
1.1 Notations
                   

     i-th component of the vector   

Operations with vectors

                             

Addition:    as above,                 

                                 

Scalar multiplication:

                                      

 

   

  

Standard inner product (dot product):

             
 

          

 

   

 

Observe that         with equality holding iff               

Norm ("length") of a vector in   :

1.2 Remark
Basic properties of standard inner product

                                      
                                         
                                        

Bilinearity :

                           
Symmetry:

                 with equality iff      
Positivity

1.3 Proposition
Cauchy-Schwarz inequality (C-S)
                             

1.5 Corollary (Triangle Inequality) (T)
                           

1.6 Remark (Homogeneity) (H)
                        

1.7 Distance
For                 and                in   define the 

Euclidian distance between   and   to be 

                               

 

   

 

1.8 Corollary (TT)
                                       

1.9 Ball
For      and    denote
                           - Open Ball
                            - Closed Ball

1.11 Notation
For                    

1-Norm of     

             

 

   

 -Norm of     
                          

Proof of Cauchy-Schwarz inequality
If     then get     

Will assume       hence that       

Define          
                          
Observe that            (By positivity of inner product)

On the other hand, use the bilinearity property to get:

                        

          

                                          

So  is a quadratic function such that            
For such f, the discriminant          must satisfy    

But what is  ?
                                  

So 
                          

                    

QED

1.4 Exercise
Determine the cases when C-S holds with equality.

Comment about Triangle Inequality in   

Proof of 1.5 Corollary
                      
                                 
                      

                                           

                  

QED

Proof of 1.6 Remark
                

 
           

 
        

Immediate consequence of (H): every vector     in   can be written uniquely in 
the form         where    and     has      ( is a unit vector)

Proof of 1.8 Corollary
                                                                    

1.10 Exercise

                   a)

            

 

   

b)

Let                 be in   . Prove that:

Solution - by immediate algebra

Review of Vectors on   
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Will do   versions of two important theorems from MATH 147: 
Cauchy, and Bolzano-Weierstrass

Remark about Def 2.1
For         

       ,      have
                      

Proof of proposition 2.4
  
Know            

Want to know that   
               

Fix i. Observe that for all    

      
   

                               

By squeeze,    
   

           
   

     

 

Know   
   

                  . So have

   
   

              

    
   

      

 

   

  

By exercise 1.10(b)

               
         

 

   

  

Hence            by squeeze and hence       

Proof of 2.6 (Cauchy Theorem)
          

 convergent in   

 

Each of    
    

   

 
is convergent in  

  

Each of    
    

   

 
is Cauchy in  

 
        

 is Cauchy in   

   

2.8 Proof
Left as exercise

Proof of Lemma 2.11

        
 convergent in        

    
   

 
converges        

       
 is convergent      

    
   

 
is convergent. 

          
    

   

 
is convergent for every        

Using reverse direction for Proposition 2.4 to conclude
        

 is convergent in     

Proof of Theorem 2.9 (Bolzano-Weierstrass)
By induction on n.
Base case n=1. This is the B-W theorem from Math 147
Induction. Assume the statement is true for n. 
Let         

 be a bounded sequence in     . For every k write 
            with       and     

Claim 1
        

 is a bounded sequence in   

       
 is a bounded sequence in  

This follows from discussion about components of bounded sequences.

Claim 2
Can find an infinite set of indices    such that the subsequence 
        is convergent in   

Why? The induction hypothesis which says that B-W holds in   

Claim 3
Let Q be as in Claim 2. Can find infinite subset    such that        is 
is convergent in  . 
We invoke the B-W theorem from Math 147 to the sequence        

Claim 4
Let    be the set of indices from Claim 3. Then the subsequence of 

2.1 Sequences in   

        
                 

            

Say that         
 converges to   when the following happens:

                                     

Note:
Can also say
                                                

2.2 Cauchy Sequences in   

        
                

Say that         
 is a Cauchy sequence when the following 

happens:
                                        

2.3 Component Sequences
        

 sequence in   

Write explicitly

       
   

   
   

     
   

 

We get sequences in   

   
    

   

 
          

They are called the component sequences of         
 

Conversely, with n sequences in  you can assemble them to 
make a sequence in   

2.4 Proposition
        

 in          Then 
            

  

  
   

                  

2.5 Proposition
        

               . Then
     is Cauchy in   

 

   
    

   

 
 is    c   in  

2.6 Cauchy Theorem in   

Let         
 be a sequence in   . 

Then         
 is convergent (to some limit       iff it is a 

Cauchy sequence. 

2.7 Bounded Sequences in   

Say that a sequence         
 in   is bounded when      

such that              

Note: 

Can write                           

So                                 

2.8 Proposition
 et         

 be a sequence in   . Then
        

 is bounded in   

 

Each of the component sequences    
   

 
   

 
      

   
 

   

 
 is 

bounded in  

2.9 Bolzano-Weierstrass Theorem in   

Let           
 be a bounded sequence in   . Then we can find 

indices                     

Such that the subsequence            

 
is convergent. 

That is, every bounded sequence has a convergent sub-

Sequences in   

September-14-11
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is convergent in  . 
We invoke the B-W theorem from Math 147 to the sequence        

Claim 4
Let    be the set of indices from Claim 3. Then the subsequence of 
        is convergent in     

Why? We have                  

Have            t  s              s      

 

indices                     

Such that the subsequence            

 
is convergent. 

That is, every bounded sequence has a convergent sub-
sequences. 

2.10 Remarks
1.
For    this is the Bolzano-Weierstrass from MATH 147. 
Here we want to prove that the same results holds in   for 
every n. We will do this by induction on n. 

2.
Notation: Subsequences and sub-subsequences of a sequence.
Given a sequence           

       . Subsequences of         
 

are of the form            

 
.

Giving a subsequence is equivalent to giving an infinite 
subset                         

Instead of              

 
it is convenient to write         

With this notation, taking a sub-subsequence amounts to 
dropping from         to         where    is an infinite 

set. 

3.
Note that if       in   then for any subsequence we will 
have             

2.11 Lemma: Inductive Convergence
        

   se  ence        

For every k can write             with            

If         
 converges in   and if        

 converges in  then 
        

 converges in     
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Open and ClosedA.
3.1 Definitions

A vector     is said to be an interior point of A when  
r > 0 such that          

1.

The set of all interior points of A is called the interior of 
A denoted as       

A vector       is said to be adherent to A when it has 

the property that                  

2.

The set of all adherent points of A is called the closure of 
A, denoted by      

Let   be a subset of   

3.2 Proposition

           . Then 

         

 

                   
 in  such that        

3.3 Remark and Definition
For every     have               

The set-difference               called the boundary of A, 
denoted as      

3.4 Definition
A set     said to be open when it satisfied         

A set     said to be closed when it satisfies        

Warning
Most subsets     are neither open nor closed. So A not open 
does not imply that A is closed. 

3.6 Definition
Say that     has the "no-escape" property when the 
following happens:

Whenever         
 is a sequence in A such that           

then    must also belong to A.

3.7 Proposition
For     have 
                          

                   

Proof: Exercise. 

For every     have that       is open. Moreover 
      is the largest possible open set which sites inside 
A.

1.

For every     we have that      is closed, and in fact 
it is the smallest possible closed set which contains A.

2.

3.8 Remark

Proof: in homework

Proof of Proposition 3.2

" " Know     c    . 

Then for every    have       
 

 
     , hence pick           

 

 
   . This way we get a 

sequence in A such that           
 

 
     

Have               by squeeze, hence        

"  " Know          
 in A such that        

Let    . Since        can find     such that                  

In particular have      
            

           

So             , and done. QED

3.3 Remark
        , by definition of       
       
For every     can find sequence           

 in A such that         Just take            

3.4 Example
Say    , let A =                                  

Then                         

For         with     can find    such that          . E.g. take   
 

 

But         is not interior to A - there is no     such that          

                       

                               

Open and Closed subsets of   

September-21-11
11:30 AM
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B Compact Sets
3.9 Definition
A subset     is said to be bounded when      such that 
            

Note

"            " is equivalent to saying that            . Could also 

use an open ball; pick     then have              hence 

          

3.10 Definition
A subset     is said to be compact when it is both closed and 
bounded. 

Note
There are several equivalent descriptions of compactness (Some of 
them extend to spaces more general than   - see PMath 351)

3.11 Definition
A subset A    is said to be sequentially compact when the 
following happens:
For every sequence         

  in A, one can find a convergent 

subsequence            

 
such that the limit     i          still 

belongs to A

3.12 Theorem
For     have that A is compact iff A is sequentially compact. 

C Duality Open  Closed
Via taking complements

3.13 Duality interior vs. closure
For every     have that 
                      

                      

2.14 Corollary (Duality open vs. closed)
For     have (A is closed)         is open)

3.15 Remark
We have one description for what it means that     is open.
                                                   

         (by Definition 3.5.2)1.
A has the "no-escape" property  (Proposition 3.7)2.
     is an open set (Corollary 3.14)3.

We have three equivalent descriptions for what it means that     is 
closed:

Proof of Theorem 3.12
" " Know t  t   is c osed  nd  o nded   et         

 be a sequence in A.

  is  o nded           
 is    o nded se  ence               

 
convergent.

Denote the  i                   

Since A is closed, it has the no escape property, therefore     

"  "
Know A is sequentially compact. Want to prove that A is closed and bounded. 
This is problem 7 in homework 2. 
QED

Note
Theorem 3.12 is part of a theorem of Heine-Borel

Proof of Proposition 3.13
Will do first equality, second can by done by similar argument or the 2nd can be 
deduced using the first. 

So prove the first equality
"  "

Take     int        . So     s.t.                

But then             and it follows that    is not adherent to A. Hence 

    c    . Hence               

"  "

Take          c         c         is not adherent to A.

From Def 3.1.2 it follows that      such that             

But if               then must have the                

Finally from                we conclude that     int        

QED for first formula

Proof of Corollary 3.14
"  "
  c osed                       =                   
       is open (it is equal to its interior)

"  "
      is open                     
                          (by taking complements again)
  A is closed
 

Compact subsets of   

September-23-11
11:32 AM

   MATH 247 Page 5    



4.1 Definition

Let     . Say that A is continuous at   when the following happens:1.
                                                 
Let B be a subset of A. Say that f is continuous on B when f is continuous 
at every     

2.

Note
In particular, may have B=A, get definition for "f is continuous on A"

               

4.2 Remark
Given    have to find    such that 

                       

4.3 Definition
                  Say that f respects sequences in A which converge 
to   when the following happens:
Whenever         

 is a sequence in A such that          it follows that 
               

4.4 Proposition
                 Then
 respects sequences in A which converge to   
  
f is continuous at   

4.5 Definition
           . For every     , write explicitly 

                           

Get n functions                

For      , the function         is called the j-th component of f

4.6 Proposition
                
f is continuous at   
 

Each of the component functions            is continuous at   

Proof of Proposition 4.4
"  " Know f respects sequences convergent at   
Want f satisfies    at   
So fix an    . Need to prove that     such that
                                      
Assume by contradiction that I cannot find a    such that (*) 
holds. So no matter what    I try, (*) will fail.

Try    , and it fails. 
Hence                        but nevertheless 
                

For each    , take   
 

 
, and it fails.                    

 

 

but nevertheless                  

Observe that in this way we get a sequence         
 in A where 

         
 

 
                                   

And yet                                             
               . 
So f does not respect the sequence       , contradiction with the 
hypothesis. 

Hence the assumption that there is no delta for which (*) works 
leads to contradiction. Hence   . Done with "  "

Proof of  "  "
Exercise, on homework 3

Proof of Proposition 4.6
 continuous at   
 
 respects sequences in A which converge to   
    

Each of            respects sequences in A which converge to   
 

Each of             is continuous at   

(*) 
Take         

 in A such that       

For every    , write                               

Know from prop 2.4 that             iff                    
       

Continuous Functions
September-26-11
11:30 AM
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5.1 Remark
           

Suppose we want to discuss at the same time the continuity of f 
at several points of A:                

Have            we find                       
                   

To find a single delta which works for all    take 
   in            and works     

But what happens if we did this for infinitely many points in A at 
the same time, or all the points of A.
Here we can't always find a    good for all     at the same 
time.

5.2 Uniform Continuity
             
Say that f is uniformly continuous on A when the following 
happens: 

                                             

5.4 Proposition
Let     be a compact set.
Let       be a function. If f is continuous on A then f is 
uniformly continuous on A

5.5 Definition
                      
We say that f is uniformly continuous on B when the restriction 
of F to B is uniformly continuous

                                                       

Please us this definition in Problem 6(a) of Homework 3

5.3 Example
f continuous on A, but not uniformly continuous on A

Let                 

               
 

 

Observe that f is continuous at every           
Indeed, check with sequences. Suppose       where              
Then          
Take ratio of convergent sequence as in Calc 1, get 
  

  
 

 

 
Hence             

So have that f is continuous on A
Claim: But fi is not uniformly continuous on A

Opponent gives   
 

 

Can I find         

              
 

 
                      

Assume   which satisfies the above. 

Consider the sequence         
 in A where     

 

 
 

 

  
      

Note that              

Hence      s.t.                    . In particular      
          so it should 

follow that        
             

 

 

But       
  

 

  
 

  
 

   . Similarly                

       
                         

 

 
Contradiction, coming from the assumption that  exists. 

Proof of Proposition 5.4
Given    , Want to find    s.t.
                                 

Assume by contradiction that no such  exists. 

Pick    , use   
 

 
. We can find        in A such that           

 

 
but nevertheless 

                 . In this way we find two sequences in A,         
 and         

 is 
compact and hence sequentially compact. So can find                     

such that         
   

 
converges to a limit      

Claim: For the same                     we have that
 i 
   

          

For every    write 

                                          
 

    
                   

So by squeeze,               . Done claim

Now, f is continuous at      so it respects           and           . So                 and 

               

                                                                 

Contradiction with construction of        which said                             

So assumption that I cannot find a  leads to contradiction. It remains that we can find  .
QED

Uniform Continuity
September-28-11
11:30 AM
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Supremum / Infemum 
This is about global minimum and maximum of a continuous function on 
a compact set. Will use the concepts in     and s p    for a bounded 
nonempty subset    . 
in     smallest possible limit of a sequence in A
s p    largest possible limit of a sequence in A

in           i)
If    has the property that         , then it follows that 
in      

ii)

Have that in    is the greatest lower bound (GLB) for A

s p   is the lowest upper bound (LUB) for A

Note:
For a general bounded set A, in  and s p  may or may not belong to A

6.1 Remark
   a nonempty compact set.
Then K is bounded, hence can talk about   in         s p  . We 
were are certain that      
(Why? Because K is closed so it has "no-escape" property for sequences.

6.2 Definition

The image of f is the set                                1.
We say that f is bounded in A if f(A) is a bounded subset of   . 
Equivalently, this means that     s.t.                

2.

           

6.3 Remark and Notation (special case m=1)
          . Then
 is  o nded                           
Here     is a bounded subset of  

in 
 

     in             

s p
 

    s p            

So we can talk about inf and sup of the set        . We abbreviate 
them as follows:

osc     s p
 

    in 
 

   
Also, use the notation for the oscillation of f on A

6.4 Definition
          a bounded function.

A global minimum for f on A when       in     •
A global maximum for f on A when       s p    •

An element     is said to be:

Note
A bounded function f on A may or may not have a global min/max and if 
it does, then it may have one or several. 

6.6 Theorem (EVT)
     compact,      continuous. Then f is bounded, and has at 
least one point of global max and at least one point of global min. 

We will derive EVT from the following fact (important on its own)

6.7 Proposition
     compact,       continuous. Then the image set        

is a compact set of   .

6.5 Example
                

     defined by                        

          hence in        s p      
f has many points of global min: all points (s, s) with      
But f has no points of global max. There is no point     such that        

Proof of Proposition 6.7
Denote          

We will verify that B is sequentially compact (know this this is equivalent to 
compact - Theorem 3.12)
So let us fix a sequence         

 in B. Have to prove that         
 has a 

convergent subsequence with limit still in B.
For every    have           , hence can find      s.t.           

A is compact by hypothesis, hence it is sequentially compact. So we can find 
                    s.t.            

Function f is continuous on A, hence respects convergent sequences in A, so 

have                     
            

So we have found a convergent subsequence            

 
of          

 which 

converges to a value of B. QED

Proof of Proposition 6.6 (EVT)
Have     compact,      continuous
Want:  is bounded, and                                         

Denote         
Then K is compact by proposition 6.7
So we can talk about   in       s p   and moreover      (By 
Remark 6.1)
Since           we can find                                
But then for every     we can write        
                                   
QED

Extreme Value Theorem 
September-30-11
12:05 PM
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Goal
          Want to associate to f a real number, called the 
integral of f on A denoted

         
 

 

What kind of     ? A will be a bounded subset of   

What kind of f? f will be in any case a bounded function. But need 
more conditions. 
Case of f continuous, but will also allow some discontinuities.

Idea that a continuous function has an integral - Cauchy (~1820)•
Concept of integrable function - Riemann (~1850)•

Historical NoteIntegration Intro
October-05-11
11:32 AM
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We prefer half-open rectangles

7.1 Definition
We call a half-open rectangle in   a set of the form 
                           where               and are in  

                            

 or           

 

   

 we denote                

 

   

        s p                          

where                                  

7.2 Notation and Remark
We denote by   the collection of all half-open rectangles in   

Note:   is a set of sets

    means P is a half-open rectangle

Note that 
                   

Exercise: Verify this by algebra. 

7.3 Definition
Let     . By a division of P we understand a set               of half-open 
rectangles such that 

  

 

   

      nd             

Notation
                       

7.4 Remark
Special case of division: grid divisions.

          

 

   

   

A grid division of P is obtained by decomposing each        and then taking the 
Cartesian products

           
   

  

   

   
      

         

      
       

      
      

Then P is divided into          rectangles of the form

   
   

    
   

      
   

with                

7.5 Definition
    and let                        be divisions of O
Say that  refines  (denote    )
When for every      there exists      such that      

7.6 Remark
If     then can write            

                 
 

Where             
 is a division of   

7.7 Remark
Let            be any division of P. One can find a grid-division  such that    
Proof: Exercise
Geometric idea: extend lines of division for each sub-rectangle.

7.8 Proposition
Let     and let       be two divisions of  . Then one can find a division  of  such 
that     and      . 
Say that  is a common refinement for   and    

7.9 Remark
    ,            is a division of P then

               

 

   

Proof of Proposition 7.8
Write       

     
      

  

       
     

       
   

Put      
    

                       
    

      

So  consists of some q number of half-open rectangles, where      
Have that  is a division of  .
Verification is by immediate Boolean algebra. Exercise. 

We observe that     . Indeed every rectangle   
    

  of  is included in 

a rectangle of   , namely   
    

     
 . Same argument with   

    
  gives 

     QED

Proof of Remark 7.9
What do we so if  is not a grid division?
If            is not a grid division then refine it to a grid division 
           then reduce

        

 

   

        to         

 

   

    s it     gro ping ter s

Rectangles and their divisions
October-05-11
11:41 AM
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Rie  nn integr     ~ 85 
We wi    se D r o   s  s   ~ 87 

8.1 Definition
    Let      be a bounded function. Let             be a 
division of  
Then the upper Darboux sum for  and Δ is

                s p
  

   

 

   

And the lower Darboux sum for f and Δ is

                in 
  

   

 

   

8.2 Remark
     as defined above.

                       s p
  

  in 
  

  

 

   

               
   

 

   

  

8.3 Lemma
          bounded function.
Suppose    are divisions of P such that    
Then                                

                            

8.4 Proposition
          bounded function. Let       be two divisions. Then 
                

8.5 Remark
    ,      bounded. Consider the following set of real numbers:
                               

                                      

Then Prop 8.4 says that              

S is bounded above (since every    is an upper bound for S)a)
Hence can talk about s p   

Observe that s p     ,     (since t is some upper bound for S, 
while s p    is the smallest upper bound for S
T is bounded below  (e.g. s p    ) is a lower bound for T. Hence can 
consider in    , and will have in     s p   

b)

Make some observations from here:

Have s p  in  
When can this hold with equality? 

s p  in  1.
                           2.
  se  ences        

  in    nd        
 in  such that        3.

Some equivalent conditions for this:

Exercise

Now recall that we had                                        

Hence s p    s p                        

Likewise 
in     in                         

8.6 Definition 

Two number s p                        is called the lower 
integral of f, denoted 

•

  
 

 

             
 

 

The number in                         is called the upper 
integral of f, denoted

•

  
 

 

            
 

 

          bounded function 

8.7 Proposition 
                  

   
 

 

    
 

 

1)

For every    there exists a division  of P with      2)

  en    
 

 

    
 

 

  oreover  t e  o  owing  re e  iv  ent  

Proof of Lemma 8.3
Will show the inequality for U. L is similar. 

Write                            
               

 where

            
      

For every      and       have that s p    
    s p  

   This is just 

because        

Then write 

                    s p
    

   

  

   

              s p
  

   

  

   

 

 

   

 

   

             

  

   

 s p
  

   

 

   

          s p
  

   

 

   

       

QED

Proof of Proposition 8.4
Can find division  of P such that     and      (from Lecture 7, prop 7.8)
Then                               

               Lemma 8.3,     Remark 8.2, Lemma 8.3
QED     

Proof of Proposition 8.7
The inequality    

 

 
    

 

 
is just the inequality s p   in  from remark 8.5

The equivalent conditions 1, 2, 3, are suitable re-writings of the "(inf=sup)" 
equivalences in remark 8.5
However, condition 2 from (inf=sup) says less. It says          with      
That is,        divisions of P such that                   
But then let  be a division of P such that           . Then have        
        and                                                 
This is how 2 is fixed. Same for 3.

Proof of Proposition 8.9

Denote     
 

 

Have       
 

 
 s p                        

Hence               
Likewise

     
 

 

 in                         

               

So have                       
Then                                        
So              hence          

Also                                        

   

Definition of Integral
October-07-11
11:53 AM
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For every    there exists a division  of P with        
        

2)

There exists a sequence of divisions        
 of  such that 

                 
3)

8.8 Definition
          bounded.
If    

 

 
    

 

 
then we say that f is integrable on P and we define its 

integral to be the common value of    
 

 
    

 

 
. Notation:

  
 

 

8.9 Proposition
          bounded, integrable. Suppose        

 is a sequence of 
divisions of P such that                  
Then we have 

 i 
   

          
 

 

  i 
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9.1 Remark
                    
Consider the sum      
                             
Have that s p   s p   s p  and in    in    in   

9.2 Lemma
              o nded
Consider the sum    . Then for every division  of P we have 
                      and                       

9.3 Proposition
             bounded, integrable.
Then    is also bounded and integrable, and has     

 

 
   

 

 
   

 

 

9.4 Remark
         bounded, integrable.
Then   is bounded and integrable and has    

 

 
    

 

 

9.5 Theorem
    . Let                     o nded  nd integr   e 

Then          is closed under linear combinations and the map

                
 

 

 is  ine r

Question
What about      for              

9.6 Lemma
If            then             

Where       is defined by                 
 
      

9.7 Proposition
                           

Where        defined by                           

Remark 9.1
Addition
  s p

 

    s p             

  s p
 

    s p            

For every    have                      
So    is an upper bound for             . Hence we have
s p

 

        s p
 

    s p
 

   

Same for inf

Proof of Lemma 9.2
Write            . Then 

                  s p
  

     

 

   

          s p
  

    s p
  

    

 

   

          s p
  

   

 

   

           s p
  

   

 

   

               

Inequality for         done in the same way.

Proof of Proposition 9.3
Use the integrability criterion for f and for g.
Get sequences    

     
 and    

      
 of divisions of P such that

      
         

    and       
          

     
For every    let   be a division of P such that      

 ,      
  

Then also have
                 and                  
For every    have 
                         and                          

                                                   

      
So by squeeze,                      so    is integrable. 

Moreover, Prop 8.9 says that

    
 

 

  i 
   

           i 
   

         

                         

                         

But then just make    

  
 

 

   
 

 

      
 

 

   
 

 

   
 

 

So get

    
 

 

   
 

 

   
 

 

  s c  i ed    

9.4 Remark
         bounded. Let    , consider new function   
        de ined                          

  is bounded (immediate) 

Have 3 cases:            

Case 1:
For every division  of P get                and                

Take infimum of U's and Supremum of L's. 

    
 

 

      
 

 

      
 

 

      
 

 

 

In particular, if f is integrable then   is integrable as well with 

   
 

 

    
 

 

Case 2:
Have     .   is integrable with    

 

 
  

Case 3:
For every division  of P have
               

               

Problem 4. a) in homework 5. Have there case     . General    is 
treated in the same way. 

This implies further that 

    
 

 

      
 

 

   nd     
 

 

      
 

 

 

If f is integrable, still get conclusion that   is integrable with

   
 

 

    
 

 

Proof of Theorem 9.5

If            then            and    
 

 
  

 

 
  

 

 
1)

Statement amounts to 2 things:

Linear Combinations of Integrable Functions
October-14-11
11:54 AM
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If              then              and     
 

 
   

 

 
   

 

 
1)

This is Proposition 9.3
If            and    then               nd   

 

 
    

 

 
2)

This is Proposition 9.4

Proof of Lemma 9.6
  bounded - immediate
Take    s.t.                
Then                  
But why is   integrable?

Recall that if            is a division of P then 

                            
   

 

   

Claim 1
Let    be such that                 
Then for every      we have                    

Verification of Claim 1
Denote          

  ve   s p
        

             

In particular, have that                        
But then for        write

                            
 

        
 
                              

Proof of Proposition 9.7
                

     
 

 
               

             by 9.3
                      by 9.6
                        by 9.3

    
 

 
                        by 9.4
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10.1 Remark
          bounded.
Suppose that      such that                
Then for every division            of P we get 

                s p
  

           

 

   

  nd

                in 
  

   

 

   

          

Then             
 

 
    

 

 
        . In particular, if f is 

integrable            
 

 
        . 

This is like a "mean value theorem"

  
 

      
  

 

 

  

10.2 Proposition
    , let        be bounded, integrable functions such 
that                  (   ). Then   

 

 
   

 

 

10.3 Proposition
          bounded, integrable. Consider        
defined by                .

Then    is bounded and integrable and    
 

 
      

 

 

Implications of Remark 10.1
If            , let      . Then f is integrable with   

 

 
         

If f is non-negative let    , then Assuming f is integrable            
 

 
     

 

 

Proof of Propositions 10.2
Let                  .   is bounded and integrable and   

 

 
   

 

 
   

 

 

Since      is non-negative, so   
 

 
  . Hence   

 

 
   

 

 
. 

Proof of Proposition 10.3
Verification of bounded f integrable will be on homework.
Similar to proof of 9.6
                                        So           by prop 10.2

     
 

 

   
 

 

     
 

 

       
 

 

   
 

 

     
 

 

    
 

 

      
 

 

Integrals Respect Inequalities
October-21-11
11:18 AM
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11.1 Example
   . Look at the function f defined by the formula:

                    

                                      

Range is half a sphere, Domain is not a rectangle, what do we do?

Proof of Lemma 11.2
Exercise
Direct verifications by using criterion with sequences of divisions. (Prop 8.7 and 
Prop 8.9)

Proof of Proposition 11.3
Why does the definition make sense?

Must verify that the definition is independent of the choice of P. So suppose that 

someone else picks      extends  to         by 

        
             

         
  

 
Must verify that

  integr   e on        integrable on   

Moreover, if these conditions hold then want    
 

 
     

 

  

Denote       . have     and    
Let      be defined by 

       
          

        
Observe:    and   extends g with 0. 

    and    extends  with 0.
Apply lemma 11.2 twice

  integr   e on     
 integrable on Q  

   integrable on   

If these considerations hold then Lemma 11.2 also says

   
 

 

   
 

 

     
 

  

Proof of Theorem 11.5
Take     such that    

Extend              to                  then we use Theorem 9.5 for      . 
QED

11.2 Lemma
      such that    

Let      and let      be defined by        
          

      
Then we have that 
g is bounded and is integrable on Q
 
f is bounded and integrable on P
Moreover, if these conditions hold then have   

 

 
   

 

 

11.3 Definition and Proposition
Let     be a (nonempty and) bounded set, and let      be a 
bounded function. Pick a half-open rectangle     such that    
and extend f to a function:

      defined by 

        
             

        
 

 
Then it makes sense to declare:
f is integrable on A 
 

  is integrable on P
Moreover, if f is integrable them it makes sense to declare

  
 

 

    
 

 

11.4 Notation
    is bounded
Denote                      is  o nded  nd integr   e 

11.5 Theorem
   , bounded. Then the set of functions          is closed under 
linear combinations, and have

      
 

 

    
 

 

    
 

 

                      

11.6 Remark

                           •

                 nt      and    
 

 
       

 
•

Other properties of the integral also go through in the same way.

11.7 Remark
    bounded, let      be defined by              
Can we be sure that            ?

Say e.g.    and                               
Then                

 extends to       where 

           
         
         

Not integrable. 

What was the problem?
One way to look at it:      was way too large
                              

Will prove that things improve if we assume that      is "small"

Integrals over more general domains in  
October-21-11
11:31 AM
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12.1 Definition
    is a null set when the following happens:
      a finite family           such that 

   

 

   

    nd         

 

   

  

12.3 Remark

   

 

   

  1)

        

 

   

  2)

In definition 12.1 there were two requirements

            3)
But did not ask for

But observe that if C is a null set, then we can always arrange 
       to also satisfy (3). This is done by refining        

as necessary.

11.4 Remark

If     is a null set and if    then D is a null set as 
well

•

If         are null sets then      is also a null set. •

These are some obvious properties satisfied by null sets

Lemma ('Two Ways of Being Small')
           bounded function.
Suppose that     we can find a division 
                   

Such that (Way 1) + (Way 2) hold.

        

 

   

  

(Way 1):

     
             

(Way 2):

Then   is integrable on P

12.5 Theorem
    bounded (nonempty) set such that      is a null set. 
Let      be a bounded function. 

           i)
f is continuous at every     ii)
B is a null setiii)

Suppose we found      (B-bad, G-good) such that

Then  is integrable on A

Note
For exam might need to know individual parts or the outline 
of the whole proof of the above theorem. 

12.6 Corollary (Special case    )
    bounded with      is a null set.      is a 
bounded continuous function. Then  is integrable. 

12.2 Example of Null Set 
                  

Claim: C is a null subset of   

Verification of Claim: Given    

Pick    s.t. 
 

 
 

 

 
. For      let     

   

 
 
 

 
   

   

 
 
 

 
    

  en    

 

   

           

 

   

  
 

  

 

   

 
   

   
  

   
 

 
  

Comment
This example generalizes naturally to cases when C is the graph of a p-Lipschitz function 
      

    with    

Proof of Lemma
Use integrability criterion from Prop 8.7, in the form with  . Given    have to find a 

division  of P such that                  

We apply the hypothesis for a suitable     .

 et    
 

  vo     osc     

Hypothesis gives us                    such that

        

 

   

     nd      
             

   c   te 

                              
    

 

   

               
    

 

   

                  

 

   

            

 

   

                                        

 
                  

                 
  

Proof of Theorem 12.5
(Using       as in the theorem definition)

Enclose A in a rectangle     and extend f to a function       by 

        
          

      
WLOG (by enlarging P as necessary) may assume that             

Consider the set                       

Observe C is a null set.

Claim 1:

  is continuous at every       

Verification of Claim 1:

Fix        Observe that       c      int   (everywhere except the boundary)

Case I:      c     int     

In this case, can find    such that            . Hence      on          and it 
follows that   is continuous at   

Case II:    int   . In this case can find    such that          . For this    we have 

that                         . But observe that     since          

So        is continuous at      is continuous at   
Done with claim. 

Claim 2: 
For every    we can find some   

      
    such that     

      
   with 

       
  

 

   

     ince   is   n    set  

 nd s c  t  t    is  ni or    contin o s on      
            

Verification of Claim 2
 is a null set,           c n  ind           with                 

 nd s c  t  t         

 

   

 
 

 

For      pick   
       

        such that          
  and       

            

Then                 
           

         
     

  and

     
 

 

   

       

 

   

   
 

 
  

Integrability for Continuous Functions Modulo Null Sets
October-24-11
11:28 AM
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Consider the compact set                
      

  . K is compact since      is compact 
and removing an open set. 
  is continuous at every point of K (where for           we put        ) By claim 1.
Since it is continuous at point in a compact set K, f is uniformly continuous on K
Therefore, f is continuous on              

      
    

Claim 3
Given    can find a division      

       
           of P such that 

       
   

 

   

    nd s c  t  t      
             

Verification of Claim 3
Take   

      
 as in Claim 2. Make them become disjoint by performing intersections and by 

eliminating redundant pieces. 

 n t is w      
      

    
       

    nd        
   

 

   

  

On the other hand,   is uniformly continuous on      
       

    
Hence     s.t.            

       
                               

Complete   
       

  to a division    
       

           such that                  

Then      
             

By the above 'Two-ways of being small' Lemma,   is integrable on  
Therefore,   is integrable on    
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13.1 Remark
                                   
From L12 have good criterion (Theorem 12.5) for f to be integrable. 

13.2 Remark and Notation

For          define Cartesian product•

                            

Every     can be written as •
      wit           

                                         

Let      be as above•
Let      be a function
For every     define partial function         
                               

Say                 

Notation
Notation used sometimes for      is        

13.3 Theorem (Fubini)
     and      as above.

           i)
For every     , the partial function         belongs to 
         

ii)

Suppose that

           

 

 

     

Define a function       by 

  en              nd   
 

 

   
 

 

13.4 Remark
Write     as             with     and      W

  
 

 

 is   so written          
 

 

 or  s                    
 

 

                      
 

 

Left hand side of boxed formula is 

        
 

 

                   
 

 

    
 

 

                   
 

 

    
 

 

So can say that

                   
 

   

                   
 

 

    
 

 

Result: Reduces dimensionality of integrals to be calculated. 

13.6 Remark
By symmetry, Fubini also applies to iterated integrals with 
components considered in another order. 

                     
 

 

                 
 

 

      
 

 

           i)
                                            ii)

Holding if:

Or could, by example have
                            

                 
 

 

              
  

  

       
 

               

With two suitable conditions i), ii) 

Example
   
                      closed unit disk
                        a null set in   

Due to theorem 12.5 every continuous function      is integrable. 
But how to calculate   

 

 

Concrete example to follow:

                          

We calculate   
 

 
by a method called "theorem of Fubini" 

Enclose                  

      by putting                 

   de inition   ve   
 

 

    
 

 

  nd we c  c  te    
 

 

 wit     ini

For            look at the partial function        

Have      for                

For         we get

                             
           

           

            
Note that    is continuous hence integrable. So hypothesis (ii) of Fubini holds. Also 
have hypothesis (i) since            

So apply Fubini. Define           by 

              
 

  

  
       

 
         

                 
Finally,

  
 

 

    
 

 

        
 

  

  
       

 
  

 

  

 
  

 

How to Calculate Integrals I
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(A) Integrals and Volumes
14.1 Definition
          such that              
Graph of f is                                  

The set                                    is 
called the subgraph of f.

14.3 Proposition
    bounded set,            such that             
 . Let       be the subgraph of f. Then S has volume (in 
    and          

 

 
. 

Comment
The proposition equates 

  
 

 

   
 

 

LHS is n dimensional, RHS is n+1 dimensional.
Proof by following Darboux sums. Darboux sums for f can be 
interpreted as volumes in     , which "approximate"       

14.6 Remark
In calculations it is sometimes convenient to replaces values 
of functions on a null set. 

Underlying fact: 
            bounded functions. 
Suppose     null set such that                    . If 
           then           and   

 

 
   

 

 

Proof of fact
Done by analysis of divisions of P

(B) Polar Coordinates
14.8 Definition
For        the set                       

    

will be called the half-open annulus of radii   and   
centered at (0,0) 

For such Annulus A, the map                   

           cos    sin   

is called parameterization of A by polar coordinates. 

On                 

Vertical segments (constant r) become circles of radius r 
inside A.
Horizontal segments (constant θ) become chord of angle θ in 
A. 

T is a bijective map between               and A

14.9 Proposition
A and R as above. Let      be a bounded function. Let 
     be the composted function      
                   

More precisely,             cos    sin   

  en                
 

 

                  
 

 

      

Where does the r in                   

 
come from? 

r is the Jacobian of T at      

  
 

 

     
 

 

                             

J is the Jacobian function for polar coordinates . 
The discussion of Jacobian is in terms of partial derivatives 
(taken for       

14.2/4 Example
                         

     defined by                     

Subgraph of f is 

                                     
                             

On Wednesday calculated   
 

 
 

  

 
. S subgraph  of f has        

  

 

Moral: Volume of closed unit ball in   is equal to 
  

 

14.5 Remark
Another way to calculate volume of unit ball in   . Take the open unit ball. 
                         

Enclose  with                       

  ve          
 

 

           
 

 

                   
 

             

   
 

  

Fix    and look at partial function 
                               

           
              

              
                            

           

 et                 
 

             
        

                 
 

  

     
  

 
 
  

 

 
  

 

14.6 Illustration of Use
Let                                                     

How do I know                 ? 
Have                            

 o                  
 

 

                    
 

 

Take           in 'fact', have that    agree on    where 
                         (null set)

14.7 Polar Coordinates Example
Look again at                     

     defined by                     

   c   ted in   w  s t  t   
 

 

 
  

 
Now a third way. Write  as a union of circles of radii        centered at (0,0). On circle of 

radius r have         hence                

 o  d t en   ve   
 

 

            
  

 

 

Check

          
  

 

 

        
 

 

               

       
 

 

   
 

 
 

 
  

 

 

 
  

 

But why does this hold? Is it Fubini?

14.10 Example
Make          

                     
                            is is c   ed   "  nct red Dis "

 et                           

Have            

                                 n    set
f is  bounded and continuous on A so f is integrable on A
 et                de ine          

              cos     sin           cos       sin    
 

       

Integrate for polar coordinates:

  
 

 

         
       

 

            
           

   
  

 

   
 

 

           
  

 

 

 
  

 

How to Calculate Integrals II
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15.1 Definition
              , Let   be any vector in A
 et      be a function.

    i 
   
   

               

 
   e ists 

Then we say that f has directional derivative at   in direction   
Notation for the limit:

             i 
   
   

               

 

15.2 Remark

          t en       
      is s re to e ist   nd       

       1.

Now suppose         hence       2.
Have    int    so  r   s.t.          
Then it makes sense to define

    
 

    
 

 

    
                       

 

    
   

 

    

 ndeed  i      
 

    
  ence                              

 o  
 

    
   

 

    
                   nd           is de ined

 is called the partial function of f around the point   in direction   

 i 
   
   

               

 
  i 

   
   

         

 
       W en t e deriv tive e ists

Notations as in Definition 15.1

15.3 Definition
              . Fix      
Let                       be the    vector of the standard basis of   

                  e ists then this is called the    partial derivative of f at   denoted as 
         

15.4 Definition
                nd s ppose t  t           e ists  or ever         

  e vector                                    

is called the gradient vector of f at   , denoted         

    "Nabla" or "Grad" for gradient.

15.5 Proposition
                    

Let        be in   and suppose that            exists. 
Then for every    the directional derivative exists as well 

      o ogeneit                            

15.6 Remark
                    

Suppose that            exists for all      . So can define function:
                        

Proposition 15.5 says                          

Proof of Proposition 15.5
If    then [H] amounts to    so assume    . Denote         

Must verify existence of

 i 
   
   

                 

 
  i 

   
   

                

  
    i 

   
   

               

 
 

  : Put     when        get        
This limit does exist and equals                

Question
Isn't L additive as well? So it would be a linear function

    es  t en  or ever                     write              

 

   

  nd get

                    

 

   

                           

 

   

Answer
No :(

Problem 4 in homework 7 gives a function       such that  is 
continuous and            exist for all       v     

 nd  et  i  we p t 

                        

Then L is not linear.

What do we do to get the answer "Yes"? 
Go to the concept of a   function

Directional Derivatives
November-09-11
11:59 AM
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16.1 Remark
Directional/partial derivatives as functions.
     open set            

               e ists  or ever       t en we get   new   nction 
         
called the directional derivative of  in direction   

Special case:          
If          exists for every     then we get a new function
       
called the     partial derivative of f.

16.2 Definition

 is continuous on A•
 has partial derivatives at every     •
The new functions              are continuous on A•

      A function      is said to be a   -function when it has the 
following properties:

The collection of all   -functions from A to  is denoted        

Note
One uses the notation 
                   is contin o s on   

Will also encounter                          

       defined as the set of all continuous functions whose partial 
derivatives are in          

16.4 Theorem
    open,           .
Then for every     we have 

 i 
   
   

                              

       
         ppro  

w ere                                 

To prove this we do

16.5 Lemma 
(Mean Value Theorem in direction        )
     open                  
 et      e s c  t  t           
 et    e  n inde  in          nd  et               be such that they only 

possibly differ on the component  (So                     )

Then             such that

                                         direction   

16.6 Definition (Geometry)
        

The line segment connecting   and   is the set
                                 

         

             

We do            ,      to cover the line segment from   to   

16.7 Proposition
MVT in direction     
    open ,                 

 is continuous on A•
           exists for every     •
The new function          is continuous on A•

Suppose that 

Suppose we have         such that          for some    and such 
that            .

Then                                             

Geometric Interpretation of L-Approx.
Instead of getting a tangent line to the graph of f, we get a tangent 
hyperplane to the graph of  .
The hyperplane is an n-dimensional subset of     

16.8 Remark (Geometry)
Given          

How do we write the equation of a hyperplane     that passes 
through   

One Possibility

16.3 Remark
For          , will prove a theorem of local linear approximation. 

Look at the (known) special case    . Make          ,        

     differentiable at a. 
Approximate formula says                      for x close to a. 

So have 

 i 
   

                         

But in fact have more!

  ve  i 
   
   

 
                     

   
   i 

   
   

 
         

   
         

Call the above (first formula) L-Approx. in 1 variable. 

Proof of Lemma 16.5
Case when          trivial and get    

So assume that                        

Denote              

Define           by                                                

Note that                      and  is continuous on      

(Why? Check with sequences using the continuity of f and that         in      

                                                                 

Claim

Take s such that      and put                                            

Then  is differentiable at s, and                 

Verification of Claim

           by definition of  

                                                          

 o 
           

 
 

                     

 
Take limit    (   ). Get claim since the expression on the right hand tends to 

           

Due to claim, we can apply MVT from Calculus I to  .

 ives          s c  t  t 
         

   
      

Convert                                    

                for                                    

           

         
           

and done. QED

Proof of Theorem 16.4
Important Proof

Fix    such that          . So      makes sense for any   such that          
Given    . Want to find      such that

 
         

     
  

                              

       
                    

Know
For every      know that        is continuous at   , hence        such 
that 

                                 
 

   

Take    in         . So      and have 

                               
 

                              

Will show that  works in [Want]. 

So pick                                                 

Define                      as follows

                         

                      

                           

                         

Note that                          

Write                                           

 

   

  serve 

                                      

                                        

  functions
November-11-11
11:58 AM
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Given          

How do we write the equation of a hyperplane     that passes 
through   

One Possibility
                                               p   
where            are linearly independent.

Another Possibility
                             p   

with       in   called the normal vector

Relation between [Hyp 1] and [Hyp 2]:
                          

16.9 Remark
     open          

Consider the graph
                                   

Pick     , look at                

 i 
      
      

                              

       
  

 o                                                    
This is a linear function in x.

                                                

Claim
     w ere   is   speci     perp  ne going t ro g    

Tangent Plane
                                      

            

 

   

               

                  

                         

16.10 Proposition
     open               
Then for every      the direction derivative            exists and

                         

Note that this is a linear function of   

                                  

 

   

16.11 Remark
    open,               

Suppose             . Look at various unit vectors                 

Have
                                                       

Equality holds precisely when             

      
        

          
 gives 

       
                                                  

Informal interpretation:
f is increasing fastest in the direction of the gradient vector. 

Write                                     

 

   

  serve 

                                      

                                        

Can apply MVT in direction  , and get              such that 

                                      

So

                            

 

   

                        

 

   

                 Know   

W ere                                             

  serve                                          
 

 

   

                                    
 

            Know   

                        
 

 

   

   
 

   
 

 
 

   

   

Hence
                        Know   

Now calculate
                              

                                                          

                                   

1: Know 2
2: Bilinearity of inner product
3: By Cauchy-Schwartz
4: Know 3

In summary, get
                              

       
  

QED.

Remark 16.9
Pick     , look at                

Recall (L-Approx)

 i 
      
      

                              

       
  

 o                                                    
This is a linear function in x.

                                             

Claim
     w ere   is   speci     perp  ne going t ro g    

Calculate

                                                                     

Denote                            

  en                                   

 

   

 

                                                     

                        

 o get               

 

   

 w ere                                      

So      w ere 

            

 

   

               

What about the normal vector to  at   ?
 eed          such that                

Look for     in the form                     

So                                            

Conclusion
                  

Proof of Proposition 16.10
Will assume       (for       we know that             exists and is equal to 0)

Recall (L-Approx.) for  at     

 i 
   
   

             

   
   set        w ere        
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 i 
      
      

                              

       
   set           w ere        

Get          , hence                                               

also,                      

So (L-Approx.) becomes

 i 
   
   

                                

        
      tip          

 i 
   
   

                                

   
         

 i 
   
   

 
               

 
                 

 t  o  ows t  t  i 
   
   

               

 
 e ists  nd is e     to               

QED
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17.1 Definition
    open             

For every     write                                     

And in this way we get functions               called the components of f.
Compare to L4 about continuity, Def. 4.5, Prop. 4.6

If                    then we say that           

17.2 Definition
     open                              

For every     the matrix

         

 
 
 
 
           

           

 
            

 
 
 

  
    

                     

   
    

                     
 

is called the Jacobian matrix of f at   .

Note 
                

                  
        

                     

17.3 Remark
1:    
Have           so                 
         is          tre ted  s   row   tri 

2:    (   )
   e     open interv   in         

  ve                      wit          

  ve                                 

Means that       
 

exists and is continuous on  

Such f is called a path in   

For every    , the derivative              
 
            

 
       

is called the velocity vector of f at a.

  ve          
         

 
         

         

So        is the velocity vector      , treated as a column matrix.

17.4 Remark

     open               en                 
wit   or    s  or p rti   deriv tives  s in c  c   s  

1.

     open                   2.

              

                            

Form new function:

For      have                                    

Moreover, for     and            have 
                  

              
              

        

                              

                             

Can do algebraic operations with   functions

Linearity of Jacobian

                                              ine rit  o    co i n

Moral
        is a vector space of functions, and   is linear.

17.5 Theorem (Chain Rule)
                   open sets
           s c  t  t                         

Consider the composed function
            
  en           and for every     have

                                         tip ic tivit  o    co i n

Aside
The chain rule from calc 1  is the special case of this where        

Examples for Remark 17.4
   have

                          

Leibnitz rule, applied to partial functions for   in the    direction.

More general than    can do linear combinations      ,      
Have              and 
                             

Linearity of derivative from Calc 1 applied to partial functions in 
direction  

17.9 Proof of 2, by assuming 3
Have           with                 

Have                    
Fix     ,          . Want to verify that

 i 
   
   

               

 
 e ists  nd is e     to                 

        

 

   

Pick    such that          

Define                              

  ve 
                   

 
 

         

 
So need that      exists and is given by the right formula.

Consider the path                                        

                                       

So                    

Formula from 3 applies, gives

                            

 

   

                 
        

 

   

QED

Left to prove special case of Chain rule for      

Proof of Lemma 17.10
                   

   
  

 

 
                 

  
 

 
                   

What is component  of this vector? It is:
 

 
                                 

So have

                   

   
  

 

 
                   

   
                   

 
       

 
     

 

   

      de inition o        
 
    

 

Proof of Proposition 17.11

Fix     for which we verify the claim. Denote                    

Must prove that  is differentiable at   with 

                                  

 o w  t we w nt is  i 
   
   

             

 
                                 

Calculate

             

 
 

                   

 
 

                 

 

 
                     

 
 

                 

 

We  now t  t  i 
   
   

                 

 
             

So [Want] will follow if we prove

 i 
   
   

 
                     

 
              

To prove [Want'] we will use a Lipschitz condition for g.

Fix    such that           . Use problem 4 in homework 8 for the 

compact convex set          
 

 
 to get    such that 

                                       

 is continuous at   hence can find    such that              and 

such that                            
 

 

So for        have               
 

 
          

For     
 

       
 

 

 
we also have that 

        and the Chain Rule
November-21-11
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                                         tip ic tivit  o    co i n

Aside
The chain rule from calc 1  is the special case of this where        

17.6 Remark
Equation (M-J) is usually written in terms of entries:
 or               ve 

                        
     

              

 

   

Write                                                

    
              

              
        

 

   

Denote               W  t is t e re  tion  etween    nd v  

                                          

   e co ponent                                      

The modified (M-J) says

                          
        

 

   

 or            nd                    

           in R  e  p  

Notation
To make it more suggestive, people write

          
  

     
     

  

     
                

  

     
      

  

     
      

     

         

 

   

Summarized

  

       
  

     
 
     

     

 

   

Imprecise in two ways: 
     

     should be 
     

     , and does not specify to what points the 

derivatives should be applied. 

17.7 Remark
Special case when      .
Take    open interval
       a   -path
Let     open such that             
Let  be in        
Consider composed function              

                       
 
   

 

   

              in r  e      

                        

17.8 Remark

     In Theorem 17.51.
     for    in Remark 17.62.
     for      in Remark 17.73.

Had 3 formulas for the chain rule:

  e r              ec  se    nd    re speci   c ses  
 onverse             w t is in Re  r   7 6 - just have to fix a value          

with              

  serve t  t         roo   7 9  

17.10 Lemma
   open interval,       a   -path 

Fix     , denote                    

  en  i 
   
   

                   

   
  

This is an approximation lemma:                      

17.11 Proposition ("CR for      ") 
   open interval,       a   path.
    open such that            

Let  be a function on        and let      so                       

Then          and 

                         
 
   

 

   

                   

such that                            
 

 

So for        have               
 

 
          

For     
 

       
 

 

 
we also have that 

                        
    

      
 

 

 
 

 

 
         K

So for      in    
 

          
 [Lip] will apply to                      

                       

   
 

                    

   
But lemma 17.10 says that 

                   

   
    o    s  ee e we get

                       

   
      W ic  is  W nt  

The fact that       is continuous comes from immediately from the 
formula 

                         
 
   

 

   

because                  
 

are all continuous. 

QED
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If    then the Jacobian matrix is a square matrix. Can talk about 
determinant and about invertibility. 

Recall
For          have  invertible            such that 
        
Various other descriptions  invertible   er    det    

18.1 Remark
For every    , the formula for    determinant is a polynomial 
expression in the entries of the matrix. That is,  polynomial   of   

indeterminates such that 
              

                                 

Therefore,   is a continuous function on    

18.2 Lemma
Small Perturbation of Invertible Matrices

Let               
be an invertible matrix.     with the following 

property:
If               

        is such that                     

then N is invertible as well.

18.3 Proposition
    open,                such that         is invertible. 
Then     s.t.          and s.t.  is one-to-one and injective on 
       . 

18.4 Definition
      open sets
A   -diffeomorphism between U and V is a bijection      such 
that both f and its inverse      are   -functions. 

18.5 Theorem
    open,                s.t.         is an invertible    

matrix. Denote          . 

            i)
f maps U onto V bijectivelyii)
The function      which inverts f is a   -function and has 

                    
  

iii)

Then        open sets such that

In short, we get a   -diffeomorphism produced by f on an open 
neighbourhood of   

18.6 Remark

One can find    such that            and such that  is 
one-to-one on  . So we can put                    and 
have that  gives a bijection from  to  with an inverse      .

a)

It can be proved that by reducing  if necessary, one can arrange 
that  is open, and such that g is   -function. 

b)

For      as in b, one proves that                     
  

c)

Discussion around the steps in proof of Theorem 18.5

Determinant Example

det   
      

      
                                    

Proof of Lemma 18.2
Denote  det        
So                  det      where   is as in Remark 18.1

Write continuity of   at                
for 

 

 
            

                                                          
 

 
Set   

 

 
. Will show that this  satisfies the Lemma.

Pick a matrix               
such that                     

Will show that  is invertible. 
  serve  irst t  t 

                                     
 

 

     

 

     

 

      

 

     

                               
 

 
  det    det     

 

 
 

 
 

 
 det      

 

 
 

 

 
 det    

  

 
 det     

So N is invertible  

Proof of Proposition 18.3
Denote                        

 o          
                 . Lemma 18.2 says     such that if                

has                     then  is invertible. 

Due to continuity of partial derivatives    
   at   we can find    such that 

          and such that      
              

                                 

We will prove that this r satisfies the claim.

Fix       in        . Must prove that            . Assume by contradiction that 

           , that is                         

For every      , we apply    in direction   to the function             where 
        .

Get a point              such that                                       

 onsider t e   tri                
  

          
     

 

          
      

 

Wit          
                   get      

       
          

           

Therefore N is invertible.

  t            
                       er so N is not invertible. Contradiction

QED

Was done in Prop 18.3a)
We will accept (part with V being open is itself a theorem called the "open mapping 
theorem")

b)

Easy, do it now. Holds in fact for any   -diffeomorphism.c)
Consider composed function            

                    

   in r  e s  s                            

But on the other hand have,               

So                                          

 ence     
          

        
       

            

So chain rule gives                                           
  

18.6 Remark Proof

Special case when    
November-30-11
11:31 AM
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18.7 Definition
    ,                
The Jacobian of f at   is defined as 
         det            w ere              

is the Jacobian matrix of  at    

18.8 Remark
    open,           
Have new function         

This is continuous.

If          in A then     
                 

        

                    det            det          

Because    is polynomial hence continuous
                    so      respects se  ences  contin o s 

18.9 Theorem (Change of Variable)
      open and bounded      a   -diffeomorphism. 
Suppose in addition that     is bounded on  

(                         )

Let              Put      so                          

  en              nd          
 

 

                   
 

 

       

18.10 Remark (how to remember [C-V]

               
Do the substitution         ,             

         
 

 

                 
 

 

              
 

 

This is analogous to substitution in one variable
                 

18.12 Remark
Why woes the formula      hold? 
    keeps track of how volumes are distorted by T

Take again the case of      from example 18.11

   e   division      

 

   

      

 

   

         

  en   
 

 

  s p
  

           

 

   

  
 

 

  s p
  

           

 

   

       we   ve s p
  

    s p
  

         s p
  

   

But not true that                

 n   ct   ve 
       

       
                    

Since     is continuous, it is approximately constant for small   

On this specific example
                    

        
      

 
       

       

       
 

    

 
  

18.11 Example
Take 

                                        
                      

           cos    sin                        

               cos     sin  

              sin    cos   

           cos    sin 
sin  cos  

 

           cos    sin    

Formula (C-V) says if            then                with

               
 

 

                   
 

 

      cos    sin           
 

 

  

  

Change of Variables
December-02-11
12:04 PM
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