, ..., Qy, Ry, ..., R, such that
u

>_vol(Qj) <e¢'andoscg, (f) <e'Vi<k<wv
i=1
Calculate

n 4

U(f,A)—L(f,A) = >'vol(Qj) . och].(f) + >,'VOl(Rk)'OSCpk(f)

j=1 k=1
v

n

< >'vol(Qj) ~oscplf)+ > vol(Ry) - &' <oscplf)e' +&'vollP) =&’ (ascp(f) + vol(P))
j=1 k=1
s(oscp(f)+vol(PJ)

= <¢g
1+ vol(P) + oscplf)

Proof of Theorem 12.5

(UsingA4, f, B, G as in the theorem definition)

Enclose A in a rectangle P € P, and extend fto a function f: P - R by
1 fx), X€EA

ﬂ“_go, XgA

WLOG (by enlarging P as necessary) may assume that cl(4) € int(P)

Consider the set C = B U bd(A) S cl(A) S int(P)

Observe C is a null set.

Claim 1:
f is continuous at every x € P\C

Verification of Claim 1:
Fix x € P\C. Observe that ¥ € (P\cl(A)) U int(A) (everywhere except the boundary)

Case I: x € P\cl(A) = int(P\A)
In this case, can find » > 0 such that B(x;r) N A = @. Hence f = 0 on B(x;7) N P and it
follows that f is continuous at x

Case II: x € int(A). In this case can find r > 0 such that B(x;r) € A. For this r > 0 we have
that f(y) = f(y),Vy € Blx;r). But observe that x € Gsincex ¢ C=>x ¢ B

Sox € G = f is continuous at x = f is continuous at x

Done with claim.

Claim 2:
For every € > 0 we can find some @1, ..., Q5 € P, such that C € Q1 U ---U Q4 € P with
S

> ‘vol(Q}) < & (Since C is a null set)
j=1
and such that f is uniformly continuous on P\(Q1 U ---U Q") € P\C

Verification of Claim 2
Cisanullset, C € int(P) = can find @, ..., Qs € P, withC € Q; U ---U Q5 S int(P)
s

£
and such that .>1‘vol(Qj) < 3

j=
Fori <j < s pick QJ'- € P, Q} € int(P) such that Q; € int(Q]'-) and vol(Q}) <2 -vol(Q;)
Then C € QU --U Qg C int(Q7) U - U int(Qg) S int(Q1 U --- Q4) and
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s N

>‘vol(Qi’) <2 >'vol(QjJ <2 ;: £
j=1 j=1
Consider the compactset K = cl(P)\ int(Q; U --- U Q). K is compact since cl(P) is compact
and removing an open set.
f is continuous at every point of K (where for y € cl(P)\P we put f(y) = 0) By claim 1.
Since it is continuous at point in a compact set K, f is uniformly continuous on K
Therefore, fis continuous on P\C = P\ int(Q1 U U Qs) S K

Claim 3
Given & > 0 can find a division A =1Q7, ..., @y, Ry, ..., R, t of P such that
u

> vol(Q}') < e and such that oscg, (f) <eVl<r<v
j=1

Verification of Claim 3

Take Q1, ..., Q4 as in Claim 2. Make them become disjoint by performing intersections and by
eliminating redundant pieces.

S
In this way, Q, ..., Q% = Q’,.., Qi and ) vol(Q{') <e
j=1
On the other hand, f is uniformly continuous on P\(Q7, ..., Q%)
Hence36 > 0s.t.x,y € P\(Q7,...,Q), lIx—y|[|<é=>|fx) = fO)| <¢
Complete Q7 ..., Q;/ to a division{1Qy’, ..., @i/, Ry, ..., R, } such that diam(R,) < § V1 <k <wv

Then oscg, (f) <eVli<k<wv

By the above 'Two-ways of being small' Lemma, f is integrable on P
Therefore, f is integrableon A € P



How to Calculate Integrals I Exaf;P'e

n=

A=1i(s,t) € R?:s? +t? < 11, closed unit disk

bd(4) =1i(s,t) € R? : s2 + t?2 = 1}anull set in R?

Due to theorem 12.5 every continuous function f: A = R is integrable.
13.1 Remark But how to calculate |, f

A € R™ bounded, f: A - R bounded function
From L12 have good criterion (Theorem 12.5) for f to be integrable.

November-02-11
11:30 AM

Concrete example to follow:
fiA-R, flis,t)) =vV1—(s? +t?)
13.2 Remark and Notation

Sayn=p+q,withp,q €N We calculate |, f by a method called "theorem of Fubini"
e For A € R?,B € RY define Cartesian product Enclose A € P = (—2,2] X (=2,2|
AxB=1{(d,b):d€AbEBICR" f:P - Rby putting f(x) = 0 Vx € P\A
By definition have ,f = ,f and we calcuate ,f with Fubini
e Every P € P, can be written as A P P
P=MxNwithM € P,,N€ P, Forv € M = (—2,—21look at the partial function f,: N - R
P = (ag, byl X X (ap, byl X (@ps1, Bpsa| X = X (@, byl Have f, = Oforv € (-2, -11U112I
e [ P ot e Forv € (—1,1) we get
e LetP =M X N be as above £:(=221 > R, ﬁ;(W):f(U,W)I{V]'_(VZ-i—WZ)’ |W!S 1—v?
Let f: P » R be a function 0, otherwise
For every v € M define partial function f;: N - R Note that f,, is continuous hence integrable. So hypothesis (ii) of Fubini holds. Also
by f, (W) = f(v,w), weWw have hypothesis (i) since f € Int,(P,R)
Notation So apply Fubini. Define F: (—2,2] - R by
Notation used sometimes for f; is f(v, ) 2 (1l —v?) (—11)
Fw)=| fywldw = %72 , o vEL
13.3 Theorem (Fubini) _ -2 0, wve(=2-11ul12l
P =M x N and f: P —» Ras above. Finally, ) L2 5
Suppose that _ — | Fundy = n(l—v )d _2n
i) f €Int,(P,R) ’Af ’pf ’—2 widv ’_1 2 "3

if) For every v € M, the partial function f,;: N - R belongs to
Int,(N,R)
Define a function F: M - R by

Fw =|f, veM
N

Then F € Int,(M,R)and | | F = | f
M P

13.4 Remark
Write x € Pasx = (v,w) withv € Vandw € W

’f is also written ’f(x')dx’ or as ’f(v’,w’)dv’dw’
P P P
= | fo,widw,w)

P

Left hand side of boxed formula is

| Fwidv = | (’f,,(w‘)dw‘)dv= ' ('f(v,w')dw')dv
M M N M\ N

So can say that

| fwwidvdw = | (] f(v’,w’)dw’)dv’
MXN M N

Result: Reduces dimensionality of integrals to be calculated.

13.6 Remark
By symmetry, Fubini also applies to iterated integrals with
components considered in another order.

| fv,widw,w) = | (] f(v’,w’)dv’)dw’
P N M

Holding if:
i) f € Inty(P,R)
ii) fw € Int,(M,R), vw € N where f,, = f(,w)

Or could, by example have
P = (ay, b1 X (ay, byl X (az, b3l € R3

Lf(x,y,z)d(x,y,z) = ’ ( I

(aq,b11Xlaz,bzl * "a;
With two suitable conditions i), ii)

by
f(x,y,z)dy) dix,z)
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How to Calculate Integrals II 14.2/4 Example

= = 21524 t2 <
November-04-11 n=2A=1s,t) eERls“+t- <1t

11:48 AM f:A - Rdefined by f((s,t)) =v1— (s +t?)
Subgraph of fis
(A) Integrals and Volumes s={5,t,2) ER3s?+1t2<1,0<z<VI-(sZ+ 0 =1il5,t,2) ERIs? +t2 +22 < 1,2 > Ot
14.1 Definition 5 2
AC R f:A—- Rsuchthat f(x) >0,vx €A On Wednesday calculated |, f = ?n S subgraph [ of f has voltS) = ?"

Graphof fisT =1(x,z) e R"|x € 4, x € R,z = f(x)t

T . Moral: Volume of closed unit ball in R? is equal to ki
ThesetS =1(x,z) ER™ Ix€4,z€ R0 <x < flx)tis 3

called the subgraph of f.
14.5 Remark
14.3 Proposition Another way to calculate volume of unit ball in R3. Take the open unit ball.
— 2 2 2 3

A € R" bounded set, f € Int,(A4, R) such that f(x) > 0,Vx € B=1ilstz)ls +_t tz°<1tcR
A.Let S © R™! be the subgraph of f. Then S has volume (in Enclose B with € = (—-1,1I X (11| X (=111

R™* and vol(S) = |, f. Have vol(B) = ’ 1= , Igte)dx = , ( , IB(s,t.z)d(s,t))dz

B c -1 (=1,1Ix(~1,11

Comment Fix z and look at partial function

The proposition equates (=L1I X (=111 >R, (s,t) » Igls,t,z)

’f=’1 1iflStZJ€B 1if dl(s,t),10,0)) 1 2

} Y [B(S,t,Z)=3 ol —% if dlts,t),(0, < A

LHS is n dimensional, RHS is n+1 dimensional. 0if s,t,z) € B~ 0 otherwise

Froofby following Darbpux ilﬁns D.arb‘?ux sums for Ecan be Get , Ip(s,t,2)d(s, ) = m(1 — 22)
interpreted as volumes in R™***, which "approximate" vol(S) (=111x(=1,11
1 ) 2" am
14.6 Remark vollB) = ’ ml-z )dz=rr|z—?| =3
-1 .

In calculations it is sometimes convenient to replaces values

of functions on a null set. X
14.6 lllustration of Use

Underlying fact: Let B =1(s,t,z) E R3Is? + t? + 22 < 11, B = i(s,t,2) € R3Is? + t? + z2 < 1t
P € P,, f,g:P — Rbounded functions. How do I know vol (B) = vol (B)?
Suppose 3N S P null set such that f(x) = glx) Vx € P\N.If Have B,B € P = (—2,21 X (=2,21 X (=2,2]
f € Inty,(P,R) theng € Int(P,R)and |, g = I, f So vol(B) = ’ Ig\x)dx,  vollB) = ’ Iglx)dx
P P
Proof of fact Take f = Iz, g = I in 'fact’, have that f, g agree on P\N where

Done by analysis of divisions of P N =1ls,t,2) € R¥Is® +t* + 2% = 1t (null set)

(B) Polar Coordinates 14.7 Pollar Coordinates Exan;ple ,
Look againat A = i(s,t) € R"Is® +t* < 1t

14.8 Definition f:A > Rdefined by f((s,t)) = VI — (s + £2)
For0 <7 <rthesetd ={ls,t) € R?|r; < VSZ F 2 <1y} o

will be called the half-open annulus of radii ; and Calculated in 2 ways that ’ f= 3
A

centered at (0,0) Now a third way. Write A as a union of circles of radii r € [0,1] centered at (0,0). On circle of

: 2442 _ 2 —VT=72
For such Annulus A, the map T: (ry, 7,1 X (0, 2] = A radius r have s* +t* = r* hence f((s,t)) = r

1
T((r,8)) = (rcos@,rsinf) Could then have ’ f?= ’ 21 —rédr
is called parameterization of A by polar coordinates. A 0

Check
OnR = (ry, 1| X (0, 2m]

1 1
— 20y —
Vertical segments (constant r) become circles of radius r ’0 Zrrv1—rédr ’0 mVudu

inside A. u=1-r?>du=-2rdr

Horizontal segments (constant 8) become chord of angle 8 in 1 2 30 on

A. , nﬁtdu=|n—u?| =—
o 3-4 3

. N %
T is a bijective map between (r1,7,1 X (0, 2| and A But why does this hold? Is it Fubini?
14.9 Proposition

A and Ras above. Let f: 4 — R be a bounded function. Let
g:R = R be the composted functiong = f o T

14.10 Example
Maker; = 0,1, =1

gx)=fTx)), x€R A={ts,t) ER?: 0 <VsZ+t2 <1 = B((0,0); 1) \ 1(0,0) This is called a "Punctured Disk"
More precisely, g((r,0)) = f(rcos,rsinf) Let f:A—> R, flts, t)) =vV1—(sZ +t2)

Have f € Intp(A,R)
bd(A) =1i(s,t) ER? : s2 +t2 =11 U1(0,0) null set
fis bounded and continuous on A so fis integrable on A

Then | f(ts,t))dts,t) = | gltr,0))r d(r,6) [PC]
A R

Where does the rin JRg((r,G)Jr d(r,0) come from? Let R = (0,11 x (0,271, define g:R - R by
ris the Jacobian of T at (r, 8) gltr,8)) = flir?cos?6,r%sin%9)) = \ll —((rcosf)? + (rsinf)?) =1 —r?
Integrate for polar coordinates:
| =197, J:R->R JUr,6)=rvir,6)€R 1, 2 1 o
4 R ,f=’ r 1—r2d(r0)=’ (’ r 1—r2d9)dr=’2nrmdr=—
] is the Jacobian function for polar coordinates . A (0,11%(0,201 ’ o Vo o 3

The discussion of Jacobian is in terms of partial derivatives
(takenfor T:R — A)
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Directional Derivatives

November-09-11
11:59 AM

15.1 Definition
A S R" a € int(A), Let v be any vectorin A
Let f: A - R be a function.

. fla+tv)—fla) .
If lim—————————— € Reexists
t—0 t
t+0
Then we say that f has directional derivative at a in direction v
Notation for the limit:
fla+tv) —fla)

(0,f Na) = PL‘(} .

t#0

15.2 Remark

Notations as in Definition 15.1
1. Ifv = 0,then (94)ta) is sure to exist, and (9,)(a) = 0
2. Now suppose v # 0, hence llvll > 0

Havea € int(A),so3r > 0s.t. Bla,r) € A
Then it makes sense to define

ror
\———,—)->Rb (t) = fla+tv), ——<t<—
(ﬂ( vl IIUII) v e f vl vl
r
Indeed, if Itl < m,hence a + tv) —all = litvll = ItHvIl <71
r r
o—m<t<m=>a+tv68(a;r);A, and f(a + tv) is defined

@ is called the partial function of f around the point a in direction v

o fla+tv)—fla) . @t)—¢@l0)
lim = lim .

t—0 t t>0
t£0 t£0

= ¢'(0) When the derivative exists

15.3 Definition

ACRYac€int(A).Fixl1<i<n

Lete; = 1(0,...,0,1,0,...,0) be the it" vector of the standard basis of R"

If(9,,f )a) exists then this is called the it" partial derivative of fat a denoted as
(0;f )la)

15.4 Definition
fiA-R, a € int(A4) and suppose that (9;f)(a) exists forevery 1 < i < n.
The vector ((alf)(a),(azf)(a), s (0nf)(a)) ER

is called the gradient vector of f at a, denoted (Vf)(a)
V ="Nabla" or "Grad" for gradient.

15.5 Proposition

AC R, fiA-R, a € int(A)

Let v # 0 be in R™ and suppose that (9,,f)(a) exists.

Then for every a € R the directional derivative exists as well
[H - Homogeneity] [(,,f)(a) = a(d,f)ld]]

15.6 Remark

AcCR" fiA-R, a € int(A4)

Suppose that (9, f )(a) exists for all v € R™. So can define function:
L:R" > R, L) =0, )a)

Proposition 15.5 says Llav) = aL(v) Va E R,v € R"
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Proof of Proposition 15.5
If @ = 0 then [H] amounts to 0 = 0 so assume a # 0. Denote av = w

Must verify existence of

fla+tw)—fla) . fla+tav)—fla) . fla+sv)—fla)
= lim a im a

=1

50 t T t50 ta 550 s
20 t£0 520

=;:Puts =tawhent - 0,t #0gets > 0,s #0

This limit does exist and equals (9, f )(a)a n
Question

Isn't L additive as well? So it would be a linear function
n

If yes, then for every v = (v'V, ...,v'™) € Rwrite v = > 'v(“ei and get

i=1
n n

Lw) = ) vVLie) = (3,f)a) = ) v'P8f)a)
i=1 i=1

Answer
No :(

Problem 4 in homework 7 gives a function f: R?> - R such that f is
continuous and (9, f)(a) exist foralla € R?,v € R?

And yet, if we put

Lw) = (0,7)(0) v e R?

Then L is not linear.

What do we do to get the answer "Yes"?
Go to the concept of a C* function



C! functions

November-11-11
11:58 AM

16.1 Remark

Directional/partial derivatives as functions.

A S R™ open set, fiA-R, v ER"

If (0,,f )la) exists for every a € A then we get a new function
0,f:A—> R

called the directional derivative of f in direction v

Special case: v = ¢;

If (0;f )(a) exists for every a € A then we get a new function
al‘f: A-R

called the i*" partial derivative of f.

16.2 Definition
A € R™ A function f: A - Ris said to be a C!-function when it has the
following properties:

e fis continuous on A

¢ f has partial derivatives at every a € A

e The new functions 9;f: A - R, 1 < i < n are continuous on A

The collection of all C*-functions from A to R is denoted C*(4, R)

Note

One uses the notation

C%A4,R) =1if:A > R| f is continuous on A}

Will also encounter C2(4,R), C3(4,R), ..., C*(4,R)

C™(A, R) defined as the set of all continuous functions whose partial
derivatives are in C"1(4, R)

16.4 Theorem

A S R™open, f € C1(4,R).

Then for every a € A we have

If (x) — fla) —{x —a, (Vf)la)l

lim i —an =0 |L-approx|
X¥+a

where (Vf)(a) = ((d;:f Na), ..., (0, fNa))

To prove this we do

16.5 Lemma

(Mean Value Theorem in direction i,1 <i < n)

AcS R"open, feECUHAR), a€A.

Letr > 0 be such that Bla;r) € A.
Letibeanindexinil,...,n{andletx,y € Bla;r) be such that they only
possibly differ on the component i (So xY) =y, v1 <j <n,j # i)

Then 3b € B(a;r) such that

f) — flx) = (y'¥ —x'W)9;f)(b) IMVT direction il
16.6 Definition (Geometry)

X,y € R"

The line segment connecting x and y is the set

Colx,y) ={1—-t)x+ty|t€IO01l}

x=x+0
y=x+(y—x)
Wedox + tly —x),0 < t <1 to cover the line segment from x to y

16.7 Proposition
MVT in direction v
AC R"open, f:A->Rv+#0inR"
Suppose that

e fis continuous on A

(0,f)(a) exists forevery a € A

e The new function d,,f: A - R is continuous on A
Suppose we have x,y € A such thaty — x = av for some a € R and such
that Co(x,y) € A.
Then3b € Colx,y) s.t.f(y) — flx) = aldyf)(b)
Geometric Interpretation of L-Approx.
Instead of getting a tangent line to the graph of f, we get a tangent
hyperplane to the graph of f.
The hyperplane is an n-dimensional subset of R™*1

16.8 Remark (Geometry)

Givenm € N,p € R™

How do we write the equation of a hyperplane H € R™ that passes
through p
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16.3 Remark
For f € C1(4, R), will prove a theorem of local linear approximation.

Look at the (known) special casen = 1. Make 4 =
f:A - Rdifferentiable at a.
Approximate formula says f(x)

(a,B) SR, a€la,p)

~ fla) + f'(a) - (x — a) for x close to a.

So have
,lcil?z(f(’” —fla)—f'la)x(x—a))=0
But in fact have more!
(x)—fla) — f'la) X (x —a) (x) — fla)
Have lim L f r | = lf f —f'ta)|=0
x=a x—a | x—»a |

xX#a
Call the above (first formula) L-Approx. in 1 varlable.

Proof of Lemma 16.5

Case when x'!) = y'¥) trivial and get 0 = 0

So assume that x'¥ # y'¥, say x'¥ < yt¥)

Denote x'") = o,y = g

Define ¥: (a, 81 » Rby W(s) = f ((x'V, ..., x' iV, 5,0 xW))va<s<p
Note that W(a) = f(x), ¥(B) = f(y) and ¥ is continuous on (a, S

(Why? Check with sequences using the continuity of fand that x; =y xin (a, BI
= (), o, 21 gy L)) (W)l o kD) )

Claim

xll—l), s, x(l+1),

Take s such thata < s < fand puth = (x'%, ..., ,x™) € Bla;r)

Then V¥ is differentiable at s, and ¥’'(s) = (9;f)(b)

Verification of Claim

Y(s) = f(b) by definition of ¥
Wis+h)=f((xY, ., x5, s+ hxWY, L x™)) = f(b + he;)
Wis+h) —Wis)  f(b+he)—f(b)

h h
Take limit h = 0 (h # 0). Get claim since the expression on the right hand tends to
(0;f)(b)m

Due to claim, we can apply MVT from Calculus I to ¥.

. Yp)-¥Yla) |
Gives 3s, @ < s < f3, such that = =W(s)
ConvertWia) = f(x), W(B) = fly), a =x', g =y¥
Wix) =(9;f)(b) forb = (x'V, ..., x5, x40 x))
(y) (x)
f}llif @;f)b)
y i)

and done. QED

Proof of Theorem 16.4
Important Proof

Fixr > 0 such that B(a; r) € A. So f(x) makes sense for any x such that llx —all <r
Given € > 0. Want to find 0 < § < r such that
— If(x) — fla) —(x —a, (Vf)la)l
(le a||<6):f f f e
xX#+a llx —all

[Want]

Know
For every 1 <i < n know that 9;f: A - R is continuous at a, hence 30 < §; < r such
that
€
llx —all < §; = 1(0;f)(x) = (0;f a)| < —
Vi
Take § = min(dy, ..., 8,). S0 0 < § < r and have
€
llx —all < § = 10;f)x)—(0;f Na)l < = Vi<i<n [Know 1]
n

Will show that § works in [Want].
Sopickx = (x'V,x'?, ..., x'™) € Bla; §)\tat =2 0<llx —all < §

Define xg, X1, ..., X, € Bla; 6) as follows

=(aV,a?,..,a™)=qa
xl = (X(U, a(Z), m’x(n)J

x2 = (x(l) x(ZJ'aG)’ . a(n))

(x(l) (ZJ’ ___,x(n)) =x

Note thatllx; —all < llx—all <4J, VO<i<n
n

Write f(x) — fla) = flay) = flxg) = ) flag) = flxy_y)
i=1
Observe
lxll) x(i*l) x(i) ali+1) aln))
v — (D) Si=1) A0) li+1) TR



Givenm € N,p € R™
How do we write the equation of a hyperplane H € R™ that passes
through p

One Possibility
H=1p+ayy; ++ap_1¥n-al @y, .., an ER™ M [Hyp 1]
where 1, ..., ¥, 1 are linearly independent.

Another Possibility
H=1q€eR™|(gq—p) Lzt [Hyp2]
with z # 0 in R™ called the normal vector

Relation between [Hyp 1] and [Hyp 2]:
span(z) L spaniyy, ..., Yp—1t

16.9 Remark
A S R" open, f € CHAR)
Consider the graph

F=ilx,t) ER"™ | x € At =flx)} € R*"?
Picka € A lookatp = (a,f(a)) €T

o IfW) = fla) —x —a, (Vf)anl

lim =0
x—a llx — all

x#a

So f(x) = fla) + (x —a,(Vf)a)), for x € Bla,§),small §
This is a linear function in x.

p'=xfx) = (x fla) +x —a,(Vf)la)) =q

Claim
q € H,where H is a special hyperplane going through p

Tangent Plane

y; =(0,0,..,0,1,0,..,0,(9;fa), 1<i<n
n

H= %P"" ),ai}’i |ay, az, ..., a, ER
i=1

w = (—(Vf)la), 1)
H=iq e R |(g—p)Lw)

16.10 Proposition

ACS R"open, feCHAR),a€A

Then for every v € R" the direction derivative (9, f)(a) exists and
[@,/)a) = (v, (Vf)la)]

Note that this is a linear function of v

n
LWw) =, (Vf)a) = ) v'V(3;f)(a)

i=1

16.11 Remark
ACS R"open, f € CL(4,R),a€A
Suppose (Vf)(a) # 0. Look at various unit vectors u € R", (llull = 1)

Have
Oy fa) = (u, (Vf)la)) < llull - VA a)ll = IILVF)ta)ll
Equality holds precisely when u || (Vf)(a)
(Vf)ta)
Yo =W
(8o f @) = (Vf)a) = maxi(d,f)ta) |u € R, llull =1}

gives

Informal interpretation:
fis increasing fastest in the direction of the gradient vector.
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s - s - PR s v J o e s n—a

Observe
x; = (a1, o, x D, ) qUrL) gy
Xy = (20, L, xE D g gli+D) | quv)

Can apply MVT in direction i, and get 3b; € B(a; 6) such that
Flx) = flx_y) = (xW — a'? )9, £)(b;)

So

n n
flx)—fla) = }ﬂxl-J—f(xi,lJ = >‘(x”"—a”’)(6if)(bi) =(x—a,w) [Know 2]
i=1 i=1

Where w = ((3;£)(by ), (32 )(by), ..., (O f ) b))

n
2
Observe llw — (V£ ) a)lI? = }l((aif)(bl-)— (8;f a))
i=1
b; € Bla;8) = 10,f)(b) — (3, ) a)l <% by IKnow 11
n

n 2 .
le((aif)(bi)—(aif)(a)) <zZ{(ﬁ) — g2

Hence
Ilw = (Vf)la)ll <& [Know 3]

Now calculate

Ifx) = fla) —(x —a, (Vf)la)

= Kx —a,w)—(x —a, (Vf)la) =, Kx —a,w — (Vf)la)l
<z llx—all-llw—=(Vf)la)ll < llx —all - €

1: Know 2

2: Bilinearity of inner product
3: By Cauchy-Schwartz

4: Know 3

In summary, get
If(x) = fla) —x —a, (Vf)la)l <
llx —all €

QED.

Remark 16.9
Picka € A lookatp = (a, fla)) €T

Recall (L-Approx)

o Ifx) = fla) —(x —a, (Vf)la)l

lim =0
x-a llx — all

xX#a

So flx) = fla) +{x —a,(Vf)la)), for x € Bla,§),small §
This is a linear function in x.

p' =(x,flx)) = (x,fla) + x —a, (Vf)a)))

Claim
q € H,where H is a special hyperplane going through p

Calculate
p—q=xfla)+x—a (Vf)la)) —(a fla)) = x —a,x —a, (Vf)la)))
Denotev i=x —a = (v',v'?, .., v'V)

n
Theng—p = (v”’, v\, > ‘17”’ . (aif)(a))
i=1

i=
=v"1(1,0,...,0,(8;f)a)) + +v'?(0,1,0,...,0,(d,f )a)) + -
+v'™(0,0,...,1,(3,f)a))

n

Sogetq=p+ >.v[“yi where y; = (0,0, ...,0,1,0,...,0,(9;f )la)), 1<i<n
i=1
So g € H where
n

H= %P + > ayilag,az, ., a, ER
i=1

What about the normal vector to T at p?

Needw € R"1suchthatw Ly, V1<i<n

Look for w in the form (w'*, w'?, .., w™ 1)

S0 0 = (y;, w) = w' + (9;f N a) = w'? = —(9;f)(a)

Conclusion
w = (=(Vf)la),1)

Proof of Proposition 16.10
Will assume v # 0 (for v = 0 we know that (9, f)(a) exists and is equal to 0)

Recall (L-Approx.) for f ata € A
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o Ifx) = fla) —x —a, (Vf)la)
lim =

x-a llx — all
X¥+a

Getx —a = tv, hence (x — a, (Vf)(a)) = (tv, (Vf)(a)) = tw, (Vf)la)
also, llx — all = litvll = It

So (L-Approx.) becomes

i Ifta + tv) — fla) — tw, (Vf)Nahl

0, setx = a+ tvwheret - 0,t #0

= 0, multiply by llvll

t-0 Itl - nwll
t#0
Ifta+tv) — fla) —tw, (Vf)la)l

limf f f =0-livil=0

t-0 Itl

t£0

. fla+tv) = fla)

lim [—————— —, (Vf)lah| =0

>0 t

t£0
. fla+tv)—fla) .

It follows that ltl_r)r(}f exists and is equal to (v, (Vf)(a))
t£0

QED



C'(A, R™) and the Chain Rule

November-21-11
11:59 AM

17.1 Definition
A S R" open, f:A - R™ (m € N)
For every x € A write f(x) = (fP(x), fP(x), ..., f™(x))

And in this way we get functions f'): A » R, 1 < i < m called the components of f.

Compare to L4 about continuity, Def. 4.5, Prop. 4.6
If f € C1(4,R),V1 < i < mthen we say that f € C'(4, R™)

17.2 Definition

ACS R"open, f=(fY,f2 . f™)ecl4,R™)

For every a € A the matrix
| (VF%Y )a)

o1f V' Na) .. (8, V)@
t]f)(a):wa(z.)“a”z (lf:)a . ( f.)a

[(Vflr:zl)(a)J (01 f ™ )Na) .. (9,f™ )ta)

is called the Jacobian matrix of fat a.

Note

Ufila) € Mpyp(R)
Ufialg ) = (8,9 )a)
Ufita); = (VF¥)a)

17.3 Remark

Im=1

Have f € C1(4,R),s0 (Jf)a) € My, (R)
(Jf)a) is (Vf)(a), treated as a row-matrix

2:n=1(mEeN)

Take A = I = openinterval in R, f:[ -» R™

Have f = (fV,f ), ., f™ ) with f):] - R
Have f € C1U,R™) & (f¥ e CYU,R) V1 <i<m)

. I
Means that (f'?’) exists and is continuous on /

Such fis called a path in R™

For every a € I, the derivative f'(a) = ((f(“)'la), . (f(m’)’(a)) € R™

is called the velocity vector of fat a.

(f‘l’)(a)

Have (Jf)(a) = | € M1 (R)

(f(mll)(a)

So (Jf)(a) is the velocity vector f'(a), treated as a column matrix.

17.4 Remark
Can do algebraic operations with C* functions
1. ASR"open, f,g€CYAR)Thenf+g,f g€ CUAR)
with formulas for partial derivatives as in calculus 1
2. A S R"open, f,g € CYL4,R™), a,BER
Form new function:
h:af + Bg, h:A - R™
h(x) = af(x)+ Bg(x) € R™, Vx €A
For1 <i<mhave '’ + af'? + fg'? € CL(4,R) = h € C (4, R™)

Moreover, fora € Aand1 <i <m,1 <j <nhave
Uh)a) ;) = (89 )a) = al8;f'V )(a) + B(8;9'V )(a)
=alfitalgj +Bpygitaly
~Uh)a) = a(Jf)la) + BUg)a)

Linearity of Jacobian

|U(txf + Bg))a) = a(Jf )a) + [)’(]g)(a)| (L —J), Linearity of Jacobian

Moral
C'(4,R™) is a vector space of functions, and Jf is linear.

17.5 Theorem (Chain Rule)
m,n,p €N, A S R", B € R™ open sets
f € C*(A,R™) such that f(a) € BVa € 4, g =CYB,RP)

Consider the composed function

h:A - RP, h=gof

Then h € C1(4, RP) and for every a € A have

[Jhta) = Yg)fla)) X Yf)ta)| (M —J), Multiplicativity of Jacobian

Aside

Mhn Alaios wesla Fanean ~nla 4 fatlin cmnnial mnnn ~filincidaninaan — an — an — 1
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Examples for Remark 17.4

f - g have

0i(fg)=10;f)g+9l9;g9), 1<j<n

Leibnitz rule, applied to partial functions for fg in the j** direction.

More general than f + g can do linear combinations af + g, o, € R
Have af + Bg € C*(4,R) and

d;laf + Bg) = ald;f) + BL9;f), 1<j<n

Linearity of derivative from Calc 1 applied to partial functions in
direction j

17.9 Proof of 2, by assuming 3

Have f € C1(4,R™) with f(x) EB, Yx EAC R"
Haveu € CY(B,R),v =uo fiA >R

Fixa € A, j €11, ...,n{. Want to verify that

vla+te)—vla) . I W
lim——— —— exists and is equal to > 0;u)(b) - (6, Na)
t#0 i=1

Pick 7 > 0 such that Bla;r) € A
Define : (—7,7) > R, ¢(t) =vla + te;)
via+te;) —via) _pt) —pl0)

Have

t t
So need that ¢’(0) exists and is given by the right formula.
Consider the path y: (—1,7) » B € R™, y(t) = fla +te;), —r<t<r

ot) =vla+te) = u(f[a+ tej)) =uly(t))

Sopl(t) =ulylt)),—r<t<r
Formula from 3 applies, gives
m

m
@'(0) = D @wy0) - (y'?)0) = Y @ub) (8;f")a)
i=1 i=1

QED
Left to prove special case of Chainruleforn=p =1

Proof of Lemma 17.10
llyteg +5) = (b +sv)ll
Isl -

1
”;(y(t +s)—b— sv)”

1
= ||§(y(t0 +5s)—ylty)) — v”
What is component i of this vector? It is:

1w 0] Wy
;(V Pltg +5) =y e)) — (™)' (6o)

So have
[lytty +s)—(b+sv)ll 1
-~ = ||;(y(t0+s)—ylt0))—v||
now (@)
(tg +5)— (tg) . S
< )‘Iy 9 UL —(y‘”)'tto)|—>0bydeﬁnitionof(y‘”)(tOJ
i=1 $
]

Proof of Proposition 17.11
Fix ty € I for which we verify the claim. Denote b := y(t,), v :=y'(t,)
Must prove that h is differentiable at t, with
h'(ty) = ((Vg)(b),v)=(0,9)(b)
hity +s) — hity)

So what we want is l‘i_l:%f= (0,9)(b) [Want]
S#0
Calculate
hito+s) —hity)  glyleg+s)) —gly(ty))  glyltg +5)) —glb)
s - s - s
_glyg+5))—glb+sv) glb+sv)—glb)
h s + s
We know that MI&M =(d,9)(b)
$#0

So [Want] will follow if we prove

lim |g(y(t0 +5s))—glb+sv)

5-0 S
5#0
To prove [Want'] we will use a Lipschitz condition for g.

Fix r > 0 such that B(b; r) € B. Use problem 4 in homework 8 for the

I =0 |Want'l

compact convex set K = B (b;%) to get ¢ > 0 such that
lglx) — gyl <clix —yll, vx,y € K |Lipl

y is continuous at t, hence can find [ > 0 such that (t, — [, t, + 1) €I and
such that ¢ € (£g — L, to + 1) = lly(t) = yleo)Il < -
So for Isl < I, have lly(to +5) = bll <> = ylto +5) €K

1
1+l

For Isl < X gwe also have that



[Jh)ta) = Yg)(fla)) x Yf)ta)| (M —J), Multiplicativity of Jacobian

Aside
The chain rule from calc 1 is the special case of thiswherem =n=p =1

17.6 Remark
Equation (M-]) is usually written in terms of entries:
For1<k<p, 1 <j <nhave

m

Uil = D Ugib),

i=1
Writef — Ucll)’ ...,f(m’), g= (gtl)' m,glpJ)’ h= (h(l), "_'hlp))
m

X (]f)(a)(i,j)

(0% ) @) = Y (8,9%)(b) x (3, @)

i=1

Denoteu := g'¥),  v:=h'¥),  Whatis the relation between u and v?
hix) = g(fx)) = (g (fx)),...g P (flx)))

Take componentk = 9w = g®(flx)) = vix) = u(fx))

The modified (M-]) says
m

(gv)ta) = ) u)(b) x (9. )ta)

i=1
forb = fla) and vix) = ul(f(x)), x €A

(C — R) Chain Rule, p=1

Notation
To make it more suggestive people write

dv
(6,-v)(a) =——Ia) lb) = (B u)(bJ

dxt) ’ a P
m
v ou fll)
ax) ta) = > 0},(1)( axD) (@)
i=1
Summarized
m i)
BxU’ = > ym BxUJ
ImpreCISe in two ways Py u, should be 2l Py u,, and does not specify to what points the

derivatives should be applied.

17.7 Remark

Special case whenn =p = 1.

Take I € R open interval

y:1 > R™a C'-path

Let B € R™ open such thaty(t) € B,Vt € I.

Let g be in C*(B,R)

Consider composed functionh = g oy € C*(I,R)
m

h(e) = ) dg(y) x (y'9) )
i=1
R'(t) = ((Vg)ly(t)),y' ()

(C —R)Chainrulep =n=1

17.8 Remark
Had 3 formulas for the chain rule:
1. (M —=J) In Theorem 17.5
2. (C—=R)forp =1inRemark17.6
3. (C—R)forn=p=1inRemark17.7

Clearly 1 = 2 = 3 because 2 and 3 are special cases.

Conversely, 2 = 1. Saw this in Remark 17.6 - just have to fix a value k € {1, ...

withu = g, v = hlK)
Observe that 3 = 2 (Proof 17.9)

17.10 Lemma

I € R open interval,y: I > R™ a C!-path

Fix ty € I, denote b := y(ty), y'(ty) =v
lly(ty +s) — (b + sv)ll

Then l' =0
Isl

s¢0
This is an approximation lemma: y (¢, + s)

=~ y(ty) + sy'(ty)
17.11 Proposition ("CR forn = p = 1")
I € R open interval, y: I - R™ a C?! path.
B € R™ open such thaty(t) € B, Vt € ]
Let g be a function on C1(B,R) and leth = goyso h:I -» R, h(t)
Then h € C1(I,R) and

m

h'(t) = >'(0l—g)(y(t)) ) ) = (Vgy o), v )

i=1
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=glylt))tel

suchthatt € (ty — L tg + 1) = liy(t)
So for Isl < I, have |ly(ty +s) — bl < % 2> ylty+s) €K

e <%

x = we also have that

1
For Is| < ——
1+ivll 2

ror
———X=<=-=2>b+sveK
1+1vn 2 2

[Lip] will apply to x = y(ty +5s), y =b + sv

(b + sv) = bll = Islvil <

So for Is| < min(l,;)
2(1+1vl)

lgly(to +5)) — glb+sv)l < cllytty +s)— (b +sv)ll

Isl - Isl
But lemma 17.10 says that

ly(to +s) — (b + sv)|
Isl
llg(ylty +5s))—glb+sv)]
Isl

— 0 So by squeeze we get

—s.0 0 Which is [Want']

The fact that h': I - R is continuous comes from immediately from the

formula
m

R = ) @) ye)) - () (1)

i=1
because (9;g),y(t), (y¥ ) are all continuous.
QED



Special case whenm =n

November-30-11
11:31 AM

If m = n then the Jacobian matrix is a square matrix. Can talk about
determinant and about invertibility.

Recall
For M € M, «»(R) have M invertible & 3X € M, «,(R) such that
MX =1, =XM

Various other descriptions M invertible & ker N = @ < detM # 0

18.1 Remark

For every n > 1, the formula for n X n determinant is a polynomial
expression in the entries of the matrix. That is, 3 polynomial P, of n?
indeterminates such that

M =t € Myyn(R) = det(M) = Pyt1q, tr, e, tyn)

1<i,j<n

. . . 2
Therefore, P, is a continuous function on R™

18.2 Lemma

Small Perturbation of Invertible Matrices

LetM = Iaijl be an invertible matrix. 31 > 0 with the following
property:

IfN = lﬁij|1<ij<n € M,xn(R) is such that Iaij _Bijl <A VIZij<n

then N is invertible as well.

1<i,jsn

18.3 Proposition

A S R"open, f € C1(4,R™), a € A such that (Jf)(a) is invertible.
Then 3r > 0s.t. Bla;r) € Aands.t. f is one-to-one and injective on
Bla;r).

18.4 Definition

U,V € R" open sets

A C'-diffeomorphism between U and V is a bijection f: U = V such
that both fand its inverse g: V — U are C*-functions.

18.5 Theorem
A S R"open, f € C1(4,R"), a € As.t.(Jf)(a)isaninvertiblen X n
matrix. Denote f(a) = b.
Then 3U,V S R" open sets such that
i) aeUCA beV
ii) fmaps U onto V bijectively
iii) The function g: V — U which inverts fis a C*-function and has
Ugib) = (Ufia) ™

In short, we get a C1-diffeomorphism produced by f on an open
neighbourhood of a

18.6 Remark
Discussion around the steps in proof of Theorem 18.5
a) Onecanfind r > 0 such that U = Bla;r) € A and such that f is
one-to-oneon U.Sowe canputV := f(U) =1{f(x)Ix € Ut and

have that f gives a bijection from U to V with an inverse g: V — U.

b) Itcan be proved that by reducing r if necessary, one can arrange
that V is open, and such that g is C*-function.

c¢) Forg:V — Uasinb, one proves that (Jg)(b) = ((]fJ(a))_1
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Determinant Example

t11 t12
det t ¢ |) = Pottya, trz, to1, taz) = taatan — tiztsy
21 l22

Proof of Lemma 18.2
Denote Idet(M)l =& >0

So 1P (aqq, ..., App)l = IdettM)] = & where P, is as in Remark 18.1
Write continuity of P, at (@14, ..., @pp) € R™ forg, 36 > 0s.t.

&
W11, s Brn) = (@11, e, G N < 8 = 1By o, Brm) = Pal@n, ey )| < 5

Setd = %. Will show that this A satisfies the Lemma.

Pick a matrix N = |Bij|15i'jsn

Will show that N is invertible.
Observe first that

such that |a;; — il <AV1i<ij<n

n
D 2=ni=6

-lij=1

n
2
W B11s woer Brn) — (@11, o O Ml = /).(ﬁij—a,-,-) <
=1

& &
= 1P a1, o Brun) = Pol@11, o) @ )| < 5 = Idet(N) — det(M)1 < 2 =

£ e € 3¢
—§<det(N)—s<E:>E<det(N)<?=>det(N)¢0

So N is invertible m

Proof of Proposition 18.3

Denote (Jf)la) =M = laij|1si,jsn

Soa;; = (8;f'")(a) V1 <i,j <n.Lemma 18.2 says 31 > 0 such thatif N = 18;, jl1<; jen
has |a;; — B;jl < AV1 <i,j < nthen N isinvertible.

Due to continuity of partial derivatives a]-f“'J at a we can find r > 0 such that
Bla;r) € Aand such that |(8;£'")(b) — (8;f'" )ta)l < A,V1 <i,j <n,Vb € Bla;T)
We will prove that this r satisfies the claim.

Fix x # y in Bla; r). Must prove that f(x) # f(y). Assume by contradiction that

flx) = fly), thatis fP(x) = fy)Vi<i<n

For every 1 < i < n, we apply MVT in direction v to the function f') € (4, R) where
v=y—x

Getapoint b € Colx,y) such that 0 = £V (y) — f¥(x) = ((VF)(b;), v)

(vF)(by)
Consider the matrix N = |8 :

1<i,jsn = | .
(VF™)(b,)

With §;; = (8;fV)(b) V1 < i,j < nget [(3;fV)(b;) — (8;f'V )(a)] < A

Therefore N is invertible.

But ((Vf'")(b;),v) =0V1 < i <n= v € kerN so N is not invertible. Contradiction

QED

18.6 Remark Proof
a) Wasdonein Prop 18.3
b) We will accept (part with V being open is itself a theorem called the "open mapping
theorem")
c) Easy, do it now. Holds in fact for any C*-diffeomorphism.
Consider composed function h: U > U,h =go f
hix) =g(fix)), Vx €U
Chain rule says (Jh)(a) = (Jg)(b) - Jf)a)
But on the other hand have, hix) = xVx € U
So hix) = (hY(x), ..., A" (x)) = (x'V, ..., x'™)
; Oifj#i
) —
Hence (ﬂjh )(x) glifj -
So chain rule gives I, = Ug)(h) X Jf)a) = Ug)(h) = (UF)a)) "

= (Jhila) =1,



Change of Variables 181-(11 Example
Take

R =(r,13) X 0,21), A=1{(s5,t) ER? [y < VSZFE2 <1y} \ 5,00l <5 <1yt
T((r,0)) = (rcosf,rsinf) = (TVr,0),T?r,0))

(VT )r,0) = (cos B, —rsinb)

(VT2 )r,0) = (sinf,7r cos 0)

December-02-11
12:04 PM

18.7 Definition
ACR" feCHUARY),a€A
The Jacobian of fat a is defined as

cosf@ —rsinf
IJita) = |det((/f)a))| where Uf)(a) € Myxn UTir ) =l osg )
is the Jacobian matrix of f ata JIp(r,0) =rcos?6 +rsin?@ =r
18.8 Remark Formula (C-V) says if g € Intg(4,R) then f = g oT E Intg(R,R) with

A S R"open, f € C1(4,R™)

Have new function IJI;:A > R

This is continuous.

If a =00 @ in A then (3£ ay) 2 pow (3, )a)

= f)lag) = Jf)la) = det((Jf)ay)) = det((Jf)ta))
Because det is polynomial hence continuous

“ lglag) = IJlgla) so |1 respects sequences = continuous.

’g((s t))d(s,t) = ’f((r 6))-r-dur,0)= , ’ glrcos@,rsinf)rd(r,0)

18.9 Theorem (Change of Variable)

A,B < R" open and bounded T: A - B a Cl—diffeomorphism.
Suppose in addition that |1 is bounded on A
(Ac>0s.t.l]Iplx) < c,Vx € A)

Letg € Int,(B,R).Putf = goTsof:A->R,flx) =g(Tx)), x€A
Then f € Int,(A,R) and ’ gly)dy = ’ flx)-Jlp(x)dx, IC—VI
B A

18.10 Remark (how to remember [C-V]
Do the substitutiony = T(x), (y € B,x € A)
= /I (x)dx

| gwidy = | glT)izdx = | 1irfx)dx
B A A

This is analogous to substitution in one variable
y=Tlx), dy = T'(x)dx

18.12 Remark
Why woes the formula (C — V) hold?
I/ 17 keeps track of how volumes are distorted by T

Take again the case of T: R = A from example 18.11
k k

TakeadivisionR=| |JP,, A= ]e;, Q=T

i=1
k

Then 'fz >‘sup(f) - vol(P;)
R oq P
k

’ g= ) .sup(g) - vollQ;)
i=1

V1 < i < k we have sup(f) = sup g\T(x)) =suplg)
Qi

But not true that vol(Ql) = vol(P )
0l(Q;)

vol(P;)

Since I/ I is continuous, it is approximately constant for small P;

In fact have

~ value of IJI; on P;

On this specific example
vol(P;) = (r' —r)(8' —0)
r'?—r? vollQ) r+r1'

I(R;) = 0 —6) = =
voltRy) { ) vol(P;) 2

=T
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