Background

September-12-11
9:34 AM

Fields

Basic theory of vector spaces works over any field.
$\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{F}_{p}$

- We will mostly work over \mathbb{C} or \mathbb{R}
- Other fields if convenient

Algebraically Closed
\mathbb{F} is called algebraically closed if every polynomial
$p(x) \in \mathbb{F}\lfloor x\rfloor$ factors into linear terms.

$$
\begin{aligned}
& p(x)=c\left(x-a_{1}\right) \ldots\left(x-a_{n}\right) \\
& x \in \mathbb{F}, n=\operatorname{deg} p
\end{aligned}
$$

Fundamental Theorem of Algebra

\mathbb{C} is algebraically closed

Determinants

If $A=\left|a_{i, j}\right|_{n \times n}$ then $\operatorname{det} A$ is determined algorithmically.

$\operatorname{det} I_{n}=1$

Determinant is \mathbf{n}-linear

$$
\text { Think of } A=\left\lfloor v_{1}, v_{2}, \ldots, v_{n}\right\rfloor v_{i} \in \mathbb{F}^{n}
$$

$$
\left.\operatorname{det}\left(v_{1}, v_{2}, \ldots, v_{i-1},\right\rangle, a_{j} w_{j}, v_{i+1}, \ldots, v_{n}\right)=
$$

$$
\sum, a_{i} \operatorname{det}\left(v_{1}, \ldots, v_{i-1}, w_{j}, v_{i+1}, \ldots, v_{n}\right)
$$

Determinant is antisymmetric

$$
\begin{aligned}
& \operatorname{det}\left(v_{1}, \ldots, v_{i-1}, u, v_{i+1}, \ldots, v_{j-1}, u, v_{j+1}, \ldots, v_{n}\right)=0 \\
& \Rightarrow(\operatorname{except} \text { if } 1+1=0) \\
& \operatorname{det}\left(v_{1}, \ldots, v_{i-1}, v_{j}, v_{i+1}, \ldots, v_{j-1}, v_{i}, v_{j+1}, \ldots, v_{n}\right)= \\
& -\operatorname{det}\left(v_{1}, \ldots, v_{n}\right)
\end{aligned}
$$

Theorem 1
$\operatorname{det}(A B)=\operatorname{det} A \times \operatorname{det} B$
Theorem 2
$\operatorname{det} A=0 \Leftrightarrow A$ is singular

Linear Transformation and Matrices
V is a vector space (over field \mathbb{F})
$\mathcal{L}(V)$ is the set of all linear transformations from V to V W another vector space over \mathbb{F}
$\mathcal{X}(V, W)=$ linear transformation from V to W
If $\beta\left(v_{1}, \ldots, v_{n}\right)$ is a basis for V
$T \in \mathcal{L}(V)$
$T v_{j}=\sum_{i=1} a_{i j}, v_{i}$
$[T\rfloor_{\beta}=\left|a_{i j}\right|$ is the matrix x of T with respect to β
$x \in V, x=\sum_{i=1}^{n}$
$\left\lfloor T_{x}\right\rfloor_{\beta}=\left|a_{i j}\right|\left(x_{1}, \ldots, x_{n}\right)=\lfloor T\rfloor_{\beta}\lfloor x\rfloor_{\beta}$
Also if $S \in \mathcal{L}(V, W)$
$\beta=\left\{v_{1}, \ldots, v_{n}\right\}$ bases for V
$\beta^{\prime}=\left\{w_{1}, \ldots, w_{m}\right\}$ bases for W
$S\left(v_{j}\right)=\sum_{i=1} a_{i j} w_{i} \quad i \leq j \leq n$
$[S]_{\beta}^{\beta^{\prime}}=\left|a_{i j}\right|$

Theorem

If $T \in \mathcal{L}(V)$ then $\operatorname{det}|T|_{\beta}$ is independent of the choice of basis.

So we can define $\operatorname{det} T:=\operatorname{det}[T]_{\beta}$

Sketch of Theorem 2
If A is singular (i.e. $\operatorname{rank} \mathrm{A}<\mathrm{n}$)
Some column $V_{i_{o}}=\sum_{i \neq i_{0}} a_{i} v_{i}$
$\operatorname{det} A=\operatorname{det}\left(v_{i}, v_{i_{0}-1}, \sum_{i \neq i_{0}} a_{i} v_{i}, v_{i_{0}+1}, v_{n}\right)=\sum_{i \neq i_{0}} a_{i} \operatorname{det}\left(v_{i}, \ldots, v_{i_{0}-1}, v_{i}, v_{i_{0}+1}, \ldots, v_{n}\right)=0$
If A is invertible,
$1=\operatorname{det} I=\operatorname{det}\left(A A^{-1}\right)=\operatorname{det} A \times \operatorname{det} A^{-1}$
$\therefore \operatorname{det} A \neq 0$
Proof of Theorem
Let $\beta=\left\{v_{1}, \ldots, v_{n}\right\}$ and $\beta^{\prime}=\left\{w_{1}, \ldots, w_{n}\right\}$ be two bases for V
Write
$w_{j}=\sum_{i=1}^{n} a_{i j} v_{i}$
$Q=\left|a_{i j}\right|=[I\rfloor_{\beta^{\prime}}^{\beta}=\left|\left\lfloor w_{1}\right\rfloor_{\beta},\left\lfloor w_{2}\right\rfloor_{\beta}, \ldots,\left\lfloor w_{n}\right\rfloor_{\beta}\right|$
If $x=\sum_{j=1}^{n} x_{j} w_{j}=\sum_{j=1}^{n} \sum_{i=1}^{n} a_{i j} x_{j} v_{i}=\sum_{i=1}^{n}\left(\sum_{j=1}^{n} a_{i j} x_{j}\right) v_{i}$
$|x|_{\beta}=\left|a_{i j}\right||x|_{\beta^{\prime}}=Q|x|_{\beta^{\prime}}$
Look at Tx
$|T x|_{\beta}=|T|_{\beta}|x|_{\beta}=|T|_{\beta} Q|x|_{\beta}$,
$|T x|_{\beta^{\prime}}=Q^{-1}|T|_{\beta} Q|x|_{\beta^{\prime}}$
$\therefore \operatorname{det}|T|_{\beta^{\prime}}=\operatorname{det} Q^{-1}|T|_{\beta} Q=\operatorname{det} Q^{-1} \times \operatorname{det}|T|_{\beta} \times \operatorname{det} Q=\operatorname{det}|T|_{\beta}$ QED
$\operatorname{det}|T|_{\beta}$ does not depend on which basis is used.

Eigenvalues

9:30 AM

Eigenvalue (a.k.a. characteristic value)
$T \in \mathcal{L}(V)=$ set of all linear transformations from V to V
A scalar $\lambda \in \mathbb{F}$ is an eigenvalue for T if $\exists v \neq 0$ s.t. $T v=\lambda v$

Eigenvector

Any non-zero vector v s.t. $T v=\lambda v$ is an eigenvector for (T, λ)

Eigenspace

The space $\operatorname{ker}(T-\lambda I)=\{v: T v=\lambda v\}$ is the eigenspace for (T, λ)

Theorem

$T \in \mathcal{L}(V)$, The following are equivalent

1. λ is an eigenvalue for T
2. $T-\lambda I$ is singular
3. $\operatorname{det}(T-\lambda I)=0$

Characteristic Polynomial
The characteristic polynomial of T is
$P_{T}(x)=\operatorname{det}(x I-T)$

Note

$P_{T}(x)$ is a monic polynomial of degree $n=\operatorname{dim} V$
Monic: coefficient on highest degree is 1

Spectrum

The spectrum of T is $\sigma(T)$, the set of all eigenvalues.

Corollary

$\sigma(T)$ is the set of zeros of $P_{T}(x)$
Corollary
$\sigma(T)$ has at $\operatorname{most} n=\operatorname{dim} V$ eigenvalues.
Corollary
Similar transformations have the same spectrum

Direct Sums

Say V is the direct sum of V_{1} and V_{2} if $V_{1} \cap V_{2}=\{0\}$ and $V_{1}+V_{2}=V$. Write $V=V_{1}+V_{2}$ or $V=V_{1} \oplus V_{2}$

Say V is the direct sum of V_{1}, \ldots, V_{k} if

1. $V=\rangle_{i=1}^{k} V_{i}$
2. $\left.V_{j} \cap(\rangle_{i \neq j} \cdot V_{i}\right)=\{0\}$, for $1 \leq j \leq k$

Proposition
If $\{0\} \neq V_{i}$ subspaces of V such that
$V=\sum_{i=1}^{k} V_{i}$
then TFAE (the following are equivalent)

1. Sum is direct: $V=V_{1} \dot{+} \cdots+V_{k}$
2. If $0 \neq v_{i} \in V_{i}$, then $\left\{v_{1}, \ldots, v_{k}\right\}$ is linearly independent
3. If $w_{i} \in V_{i}$ and $\Sigma_{i=1}^{k} w_{i}=0$ then $w_{i}=0,1 \leq i \leq k$
4. Every $v \in V$ has a unique expression as

$$
v=\rangle, w_{i}, w_{i} \in V_{i}
$$

Corollary
If $V=V_{1} \dot{+} V_{2} \dot{+} \cdots \dot{+} V_{k}$
Then if you take a basis for each V_{i}, say $v_{i_{1}}, \ldots, v_{i_{d_{i}}}$
then the union $\left\{v_{11}, \ldots, v_{1 d_{1}}, v_{21}, \ldots, v_{k 1}, \ldots, v_{k d_{k}}\right\}$ is a basis for V .

Example

T is diagonal w.r.t. bases $\beta=\left\{v_{1}, \ldots, v_{n}\right\}$ if
$|T|_{\beta}=\left|\begin{array}{ccc}\lambda_{1} & 0 & \ldots \\ 0 & \lambda_{2} & \ldots\end{array}\right|$
So $T v_{i}=\lambda_{i} v_{i}$
So $\lambda_{1}, \ldots, \lambda_{n}$ are eigenvalues
If $u \in\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ eigenspace for u
$\operatorname{ker}(T-\mu T)=\operatorname{span}\left\{v_{i}: \lambda_{i}=\mu\right\}$
$\mu \neq\left\{\lambda_{1}, \ldots \lambda_{n}\right\}$
Only eigenvalues are $\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$
$T=$ diagonal ($1,2,1,2,1,3$)
$\operatorname{ker} T-I=\operatorname{span}\left\{v_{1}, v_{3}, v_{5}\right\}$
$\operatorname{ker}(T-2 I)=\operatorname{span}\left\{v_{2}, v_{4}\right\}$
$\operatorname{ker}(T-3 I)=\operatorname{span}\left\{v_{6}\right\}$
Example
$T=\left|\begin{array}{ll}1 & 3 \\ 0 & 2\end{array}\right|$
$T\binom{1}{0}=\binom{1}{0}$
1 is an eigenvalue, $\operatorname{ker}(T-I)=\mathbb{F}\binom{1}{0}$
$\mathbb{F}-$ span or set of all multiples of
$T\binom{3}{1}=\binom{6}{2}=2\binom{3}{1}$
2 is an eigenvalue
$\operatorname{ker}(T-2 I)=\mathbb{F}\binom{3}{1}$
$u \neq\{1,2\}$
$T-u I=\left(\begin{array}{cc}1-\mu & 3 \\ 0 & 2-\mu\end{array}\right)$
$\left(\begin{array}{cc}1-\mu & 3 \\ 0 & 2-\mu\end{array}\right)\left(\begin{array}{cc}\frac{1}{1-\mu} & -\frac{3}{(2-\mu)(1-\mu)} \\ 0 & \frac{1}{2-\mu}\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
So it is invertible, so rank is 0 , so no more eigenvalues.

Proof of Theorem

1. λ is an eigenvalue for T
$\Leftrightarrow \operatorname{ker}(T-\lambda I) \neq\{0\}$
$\Leftrightarrow 2 . T-\lambda I$ is singular
$\Leftrightarrow 3 \cdot \operatorname{det}(T-\lambda I)=0$
Example
$T=\left|\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right|$
Look at
$p(x)=\operatorname{det}(x I-T)=\left|\begin{array}{cc}x & 1 \\ -1 & x\end{array}\right|=x^{2}+1$
$\mathbb{F}=\mathbb{R}$ no eigenvalues
$\mathbb{F}=\mathbb{C} x^{2}+1=(x+i)(x-i)$
$T-i I=\left|\begin{array}{cc}-i & -1 \\ 1 & -i\end{array}\right|\binom{1}{-i}=0$
$T+i I=\left|\begin{array}{cc}i & -1 \\ 1 & i\end{array}\right|\binom{1}{i}=0$
$\pm i$ are eigenvalues
In \mathbb{R}^{2}, T is a rotation
Example
$T=\left|\begin{array}{ccc}4 & -1 & -1 \\ -2 & 5 & -1 \\ 3 & -3 & 6\end{array}\right|$
$p(x)=\operatorname{det}(x I-T)=\left|\begin{array}{ccc}x-4 & 1 & 1 \\ 2 & x-5 & 1 \\ -3 & 3 & x-6\end{array}\right|$
$=(x-4)((x-5)(x-6)-3)-1(2(x-6)+3)+1(6+3(x-5))$
$=(x-4)\left(x^{2}-11 x+27\right)-(2 x-9)+(3 x-9)$
$=x^{3}-15 x^{2}+71 x-108$
$=(x-3)(x-6)^{2}$
Eigenvalues are 3, 6
$T-3 I=\left|\begin{array}{ccc}1 & -1 & -1 \\ -2 & 2 & -1 \\ 3 & -3 & 3\end{array}\right| \rightarrow\left|\begin{array}{ccc}1 & -1 & -1 \\ 0 & 0 & -3 \\ 0 & 0 & 0\end{array}\right|\left(\begin{array}{l}a \\ a \\ 0\end{array}\right)=0$
$T-6 I=\left|\begin{array}{ccc}-2 & -1 & -1 \\ -2 & -1 & -1 \\ 3 & 03 & 0\end{array}\right| \rightarrow\left|\begin{array}{ccc}-2 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & -1 & 0\end{array}\right|\left(\begin{array}{c}a \\ a \\ -3 a\end{array}\right)=0$
$T\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)=3\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$
$T\left(\begin{array}{c}1 \\ 1 \\ -3\end{array}\right)=6\left(\begin{array}{c}1 \\ 1 \\ -3\end{array}\right)$
Only 2-dimensions of eigenvectors!
Proof of 3rd Corollary
$T \in \mathcal{L}(V), S$ invertible
STS ${ }^{-1}$ is similar to T
$P_{S T S^{-1}}(x)=\operatorname{det}\left(x I-S T S^{-1}\right)=\operatorname{det}\left(S\left(x I S^{-1} S-T\right) S^{-1}\right)=\operatorname{det}(x I-T)=P_{T}(x)$
Proof of Proposition
My Proofs
$1 \Rightarrow 2$
Suppose $v_{i} \neq 0 \in V_{i}$ and
$\rangle_{i}^{k} a_{i} v_{i}=0$ for some $a_{i} \in \mathbb{F}$ not all 0
$i=0$
Then, for $a_{i} \neq 0$
$a_{i} v_{i}=-\sum_{j \neq i} a_{j} v_{j}$
$a_{i} v_{i} \in V_{i}$ and $-\sum_{j \neq 1} a_{j} v_{j} \in \sum_{j \neq i} V_{j}$ but
$V_{i} \cap \sum_{j \neq 1} V_{j}=\{0\}$,
a contradiction since $a_{i} \neq 0$ and $v_{i} \neq 0$.
$2 \Rightarrow 3$
$\sum_{i=1}^{k} w_{i}=0 \Rightarrow w_{i}$
w_{i} are linearly dependent, but by $2 w_{i} \neq 0 \Rightarrow w_{i}$ are linearly independent, so $w_{i}=0 \forall i$
$3 \Rightarrow 4$
By definition of vector sums, for any $v \in V$ there exists at least one set of $v_{i} \in V_{i}$ such that $v=\Sigma_{i} v_{i}$
Now suppose there exists $w_{i} \in V_{i}$, such that
$\left.v=\rangle_{i}, v_{i}=\right\rangle_{i}, w_{i}$
$\Rightarrow 0=>v_{i}-w_{i}$
But $v_{i}-w_{i} \in V_{i}$ therefore by $3, v_{i}-w_{i}=0 \Rightarrow v_{i}=w_{i} \forall 1 \leq i \leq k$
$4 \Rightarrow 1$
Already have
$V=\rangle_{i=1}^{k} V_{i}$
Suppose for some $1 \leq j \leq k, \exists e \neq 0$ s.t.
$\left.e \in V_{j} \cap\right\rangle_{i \neq j} V_{i}$, Select $w_{i} \in V_{i}$ s.t. $\left.e=\right\rangle_{i \neq j} w_{i}$
Let $w_{j}=e \in V_{j}$
Then
$e=w_{j}+\sum_{i \neq j} 0=0+\sum_{i \neq j} w_{i}$,
This is not unique, a contradiction, so
$\left.V_{j} \cap\right\rangle_{i \neq j} V_{i}=\{0\}$
since 0 is certainly in both V_{j} and $\Sigma_{i \neq j} V_{i}$
QED
His Proof
$3 \Rightarrow 1$
If $\left.v \in V_{i} \cap(\rangle_{j \neq 1}, V_{j}\right)$
$v=v_{i} \in V$
$=\sum_{j \neq i} v_{j} \quad v_{j} \in V_{j}$
$\therefore-v_{i}+\sum_{j \neq i} v_{j}=0$
By $3, v_{i}=0=v_{j}$,
$\therefore v_{i} \cap \sum_{j=i} V_{j}=\{0\}$

Proof of Corollary
Suppose
$\left.\left.\left.0=\rangle_{i, j}, a_{i j} v_{i j}=\right\rangle_{i},(\rangle_{i}, a_{i j} v_{i j}\right)=\right\rangle_{i}, v_{i}$ where $v_{i} \in V_{i}$
by $3, v_{i}=01 \leq i \leq k$
$\left\{v_{i j}\right\}$ is a basis for v_{i}, so all $a_{i j}=0$
$\left\{v_{i j}\right\}_{i=1, j=1}$ is lin indep.
Clearly v_{i} spans V
\therefore basis

Diagonalization

September-16-11
9:29 AM

Proposition

Let $T \in \mathcal{L}(v)$
$\sigma(T)=\left\{\lambda_{1}, \ldots, \lambda_{k}\right\}$
$W_{i}=\operatorname{ker}\left(T-\lambda_{i} I\right)$
$W=\sum_{i=1}^{k} W_{i} \subseteq V$
Then $W=W_{1} \dot{+} W_{2} \dot{+} \cdots \dot{+} W_{k}$

Diagonalizable

A linear transformation $T \in \mathcal{L}(V)$ is
diagonalizable if it has a basis $\beta=\left\{v_{1}, \ldots, v_{n}\right\}$ so that
$[T]_{\beta}=\left|\begin{array}{ccccc}c_{i} & 0 & 0 & \ldots & 0 \\ 0 & c_{2} & 0 & \ldots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \ldots & c_{n}\end{array}\right|$
is diagonal.
Note
$T v_{i}=c_{i} v_{i}$
So v_{i} is an eigenvector
T is diagonalizable $\Leftrightarrow V$ has a basis containing eigenvectors of T
$\sigma(T)=\left\{c_{1}, \ldots, c_{n}\right\}=\left\{\lambda_{1}, \ldots \lambda_{k}\right\}$
$\left\{c_{1}, \ldots, c_{n}\right\}$-might have repetitions
$\lambda \in \mathbb{F}, \operatorname{ker}(T-\lambda I)=\operatorname{span}\left\{v_{i}: c_{i}=\lambda\right\}$
$p \in \mathbb{F}|x|$ polynomial
$p(T)=\left|\begin{array}{ccccc}p\left(c_{i}\right) & 0 & 0 & \ldots & 0 \\ 0 & p\left(c_{2}\right) & 0 & \ldots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \ldots & p\left(c_{n}\right)\end{array}\right|$
Nullity
$\operatorname{nul}(T)=\operatorname{dim} \operatorname{ker} T$

Theorem

$T \in \mathcal{L}(V), \sigma(T)=\left\{\lambda_{1}, \ldots, \lambda_{k}\right\}$
TFAE

1. T is diagonalizable
2. $\sum_{i=1}^{k} \operatorname{nul}\left(T-\lambda_{i} I\right)=n=\operatorname{dim} V$
3. $p_{T}(x)=\left.\right|_{i=1} ^{k}\left(x-\lambda_{i}\right)^{d_{i}}$
where $d_{i}=\operatorname{nul}\left(T-\lambda_{i} I\right)$

Corollary

If T has n distinct eigenvalues, then T is diagonalizable.

Proof of Proposition

Suffices to show that if $w_{i} \in W_{i} 1 \leq i \leq k$ and $\sum_{i=1}^{k} w_{i}=0$ then $w_{i}=0$ for $1 \leq i \leq k$ (By Proposition in previous lecture)

If $w \in W_{i}$ then $\left(T-\lambda_{i} I\right) w=0$ and
$T w=\lambda_{i} w, \quad T^{2} w=\lambda_{i}^{2} w, \quad \ldots$
Therefore for any polynomial $p(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{p} x^{p}$
$p(T)=a_{o} I+a_{1} T+a_{2} T^{2}+\cdots+a_{p} T^{p}$
$p(T) w=\sum_{j=0}^{p} a_{j} T^{j} w=\left(\sum_{j=0}^{p} a_{j} \lambda_{i}^{j}\right) w=p\left(\lambda_{i}\right) w$
Fix i and show $w_{i}=0$:
Let $p(x)=\left.\right|_{j \neq i}\left(x-\lambda_{j}\right)$
Let $x=\sum_{j=1}^{k} w_{j}=0$
$0=p(T) x=p(T)\left(\sum_{j=1}^{k} w_{j}\right)=\sum_{j=1}^{k} p\left(\lambda_{j}\right) w_{j}=\left(\left|{ }_{j \neq i}\right|\left(\lambda_{i}-\lambda_{j}\right)\right) w_{i}$
$\left.\right|_{j=i} \mid\left(\lambda_{i}-\lambda_{j}\right) \neq 0$, so $w_{i}=0$
$\therefore w_{i}=0 \forall i \Rightarrow$ Sum is direct
Example
$T=\left|\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2\end{array}\right| \in \mathcal{L}\left(\mathbb{C}^{2}\right)$
$p(x)=\mathbb{C}|x|$
$p(T)=\left\lvert\, \begin{array}{cccc}p(0) & 0 & 0 & 0 \\ 0 & p(0) & 0 & 0 \\ 0 & 0 & p(1) & 0 \\ 0 & 0 & 0 & p(2)\end{array}\right.$
Let $A(T)=\operatorname{span}\left\{I, T, T^{2}, T^{3}, \ldots\right\} \subseteq \mathcal{L}(V)$
$A(T)=\left|\begin{array}{llll}a & 0 & 0 & 0 \\ 0 & a & 0 & 0 \\ 0 & 0 & b & 0 \\ 0 & 0 & 0 & c\end{array}\right|, a, b, c \in \mathbb{C}$
Because given $\mathrm{a}, \mathrm{b}, \mathrm{c} \exists p$ (of degree 2) s.t. $p(0)=a, p(1)=b, p(2)=c$
$A(T)$ is isomorphic to $C(\{0,1,2\})$, the algebra of functions in $\{0,1,2\}$

Question

Which $T \in \mathbb{L}(V)$ are diagonalizable?

Example
$T=\left|\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right|, p_{T}(x)=x^{2}+1$
No eigenvalues in \mathbb{R} so it is not diagonalizable if $V=\mathbb{R}^{2}$ but $m V=\mathbb{C}^{2}, \sigma(T)=\{i,-i\}$
$\therefore \exists v_{1}, v_{2} T v_{1}=i v_{1}, T v_{2}=-i v_{2}$
$\therefore\left\{v_{1}, v_{2}\right\}$ is a basis $[T]_{\beta}=\left|\begin{array}{cc}i & 0 \\ 0 & -i\end{array}\right|$
Example
$T=\left|\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right|$
$P_{T}(x)=\operatorname{det}(x I-T)=\left|\begin{array}{cc}x & -1 \\ 0 & x\end{array}\right|=x^{2}$
$\sigma(T)=\{0\}$
$\operatorname{ker}(T)=\mathbb{C}\binom{1}{0}$
Need two linearly independent eigenvectors to diagonalize T - NOT POSSIBLE.
Proof
T has basis $\beta=\left\{v_{1}, \ldots, v_{n}\right\}$
$|T|_{\beta}=\left|\begin{array}{ccccc}c_{i} & 0 & 0 & \ldots & 0 \\ 0 & c_{2} & 0 & \ldots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \ldots & c_{n}\end{array}\right|$
$1 \Rightarrow 2$
$\operatorname{ker}\left(\mathrm{T}-\lambda_{i} \mathrm{I}\right)=\operatorname{span}\left\{v_{j}: c_{j}=\lambda_{i}\right\}$
$\operatorname{nul}\left(T-\lambda_{i} I\right)=\left|\left\{j: c_{j}=\lambda_{i}\right\}\right|$
So $\sum_{i=1}^{k} \operatorname{nul}\left(T-\lambda_{i} I\right)=|\{j: 1 \leq j \leq n\}|=n$
$2 \Rightarrow 1$
Let $W_{i}=\operatorname{ker}\left(T-\lambda_{i} I\right)$
$\sum_{i=1}^{k} W_{i}=W_{i} \dot{+} \cdots+W_{k}$
$\operatorname{dim}\left(\sum_{i=1}^{k} W_{i}\right)=\sum_{i=1}^{k} \operatorname{dim} W_{i}=\sum_{i=1}^{k} n u l\left(T-\lambda_{i} I\right)=n$, by (2)
$\therefore \sum w_{i}=V$

Take a basis for each W_{i}

- they are eigenvectors for the eigenvalues λ_{i}
- put them together, get a basis for V consisting of eigenvectors \Rightarrow diagonalizable
$1 \Rightarrow 3$
$T=\left|\begin{array}{ccccc}c_{1} & 0 & 0 & \ldots & 0 \\ 0 & c_{2} & 0 & \ldots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \ldots & c_{n}\end{array}\right|$
$\operatorname{nul}\left(T-\lambda_{i}\right)=\left|\left\{j: c_{j}=\lambda_{i}\right\}\right|$
$\left.p_{T}(x)=\operatorname{det}(x I-T)=\left|\begin{array}{ccccc}x-c_{i} & 0 & 0 & \ldots & 0 \\ 0 & x-c_{2} & 0 & \ldots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \ldots & x-c_{n}\end{array}\right|=\left.\right|_{i=1} ^{k} \right\rvert\,\left(x-\lambda_{i}\right)^{d_{i}}$
where $d_{i}=\left|\left\{j: c_{j}=\lambda_{i}\right\}\right|=\operatorname{nul}\left(T-\lambda_{i} I\right)$
$3 \Rightarrow 2$
$\sum_{i=1}^{k} \operatorname{nul}\left(T-\lambda_{i} I\right)=\sum_{i=1}^{k} d_{i}=\operatorname{deg}\left(p_{T}\right)=\mathrm{n}$

Proof of Corollary

$\operatorname{nul}\left(T-\lambda_{i} I\right)=1$ for $1 \leq i \leq n$ so by $2, \mathrm{~T}$ is diagonalizable.

Linear Recursion

September-19-11
10:09 AM

Computational Device

Suppose you are given T as in example * and you need to compute T^{n}
If D is the diagonal matrix of T
$T=Q D Q^{-1}$
$T^{n}=\left(Q D Q^{-1}\right)^{n}=Q D Q^{-1} Q D Q^{-1} \ldots Q D Q^{-1}$
$=Q D^{n} Q^{-1}$

Linear Recursion

In general, if we have $x_{0}, x_{1}, \ldots, x_{n}$ given,

$$
x_{k+1}=a_{0} x_{k}+a_{1} x_{k-1}+\cdots+a_{n} x_{k-n}
$$

linear recursion
$\left(\begin{array}{c}x_{k+1} \\ x_{k} \\ x_{k-1} \\ \vdots \\ x_{k-n}\end{array}\right)=\left(\begin{array}{ccccc}a_{0} & a_{1} & a_{2} & \ldots & a_{n} \\ 1 & 0 & 0 & \ldots & 0 \\ 0 & 1 & 0 & \ldots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & \ldots & 1 & 0\end{array}\right)\left(\begin{array}{c}x_{k} \\ x_{k-1} \\ x_{k-2} \\ \vdots \\ x_{k-n-1}\end{array}\right)$
$\left.p_{A}(x)=\operatorname{det}(x I-A)=\left\lvert\, \begin{array}{ccccc}x-a_{0} & -a_{1} & -a_{2} & \cdots & -a_{n} \\ -1 & x & 0 & \cdots & 0 \\ 0 & -1 & x & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & -1 & x\end{array}\right.\right]$
$=x^{n+1}-a_{0} x^{n}-a_{1} x^{n-1}-a_{2} x^{n-2}-\cdots-a_{n}$
Now try to diagonalize A, and get a formula for x_{n}

Example *
$T=\left|\begin{array}{cccc}-3 & 3 & -1 & -2 \\ -8 & 2 & 3 & -4 \\ -4 & 2 & 1 & -2 \\ 0 & -4 & 4 & 1\end{array}\right|$
Using Matlab got
$p_{T}(x)=(x-1)^{2} x(x+1)$
So $\sigma(T)=\{1,0,-1\}$
$\operatorname{ker}(T-I)=\operatorname{span}\left\{\left(\begin{array}{l}0 \\ 1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{c}1 \\ 1 \\ 1 \\ -1\end{array}\right)\right\}$
$\operatorname{ker}(\mathrm{T})=\operatorname{span}\left\{\left(\begin{array}{c}3 \\ 1 \\ 2 \\ -4\end{array}\right)\right\}$
$\operatorname{ker}(T+I)=\operatorname{span}\left\{\left(\begin{array}{c}-2 \\ 1 \\ -1 \\ 4\end{array}\right)\right\}$
Change of basis matrix:
$Q=\left|\begin{array}{cccc}0 & 1 & 3 & -2 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 2 & -1 \\ 1 & -1 & -4 & 4\end{array}\right|$
$Q^{-1} T Q=\left|\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1\end{array}\right|=D$

Example: Fibonacci Sequence
$x_{0}=0, x_{1}=1$
$x_{n}=x_{n-1}+x_{n-2}$ for $n \geq 2$
$\binom{x_{n}}{x_{n+1}}=\left(\begin{array}{cc}0 & 1 \\ 1 & 1\end{array}\right)\binom{x_{n-1}}{x_{n}}$
Let $A=\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right)$
$\binom{x_{n}}{x_{n+1}}=A^{n}\binom{0}{1}$
$p_{A}(x)=\operatorname{det}\left(\begin{array}{cc}x & -1 \\ -1 & x-1\end{array}\right)=x(x-1)-1=x^{2}-x-1$
$\tau=\frac{1 \pm \sqrt{1+4}}{2}$
$\tau=\frac{1+\sqrt{5}}{2}, \frac{1-\sqrt{5}}{2}=-\frac{1}{\tau}$
$\sigma(A)=\left\{\frac{1+\sqrt{5}}{2}, \frac{1-\sqrt{5}}{2}\right\}=\left\{\tau,-\frac{1}{\tau}\right\}$
$A-\tau I=\left(\begin{array}{cc}-\tau & 1 \\ 1 & 1-\tau\end{array}\right)\binom{1}{\tau}=\binom{0}{1+\tau-\tau^{2}}=\binom{0}{0}$
$\operatorname{ker}(A-\tau I)=\mathbb{C}\binom{1}{\tau}$
$A+\frac{1}{\tau} I=\left(\begin{array}{cc}\frac{1}{\tau} & 1 \\ 1 & 1+\frac{1}{\tau}\end{array}\right)\binom{\tau}{-1}=\binom{0}{\tau-1-\frac{1}{\tau}}=\binom{0}{\frac{\tau^{2}-\tau-1}{\tau}}=\binom{0}{0}$
$\operatorname{ker}\left(A+\frac{1}{\tau} I\right)=\mathbb{C}\binom{\tau}{-1}$
$\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)$
$Q=\left(\begin{array}{cc}1 & \tau \\ \tau & -1\end{array}\right)$
$Q^{-1}=\frac{1}{-1-\tau^{2}}\left(\begin{array}{cc}-1 & -\tau \\ -\tau & 1\end{array}\right)=\frac{1}{1+\tau^{2}}\left(\begin{array}{cc}1 & \tau \\ \tau & -1\end{array}\right)=\frac{1}{1+\tau^{2}} Q$
$Q^{-1} A Q=D=\left(\begin{array}{cc}\tau & 0 \\ 0 & -\frac{1}{\tau}\end{array}\right)$

$$
\begin{aligned}
& A^{n}=Q D^{n} Q^{-1}=\frac{1}{1+\tau^{2}}\left(\begin{array}{cc}
1 & \tau \\
\tau & -1
\end{array}\right)\left(\begin{array}{cc}
\tau^{n} & 0 \\
0 & \frac{(-1)^{n}}{\tau^{n}}
\end{array}\right)\left(\begin{array}{cc}
1 & \tau \\
\tau & -1
\end{array}\right) \\
& =\frac{1}{1+\tau^{2}}\left(\begin{array}{cc}
1 & \tau \\
\tau & -1
\end{array}\right)\left(\begin{array}{cc}
\tau^{n} & \tau^{n+1} \\
\frac{(-1)^{n}}{\tau^{n-1}} & \frac{(-1)^{n+1}}{\tau^{n}}
\end{array}\right) \\
& =\frac{1}{1+\tau^{2}}\left(\begin{array}{cc}
\tau^{n}+\frac{(-1)^{n}}{\tau^{n-2}} & \tau^{n+1}+\frac{(-1)^{n+1}}{\tau^{n-1}} \\
\tau^{n}+\frac{(-1)^{n+1}}{\tau_{n+1}} & \tau^{n+2}+\frac{(-1)^{n+2}}{\tau^{n}}
\end{array}\right) \\
& \binom{x_{n}}{x_{n+1}}=A^{n}\binom{0}{1}=\left(\begin{array}{ll}
\frac{\left(\tau^{n+1}+\frac{(-1)^{n+1}}{\tau^{n+1}}\right)}{1+\tau^{2}}
\end{array}\right) \\
& x_{n}=\left(\frac{\tau}{1+\tau^{2}}\right)\left(\tau^{n}-\left(-\frac{1}{\tau}\right)^{n}\right)^{*} \\
& \frac{\tau}{1+\tau^{2}}=\frac{1}{\sqrt{5}} \\
& x_{n}=\frac{\tau^{n}-\left(-\frac{1}{\tau}\right)^{n}}{\sqrt{5}} \\
& x \geq 2, x_{n} \text { is the closest integer to } \frac{\tau^{n}}{\sqrt{5}}
\end{aligned}
$$

Triangular Forms

September-21-11
9:31 AM
Upper Triangular
A matrix T is upper triangular if
$a_{i j}=0$ if $j<i$
Say $T \in \mathcal{L}(V)$ is triangularizable if there is a basis β such that $|T|_{\beta}$ is upper triangular.

Triangular Determinant

$\operatorname{det} T=\left.\right|_{i=1} ^{n} a_{i i}$

1. $\sigma(T)=\left\{a_{11}, a_{22}, \ldots, a_{n n}\right\}$
2. $p_{T}(x)$ factors into linear terms.

Invariant Subspace

If $T \in \mathcal{L}(V)$, a subspace $W \subseteq V$ is an invariant subspace for T if $T W \subseteq W$
$W_{k}=\operatorname{span}\left\{v_{1}, v_{2}, \ldots, v_{k}\right\} 0 \leq k \leq n$

Theorem

For $T \in \mathcal{L}(V), T F A E$

1. T is triangularizable
2. $P_{T}(x)$ factors into linear terms
3. Thas a chain of invariant subspaces $\{0\}=W_{0} \subset$
$W_{1} \subset W_{2} \subset \cdots \subset W_{n}=V$
With $\operatorname{dim} W_{k}=k$ for $1 \leq k \leq n$
Corollary
If \mathbb{F} is algebraically closed (such as \mathbb{C}) then every $T \in \mathcal{L}(V)$ is triangularizable.

Determinant of Upper Triangular
$\left|\begin{array}{ll}a & b \\ 0 & d\end{array}\right|=a d$
For $\mathrm{n}>2$, take determinant of first column leaves $a_{11} *$ determinant of upper triangular matrix with n-1

So by induction, $\operatorname{det} T=a_{11} a_{22} \ldots a_{n n}$
Alternate Proof
$\left.\left|a_{i j}\right|=\right\rangle\left._{\sigma \in S_{n}}(-1)^{\operatorname{sign}(\sigma)}\right|_{i=1} ^{n} \mid a_{i \sigma(i)}$
If $\sigma \in S_{n}$ and for some $i, \sigma(1)=j<i$ then $a_{i \sigma(i)}=0 \Rightarrow \| I_{i=1}^{n} a_{i \sigma(i)}=0$
Only $\sigma=$ identity satisfies $\sigma(i) \geq i \forall i$ because if say $\sigma(i)=1$ for $1 \leq i<i_{0}$ but $\sigma\left(i_{o}\right)>i_{o}$ then some j has $\sigma(j)=i_{o}$, but $j>i_{0}$
$\therefore \prod a_{i \sigma(i)}=0$
$\left|a_{i j}\right|=\left|\left.\right|_{i=1} ^{n}\right| a_{i i}$
Types of Invariant Subspaces
If T is upper triangular w.r.t. $\beta=\left\{v_{1}, \ldots, v_{n}\right\}$
$T v_{1}=a_{11} v_{1}$ eigenvector
$\therefore W_{1}=\operatorname{span}\left\{v_{1}\right\}$ is invariant
$W_{0}=\{0\}$ is invariant for every T
$W_{n}=V$ is invariant for every T
$T_{v_{2}}=a_{22} v_{2}+a_{12} v_{1} \in \operatorname{span}\left\{v_{1}, v_{2}\right\}$
$T_{v_{1}}=a_{11} v_{1} \in \operatorname{span}\left\{v_{1}, v_{2}\right\}$
$\therefore W_{2}=\operatorname{span}\left\{v_{1}, v_{2}\right\}$ is invariant for T
$W_{k}=\operatorname{span}\left\{v_{1}, v_{2}, \ldots, v_{k}\right\} 0 \leq k \leq n$
$\left.\left.T v_{j}=\right\rangle_{i=1}^{n} a_{i j} v_{i}=\right\rangle_{i=1}^{j} a_{i j} v_{i} \in \operatorname{span}\left\{v_{1}, \ldots, v_{j}\right\}=W_{j} \subseteq W_{k}$ if $j \leq k$
$T_{v_{j}} \in W_{k} 1 \leq j \leq k$
$\therefore T W_{k} \subseteq W_{k}$
Suppose conversely that I have such a chain of invariant subspaces. Pick $0 \neq v_{1} \in W_{1}$ $\operatorname{dim}\left(W_{1}\right)=1$, so $W_{1}=\operatorname{span}\left\{v_{1}\right\}$
In W_{2}, pick $v_{2} \in W_{2}$ independent of v_{1} so $\left\{v_{1}, v_{2}\right\}$ is a basis for W_{2}, since $\operatorname{dim} W_{2}=2$
End up with a basis $\beta=\left\{v_{1}, \ldots, v_{n}\right\}$ such that $W_{k}=\operatorname{span}\left\{v_{1}, \ldots, v_{k}\right\} 1 \leq k \leq n$
Find $|T|_{\beta}, T v_{1} \in W_{1}$ since $\left(T W_{1} \subseteq W_{1}\right)$
$\therefore T v_{1}=a_{11} v_{1}$
$T v_{2} \in W_{2}$
$\therefore T v_{2}=a_{22} v_{2}+a_{12} v_{1}$
$T_{v_{k}} \in W_{k}$
$\left.T_{v_{k}} \in\right\rangle_{i=1}^{k} a_{i k} v_{i}$
So $\left.|T|_{\beta}=\left\lvert\, \begin{array}{cccc}a_{11} & a_{12} & a_{13} & \ldots \\ 0 & a_{22} & a_{23} & \ldots \\ 0 & 0 & a_{33} & \ldots \\ \vdots & \vdots & \vdots & \ddots\end{array}\right.\right]$ is triangular
Proof
Already proved $1 \Rightarrow 2,1 \Rightarrow 3$, and $3 \Rightarrow 1$
Let's show $2 \Rightarrow 1$ by induction on n.
$n=1: T=|a|_{1 \times 1}$ is always upper triangular
$n>1$: assume theorem for $n-1$
$P_{T}(x)=\left(x-\lambda_{1}\right)\left(x-\lambda_{2}\right) \ldots\left(x-\lambda_{n}\right)$
λ_{1} is an eigenvalue of T
So we can find an eigenvector $v_{1} \neq 0$ so $T v_{1}=\lambda_{1} v_{1}$
Extend v_{1} to a basis $\beta_{1}=\left\{v_{1}, w_{2}, w_{3}, \ldots, w_{n}\right\}$
Express T in this basis.
$|T|_{\beta_{1}}=\left|\begin{array}{cccc}\lambda_{1} & b_{12} & \ldots & b_{1 n} \\ 0 & & & \\ \vdots & & T_{1} & \end{array}\right|$
$P_{T}(x)=\operatorname{det}\left(x I_{n}-T\right)=\operatorname{det}\left(\left|\begin{array}{cccc}x-\lambda_{1} & -b_{12} & \cdots & -b_{1 n} \\ 0 & x I_{n-1}-T_{1}\end{array}\right|\right)=\left(x-\lambda_{1}\right)\left|x I_{n-1}-T_{i}\right|$
$=\left(x-\lambda_{1}\right) P_{T_{1}}(x)$
$P_{T}(x)=\left(x-\lambda_{1}\right) P_{T_{1}}(x)=\left(x-\lambda_{1}\right)\left(x-\lambda_{2}\right) \ldots\left(x-\lambda_{n}\right)$
$\therefore P_{T_{1}}(x)=\left(x-\lambda_{2}\right) \ldots\left(x-\lambda_{n}\right)$
So $P_{T_{1}}(x)$ factors into linear terms. By the induction hypothesis, $W=\operatorname{span}\left\{w_{2}, \ldots, w_{n}\right\}$ has another
basis $\beta^{\prime}=\left\{v_{2}, \ldots, v_{n}\right\}$ so that $\left|T_{1}\right|_{\beta}=\left|\begin{array}{ccc}a_{22} & \ldots & a_{2 n} \\ 0 & \ldots & a_{3 n} \\ \vdots & \ddots & \vdots \\ 0 & \ldots & a_{n_{n}}\end{array}\right|$ is upper triangular.
So $\beta=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a basis for V and
$|T|_{\beta_{1}}=\left|\begin{array}{cccc}\lambda_{1} & a_{12} & \ldots & a_{1 n} \\ 0 & a_{22} & \ldots & a_{2 n} \\ \vdots & 0 & \ldots & a_{3 n} \\ 0 & 0 & \ddots & \vdots \\ 0 & 0 & a_{n_{n}}\end{array}\right|$
So $|T|_{\beta}$ is upper triangular \square

Cayley-Hamilton Theorem

September-23-11
9:56 AM

Cayley-Hamilton Theorem
$T \in \mathcal{L}(V)$, then $p_{T}(T)=0$

Computational Aside

If $T=\left|\begin{array}{ll}A & B \\ 0 & D \\ D\end{array}\right|$, block upper triangular.
$T^{2}=\left|\begin{array}{cc}A^{2} & A B+B D \\ 0 & D^{2}\end{array}\right|$
$T^{3}=\left|\begin{array}{cc}A^{3} & A^{2} B+2 A B D+B D^{2} \\ 0 & D^{3}\end{array}\right|$
$T^{k}=\left|\begin{array}{cc}A^{k} & * \\ 0 & D^{k}\end{array}\right|$
$p(x)=a_{0}+a_{1} x+\cdots+a_{d} x^{d}$
$p(T)$
$=\left|\begin{array}{cc}a_{0} I_{k} & 0 \\ 0 & a_{0} I_{n-k}\end{array}\right|+\left|\begin{array}{cc}a_{1} A & * \\ 0 * a_{1} D & \end{array}\right|+\cdots$
$+\left|\begin{array}{cc}a_{d} A^{d} & * \\ 0 & a_{d} D^{d}\end{array}\right|=\left|\begin{array}{cc}p(A) & * \\ 0 & p(D)\end{array}\right|$

Example
$T=\left|\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right|$
$p_{T}(x)=x^{2}+1$ does not factor over \mathbb{R} so it is not triangularizable over \mathbb{R}
It does factor over \mathbb{C} so it is triangularizable over \mathbb{C}
$T \sim\left|\begin{array}{cc}i & 0 \\ 0 & -i\end{array}\right|, \quad \sim$ similar
$p_{T(T)}=T^{2}+I=\left|\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right|+\left|\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right|=0$
Example
$T=\left|\begin{array}{ccc}2 & 3 & 5 \\ -1 & -3 & -4 \\ 0 & 1 & 1\end{array}\right|$
$p_{T}(x)=\left|\begin{array}{ccc}x \frac{1}{-} 2 & -3 & -5 \\ 1 & x+3 & 4 \\ 0 & -1 & x-1\end{array}\right|=(x-2)((x+3)(x-1)+4)-1((-3)(x-1)-5)=x^{3}$
x^{3} splits into linear terms so T is triangularizable
$\sigma(T)=\{0\}$ - look for kernel
$\left|\begin{array}{ccc}2 & 3 & 5 \\ -1 & -3 & -4 \\ 0 & 1 & 1\end{array}\right|=\left|\begin{array}{lll}1 & 3 & 4 \\ 0 & 1 & 1 \\ 0 & 0 & 0\end{array}\right|\left(\begin{array}{c}x \\ y \\ z\end{array}\right)$
$\operatorname{ker} T=\mathbb{R}\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right)$
Take new basis $v_{1}=\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right), v_{2}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right), v_{3}=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$
$v_{2} \mapsto\left(\begin{array}{c}3 \\ -3 \\ 1\end{array}\right)=3\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right)+(-6)\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)+4\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$
$v_{3} \mapsto\left(\begin{array}{c}5 \\ -4 \\ 1\end{array}\right)=5\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right)-9\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)+6\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$
$T_{\beta_{1}}=\left|\begin{array}{ccc}0 & 3 & 5 \\ 0 & -6 & -4 \\ 0 & 4 & 6\end{array}\right|$
$T_{1}=\left|\begin{array}{cc}-6 & -9 \\ 4 & 6\end{array}\right|, p_{T_{1}}(x)=x^{2}$
$\operatorname{ker} T_{1}=\mathbb{R}\binom{3}{-2}$
New bases
$w_{1}=v_{1}=\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right), w_{2}=\left(\begin{array}{c}0 \\ 3 \\ -2\end{array}\right), w_{3}=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$
$T w_{2}=\left|\begin{array}{ccc}2 & 3 & 5 \\ -1 & -3 & -4 \\ 0 & 1 & 1\end{array}\right|\left(\begin{array}{c}0 \\ 3 \\ -2\end{array}\right)=\left(\begin{array}{c}-1 \\ -1 \\ 1\end{array}\right)=-w_{1}$
$T w_{3}=\left(\begin{array}{c}5 \\ -4 \\ 1\end{array}\right)=5\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right)-3\left(\begin{array}{c}0 \\ 3 \\ -2\end{array}\right)+0\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$
$T_{\beta}=\left|\begin{array}{ccc}0 & -1 & 5 \\ 0 & 0 & -3 \\ 0 & 0 & 0\end{array}\right|$
$[T\rfloor_{\beta}$ is upper triangular, diagonal entries all 0 since roots of $p_{T}(x)=x^{3}$ are $0,0,0$
$\left|T^{2}\right|_{\beta}=\left|\begin{array}{lll}0 & 0 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right|$
$\left|T^{3} \mathrm{I}_{\beta}=\left|\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right|\right.$
$T^{3}=0=p_{T}(T)$

Proof of Cayley-Hamilton Theorem

First assume $p_{T}(x)$ splits into linear factors.
Apply triangular theorem, find basis to triangularize T.
So wlog, T is triangular
$p_{T}(x)=\left(x-\lambda_{1}\right)\left(x-\lambda_{2}\right) \ldots\left(x-\lambda_{n}\right)$
Proceed by induction on n.
$\mathrm{n}=1$
$T=\left\lfloor\lambda_{1}\right\rfloor, p_{T}(x)=x-\lambda_{1}, p_{T}(T)=T-\lambda_{1} I=\left\lfloor\lambda_{1}\right\rfloor-\left\lfloor\lambda_{1}\right\rfloor=0$
Assume for $k<n$
Write $T=\left|\begin{array}{cccc}\lambda_{1} & t_{12} & \ldots & t_{1 n} \\ 0 & & & \\ \vdots & & T_{1} & \end{array}\right|$
From the proof of triangularizability
$p_{T_{1}}=\left(x-\lambda_{2}\right)\left(x-\lambda_{2}\right) \ldots\left(x-\lambda_{n}\right)$
By the induction hypothesis $p_{T_{1}}\left(T_{1}\right)=0$

$$
\begin{aligned}
& p_{T}=\left(x-\lambda_{1}\right) P_{T_{1}}(x) \\
& P_{T}(T)=\left(T-\lambda_{1} I\right) P_{T_{1}}(T)=\left|\begin{array}{cc}
0 & * \\
0 & T_{1}-\lambda_{1} I
\end{array}\right| P_{T_{1}}\left(\left.\begin{array}{cc}
\lambda_{1} & * \\
0 & T_{1}
\end{array} \right\rvert\,\right)=\left|\begin{array}{ccc}
0 & 0 \\
0 & T_{1}-\lambda_{1} I
\end{array}\right| \begin{array}{cc}
p_{T_{1}}\left(\lambda_{1}\right) & * \\
0 & 0
\end{array}\left|=\left|\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right|\right. \\
& =0
\end{aligned}
$$

So by induction $p_{T}(T)=0$. For algebraically closed fields.
In general, $p_{T}(x)$ does not split on $\mathbb{F}[x]$ but there is always a bigger field $\mathbb{G} \supseteq \mathbb{F}$ so that $p_{T}(x)$ splits on $\mathbb{G}[x]$
$T=\left|t_{i j}\right|=\in M_{n}(\mathbb{F})$
Can think of T as an element of $M_{n}(\mathbb{G}) . p_{T}(x)$ splits in $\mathbb{G}[x] \therefore p_{T}(T)=0$
But the calculation of $p_{T}(T)$ happens over \mathbb{F} since all the coefficients $a_{k} \in \mathbb{F}[x]$
So $p_{T}(x)=a_{0} I+a_{1} T+\cdots+a_{n} T^{n}$, this is all in $M_{n}(\mathbb{F})$
$\therefore p_{T}(T)=0$ in $M_{n}(\mathbb{F})$

Ideals

September-26-11
9:31 AM
Look at $\mathbb{F}|x|$ - the ring of polynomials with coefficients in \mathbb{F}

Ideal
An ideal in $\mathbb{F}[x]$ is a non-empty subset $J \subseteq \mathbb{F}[x]$ which is

1) a subspace
2) if $p \in J$ and $q \in \mathbb{F}[x]$ then $p q \in J$

Principal Ideal

A principal ideal is an ideal of the form
$\left(p_{0}\right)=\left\{p_{0} q: q \in \mathbb{F}\lfloor x\rfloor\right\}$

Theorem

Every ideal in $\mathbb{F}[x]$ is principal

Lemma
$T \in \mathcal{L}(V)$
$J=\{p \in \mathbb{F}|x|: p(T)=0\}$ is a non-zero ideal in $\mathbb{F}|x|$
Corollary
$\{p: p(T)=0\}=\left(m_{T}\right)$

Minimal Polynomial

The unique monic polynomial $m_{T}(x)$ generating $\{p: p(T)=0\}$ is the minimal polynomial of T

Theorem
$T \in \mathcal{L}(V)$
Then $m_{T}(x)$ has the same roots as $p_{T}(x)$, namely $\sigma(T)$, except for multiplicity. Furthermore, it also has the same irreducible polynomial factors.

Principal Ideal

Check that (p_{0}) is an ideal

1. $p_{0}, p_{r} \in\left(p_{0}\right), \lambda \in F$ then
$p_{o} q+p_{o} r=p_{o}(q+r) \in p_{o}$
$\lambda\left(p_{0} q\right)=p_{o}(\lambda q) \in p_{o}$
$\therefore\left(p_{0}\right)$ is a vector space
2. If $p_{0} q \in\left(p_{0}\right), r \in \mathbb{F}[x]$ then $\left(p_{o} q\right) r=p_{0}(q r) \in p_{o}$

Proof
Let J be an ideal of $\mathbb{F}[x]$. If $J=\{0\}$, then $J=(0)$.
Otherwise let p_{o} be a monic polynomial in J of minimal degree.
$p_{0}=x^{d}+a_{d-1} x^{d-1}+\cdots+a_{0}$
Let q be any non-zero element of J . Use the division algorithm to divide p_{0} into q . $q=p_{o} q_{1}+r, \operatorname{deg}(r)<\operatorname{deg}\left(p_{0}\right)$, but p_{0} was the element of smallest degree.
\therefore by minimality, $r=0$, so $q=p_{0} q$.
$\therefore J=\left(p_{0}\right)$
*monic generator is unique

Proof of Lemma

$p_{T} \in J$, so $J \neq\{0\}$ (by Cayley-Hamilton)
If $p, q \in J, \lambda \in \mathbb{F}[x]$
$(p+q)(T)=p(T)+q(T)=0$
$(\lambda p)(T)=\lambda p(T)=0$
\therefore subspace
$p \in J, q \in \mathbb{F}[x]$ then
$(p q)(T)=p(T) q(T)=0$
Example
$T=\left(\begin{array}{cccc}0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right)$
$p_{T}(x)=x^{4}, m_{T}(x)=x^{2}$
$T=\operatorname{diag}(1,1,2,2,2,3)$
$p_{T}(x)=(x-1)^{2}(x-2)^{3}(x-3)$
$m_{T}(x)=(x-1)(x-2)(x-3)$
$T=\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$
$p_{T}(x)=(x-1)^{3}$
$m_{T} \mid p_{T}$ so $m_{T}(x)=(x-1)^{d}, d \in\{1,2,3\}$
$T-I=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$
$(T-I)^{2}=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$
$(T-I)^{3}=0$
$\therefore m_{T}=p_{T}=(x-1)^{3}$

Proof of Theorem

$m_{T} \mid p_{T}$ so roots $\left(m_{T}\right) \subseteq \operatorname{roots}\left(p_{T}\right)=\sigma(T)$
If λ is an eigenvalue of $\mathrm{T} \exists v \neq 0$ eigenvector $T v=\lambda v$
$\therefore T^{k} v=\lambda^{k} v, \forall k \geq k$
$\Rightarrow p(T) v=p(\lambda) v$
So $0=m_{T}(T) v=m_{T}(\lambda) v, \therefore m_{T}(\lambda)=0$
So roots $\left(m_{T}\right) \supseteq \sigma(T)$
$\therefore \operatorname{roots}\left(m_{T}\right)=\operatorname{roots}\left(p_{T}\right)=\sigma(T)$
Remark
Over a non-algebraically closed field \mathbb{F} this proof does not show the stronger fact that the same irreducible factors will be in both p_{T} and m_{T}

Possible Problem
$T \in \mathcal{L}\left(\mathbb{R}^{4}\right)$
$p_{T}(x)=\left(x^{2}+1\right)^{2}$
$m_{T} \mid p_{T}, m_{T} \neq 1$
$\therefore m_{T}=x^{2}+1$ or $\left(x^{2}+1\right)^{2}$
If we can calculate $T \in \mathcal{L}\left(\mathbb{C}^{4}\right)$ then m_{T} can be
$x^{2}+1,\left(x^{2}+1\right)^{2},\left(x^{2}+1\right)(x-i)$ or $\left(x^{2}+1\right)(x+i)$
Calculate $m_{T}(T)$ using a real basis
Take $p(x)=\left(x^{2}+1\right)(x-i)$
$0=p(T)=\left(T^{2}+I\right)\left(T_{i I}\right)=\left(T^{2}+I\right) T-i\left(T^{2}+I\right)=0+i 0$
$T^{2}+I=0$

Better Proof of Theorem

The minimal polynomial $m_{T}(x)$ of $T \in \mathcal{L}(V)$ has degree of d if $\left\{I, T, T^{2}, \ldots, T^{d-1}\right\}$ is linearly independent, but $\left\{I, T, T^{2}, . ., T^{d}\right\}$ is linearly dependent. $m_{T}(x)$ is given the unique way to express T^{d} as $\Sigma_{i=0}^{d-1} a_{i} T^{i}$

$$
T^{d}=>a_{i} T_{i}
$$

$$
T^{d+k}=\sum_{i}^{i=0} a_{i} T^{i+k}=\sum^{d-1} b_{i} T_{i}
$$

$$
\begin{gathered}
i=0 \\
\therefore A(T) \stackrel{i=0}{=} \\
\operatorname{span}\left\{I, T, T^{2}, \ldots,\right\}=\operatorname{span}\left\{I, T, T^{2}, \ldots, T^{d-1}\right\}
\end{gathered}
$$

$$
\therefore d=\operatorname{dim}(A)
$$

This unique way to express m_{T} does not depend on a larger field. $\therefore m_{T}(x)$ is unchanged if we enlarge the base field so that $p_{T}(x)$ splits.

Diag. \& Nilpotent

September-28-11
9:45 AM

Theorem

$T \in \mathcal{L}(V)$ and $p_{T}(x)$ splits then
T is diagonalizable
\Leftrightarrow
$m_{T}(x)$ has only simple roots.
i.e. $m_{T}(x)=\left(x-\lambda_{1}\right)\left(x-\lambda_{2}\right) \ldots\left(x-\lambda_{k}\right)$
where $\sigma(T)=\left\{\lambda_{1}, \lambda_{2}, . ., \lambda_{k}\right\}$

Lemma

$A, B \in \mathcal{L}(V)$
$\operatorname{nul}(A B) \leq \operatorname{nul}(A)+\operatorname{nul}(B)$

Nilpotent Matrices

$T \in \mathcal{L}(V)$ is nilpotent of order \mathbf{k} if $T^{k}=0$ and $T^{k-1} \neq 0$

Proof of Theorem

" \Rightarrow "
$T=\operatorname{diag}\left(c_{1}, c_{2}, \ldots, c_{n}\right)$
$\sigma(T)=\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right\}$
Rearrange bases so
$T=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{2}, \ldots, \lambda_{k}, \ldots, \lambda_{k}\right)$
$m_{T}(x)$ has $\lambda_{1}, . ., \lambda_{k}$ as roots
$\left(T-\lambda_{1} I\right)\left(T-\lambda_{2} I\right) \ldots\left(T-\lambda_{k} I\right)$
$\operatorname{diag}\left(0, \ldots, 0, \lambda_{2}, . ., \lambda_{2}, \ldots, \lambda_{k}, . ., \lambda_{k}\right) *$
$\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{1}, 0, . ., 0, \ldots, \lambda_{k}, . ., \lambda_{k}\right) *$
$\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{1}, \lambda_{2}, . ., \lambda_{2}, \ldots, 0, . ., 0\right)=\operatorname{diag}(0, . ., 0)=0$
$\therefore m_{T}(x)=\left(x-\lambda_{1}\right) \ldots\left(x-\lambda_{k}\right)$
? 2nd Proof of \Rightarrow
$\operatorname{nul}\left(T-\lambda_{i}\right)=\left|\left\{c_{j}: c_{j}=\lambda_{i}\right\}\right|$
$\sum_{i=1}^{k} \operatorname{nul}\left(T-\lambda_{i} I\right)=\sum_{i=1}^{k}\left|\left\{c_{j}: c_{j}=\lambda_{i}\right\}\right|=\left|\left\{c_{j}\right\}\right|=n$
$\left.\operatorname{ker}\right|_{i=1} ^{k} \mid\left(T-\lambda_{i} I\right) \supseteq \sum^{\prime} \operatorname{ker}\left(T-\lambda_{i} I\right)=V$
$" \Leftarrow "$

Proof of Lemma
$\operatorname{ker}(A B) \supseteq \operatorname{ker} B$
chose a basis v_{1}, \ldots, v_{b} for ker $B, b=\operatorname{nul}(B)$
Extend to a basis for $\operatorname{ker}(A B): v_{1}, \ldots, v_{b}, v_{b+1}, . ., v_{b+c}$
$\operatorname{span}\left\{v_{b+1}, \ldots, v_{b+c}\right\} \cap \operatorname{span}\left\{v_{1}, \ldots, v_{b}\right\}=\{0\}$
So $B \mid \operatorname{span}\left\{v_{b+1}, \ldots, v_{b+c}\right\}$ is injective (1-1)
B maps $\operatorname{sp}\left\{v_{b+1}, \ldots, v_{b+c}\right\}$ into $\operatorname{ker} A$
\therefore nul $A=\operatorname{dim} \operatorname{ker} A \geq \operatorname{dim} \operatorname{span}\left\{v_{b+1}, \ldots, v_{b+c}\right\}$
$n u l A B=b+c=\operatorname{nul}(B)+c \leq \operatorname{nul}(B)+\operatorname{nul}(A)$

Back to Theorem

By hypothesis
$0=m_{T}(T)=\left(T-\lambda_{1}\right)\left(T-\lambda_{2} I\right) . .\left(T-\lambda_{k} I\right)$
$n=\operatorname{nul}\left(m_{T}(T)\right) \leq \sum_{i=1}^{k} \operatorname{nul}\left(T-\lambda_{i} I\right)$
but know that $\sum_{i=1}^{k} \operatorname{ker}\left(T-\lambda_{i} I\right)$ is a direct sum , so
$\left.\sum_{i=1}^{k} \operatorname{nul}\left(T-\lambda_{i} I\right)=\operatorname{dim}\left(\sum^{\prime} \operatorname{ker}\left(T-\lambda_{i} I\right)\right)\right) \leq n$

Example of Nilpotent

$T=\left|\begin{array}{cc}1 & 1 \\ -1 & -1\end{array}\right|, T^{2}=\left|\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right|$
$\{0\} \subset \operatorname{ker} T \subset \operatorname{ker} T^{2}=R^{2}$
ker $T=\mathbb{R}\binom{1}{-1}$
Chose a new basis
$v_{1}=\binom{1}{-1}, v_{2}=\binom{0}{1}$
$T v_{1}=0, T v_{2}=\binom{1}{-1}=v_{1}$
$\beta=\left\{v_{1}, v_{2}\right\}$
$\lfloor T\rfloor_{\beta}=\left\lfloor\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$
Example
$T=\left|\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right|$

$$
\begin{aligned}
& T^{2}=\left|\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right| \\
& T^{3}=0 \\
& T^{d}=0 \Rightarrow T^{n}=0, p_{T}(x)=x^{n} \\
& \{0\} \subset \operatorname{ker} T \subset \operatorname{ker} T \subset \operatorname{ker} T^{2}=\mathbb{R}^{3} \\
& \operatorname{ker} T=\mathbb{R}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \\
& \operatorname{ker} T^{2}=\operatorname{span}\left\{\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)\right\} \\
& \lfloor T\rfloor_{\beta}=\left|\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right|
\end{aligned}
$$

Jordan Nilpotent

September-30-11
9:41 AM

Jordan Nilpotent

The Jordan nilpotent of order k is
$J_{k}=\left|\begin{array}{llll}0 & 1 & 0 & 0 \\ & 0 & 1 & 0 \\ & & 0 & 1\end{array}\right|_{k \times k}$
$i . e$. There is a basis $e_{1}, e_{2}, \ldots, e_{k}$ and
$J_{k} e_{l}=e_{i-1} 2 \leq i \leq k$
$J_{k} e_{1}=0$
We can get a lot of nilpotent matrices by taking direct sums of Jordan nilpotents (Canonical form) :
$n_{1} \leq n_{2} \leq \cdots \leq n_{k}$
$J_{n_{1}} \oplus J_{n_{2}} \oplus \cdots \oplus J_{n_{k}}$

Complement

If subspace $W_{1} \subseteq V$ then a complement of W_{1} in
V is a subspace $W_{2} \subseteq V$ s.t. $W_{1} \cap W_{2}=\{0\}$ and
$W_{1}+W_{2}=V$.
i.e. $V=W_{1}+W_{2}$

Extension
Suppose $W_{1}, W_{2} \subseteq Y \subseteq V$
$W_{1} \cap W_{2}=\{0\}$ but $W_{1}+W_{2} \subset Y$
Can find $W_{3} \supset W_{2}$ s.t. $Y=W_{1}+W_{3}$
Note: Nimpotence
If T is nimpotent of order k , then $m_{T}(x)=x^{k}$ and $p_{T}(x)=x^{n}, n=\operatorname{dim} V$

Theorem
$T \in \mathcal{L}(V)$ is nilpotent \Leftrightarrow there is a basis in which T is strictly block upper triangular

Better Example
$A=\begin{array}{cccc}13 & -2 & -5 & 4 \\ 6 & -8 & -4 & 1 \\ 5 & -3 & -7 & -1 \\ 1 & -5 & 3 & 2 \\ A^{3} & =0\end{array}$
$\operatorname{ker} A=s p\left\{\left|\begin{array}{l}2 \\ 1 \\ 1 \\ 0\end{array}\right|,\left|\begin{array}{l}1 \\ 1 \\ 0 \\ 2\end{array}\right|\right\}$
$\operatorname{ker} A^{2}=\operatorname{sp}\left\{\left|\begin{array}{l}2 \\ 1 \\ 1 \\ 0\end{array}\right|,\left|\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right|,\left|\begin{array}{c}2 \\ 0 \\ 0 \\ -1\end{array}\right|\right\}$
$\operatorname{ker} A^{3}=R^{4}=\operatorname{sp}\left\{\left|\begin{array}{l}2 \\ 1 \\ 1 \\ 0\end{array}\right|,\left|\begin{array}{c}1 \\ 1 \\ 0 \\ 2\end{array}\right|,\left|\begin{array}{c}2 \\ 0 \\ 0 \\ -1\end{array}\right|,\left|\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right|\right\}$
Let $v_{4}=\left|\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right|$
Let $v_{3}=A v_{4}=\left|\begin{array}{c}4 \\ 1 \\ -1 \\ 2\end{array}\right| \in \operatorname{ker} A^{2}, v_{3} \notin \operatorname{ker} A$
Let $v_{2}=A v_{3}=\left|\begin{array}{c}44 \\ 22 \\ 22 \\ 0\end{array}\right| \in \operatorname{ker} A$
Find a vector v_{1} s.t. $\operatorname{ker} A=\operatorname{sp}\left\{v_{1}, v_{2}\right\}, v_{1}=\left|\begin{array}{l}1 \\ 1 \\ 0\end{array}\right|$
$|A|_{\beta}=\left|\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right|=|0| \oplus\left|\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right|=J_{1} \oplus J_{3}$

Complement Example

Suppose $V=\mathbb{R}^{3}$
$W_{1}=\operatorname{span}\left\{e_{1}=\left|\begin{array}{l}1 \\ 0 \\ 0\end{array}\right|, e_{2}=\left|\begin{array}{l}0 \\ 1 \\ 0\end{array}\right|\right\}$
then $W_{2}=s p\left\{\left|\begin{array}{l}0 \\ 0 \\ 1\end{array}\right|\right\}$ is a complement but $W_{2}^{\prime}=s p\left\{\left|\begin{array}{l}1 \\ 2 \\ 3\end{array}\right|\right\}$ is also a complement
In general $W_{2}^{\prime \prime}=\operatorname{span}\left\{\left|\begin{array}{c}* \\ * \\ 1\end{array}\right|\right\}$
Find a Complement
To find a complement, choose a basis for W_{1}, say $\left\{v_{1}, \ldots, v_{k}\right\}$ extend to a basis of V $\left\{v, \ldots, v_{k}, v_{k+1}, \ldots, v_{n}\right\}$ let $W_{2}=\operatorname{span}\left\{v_{k+1}, \ldots, v_{n}\right\}$
Then W_{2} is a complement of W_{1}

Proof of Extension

Same proof:
Chose basis for W_{1}, W_{2} combine and extend to basis for Y. Remove W_{1} basis and have remainder is span of W_{3}

Proof of Nimpotence note
T^{k} and $T^{k-1} \neq 0$
$q(x)=x^{k}$
$\Rightarrow q(T)=0 \therefore q \in J=\{p(x): p(T)=0\}=\left(m_{T}\right)=\left\{m_{T}(x) r(x)\right\}$
So $m_{T} \mid x^{k} \therefore m_{T}(x)=x^{d}$ for some $d \leq k$
But $T^{k-1} \neq 0$ so $d \geq k \therefore m_{T}(x)=x^{k}$
$p_{T}(x)$ has the same roots $\therefore 0$ is the only root of p_{T}
$\operatorname{deq}\left(p_{T}\right)=n \therefore p_{T}(x)=x^{n}$
Proof of Theorem
\Rightarrow
Look at
$V_{0}=\{0\}, V_{1}=\operatorname{ker} T, \ldots, V_{i}=\operatorname{ker} T^{i}, \ldots, V_{k}=\operatorname{ker} T^{k}=V$
$\{0\}=V_{0} \subset V_{1} \subset \cdots \subset V_{k}=V$
If I choose a basis $v_{1}, \ldots, v_{n_{1}}$ for V_{1} and extend to basis $v_{1}, \ldots, v_{n_{1}}, v_{n_{1}+1}, \ldots, v_{n_{2}}$
And so on to $v_{1}, \ldots, v_{n_{1}}, v_{n_{1}+1}, \ldots, v_{n_{2}}, \ldots, v_{\left(n_{k-1}+1\right)}, \ldots, v_{n_{k}}$
T is block upper triangular with diagonal blocks $=0$.
\Leftarrow Strictly block upper triangular
Conversely, if $|T|_{\beta}$ is strictly block upper triangular then T is nilpotent

```
Suppose \(T=J_{n_{1}} \oplus J_{n_{2}} \oplus \cdots \oplus J_{n_{k}}\)
\(n_{1} \leq n_{2} \leq \ldots \leq n_{k}\)
\(\operatorname{ker} J_{n}=\mathbb{F} e_{1}\)
\(\operatorname{ker} J_{n}^{2}=s p\left\{e_{1}, e_{2}\right\}\)
\(\operatorname{ker} J_{n}^{i}=s p\left\{e_{1}, \ldots, e_{i}\right\}\)
\(\operatorname{nul}\left(U_{n}^{i}\right)=\left\{\begin{array}{l}i \text { if } i \leq n \\ n \text { if } i>n\end{array}\right.\)
\(\operatorname{nul}\left(J_{n_{1}} \oplus \cdots \oplus J_{n_{k}}\right)=k\)
\(\operatorname{nul}\left(J_{n_{1}} \oplus \cdots \oplus J_{n_{k}}\right)^{2}\)
Example
\(T=J_{1} \oplus J_{1} \oplus J_{2} \oplus J_{5} \oplus J_{7}\)
\(\operatorname{nul}(T)=5, \operatorname{nul}\left(T^{2}\right)=8, \operatorname{nul}\left(T^{3}\right)=10, \operatorname{nul}\left(T^{4}\right)=12, \operatorname{nul}\left(T^{5}\right)=14, \operatorname{nul}\left(T^{6}\right)=15, \operatorname{nul}\left(T^{7}\right)=16\)
\(=\operatorname{dim} V\)
\(\operatorname{nul}\left(T^{i}\right)-\operatorname{nul}\left(T^{i-1}\right)=\left|\left\{n_{j}: n_{j} \geq i\right\}\right|=\left|\left\{n_{j}: n_{j}=i\right\}\right|+\left|\left\{n_{j}: n_{j}>i\right\}\right|\)
\(=\left|\left\{n_{j}: n_{j}=i\right\}\right|+\left|\left\{n_{j}: n_{j} \geq i+1\right\}\right|=\left|\left\{n_{j}: n_{j}=i\right\}\right|+\operatorname{nul}\left(T^{i+1}\right)-\operatorname{nul}\left(T^{i}\right)\)
\(\therefore\left|\left\{n_{j}: n_{j}=i\right\}\right|=2 \operatorname{nul}\left(T^{i}\right)-\operatorname{nul}\left(T^{i+1}\right)-\operatorname{nul}\left(T^{i-1}\right)\)
```


Nilpotent Jordan Canonical Form

October-03-11

9:37 AM

Theorem

$T \in \mathcal{L}(V)$ nilpotent of order k , then T is similar to a direct sum of Jordan nilpotents.
$T \sim J_{n_{1}} \oplus J_{n_{2}} \oplus \cdots \oplus J_{n_{s}}$
$k=n_{1} \geq n_{2} \geq \cdots \geq n_{s}$
Moreover,
$\left|\left\{n_{i}=j\right\}\right|=2 \operatorname{nul}\left(T^{j}\right)-\operatorname{nul}\left(T^{j+1}\right)-\operatorname{nul}\left(T^{j-1}\right)$

Proof of Theorem

(taken from Herstein, Intro to Alg)
Induction on $n=\operatorname{dim} V$
$n=1: T=|0|=J_{1}$
Now assume it holds for $\operatorname{dim} V<n$
$T^{k}=0 \neq T^{k-1}$
$\exists u_{1} \in V$ s.t. $T^{k-1} u_{1} \neq 0$
Claim
$\left\{u_{1}, T u_{1}, T^{2} u_{1}, \ldots, T^{k-1} u_{1}\right\}$ is linearly independent.
If $0=\sum_{i=0}^{k-1} a_{i} T^{i} u_{1}, \quad a_{i}$ not all zero, then $\exists i_{0}$ s.t. $a_{i}=0 \forall i<i_{0}, a_{i_{0}} \neq 0$
$0=T^{k-i_{0}-1}\left(\sum_{i=0}^{\infty} a_{i} T^{i} u_{1}\right)=a_{i_{0}} T^{k-1} u_{1}+a_{i_{0}+1} T^{k} u_{1} \ldots=a_{i_{o}} T^{k-1} u_{1}$
$T^{k-1} u_{1} \neq 0 \Rightarrow a_{i_{0}}=0$
\therefore linearly independent
Let $U=s p\left\{u_{1}, T u_{1}, \ldots, T^{k-1} u_{1}\right)$
$\operatorname{dim} U=k, T U \subseteq U$
$A=\left.T\right|_{U}$
$A\left\{\begin{array}{c}\left(T^{i} u_{1}\right)=T^{i+1} u_{1} 0 \leq i<k-1 \\ \left(T^{k-1} u_{1}\right)=0\end{array}\right.$
$\therefore A \sim J_{k}$
Need to find subspace W s.t.

1) $U \cap W=\{0\}$
2) $U+W=V$
3) $T W \subseteq W$
$\Rightarrow V=U+W$
$\left.\left.\Rightarrow T \sim T\right|_{U} \oplus T\right|_{W}$
$0=T^{k}=\left(\left.T\right|_{U}\right)^{k} \oplus\left(\left.T\right|_{W}\right)^{k}$
$B=\left(\left.T\right|_{W}\right)$ is nilpotent of order $\leq k$
By induction, $B \sim J_{n_{2}} \oplus J_{n_{3}} \oplus \cdots \oplus J_{n_{s}}$
$\therefore T \sim J_{k} \oplus J_{n_{2}} \oplus \cdots \oplus J_{n_{s}}$
Take a maximal subspace W satisfying
4) $U \cap W=\{0\}$
5) $T W \subseteq W$

So $U+W$ is direct
Claim: If $T v \in U+W$, so $T v=u+w u \in U, w \in W$ then $u=\sum_{i=1}^{k-1} a_{i} T^{i} u_{1}$
Let $u=\sum_{i=0}^{k-1} a_{i} T^{i} u_{1}$
$T v=u+\begin{gathered}i=0 \\ w\end{gathered}$
$\therefore 0=T^{k-1}(T v)=T^{k-1} u+T^{(k-1)} w$
$\in U \quad \in W$ because $T U \subseteq U, T W \subseteq W$
$U \cap W=\{0\} \therefore T^{k-1} u=0, T^{k-1} w=0$
$0=T^{k-1} a_{0} u_{1} \Rightarrow a_{o}=0$
Claim $U+W=V$
Suppose otherwise. Pick $v \notin U+W$
Look at $v \notin U+W, T v, T^{2} v, \ldots, T^{k-1} v, T^{k} v=0 \in U+W$
$\therefore \exists v_{1}=T^{i} v \notin U+W$, but $T v_{1} \in U+W$
$T v_{1}=u_{2}+w_{2}, u_{2} \in U, w_{2} \in W$
$u_{2}=\sum_{i=1}^{k-1} a_{i} T^{i} u_{1}=T\left(\sum_{i=0}^{k-2} a_{i+1} T^{i} u_{1}\right)=T u_{3}$
Let $v_{2}=v_{1}-u_{3} \notin U+W$
$T v_{2}=T v_{1}-T u_{3}=\left(u_{2}+w_{2}\right)-u_{2}=w_{2} \in W$
Let $W^{\prime}=\operatorname{span}\left\{W, v_{2}\right\} \supset W$
$T W^{\prime}=\operatorname{span}\left\{T W, T v_{2}\right\} \subseteq W \subseteq W^{\prime}$
$W^{\prime} \cap U=\{0\}$
(otherwise $\alpha v_{2}+w \in W=u \in U \Rightarrow \alpha=u-w \in U+W \Rightarrow \alpha=0 \Rightarrow W=0, U=0$
So W is not maximal w.r.t 1), 3) a contradiction. So $U+W=V \therefore V=U+W$
This completes the proof.
2nd Proof
More constructive
Let $N_{i}=\operatorname{ker} T^{i} 0 \leq i \leq k$
$\{0\}=N_{0} \subset N_{1} \subset N_{2} \subset \cdots \subset N_{k}=V$
Choose a complement W_{k} to $N_{k-1}: N_{k-1} \dot{+} W_{k}=V$
Choose a basis $w_{1}, \ldots, w_{r_{1}}$ for W_{k}
$w_{j}, T_{w_{j}}, \ldots, T^{k-1} w_{j}$ all non-zero
As first proof, they are linearly independent
$\left.T\right|_{\text {span }\left\{w_{j}, \ldots, T^{k-1} w_{j}\right\}} \sim J_{k}$
Claim
$T w_{1}, T w_{2}, \ldots, T_{w_{r}}$ are linearly independent, and $s p\left\{T w_{1}, \ldots, T_{w_{r}}\right\} \cap N_{k-2}=\{0\}$
Proof
Suppose $\sum_{i}^{r} a_{i} T w_{i}=v \in N_{k-2}$
$\therefore T^{k-2} \sum_{i=1}^{r} a_{i} T w_{i}=T^{k-2} v=0=T^{k-1}\left(\sum_{i=1}^{r} a_{i} w_{i}\right)$
$\therefore \quad a_{i} w_{i} \in N_{i-1} \cap W_{k}=\{0\}$
$\left\{w_{i}\right\}$ lin. indep. $\Rightarrow a_{i}=0$
$\therefore\left\{T w_{i}\right\}$ lin. independent, $\operatorname{sp}\left\{T w_{1}, \ldots, T w_{r_{1}}\right\} \cap N_{k-2}=\{0\}$
$N_{k-2} \dot{+} \operatorname{sp}\left\{T w_{1}, \ldots, T w_{r_{1}}\right\} \subseteq N_{k-1}$
Find W_{k-1} s.t. $N_{k-2} \dot{+} \operatorname{span}\left\{T w_{1}, \ldots, T w_{r_{1}}\right\} \dot{+} W_{k-1}=N_{k-1}$
Choose a basis for $W_{k-1}\left\{w_{r_{1}+1}, \ldots, w_{r_{2}}\right\}$
Claim
Suppose $N_{j}=N_{j-1} \dot{+} U_{j}, j \geq 2 . U_{j}$ has basis u_{1}, \ldots, u_{m}
then $\left\{T u_{1}, \ldots, T u_{m}\right\}$ is linearly independent and $\operatorname{sp}\left\{T u_{1}, \ldots, T u_{m}\right\} \cap N_{j-2}=\{0\}$
Proof
If $\sum_{i=1}^{m} a_{i} T u_{i}=v \in N_{j-2} \Rightarrow T^{j-2}\left(\geqslant, a_{i} T u_{i}\right)=T^{j-2} v=0 \Rightarrow T^{k-1}\left(\geqslant, a_{i} u_{i}\right)$
$\Rightarrow \geqslant, a_{i} u_{i} \in N_{j-1} \cap U_{j}=\{0\}$
$\therefore a_{i}=0, v=0$
Then I can extend $\left\{T u_{1}, \ldots, T u_{m}\right\}$ to a complement of N_{j-2} inside N_{j-1} by adding new basis vectors $v_{r_{k-j}+1}, \ldots, v_{r_{k+1-j}}$

This process builds the Jordan form. Get $\operatorname{dim} V-\operatorname{dim}\left(N_{k-1}\right)$ blocks of length k Our formula was
$2 \operatorname{nul}\left(T^{k}\right)-\operatorname{nul}\left(T^{k+1}\right)-\operatorname{nul}\left(T^{k-1}\right)=2 n-n-\operatorname{dim}\left(N_{k-1}\right)=\operatorname{dim} V-\operatorname{dim}\left(N_{k-1}\right)$ $N_{j}=N_{j-1} \dot{+} U_{j}$
$\operatorname{dim} U_{j}=\operatorname{dim} N_{j}-\operatorname{dim} N_{j-1}=\#$ of Jordan blocks of size $\geq j$
$\operatorname{nul}\left(T^{j}\right)-\operatorname{nul}\left(T^{j-1}\right)=\left|\left\{n_{j} \geq j\right\}\right|$
$\operatorname{nul}\left(T^{j+1}\right)-\operatorname{nul}\left(T^{j}\right)=\left|\left\{n_{i}>j\right\}\right|$
$2 \operatorname{nul}\left(T^{j}\right)-\operatorname{nul}\left(T^{j+1}\right)-\operatorname{nul}\left(T^{j-1}\right)=\left|\left\{n_{i}=j\right\}\right|$

The Algebra of Nilpotent Transformation

October-05-11
10:05 AM

Homomorphism

A homomorphism between two algebras A and B over
a ring K is a map $F: A \rightarrow B$ with the following properties:
$\forall k \in K, x, y \in A$

1) $F(x k)=k F(x)$
2) $F(x+y)=F(x)+F(y)$
3) $F(x y)=F(x) F(y)$

Modulo Polynomials

If $m \in \mathbb{F}[x],(m)$ ideal of all multiples of m.
Say $p \equiv q \bmod (m)$ if $p-q \in(m) \equiv m \mid(p-q)$
Make $\mathbb{F}|x| /(m)$ into a ring. Elements are equivalence classes.
$\lfloor p\rfloor=\{q \equiv p \bmod (m)\}$
$\lfloor p\rfloor \pm\lfloor q\rfloor=\lfloor p \pm q\rfloor$
$|p||q|=|p q|$
Check that this is well-defined.
If $p_{1} \equiv p_{2} \bmod (m), q_{1} \equiv q_{2} \bmod (m)$
$\left(p_{1} \pm q_{1}\right)-\left(p_{2} \pm q_{2}\right)=\left(p_{1}-p_{2}\right)+\left(q_{1}-q_{2}\right) \in(m)$
$p_{1} \pm q_{1} \equiv p_{2} \pm q_{2}$
$p_{2} q_{2}-p_{1} q_{1}=\left(p_{2}-p_{1}\right) q_{2}+p_{1}\left(q_{2}-q_{1}\right) \in(m)$
$p_{2} q_{2} \equiv p_{1} q_{1}$

Algebra

An algebra is a set A which is

1) A vector space over a field \mathbb{F}
2) Has an associative multiplication
3) Distributive law

$$
\begin{aligned}
& a(x \pm y)=a x \pm a y, \quad a, x, y \in A \\
& \lambda(x+y)=\lambda x+\lambda y, \quad \lambda \in \mathbb{F}
\end{aligned}
$$

Algebra of Nilpotent Transformation
$T \in \mathcal{L}(V)$
$A(T)=\operatorname{sp}\left\{I, T, T^{2}, T^{3}, \ldots\right\}=\{p(T): p \in \mathbb{F}\lfloor x\rfloor\}$
There is a map from
$\mathbb{F}|x| \rightarrow A(T), \quad \Phi: p \mapsto p(T)$

This is a homomorphism. i.e.
$\alpha, \beta \in \mathbb{F}, p, q \in \mathbb{F}[x\rfloor$
$(\alpha p+\beta q) \mapsto(\alpha p+\beta q)(T)=\alpha p(T)+\beta q(T)$
$(p q) \mapsto(p q)(T)=p(T) q(T)$

Lemma

If $T^{d}=0 \neq T^{d-1}, p \in \mathbb{F}|x|$ then

1) $p(T)$ is invertible $\Leftrightarrow p(0) \neq 0$
2) $p(T)=0 \Leftrightarrow x^{d} \mid p$

Equivalence Class

$T=J_{k}=\left\{\begin{array}{cccccc}0 & 1 & & & & \\ & 0 & 1 & & & \\ & & \ddots & \ddots & & \\ & & & 0 & 1 & \\ \hline\end{array}{ }_{k \times k}\right.$
$p(x)=a_{0}+a_{1} x+\cdots+a_{m} x^{m}$
$p(T)=a_{0} I+a_{1} T+a_{2} T^{2}+\cdots+a_{m} T^{m}$
$=\left|\begin{array}{lll}a_{0} & & \\ & \ddots & \\ & & a_{0}\end{array}\right|+\left|\begin{array}{cccc}0 & a_{1} & & \\ & \ddots & \ddots & \\ & & 0 & a_{1}\end{array}\right|+\cdots+\left|\begin{array}{ccc}0 & \ldots & a_{k-1} \\ & \ddots & \vdots \\ & & \\ & & \\ 0\end{array}\right|$
$=\left|\begin{array}{cccc}a_{0} & a_{1} & \ldots & a_{k-1} \\ & \ddots & \ddots & \vdots \\ & & a_{0} & a_{1}\end{array}\right|$
If q is some polynomial $q(x)=b_{0}+b_{1} x+\cdots+b_{m} x^{m}$
$p(T)=q(T)$
$\Leftrightarrow a_{i}=b_{i}$ for $0 \leq i \leq k-1$
$\Leftrightarrow x^{k} \mid(p(x)-q(x))$
$\Leftrightarrow p \equiv q \bmod \left(x^{k}\right)$
Algebra of Nilpotent Transformation Explanation $T^{d}=0 \neq T^{d-1}$
map is linear, preserves product
Show $p(T)=\Phi(\mathrm{p})=\Phi(\mathrm{q})=\mathrm{q}(\mathrm{T}) \Leftrightarrow \mathrm{p}-\mathrm{q} \in\left(\mathrm{x}^{\mathrm{d}}\right) \Leftrightarrow \mathrm{x}^{\mathrm{d}} \mid \mathrm{p}-\mathrm{q}$
$m \in \mathbb{F}|x|$
$\mathbb{F}|x| /(m)$ is a "quotient ring" of polynomials modulo m.
$p \equiv q \Leftrightarrow m \mid p-q$
$\Psi: \mathbb{F}\lfloor x\rfloor \rightarrow \mathbb{F}\lfloor x\rfloor /\left(x^{d}\right)$ is a homomorphism
Showed if $p_{1} \equiv p_{2}, q_{1} \equiv q_{2}\left(\bmod x^{d}\right)$ then $\alpha p_{1}+\beta q_{1} \equiv \alpha p_{2}+\beta q_{2}$ and $p_{1} q_{1} \equiv p_{2} q_{2}\left(\bmod \left(x^{d}\right)\right)$
\therefore maps are well defined
$\operatorname{ker} \Phi=\left(x^{d}\right)=\operatorname{ker} \Psi$
$\mathbb{F}|x| \rightarrow^{\Phi} A(T)$
$\mathbb{F}|x| \rightarrow{ }^{\Psi} \mathbb{F}[x] /\left(x^{d}\right)$
$\mathbb{F}|x| \rightarrow \Phi^{\sim} A(T)$
Can defined Φ^{\sim} by $\Phi^{\sim}(\lfloor p\rfloor)=p(T)$
Well defined $p_{1} \equiv p_{2}\left(\bmod x^{d}\right)$ then $x^{d} \mid p_{1}-p_{2}$
$\left(p_{1}-p_{2}\right)(x)=x^{d} r(x)$
$p_{1}(T)-p_{2}(T)=T^{d} r(T)=0$
$\therefore p_{1}(T)=p_{2}(T)$
$\therefore \Phi^{\sim}$ is well defined

Claim: Φ^{\sim} is 1-1 and onto
$\Phi^{\sim}(\lfloor p \mathrm{l})=0 \Leftrightarrow p(T)=0$
Proof
2) $p_{T}(x)=x^{d}$

$$
p(T)=0 \Leftrightarrow x^{d} p
$$

1) Write $p(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{k} x^{k}$,

$$
p(0)=a_{0}
$$

If $p(0)=a_{0}=0$ then $p(x)=x q(x)$
$\therefore p(T)=T q(T)$
T is not invertible $\therefore p(T)$ is not invertible

$$
\begin{aligned}
& \text { If } p(0)=a_{0} \neq 0 \\
& p(x)=a_{0}(1+x q(x)) \\
& p(T)=a_{0}(I+T q(T))
\end{aligned}
$$

Proof 1:
T upper triangular, 0 on diagonal

$$
\begin{aligned}
& p(T)=\left\lvert\, \begin{array}{lll}
a_{0} & \cdots & \\
& \ddots & \\
& a_{0}
\end{array}\right. \\
& \therefore \sigma(p(T))=\left\{a_{0}\right\} \neq 0 \therefore \text { invertible }
\end{aligned}
$$

Proof 2:

$$
\begin{aligned}
& \text { Let } \beta=a_{0}^{-1}\left(I-T q(T)+(T q(T))^{2}-\cdots+(-1)^{d} T^{d} q(T)^{d}\right) \\
& p(T) \beta=a_{0}(I+T(q(T))) \frac{1}{a_{0}}\left(I-T q(T)+(T q(T))^{2}-\cdots+(-1)^{d} T^{d} q(T)^{d}\right) \\
& =I-T q(T)+(T q(T))^{2}-\cdots+(-1)^{d} T^{d} q(T)^{d}+T q(T)-(T q(T))^{2}-\cdots \\
& +(-1)^{d} T^{d+1} q(T)^{d+1}=I+(-d)^{d} T^{d+1} q(T)^{d+1}=I
\end{aligned}
$$

Φ^{\sim} is 1-1
Φ^{\sim} is onto, $\Phi^{\sim}(|p|)=p(T) \in A(T)$
If $\Phi^{\sim}(|p|)=\Phi^{\sim}(|q|) \Leftrightarrow \Phi^{\sim}(|p-q|)=0 \Leftrightarrow x^{d}|p-q \Leftrightarrow| p-q|=0 \Leftrightarrow| p \mid=[q]$
Φ^{\sim} is an isomorphism
(It is a bijection, homomorphism, and Φ^{\sim} is a homomorphism)
Did this for $\left.T=J_{d}=\left\lvert\, \begin{array}{lllllll}0 & 1 & & & & \\ & 0 & 1 & & & \\ & & \ddots & \ddots & & \\ & & & 0 & 1 & \\ & & & & 0 & 1\end{array}\right.\right]$
General case
$T=J_{n_{1}} \oplus J_{n_{2}} \oplus \cdots \oplus J_{n_{s}}$
$n=n_{1} \geq n_{2} \geq \cdots \geq n_{s}$
$T=\left[\begin{array}{lllll}0 & 1 & & & \\ & 0 & 1 & & \\ & & \ddots & \ddots & \\ & & & 0 & 1 \\ \hline\end{array}\right.$
$p(x)=a_{0}+a_{1} x+a_{2} x_{2}+\cdots+a_{k} x^{k}$
$p(T)=\left\{\begin{array}{cccccc}a_{0} & a_{1} & a_{2} & \ldots & a_{d_{T}} \\ & a_{0} & a_{1} & & & \\ & & \ddots & \ddots & \ddots & \\ & & & a_{0} & a_{1} & \vdots \\ a_{0}\end{array}\right] \oplus\left|\begin{array}{lll}a_{0} & a_{1} & a_{2} \\ a_{0} & a_{1} \\ d \times d\end{array}\right| \oplus\left|\begin{array}{lll}a_{0} & a_{1} \\ 0 & a_{0}\end{array}\right| \oplus\left\lfloor a_{0}\right\rfloor \oplus\left\lfloor a_{0}\right\rfloor$ $p(T) \mapsto p\left(J_{d}\right), \quad p(T) \in A(T), p\left(J_{d}\right) A\left(J_{d}\right)$
$A\left(J_{d}\right) \mapsto A(T)$

Jordan Forms

October-07-11
10:09 AM
Jordan Block
A Jordan block is a matrix $J(\lambda, k)=\lambda I_{k}+J_{k}=\left|\begin{array}{cccc}\lambda & 1 & \ldots & \\ & \ddots & \ddots & \vdots \\ & & \lambda & 1\end{array}\right|$

Jordan Form

A Jordan form is a direct sum of Jordan blocks
From the nilpotent case, we get
Corollary
If $T \in \mathcal{L}(V)$ and $p_{T}(x)=(x-\lambda)^{n}$ then $m_{T}(x)=(x-\lambda)^{d}$ where $\operatorname{ker}(T-\lambda I)^{d-1} \subset$ $\operatorname{ker}(T-\lambda I)^{d}=\operatorname{ker}(T-\lambda I)^{d+1}$ and T is similar to
$T \sim J\left(\lambda, n_{1}\right) \oplus J\left(\lambda, n_{2}\right) \oplus \cdots \oplus J\left(\lambda, n_{s}\right), d=n_{1} \leq n_{2} \leq \cdots \leq n_{s}$
Moreover,
$\left|\left\{u_{j}=i\right\}\right|=2 \operatorname{nul}(T-\lambda I)^{i}-\operatorname{nul}(T-\lambda I)^{i}-\operatorname{nul}\left(T-\lambda^{i-1}\right)$
Lemma
If $T \in \mathcal{L}(V), \lambda \in \mathbb{F}$ then $N_{j}=\operatorname{ker}(T-\lambda I)^{j}$ and $R_{j}=\operatorname{range}(T-\lambda I)^{i}$ are invariant subspaces for T (and for any A s.t. $A T=T A$)

Proof of Corollary

$p_{T}(x)=(x-\lambda)^{n} \Leftrightarrow p_{T-\lambda I}(x)=x^{n} \Leftrightarrow T-\lambda I$ is nilpotent
Goal
The goal is to prove that if $p_{T}(x)$ splits into linear terms $p_{T}(x)=$ $1 l_{i=1}^{k}\left(x-\lambda_{i}\right)^{e_{i}}$ then V splits as a direct sum
$V=V_{1} \dot{+} V_{2} \dot{+} \cdots \dot{+} V_{k}$ where $V_{i}=\operatorname{ker}\left(T-\lambda_{i} I\right)^{e_{i}}$
Then T is similar to
$T \sim\left(\left.T\right|_{V_{1}}\right) \oplus\left(\left.T\right|_{V_{2}}\right) \oplus \cdots \oplus\left(\left.T\right|_{V_{k}}\right)=T_{1} \oplus T_{2} \oplus \cdots \oplus T_{k}$
$\left(T_{j}-\lambda_{j} I\right)^{e_{j}} V_{j}=\{0\}$
So $\left(T_{j}-\lambda_{j} I\right)^{e_{j}}=0$
$\left(T_{j}-\lambda_{j} I\right) \sim J\left(\lambda_{j}, n_{j, 1}\right) \oplus \cdots \oplus J\left(\lambda_{j}, n_{j, s_{i}}\right)$
Proof of Lemma
$x \in N_{j}$, then $(T-\lambda I)^{j} x=0$
$A T=T A$ then $(T-\lambda I)^{j} A x=A(T-\lambda I)^{j} x=0$
$\therefore A x \in \operatorname{ker}(T-\lambda I)^{j}$
If $y \in \operatorname{Ran}(T-\lambda I)^{j}, y=(T-\lambda I)^{j} x$
$A y=A(T-\lambda I)^{j} x=(T-\lambda I)^{j}(A x) \in \operatorname{ran}(T-\lambda I)^{j}$
$J_{d}, \operatorname{ker}_{d}=s p\left\{e_{1}, \ldots, e_{i}\right\}$
$\operatorname{ran} J_{d}=\operatorname{sp}\left\{e_{n-i}, e_{n-i+1}, \ldots, e_{i}\right\}$

Jordan Form Theorem

October-12-11
9:32 AM

Lemma

$T \in \mathcal{L}(V)$ s.t. $(T-\lambda I)^{d}=0$ then if $p \in \mathbb{F}[x]$, $p(T)$ is invertible
\Leftrightarrow
$p(\lambda) \neq 0$

Lemma

$T \in \mathcal{L}(V), \lambda \in \sigma(T)$
Let $N_{i}=\operatorname{ker}(T-\lambda I)^{i}$
$R_{i}=\operatorname{ran}(T-\lambda I)^{i}, i \geq 0$
Suppose $\{0\}=N_{0} \subsetneq N_{1} \subsetneq \cdots \subsetneq N_{d}=N_{d+1}$
Then $N_{d+j}=N_{d} \forall j \geq 1$
and $V=R_{0} \supset R_{1} \supset \cdots \supset R_{d}=R_{d+j} \forall j \geq 1$
and $V=N_{d} \dot{+} R_{d}$

Lemma

$T \in \mathcal{L}(V)$
$\operatorname{ker}(T-\lambda I)^{d-1} \subsetneq \operatorname{ker}(T-\lambda I)^{d}=\operatorname{ker}(T-\lambda I)^{d+1}$
Then $m_{T}(x)=(x-\lambda)^{d} n(x)$ where $n(\lambda) \neq 0$

Theorem

$T \in \mathcal{L}(V)$
Assume $p_{T}(x)$ splits into linear factors
$p_{T}(x)=\left.\right|_{i=1} ^{s}\left(x-\lambda_{i}\right)^{e_{i}}$
Let $m_{T}(x)=\left.\right|_{i=1} ^{s}\left(x-\lambda_{i}\right)^{d_{i}}$
$V_{i}=\operatorname{ker}\left(T-\lambda_{i} I\right)^{d_{i}}$
Then $V=V_{1} \dot{+} V_{2} \dot{+} \cdots \dot{+} V_{s}$

Corollary

If $p_{T}(x)$ splits
$V=V_{1}+\cdots \dot{+} V_{s}$
$T_{i}=\left.T\right|_{V_{i}} \in \mathcal{L}\left(V_{i}\right)$
then $\left(T_{i}-\lambda_{i} I\right)^{d_{i}}=0$
$T \sim T_{1} \oplus T_{2} \oplus \cdots \oplus T_{S}$

Proof of Lemma
$T-\lambda I$ is nilpotent
$T-\lambda I \sim J_{n_{1}} \oplus \cdots \oplus J_{n_{s}}$
$T \sim J\left(\lambda, n_{1}\right) \oplus \cdots \oplus J\left(\lambda, n_{s}\right)$
Expand p around $x=\lambda$
$p(x)=a_{0}(=p(\lambda))+a_{1}(x-\lambda)+a_{2}(x-\lambda)^{2}+\cdots+a_{n}(x-\lambda)^{n}$
$p(T)=p(\lambda) I+a_{1}(T-\lambda I)+\ldots+a_{n}(T-\lambda I)^{n}=p(\lambda) I+(T-\lambda I) q(T)$
$(T-\lambda I) q(T)$ is strictly upper triangular
Invertible $\Leftrightarrow p(\lambda) \neq 0$

Example

$T=\left(\begin{array}{llllll}0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 3\end{array}\right)$
$N_{1}=s p\left\{e_{1}\right\}, R_{1}=s p\left\{e_{1}, e_{2}, e_{4}, e_{5}, e_{6}\right\}$
$N_{2}=s p\left\{e_{1}, e_{2}\right\}, R_{2}=s p\left\{e_{1}, e_{4}, e_{5}, e_{6}\right\}$
$N_{3}=s p\left\{e_{1}, e_{2}, e_{3}\right\}, R_{3}=s p\left\{e_{3}, e_{5}, e_{6}\right\}$
$N_{4}=\operatorname{sp}\left\{e_{1}, e_{2}, e_{3}\right\}, R_{3}=s p\left\{e_{3}, e_{5}, e_{6}\right\}$
\vdots

Proof of Lemma

$N_{d+1}=N_{d}$, Proceed by induction
Assume $N_{d+j}=N_{d+j-1}$
take $v \in N_{d+j+1}$
$\therefore(T-\lambda I) v \in N_{d+j}=N_{d+j-1}$
$\therefore(T-\lambda I)^{d+j-1}(T-\lambda I) v=0=(T-\lambda I)^{d+j} v \Rightarrow v \in N_{d+j}$
$\operatorname{dim}\left(N_{i}\right)+\operatorname{dim}\left(R_{i}\right)=n$
$\therefore N_{i} \subsetneq N_{i+1} \Leftrightarrow R_{i} \supset R_{i+1}$
So $R_{d+j}=R_{d} \forall j \geq 1$
Claim
$N_{d} \cap R_{d}=\{0\}$
Take $v \in R_{d} \therefore \exists x \in V$ s.t. $v=(T-\lambda I)^{d} x$
$v \in N_{d} \therefore 0=(T-\lambda I)^{d} v=(T-\lambda I)^{2 d} x$
$\therefore x \in N_{2 d}=N_{d}$
So $v=(T-\lambda I)^{d} x=0$
$N_{d} \cap R_{d}=\{0\}$
So $\operatorname{dim} N_{d}+R_{d}=\operatorname{dim} N_{d}+\operatorname{dim} R_{d}=n$
$\therefore N_{d}+R_{d}=V$
Proof of Lemma
Factor $m_{T}(x)=(x-\lambda)^{e} n(x)$ where $n(\lambda) \neq 0$
Let $N_{d}=\operatorname{ker}(T-\lambda I)^{d}$
From Lemma, $\left.n(T)\right|_{N_{d}}$ is invertible on $\mathcal{L}(V)$
Claim: $e \geq d$
Take $v \in N_{d} \backslash N_{d-1} \therefore(T-\lambda I)^{d-1} v \neq 0$
$\therefore n(T)(T-\lambda I)^{d-1} v \neq 0$
$\therefore n(T)(T-\lambda I)^{d-1} \neq 0$
$\therefore e \geq d$ because $0=m_{T}(T)=n(T)(T-\lambda I)^{e}$
Claim $e=d$
Since $0=m_{T}(T) v=(T-\lambda I)^{e} n(T) v$
$\Rightarrow n_{T}(T) v \in N_{e}=N_{d}($ since $e \geq d)$
$\Rightarrow(T-\lambda I)^{d} n(T) v=0$
$\Rightarrow(T-\lambda I)^{d} n(T)=0$
$m_{T} \mid(x-\lambda)^{d} n(x)$ or $e=d$
Proof of Theorem
Let $R_{1}=\operatorname{ran}\left(T-\lambda_{1} I\right)^{d_{1}}$, Know $V=V_{1}+R_{1}$
Claim: $V_{i} \subseteq R_{1}$ for $i \geq 2$
$\left|\left(x-\lambda_{i}\right)^{d_{i}}\right|\left(\lambda_{1}\right)=\left(\lambda_{1}-\lambda_{i}\right)^{d_{i}} \neq 0$
V_{1} and R_{1} are invariant for T and hence invariant for $\left(T-\lambda_{i} I\right)^{d_{i}}$ $\left.\left(T-\lambda_{i} I\right)^{d_{i}}\right|_{V_{1}}$ is invertible

Take $v \in V_{i}, i \geq 2$. Write $v=n+r, n \in N_{1}, r \in R_{1}$ $0=\left(T-\lambda_{i} I\right)^{d_{i}} v=(T-\lambda I)^{d_{i}} n+(T-\lambda I)^{d_{i}} r=0+0$ (Because of direct sum, both terms are 0)
Since $\left.\left(T-\lambda_{i} I\right)\right|_{V_{1}}$ is invertible, $n=0 \therefore v=r \in R_{1}$
Now we can prove the theorem by induction on $n=\operatorname{dim} V$ $n=1: T=\lfloor\lambda\rfloor$
$\lambda_{1}=\lambda, V_{1}=V$ Done
Assume result for $m<n$
$V=V_{1} \dot{+} R_{1}, T=\left.\left.T\right|_{V_{1}} \dot{+} T\right|_{R_{1}}=T_{1} \oplus S$
$\left(T_{1}-\lambda_{1} I\right)^{d_{1}}=0$
S acts in $R_{1}, \operatorname{dim} R_{1}<n$
$T \sim\left|\begin{array}{cc}T_{1} & 0 \\ 0 & S\end{array}\right|$ on $V=N_{1}+R_{1}$
$p_{T}(x)=p_{T_{1}}(x) p_{S}(x)$
$p_{T_{1}}(x)=\left(x-\lambda_{1}\right)^{e_{1}}, e_{1}=\operatorname{dim} V_{1}$
$p_{S}(x)=\left(x-\lambda_{2}\right)^{e_{2}}\left(x-\lambda_{3}\right)^{e_{3}} \ldots\left(x-\lambda_{s}\right)^{e_{s}}$
By induction Hypothesis
$R_{1}=V_{2}+V_{3}+\cdots+V_{s}$
$\therefore \operatorname{ker}\left(S-\lambda_{i} I\right)^{d_{i}}=\operatorname{ker}\left(T-\lambda_{i} I\right)^{d_{i}} \subseteq R_{i}$

Applications of Jordan Forms

October-14-11
9:43 AM

Jordan Form Theorem
\mathbb{F} algebraically closed (or $p_{T}(x)$ splits into linear terms)
$T \in \mathcal{L}(V), p_{T}(x)=\left.\right|_{i=1} ^{s} \mid\left(x-\lambda_{i}\right)^{e_{i}}$
Then T is similar to ${ }{ }^{i}$
$s \oplus k_{i} \oplus$
$\left.\rangle_{i=1}\right\rangle_{j=1} J\left(\lambda_{i}, n_{i, j}\right)$
where $n_{i 1} \geq n_{i k_{i}}, \sum_{j=1}^{k_{i}} n_{i j}=e_{i}$
Moreover, for each i, $\left|\left\{n_{i, j}=r\right\}\right|=2 \operatorname{nul}\left(T-\lambda_{i} I\right)^{r}-$ $\operatorname{nul}\left(T-\lambda_{i} I\right)^{r+1}-\operatorname{nul}\left(T-\lambda_{i} I\right)^{r-1}$

Note

Jordan blocks can be used to answer similarity-invariant questions.

Proof of Jordan Form Theorem

Already been done
$V=V_{1} \dot{+} V_{2} \dot{+} \cdots \dot{+} V_{s}$ where $V_{i}=\operatorname{ker}\left(T-\lambda_{i} I\right)^{e_{i}}$
Each V_{i} is invariant for T , and $T_{i}=\left.T\right|_{V_{i}}$, then $\left(T_{i}-\lambda_{i} I\right)=0$

Cardinality of \# $\left\{n_{i j},=r\right\}$ was done
Example
Which $A \in \mathcal{M}_{3}(\mathbb{C})$ satisfy $A^{3}=I$?
If $A^{3}=I$ and $A \sim B \quad B=S A S^{-1}$ then $B^{3}=S A^{3} S^{-1}=S S^{-1}=I$
Look for similarity classes of solutions
Say $A \sim\rangle_{i}^{\oplus} J\left(\lambda_{i}, k_{i}\right)$
$A^{3} \sim{ }^{\oplus}, J\left(\lambda_{i}, k_{i}\right)^{3}$
Look at $J(\lambda, k)^{3}=\left(\lambda_{i} I+J_{k}\right)^{3}=\lambda^{3} I+3 \lambda^{2} J_{k}+3 \lambda J_{k}^{2}+J_{k}^{3}$
Need $\lambda^{3}=1$ and $3 \lambda^{2}=0$ or $k=1$
$\therefore \lambda \in\left\{1, e^{i \pi \frac{1}{3}}, e^{-i \pi \frac{1}{3}}\right\}$ and $k=1$
So A is diagonalizable $A \sim \operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right), \lambda_{i}^{3}=1$
Count similar classes:
All λ_{i} same 3
2 same 1 other 3×2
3 different 1
$=10$
Example
Find all A with $p_{A}(x)=(x-4)^{4}(x+1)^{3}$ and $m_{A}(x)=(x-4)^{3}(x+1)^{2}$
$\Rightarrow \operatorname{dim} V=7=\operatorname{deg} p_{A}$
$\operatorname{nul}(A-4 I)^{4}=\operatorname{nul}(A-4)^{3}$
$\operatorname{nul}(A+I)^{3}=\operatorname{nul}(A+I)^{2}$
Size of largest Jordan block is 3 (from $m_{a}(x)$)
$\Rightarrow A \sim J(4,3) \oplus J(4,1) \oplus J(-1,2) \oplus J(-1,1)$

Example

Find all A with $p_{A}(x)=(x+2)^{4}(x-1)^{3}$
and $m_{A(x)}=(x+2)^{2}(x-1)$
$\operatorname{dim} V=4+3=7=\operatorname{deg} p_{A}$
$\sigma(A)=\{-2,1\}$
$\operatorname{nul}\left((A+2 I)^{7}\right)=\operatorname{nul}\left((A+2 I)^{2}\right)=4$
$\operatorname{nul}(A-I)^{7}=\operatorname{nul}\left((A-I)^{1}\right)=3$
$A \sim J(-2,2) \oplus J\left(-2, k_{2}\right) \oplus J\left(-2, k_{3}\right)$
$2+k_{2}+k_{3}=4$
$\oplus J(1,1) \oplus J(1,1) \oplus J(1,1)$
Two choses $k_{2}=2$ or $k_{2}=k_{3}=1$
Gives
$\left.\left.\left|\begin{array}{cc}-2 & 1 \\ 0 & -2\end{array}\right| \oplus\right|_{0} ^{-2} \quad 1 \quad-2 \right\rvert\, \oplus I_{3}$
$\left|\begin{array}{cc}\text { or } \\ 0 & 1 \\ 0 & -2\end{array}\right| \oplus|-2| \oplus|-2| \oplus I_{3}$
The similarity classes of these are the solutions

Example

Which matrices have square roots?
Suppose $A \sim{ }^{n}{ }^{n} J\left(\lambda_{i}, k_{i}\right)$
Then $A^{2} \sim 2^{\oplus} \stackrel{i=1}{ } J\left(\lambda_{i}, k_{i}\right)^{2}$
$\left.J(\lambda, k)^{2}=\left.\left.\right|^{\lambda} \begin{array}{cccc}1 & \ldots & { }^{2} \\ & \ddots & \ddots & \\ & \ldots & & \lambda\end{array}\right|^{\lambda^{2}} \begin{array}{ccccc} & 2 \lambda & 1 & \ldots & 0 \\ \vdots & & & & \end{array} \right\rvert\,$
$\sigma(B)=\left\{\lambda^{2}\right\}$. If $\lambda \neq 0$ then $\left(B-\lambda^{2} I\right)=\left|\begin{array}{ccccc}0 & 2 \lambda & 1 & \ldots & 0\end{array}\right|$
$\left(B-\lambda^{2} I\right)^{k-1}=\left|\begin{array}{lllll}0 & 0 & \ldots & 0 & (2 \lambda)^{(k-1)}\end{array}\right|$
Jordan form for B is $J\left(\lambda^{2}, k\right)$
Conversely, if $\lambda \neq 0 J\left(\lambda^{2}, k\right)$ has a square root.
$S\left|\begin{array}{ccccc}\lambda^{2} & 1 & 0 & \ldots & 0 \\ \vdots & & & & \end{array}\right| S^{-1}=\left|\begin{array}{ccccc}\lambda^{2} & 2 \lambda & 1 & \ldots & 0 \\ \vdots & & & & \end{array}\right|=\left|\begin{array}{cccc}\lambda & 1 & \ldots & \\ & \ddots & \ddots & \\ & \ldots & & \lambda\end{array}\right|^{2}$

```
\(\left.\left.S^{-1}\right|^{\lambda} \quad \begin{array}{cccc}1 & \cdots & \\ & \ddots & \ddots & \\ & \ldots & & \lambda\end{array} \right\rvert\, S\)
\(\lambda=0\)
\(J_{k}^{2}=\left.\right|_{0} ^{0} \quad 0 \quad 1 \quad 1 \quad \ldots \quad 00\)
\(\left.\left\lvert\, \begin{array}{lllllll}0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right.\right] \sim\left|\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right| \oplus\left|\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right|\)
```

If $k \geq 2$
$J_{k}^{2} \sim J_{\left|\frac{k}{2}\right|} \oplus J_{\left|\frac{k}{2}\right|}$

So if A is a square, the nilpotent part of A must come in pairs of size differing by 0 or 1 Plus we can have as many $J_{1} s$ as we want So e.g. $A \sim J(1,7) \oplus J(2,9) \oplus J(0,5) \oplus J(0,4) \oplus J(0,3) \oplus J(0,3) \oplus J(0,2) \oplus J(0,1) \oplus J(0,1)$ Is a square

The Algebra A(T)

October-17-11
9:30 AM

Generalized Eigenspace

$V_{i}=\operatorname{ker}\left(T-\lambda_{i}\right)^{e_{i}}$

Idempotent

A map E is idempotent iff $E^{2}=E$
Projections are idempotent

Proposition

$T \in \mathcal{L}(V), p_{T}(x)$ splits, $p_{T}(x)=\left.\right|_{i=1} ^{s}\left(x-\lambda_{i}\right)^{e_{i}}$
Let $V_{i}=\operatorname{ker}\left(T-\lambda_{i}\right)^{e_{i}}$
Then the idempotents E_{i} in $\mathcal{L}(V)$ given by $V=V_{1} \oplus V_{2} \oplus \cdots \oplus V_{s}$
$E_{i}(v)=E_{i}\left(\sum_{j=1}^{s} v_{j}\right)=v_{i}, 1 \leq i \leq s$ belong to $A(T)$

Chinese Remainder Theorem

$m_{1}, m_{2}, \ldots, m_{s} \in \mathbb{N}$ relatively prime
$\left(\operatorname{gcd}\left(m_{i}, m_{j}\right)=1\right.$ for $\left.i \neq j\right)$
Then $x \equiv a_{i}\left(\bmod m_{i}\right)$ has a unique solution $x \equiv a\left(\left.\bmod \right|_{i=1} ^{s} m_{i}\right)$ for every choice of a_{i} $\mathbb{Z} \rightarrow \mathbb{Z} / m \mathbb{Z} \rightarrow \mathbb{Z} / m_{i} \mathbb{Z} \oplus \mathbb{Z} / m_{2} \mathbb{Z} \oplus \cdots \oplus \mathbb{Z} / m_{s} \mathbb{Z}$ $n \mapsto n(\bmod m)$
$\mapsto\left(n \bmod \left(m_{1}\right), n \bmod \left(m_{2}\right), \ldots, n \bmod \left(m_{s}\right)\right)$

CRT says
$\mathbb{Z} / m \mathbb{Z} \rightarrow \mathbb{Z} / m_{i} \mathbb{Z} \oplus \mathbb{Z} / m_{2} \mathbb{Z} \oplus \cdots \oplus \mathbb{Z} / m_{s} \mathbb{Z}$
is a bijection.
Chinese Remainder Theorem for Polynomials If $m_{i}(x) \in \mathbb{F}|x|, 1 \leq i \leq s, \operatorname{gcd}\left(m_{i}, m_{j}\right)=1 i \neq j$
then if $p_{i} \in \mathbb{F}[x]$, the equation $p \equiv p_{2} \bmod \left(m_{i}\right)$ has
a unique solution modulo $m=m_{1} m_{2} \ldots m_{s}$

Theorem

$T \in \mathcal{L}(V), p_{T}$ splits $m_{T}=\left.\right|_{i=1} ^{s}\left(x-\lambda_{i}\right)^{a_{i}}$
Then $A(T) \cong A\left(\left.T\right|_{V_{1}}\right) \oplus A\left(\left.T\right|_{V_{2}}\right) \oplus \cdots A\left(\left.T\right|_{V_{s}}\right)$
$A(T) \leftrightarrow \mathbb{F}\lfloor x\rfloor /\left(m_{t}\right)$
$A\left(\left.T\right|_{V_{1}}\right) \oplus A\left(\left.T\right|_{V_{2}}\right) \oplus \cdots A\left(\left.T\right|_{V_{S}}\right)$
$\leftrightarrow \mathbb{F}[x\rfloor /\left(m_{1}\right) \oplus \cdots \oplus \mathbb{F}[x\rfloor /\left(m_{s}\right)$

The Algebra A(T) Description

$T \in \mathcal{L}(V)$
$A(T)=\operatorname{span}\left\{I, T, T^{2}, \ldots, T^{n-1}, \ldots\right\}$
$p_{T}(x)=x^{n}+\cdots$
Cayley-Hamilton Theorem: $p_{T}(T)=0$
$T^{n}=-\sum_{i=0}^{n-1} a_{i} T^{i} \in \operatorname{span}\left\{T, T, \ldots, T^{n-1}\right\}$
$T^{n+k}=-\sum_{i=0}^{n-1} a_{i} T^{i+k} \in \operatorname{sp}\left\{I, \ldots, T^{n+k-1}\right\}=s p\left\{I, \ldots, T^{n-1}\right\}$
by induction.
In fact $m_{T}(T)=0, m_{T} \mid p_{T} \operatorname{deg} m_{T}=d \leq n$
$T^{d}==\sum_{i=0}^{d-1} b_{i} T^{i}$
Same argument shows $A(T)=\operatorname{sp}\left\{I, T, \ldots, T^{d-1}\right\} \operatorname{dim} A(T)=d=\operatorname{deg} m_{T}$
$p, q \in \mathbb{F}[x] p(T)=q(T) \Leftrightarrow(p-q)(T)=0 \Leftrightarrow m_{T} \mid(p-q) \Leftrightarrow p \equiv q \bmod \left(m_{T}\right)$
$\mathbb{F}[x] \rightarrow A(T): p \mapsto p(T)$ is a homomorphism; It is linear and multiplicative.
$\mathbb{F}\lfloor x\rfloor \rightarrow \mathbb{F}\lfloor x\rfloor /\left(m_{T}\right): p \mapsto[p]$ is a homomorphism
$\left.\mathbb{F} \mid x\rfloor /\left(m_{T}\right) \rightarrow A(T): \mid p\right\rfloor \rightarrow p(T)$ is an isomorphism.
Proof 1 of Proposition
Let $m_{T}(x)=\left.\right|_{i=1} ^{s}\left(x-\lambda_{i}\right)^{d_{i}}$
$V_{j}=\operatorname{ker}\left(T-\lambda_{j} I\right)^{d_{j}}$
So for a polynomial $p(T)$ to satisfy $p(T) v=0 \forall v_{j} \in V_{j}$ need $\left(x-\lambda_{j}\right)^{d_{j}} \mid p$
Let $q_{i}(x)=| |_{j \neq i}\left(x-\lambda_{j}\right)^{d_{j}}$
Then $q_{i}(T) v_{j}=0 \forall v_{j} \in V_{j}, j \neq i$
Look at $\left.q_{i}(T)\right|_{V_{i}} .\left.T\right|_{V_{i}}=\lambda_{i} I+N_{i}, \quad N_{i}$ nilpotent
$\left.q_{i}(T)\right|_{V_{i}}=q_{i}\left(\left.T\right|_{V_{i}}\right) \Rightarrow q_{i}\left(\lambda_{i}\right)=\left.\right|_{j \neq i}\left(\lambda_{i}-\lambda_{j}\right)^{d_{j}} \neq 0$
By Lemma, $q_{i}(T)_{V_{i}}$ is invertible. Moreover, the inverse is a polynomial of T
(recall, $N=T-\lambda_{i} I$ nilpotent $q_{i}(N)=a_{0}(I+N r(N)) \Rightarrow q_{i}(N)^{-1}$
$=\frac{1}{a_{o}}\left(I-N r(N)+N^{2} r(N)^{2}-\cdots\right)$ terminates $\left.N^{d}=0\right)$
So there is a polynomial $r_{i} \in \mathbb{F}\lfloor x\rfloor$ s.t. $e_{i}(T)=\left.q_{i}(T) r_{i}(T)\right|_{V_{i}}=\left.I\right|_{V_{i}}$
Let $e_{i}(x)=q_{i}(x) r_{i}(x)$
Let $E_{i}=e_{i}(T) \in A(T)$
$v_{j} \in V_{j}, j \neq i, \quad E_{i} v_{j}=r_{i}(T) q_{i}(T) v_{j}=0$
$E_{i} v_{i}=v_{i}$
$\therefore E_{i}\left(\sum_{j=1}^{s} v_{j}\right)=v_{i}$
$E_{i}^{2} v=E_{i} v=v_{i} \Rightarrow E_{i}^{2}=E_{i}$
Proof 2 of Proposition
Consider $q_{1}, \ldots, q_{s}, q_{i}$ defined as before
$\operatorname{gcd}\left(q_{1}, q_{2}, \ldots, q_{s}\right)=1 \Rightarrow \sum E_{i}=I$
By the Euclidian Algorithm $\exists r_{i} \in \mathbb{F}[x]$ s.t. $\sum_{i=1}^{s} q_{i} r_{i}=1$
Let $e_{i}=q_{i} r_{i}$, and $E_{i}=e_{i}(T)$
$E_{i} v=E_{i}\left(v_{1}+\cdots+v_{s}\right)=r_{i}(T) q_{i}(T)\left(v_{1}+\cdots+v_{s}\right)=E_{i} v_{i} \in V_{i} \quad\left(q_{i}(T) v_{j}=0, j \neq i\right)$
$v=I v=\left(\sum_{i=1}^{n} E_{i}\right) v=\sum_{i=1}^{n} E_{i} v_{i}$
Direct sum $V=\sum_{i=1}^{s} V_{i} \quad \therefore$ unique decomposition
$v_{i}=E_{i} v_{i}, \quad i=1,2, \ldots, s$
$\therefore E_{i}^{2}=E_{i}$ has range V_{i} and kernel $\sum_{j \neq i} V_{j}$
Example of CRT
$m=6, m_{1}=2, m_{3}=3$

$\mathbb{Z} \rightarrow \mathbb{Z} / 6 \mathbb{Z}$
\mathbb{Z}
$\mathbb{Z} / 6 \mathbb{Z}$
0

\hline 1\end{array}\right][1] \quad(1,0)\)

Proof 3 of Proposition
By Proof 2 we get $e_{i}=q_{i} r_{i} \in \mathbb{F}[x]$ s.t. $\sum_{i=1}^{s} e_{i}(x)=1$
Let $m_{i}(x)=\left(x-\lambda_{i}\right)^{d_{i}}, \operatorname{gcd}\left(m_{i}, m_{j}\right)=1 \forall i \neq j$
Let $m=m_{1}(x) m_{2}(x) \ldots m_{s}(x)=m_{T}(x)$
Now $e_{i} \equiv 0 \bmod \left(m_{j}\right), j \neq i$
$1=\sum_{j=1}^{s} e_{j}=e_{i}\left(\bmod m_{i}\right)$
$\therefore e_{i} \equiv\left\{\begin{array}{l}0(\bmod m) j \neq i \\ 1\left(\bmod m_{i}\right) i=j\end{array} r\right.$
To solve $\left\{p \equiv p_{i}\left(\bmod _{m_{i}}\right) i \leq i \leq s\right\}$
Let $p=\sum_{i=1}^{s} p_{i} e_{i}(x), \quad p \equiv p_{i}(x) \cdot 1+\sum_{j \neq i} p_{j}(x) \cdot 0 \equiv p_{i}\left(\bmod m_{i}\right)$
$p \equiv q\left(\bmod m_{i}\right) i \leq i \leq s$
$\Leftrightarrow m_{i}\left|(p-q) 1 \leq i \leq s \Leftrightarrow m_{i}\right|(p-q) \Leftrightarrow p \equiv q(\bmod m)$

Jordan Form Application

October-19-11
9:25 AM

Proposition

$T \in \mathcal{L}(V), p_{T}$ splits
Then T can be expressed uniquely as $T=D+N$ where D is diagonalizable and N is nilpotent and $D N=N D$.

Cyclic Vectors

$T \in \mathcal{L}(V)$ has a cyclic vector x if $\operatorname{sp}\left\{x, T x, T^{2} x, \ldots,\right\}=V$
T is cyclic if it has a cyclic vector.
T has a cyclic vector iff $m_{T}=p_{T}$
Theorem
$T \in \mathcal{L}(V)$ TFAE

1) T is cyclic
2) $m_{T}=p_{T}$
3) T has a single Jordan block for each eigenvalue

Remark
$1 \Leftrightarrow 2$ is always true, does not require $p_{T}(x)$ to split.

Example use of Jordan Form
$T \in \mathcal{L}(V), m_{T}=\|\left(x-\lambda_{i}\right)^{d_{i}}$
$A(T) \cong \mathbb{F}|x| /\left(m_{T}\right) \cong \sum^{\oplus} \mathbb{F}|x| /\left(\left(x-\lambda_{i}\right)^{d_{i}}\right)$
$V_{i}=\operatorname{ker}\left(T-\lambda_{i} I\right)^{d_{i}}$
$V=V_{1} \dot{+} V_{2}+\cdots+V_{s}$
$T_{i}=\left.T\right|_{V_{i}}, m_{T_{i}}=\left(x-\lambda_{i}\right)^{d_{i}}$
$T \sim T_{1} \oplus T_{2} \oplus \cdots \oplus T_{s}$
$p(T) \sim p\left(T_{1}\right) \oplus p\left(T_{2}\right) \oplus \cdots \oplus p\left(T_{s}\right)$
but $p\left(T_{i}\right)=q\left(T_{i}\right)$ iff $p \equiv q\left(\bmod \left(x-\lambda_{i}\right)^{d_{i}}\right)$
Express $p(x)$ as a Taylor around λ_{i}
$p(x)=a_{0}+a_{1}\left(x-\lambda_{i}\right)+a_{2}\left(x-\lambda_{i}\right)^{2}+\cdots$
$T_{i} \sim \sum_{i=1}^{k_{i}} \lambda_{i} I+J_{n_{i j}}$
$J=\left|\begin{array}{llll}i=1 & 1 & 0 & 0 \\ 0 & 3 & 1 & 0 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 3\end{array}\right|$
$p(x)=1+2 x^{2}+x^{3}$
$p(3)=1+29+27=46$
$p^{\prime}(x)=4 x+3 x^{2}$
$p^{\prime}(3)=12+27=39$
$p^{\prime \prime}(x)=4+6 x, p^{\prime \prime}(3)=22$
$p^{(3)}(x)=6$
$p(x)=p(3)+p^{\prime}(3)(x-3)+\frac{p^{\prime \prime}(3)}{2!}(x-3)^{2}+\frac{p^{(3)}}{3!}(x-3)^{3}$
$=49+39(x-3)+11(x-3)^{2}+(x-3)^{3}$
$p(J)=\left|\begin{array}{cccc}46 & 39 & 11 & 1 \\ 0 & 46 & 39 & 11 \\ 0 & 0 & 46 & 39 \\ 0 & 0 & 0 & 49\end{array}\right|$
Proof of Proposition
$T \sim \sum_{i=1}^{s \oplus} T_{i} \sim \sum_{i=1}^{s} \sum_{j=1}^{k_{i}} \lambda_{i} I+J_{n_{i j}}$
$D \sim \sum_{i=1}^{s} \sum_{j=1}^{k_{i} \oplus} \lambda_{i} I$
$D=\sum_{i=1}^{S} \lambda_{i} E_{i}, E_{i}$ idempotent $\operatorname{ran}\left(E_{i}\right)=V_{i}, \operatorname{ker}\left(E_{i}\right)=\sum_{j \neq i} V_{j}$
D is a polynomial in T, $D=\sum \lambda_{i} E_{i}=\left(\sum \lambda_{i} e_{i}\right)(T)$
$\therefore T D=D T$
D is diagonalizable
$N=T-D \sim \sum_{i=1}^{s} \sum_{j=1}^{k_{i}} J_{n_{i j}}$ is nilpotent
N is also in $A(T)$
Uniqueness
Suppose $T=D_{1}+N_{1}, D_{1}$ diag, N_{1} nilpotent $D_{1} N_{1}=N_{1} D_{1}$
D_{1} commutes with $D_{1}+N_{1}=T \therefore D_{1}$ commutes with $A(T)$
$\therefore D_{1}$ commutes with D, N
Similarly, N_{1} commutes with D,N
D_{1} commutes with E_{i}. If $v_{i} \in V_{i}, v_{i}=E_{i} v_{i}$
$D_{1} v_{i}=D_{1} E_{i} v_{i}=E_{i} D_{1} v_{i} \in \operatorname{ran} E_{i}=v_{i}$
So V_{i} is invariant for D_{1} (and N_{1})
$D_{1}=\left.\left.\left.D_{1}\right|_{V_{1}} \oplus D_{1}\right|_{V_{2}} \oplus \cdots \oplus D_{1}\right|_{V_{s}}$
$D=\left.\left.\left.\lambda_{i} I\right|_{V_{1}} \oplus \lambda_{2} I\right|_{V_{2}} \oplus \cdots \oplus \lambda_{s} I\right|_{V_{s}}$
Each $\left.D_{1}\right|_{V_{1}}$ is diagonalizable so $\left.\left(D_{1}-\lambda_{i} I\right)\right|_{V_{i}}$ is diagonalizable
$\therefore D_{1}-D$ is diagonalizable $\sim \operatorname{diag}\left(\mu_{1}, \mu_{2}, \ldots, \mu_{s}\right)$
$D_{1}+N_{1}=T=D+N$
$\therefore D_{1}-D=N-N_{1}$
$\left(N-N_{1}\right)^{2 n}=\sum_{j=0}^{2 n}(-1)^{j}\binom{2 n}{j} N^{j} N_{1}^{2 n-j}=0$
(Because $\mathrm{N}, \mathrm{N}_{1}$ commute, first $=$)
(Second =) $j \geq n N_{j}=0, j \leq n \Rightarrow 2 n-j \geq n \therefore N_{1}^{2 n-j}=0$
$0=\left(D_{1}-D\right)^{2 n} \sim \operatorname{diag}\left(\mu_{1}^{2 n} \& \mu_{2}^{2 n}, \ldots, \mu_{n}^{2 n}\right) \therefore \mu_{i}^{2 n}=0 \Rightarrow \mu_{i}=0 \Rightarrow D_{1}=D$
$\therefore N_{1}=T-D_{1}=N$

Cyclic Vectors

If $m_{T}(x)=x^{d}+a_{(d-1)} x^{d-1}+\cdots+a_{0}$
$0=T^{d}+a_{d-1} T^{d-1}+\cdots+a_{1} T+a_{0} I$
$T^{d}=-a_{d-1} T^{d-1}-\cdots-a_{1} T-a_{0} I$
$\therefore T^{d} x \in \operatorname{sp}\left\{x, T x, \ldots, T^{d-1} x\right\}$
So $s p\{x, T x, \ldots\}=s p\left\{x, T x, \ldots, T^{d-1} x\right\}$, where $d=\operatorname{deg} m_{T}(x)$
$\operatorname{dim} \operatorname{sp}\left\{x, T x, \ldots, T^{d-1} x\right\} \leq d$
A necessary condition for T to be cyclic is $\operatorname{deg} m_{T}=n$, i.e. $m_{T}=p_{T}$
Note that $m_{T}=p_{T} \Leftrightarrow$ there is a single Jordan block for each eigenvalue. $m_{T}(x)$
$=\left.\right|_{\substack{i=0 \\ s}} ^{n}\left(x-\lambda_{i}\right)^{d_{i}}$, where d_{i} is the size of the largest Jordan block for λ_{i}
$T \sim \sum_{i=1}\left(\lambda_{i} I+J_{d_{i}}\right)$
A Jordan block with basis $\left\{e_{1}, \ldots, e_{k}\right\}$ has a cyclic vector e_{k} Let $v_{i} \in V_{i}$ be a cyclic vector for $\left.T\right|_{V_{i}}$
Let $v=v_{1}+v_{2}+\cdots+v_{s}$
Claim: v is cyclic for T
$E_{i} \in A(T)$ So $v_{i}=E_{i} v \in A(T) v=s p\{v, T v, \ldots\}$
$\therefore T^{k} v_{i} \in A(T) v \Rightarrow V_{i} \subseteq A(T) v \Rightarrow V=\sum V_{i}=A(T) v$

Linear Recursion Revisited

October-21-11
9:31 AM

Linear Recursion Formulae

Given $x_{0}, x_{1}, \ldots, x_{k-1}$ and the linear recursion $x_{k+n}+a_{n-1} x_{k+n-1}+a_{n-2} x_{k+n-2}+\ldots+a_{0} x_{n}=0$
Find a formula for x_{k}
Let $A=\left|\begin{array}{cccc}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -a_{0} & -a_{1} & \ldots & -a_{n-1}\end{array}\right|$
$\left|\begin{array}{c}x_{k} \\ x_{k+1} \\ \vdots \\ x_{k+n-1}\end{array}\right|=A^{k}\left|\begin{array}{c}x_{0} \\ x_{1} \\ \vdots \\ x_{n-1}\end{array}\right|$
$P_{A}(x)=\left|\begin{array}{cccc}x & -1 & 0 & 0 \\ 0 & x & -1 & 0 \\ 0 & 0 & x & -1 \\ a_{0} & a_{1} & \ldots & x+a_{n-1}\end{array}\right|=\left|\begin{array}{cccc}x & 0 & 0 & 0 \\ 0 & x & 0 & 0 \\ 0 & 0 & x & 0 \\ a_{0} & a_{1}+\frac{a_{0}}{x} & \ldots & x+a_{n-1}+\frac{a_{n-2}}{x}+\cdots+\frac{a_{0}}{x^{n-1}}\end{array}\right|=x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\cdots+a_{0}$
Factor $p_{A}(x)=\left.\right|_{i=1} ^{s}\left(x-\lambda_{i}\right)^{d_{i}}$
Case 1: n distinct roots $\therefore \mathrm{n}$ is diagonalizable
$A \sim \operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$
Let $v_{i}=\left(\begin{array}{c}1 \\ \lambda_{i} \\ \lambda_{i}^{2} \\ \vdots \\ \lambda_{i}^{n-1}\end{array}\right) \Rightarrow A v_{i}=\left(\begin{array}{c}\lambda_{i} \\ \lambda_{i}^{2} \\ \cdots \\ \lambda_{i}^{n-1} \\ -a_{0}-a_{1} \lambda_{1}-\cdots-a_{n-1} \lambda_{i}^{n-1}\end{array}\right)$
$-a_{0}-a_{1} \lambda_{1}-\cdots-a_{n-1} \lambda_{i}^{n-1}=\lambda_{i}^{n}-p_{A}\left(\lambda_{i}\right)=\lambda_{i}^{n}$
$A v_{i}=\left(\begin{array}{c}\lambda_{i} \\ \lambda_{i}^{2} \\ \vdots \\ \lambda_{i}^{n-1} \\ \lambda_{i}^{n}\end{array}\right)=\lambda_{i} v_{i}$
So v_{1}, \ldots, v_{n} is the basis that diagonalizes A .
Express $\left(\begin{array}{c}x_{0} \\ x_{1} \\ \vdots \\ x_{n-1}\end{array}\right)=b_{1} v_{1}+\cdots+b_{n} v_{n}$
$\left(\begin{array}{c}x k \\ x_{k-1} \\ \vdots \\ x_{k+n-1}\end{array}\right)=A^{k}\left(\begin{array}{c}x_{0} \\ x_{1} \\ \vdots \\ x_{n-1}\end{array}\right)=A^{k}\left(b_{1} v_{1}+\cdots+b_{n} v_{n}\right)=b_{1} \lambda_{1}^{k} v_{1}+b_{2} \lambda_{2}^{k} v_{2}+\cdots+b_{n} \lambda_{n}^{k} v_{n}=\left(\begin{array}{c}b_{1} \lambda_{1}^{k}+b_{2} \lambda_{2}^{k}+\cdots+b_{n} \lambda_{n}^{k} \\ \vdots \\ \vdots\end{array}\right)$
So $x_{k}=b_{1} \lambda_{1}^{k}+\cdots+b_{n} \lambda_{n}^{k}$
The set of possible sequences we get is the linear span of $\left(1, \lambda_{i}, \lambda_{i}^{2}, \lambda_{i}^{3}, \ldots\right)$
Note
If $p \in \mathbb{C}[x]$ has repeated roots, say $p(x)=(x-\lambda)^{2} q(x)$
Then $p^{\prime}(x)=2(x-\lambda) q(x)+(x-\lambda)^{2} q^{\prime}(x)=(x-\lambda) r(x)$
If $p(x)=(x-\lambda) q(x), q(\lambda) \neq 0$
$p^{\prime}(x)=q(x)+(x-\lambda) q^{\prime}(x)$
$p^{\prime}(\lambda)=q(x) \neq 0$
So p, p^{\prime} have a common factor $(x-\lambda)$ iff λ is a root of p of multiplicity ≥ 2
$\therefore p$ has simple roots $\Leftrightarrow \operatorname{gcd}\left(p, p^{\prime}\right)=1$
Case 2
Repeated roots:
$p_{A}(x)=\left.\right|_{i=1} ^{s}\left(x-\lambda_{i}\right)^{d_{i}}$
A has a cyclic vector e_{n}
$\mathrm{A}^{2}=\left|\begin{array}{cccc}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -a_{0} & -a_{1} & \ldots & -a_{n-1}\end{array}\right|\left|\begin{array}{c}0 \\ 0 \\ \vdots \\ 1\end{array}\right|=A\left(\begin{array}{c}0 \\ 0 \\ \vdots \\ 0 \\ 1\end{array}\right)=\left(\begin{array}{c}0 \\ \vdots \\ 0 \\ 1 \\ *\end{array}\right)$
\therefore only one Jordan block for each eigenvalue
$A \sim \sum_{i=1}^{S \oplus} J\left(\lambda_{i}, d_{i}\right)$
Pick $v_{i, 0} \in \operatorname{ker}\left(A-\lambda_{i} I\right)^{\left(d_{i}\right)}$ but not in $\operatorname{ker}\left(A-\lambda_{i} I\right)^{d_{i}-1}$
Let $v_{i, j}=\left(A-\lambda_{i} I\right)^{j} v_{i, 0}, 1 \leq j \leq d_{i}-1$
$\left\{v_{i, 0}, \ldots, v_{i, d_{i}-1}\right\}$ is a basis for Jordan block $\lambda_{i} I+J_{d_{i}}$
So $\left\{v_{i}, j: 1 \leq i \leq s, 0 \leq j \leq s\right\}$ is a basis for V
Write $\left|\begin{array}{c}x_{0} \\ \vdots \\ x_{n-1}\end{array}\right|=\sum b_{i j} v_{i j}$
What is $A^{k} v_{i j}$?
$\lambda I+J_{d}=\left|\begin{array}{llll}\lambda & 1 & 0 & 0 \\ 0 & \lambda & 1 & 0 \\ 0 & 0 & \lambda & 1 \\ 0 & 0 & 0 & \lambda\end{array}\right|, v_{i, 0}=\left[\begin{array}{c}0 \\ 0 \\ \vdots \\ 0 \\ 1\end{array}\right], v_{i, j}=\left[\begin{array}{c}\vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0\end{array}\right]$
$\left|\begin{array}{llll}\lambda & 1 & 0 & 0 \\ 0 & \lambda & 1 & 0 \\ 0 & 0 & \lambda & 1 \\ 0 & 0 & 0 & \lambda\end{array}\right|^{k}=\left(\lambda_{i}+J_{d}\right)^{k}=\sum_{i=0}^{k}\binom{k}{i} \lambda^{k-1} J_{d}^{i}=\sum_{i=0}^{d-1}\binom{k}{i} \lambda^{k-1} J_{d}^{i}$
$=\left\lvert\, \begin{array}{cccc}\lambda^{k} & k \lambda^{k-1} & \ldots & \binom{k}{d-1} \lambda^{k+1-d_{i}} \\ 0 & \lambda_{k} & \ldots & \binom{k}{d-2} \lambda^{k+1-d_{i}} \\ 0 & & & \vdots\end{array}\right.$
$A^{k} v_{i, 0}=\lambda^{k} v_{i, 0}+k \lambda_{k-1} v_{i, 1}+\cdots+\binom{k}{d-1} \lambda^{k+1-d_{i}}$
$A^{k} v_{i, j}=\lambda^{k} v_{i, j}+k \lambda^{k-1} v_{i, j+1}+\cdots+\binom{k}{?} \lambda^{k-?} v_{i, d_{i}-1}$
$\left(\begin{array}{c}x_{0} \\ \vdots \\ x_{n-1}\end{array}\right)=\sum b_{i j} v_{i j}$
$\left(\begin{array}{c}x^{k} \\ \vdots \\ x_{k+n-1}\end{array}\right)=A^{k}\left(\begin{array}{c}x_{0} \\ \vdots \\ x_{n-1}\end{array}\right)=\sum b_{i} A^{k} v_{i, j}=\sum b_{i}\left(\lambda^{k} v_{i, j}+k \lambda^{k-1} v_{i, j+1}+\cdots\right)$
$x_{k}=\sum_{i, j}^{\prime} b_{i, j}\left(\lambda_{i} v_{i, j}^{(1)}+k \lambda^{k-1} v_{i, j+1}^{(1)}+\cdots\right)=\sum_{i, j}^{\prime} \lambda_{i}^{k}\left(c_{i, 0}+c_{i, 1} k+c_{i, 2} k^{2}+\cdots+c_{i, d_{i}-1} k^{d_{i}-1}=\sum_{i}^{\prime} \lambda_{i}^{k} q_{i}(k), \operatorname{deg} q_{i}<d_{i}\right.$
General Solution
$x_{k}=\sum_{i}^{\prime} \lambda_{i}^{k} q_{i}(k)$
has n unknowns $q_{i}(x)=c_{i, 0}+c_{i, 1} \lambda+\cdots+c_{i,\left(d_{i}-1\right)} \lambda^{d_{i}-1}$
Know x_{0}, \ldots, x_{n-1} solve for c_{i}
Solution space is spanned by
$\left(1, \lambda_{i}, \lambda_{i}^{2}, \lambda_{i}^{3}, \ldots\right)$
$\left(0, \lambda_{i}, 2 \lambda_{i}^{2}, 3 \lambda_{i}^{3}, \ldots\right)$
$\left(0, \lambda_{i}, 2^{d_{i}-1} \lambda_{i}^{2}, 3^{d_{i}-1} \lambda_{i}^{3}, \ldots\right)$

Markov Chains

October-24-11
11:25 AM

Discrete State Space

A discrete state space Σ is a finite set of possible states.
A discrete process provides probabilities for transition between states at discrete time intervals.

A process is stationary if the transition probabilities are time independent.

A discrete stationary process is called a Markov process.
Regular Markov Process
A Markov process is regular if there is an N so $\left(A^{N}\right)_{i j}>$ $0 \forall i, j$
i.e. It is possible over time to move from any state to any other.

Lemma

$A=\left(a_{i j}\right) \in \mathcal{L}(V)$
Let $\left.\rho(A)=\max _{1 \leq i \leq n}\right\rangle_{j=1}^{n}\left|a_{i j}\right|$ (max of row sum)
Then $\sigma(A) \leq\{\lambda:|\lambda| \leq \rho(A)\}$
Theorem
$A=\left(a_{i_{j}}\right)$ is a transition matrix.
Then $1 \in \sigma(A) \subseteq \mathbb{D}=\{\lambda:|\lambda| \leq 1\}$
Moreover, if A is regular then $\sigma(A) \subseteq\{1\} \cup \mathbb{D}=\{1\} \cup$
$\{\lambda:|\lambda|<1\}$ and $\operatorname{nul}(A-I)=\operatorname{nul}(A-I)^{2}=1$

Euclidean Norm

$\|A\|_{2}=\sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j}^{2}}$
Usual Euclidean norm on $\mathbb{R}^{n^{2}}$
Claim
$\|A B\|_{2} \leq\|A\|_{2}\|B\|_{2}$
Proof
$\|A B\|_{2}^{2}$
$\left.\left.\left.=\rangle_{i=1}^{n}\right\rangle_{j=1}^{n}\left(\sum_{k=1}^{n} a_{i k} b_{k j}\right)^{2} \leq_{C S}\right\rangle_{i=1}^{n}\right\rangle_{j=1}^{n}\left(\sum_{k=1}^{n} a_{i k}^{2}\right)\left(\sum_{l=1}^{n} b_{l j}^{2}\right)$
By Cauchy-Schwarz inequality
$\left.\left.=\left(\sum_{i=1}^{n}\right\rangle_{k=1}^{n} a_{i k}^{2}\right)\left(\sum_{j=1}^{n}\right\rangle_{l=1}^{n} b_{l j}^{2}\right)=\|A\|_{2}^{2}\|B\|_{2}^{2}$

Corollary

If A is a regular transition matrix, then A^{m} converges to $L=v u^{t}$ where $A v=v, \mathrm{v}$ has entries $\Sigma_{i} v_{i}=1$ and $u^{t}=(1,1, \ldots, 1)$
This is the idempotent in $\mathcal{A}(A)$ with range $\operatorname{ker}(A-I)$. Moreover, if w is any probability vector then $\lim _{n \rightarrow \infty} A^{n} w=v$

Label the states $\Sigma=\{1,2, \ldots, n\}$. The probability of moving from state j to state I is $p_{i j} \geq 0$. So $\sum_{i=1}^{n} p_{i j}=1 \forall j$

Let $A=\left|p_{i j}\right|_{n \times n}=\left|\begin{array}{ccc}p_{11} & & p_{1 n} \\ p_{21} & & p_{2 n} \\ \vdots & \ldots & \vdots \\ p_{n 1} & & p_{n n}\end{array}\right|$ Column sums are 1
What is the limiting behaviour as time $\rightarrow \infty$?
Initial state $p_{0}=\left(\begin{array}{c}\alpha_{1} \\ \ldots \\ \alpha_{n}\end{array}\right)$ At time $1 p_{1}=A p_{0}, p_{n+1}=A p_{n} \forall n \geq 1$
Interested in $\lim _{n \rightarrow \infty} A^{n} p_{0}$

Example

A microorganism has 3 possible reproductive states: Male, Female, and Neuter.
Male one day \rightarrow M 2/3 time, N $1 / 3$ time next day
Female one day $\rightarrow \mathrm{F} 1 / 2$ time, $\mathrm{N} 1 / 2$ time next day
Neuter one day \rightarrow M $1 / 6$, F $1 / 2$, N $1 / 3$
$A=\left[\begin{array}{ccc}\frac{2}{3} & 0 & \frac{1}{6} \\ 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{3} & \frac{1}{2} & \frac{1}{3}\end{array}\right]$. Initially $p_{0}=\left|\begin{array}{l}m_{0} \\ f_{0} \\ n_{0}\end{array}\right|, p_{n}=A^{n} p_{0}$
$A^{T}\left|\begin{array}{l}1 \\ 1 \\ 1\end{array}\right|=\left[\begin{array}{lll}\frac{2}{3} & 0 & \frac{1}{3} \\ 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{6} & \frac{1}{2} & \frac{1}{3}\end{array}\right]\left|\begin{array}{l}1 \\ 1 \\ 1\end{array}\right|=\left|\begin{array}{l}1 \\ 1 \\ 1\end{array}\right|$ In general $A^{t}\left|\begin{array}{l}1 \\ 1 \\ 1\end{array}\right|=\left\lvert\, \begin{aligned} & 1 \\ & 1 \\ & 1\end{aligned}\right.$
so 1 is always an eigenvalue since $\sigma\left(A^{T}\right)=\sigma(A)$
$p_{A}(x)=(x-1)\left(x^{2}-\frac{1}{2} x-\frac{1}{12}\right), \quad \sigma(A)=\left\{1, \frac{1 \pm \sqrt{\frac{7}{3}}}{4}\right\} \therefore$ Diagonalizable
$A=S^{-1}\left|\begin{array}{ccc}1 & 0 & 0 \\ 0 & \frac{1+\sqrt{\frac{7}{3}}}{4} & 0\end{array}\right| S$ As $n \rightarrow \infty, \quad A^{n}=S^{-1}\left|\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right| S=L$
$L=L^{2}$ is the idempotent in $\mathcal{A}(A)$ with range $\operatorname{span}(v$ where $A v=v$ and v is a probability vector.
$\operatorname{ker}(A-I)\left[\begin{array}{ccc}-\frac{1}{3} & 0 & \frac{1}{6} \\ 0 & -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{3} & \frac{1}{2} & -\frac{2}{3}\end{array}\right] \mapsto\left|\begin{array}{ccc}2 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0\end{array}\right|\left|\begin{array}{c}1 \\ 2\end{array}\right|=0$
Normalize $\left|\begin{array}{l}1 \\ 2 \\ 2\end{array}\right|$ to get the probability vector $v=\left|\begin{array}{l}0.2 \\ 0.4 \\ 0.4\end{array}\right|$
Have vectors v, v_{2}, v_{3} a basis s.t.
$A v=v, \quad A v_{2}=\frac{1+\sqrt{\frac{7}{3}}}{4} v_{2}, \quad A v_{3}=\frac{1-\sqrt{\frac{7}{3}}}{4} v_{3}$
If $p_{0}=a_{1} v+a_{2} v_{2}+a_{3} v_{3}$
$p_{n}=A^{n} p_{0}=a_{1} v+\left(\frac{1+\sqrt{\frac{7}{3}}}{4}\right)^{n} v_{2}+\left(\frac{1-\sqrt{\frac{7}{3}}}{4}\right)^{n} v_{3} \rightarrow a_{1} v$
$u=\left|\begin{array}{l}1 \\ 1 \\ 1\end{array}\right|, A^{T} u=u$ and $u^{T} A=u^{T}$
$u^{T} p_{0}=m_{0}+f_{0}+n_{0}=1$
$u^{T} p_{n}=u^{T}\left(A^{n} p_{0}\right)=\left(u^{T} A^{n}\right) p_{0}=u^{T} p_{0}=1$, and $p_{n}=\left|\begin{array}{c}m_{n} \geq 0 \\ f_{n} \geq 0 \\ n_{n} \geq 0\end{array}\right|$ because $a_{i j} \geq 0$
So p_{n} is a probability vector.
$a_{1} v=p_{n}=\lim _{n \rightarrow \infty} A^{n} p_{0}, \quad 1=u^{T}\left(a_{1} v\right)=a_{1} \Rightarrow a_{1}=1$
Therefore in the limit as $n \rightarrow \infty$ is $20 \% \mathrm{M}, 40 \% \mathrm{~F}, 40 \% \mathrm{~N}$

Proof of Lemma

Suppose $\lambda \in \sigma(A), A v=\lambda v, v \neq 0$
$v=\left|\begin{array}{c}v_{1} \\ \vdots \\ v_{n}\end{array}\right|$. Pick i_{0} such that $\left|v_{i_{0}}\right| \geq\left|v_{i}\right| \forall 1 \leq i \leq n$
$\left|\lambda v_{i_{0}}\right|=\left|\sum_{j=1}^{n} a_{i_{0} j} v_{j}\right| \leq \sum_{j=1}^{n}\left|a_{i_{0} j}\right|\left|v_{j}\right| \leq\left(\sum_{j=1}^{n}\left|a_{i_{0} j}\right|\right)\left|v_{i_{0}}\right| \leq \rho(A)\left|v_{i_{0}}\right|$
$\therefore|\lambda| \leq \rho(A)$

Proof of Theorem
$u^{T}=(1,1, \ldots, 1)$ then $u^{T} A=u^{T}$ because column sums are all 1 . So $A^{T} u=u$, or $1 \in \sigma\left(A^{T}\right)=\sigma(A)$
$\rho\left(A^{T}\right)=\max \{1,1, \ldots, 1\}=1 \therefore \sigma(A)=\sigma\left(A^{T}\right) \subseteq \mathbb{D}$ by Lemma
Proved first part, now prove that $(\mathbf{1}, \ldots,)^{T}$ is the only eigenvector for 1 or -1
A is regular so $\exists N$ such that $A^{N}=\left(c_{i j}\right), c_{i j}>0$
Observe that A^{N+1} has strictly positive entries.
Suppose $|\lambda|=1, A^{T} u=\lambda u, u=\left|\begin{array}{c}u_{1} \\ u_{2} \\ \vdots \\ u_{n}\end{array}\right| \neq 0$
Repeat argument in Lemma for $\left(A^{N}\right)^{T}$ and $\left(A^{N+1}\right)^{T}$
$\left(A^{N}\right)^{T}=\left(c_{i j}\right)^{T}$ has row sums $=1$
Pick i_{0} s.t. $\left|u_{i_{0}}\right| \geq\left|u_{i}\right| \forall i$
$\left|u_{i_{0}}\right|=\left|\lambda^{N}\right|\left|u_{i_{0}}\right|=1\left|\sum_{i=1}^{n} c_{i i_{0}} u_{i}\right| \leq_{2} \sum_{i=1}^{n} c_{i i_{0}}\left|u_{i}\right| \leq_{3}\left(\sum_{i=1}^{n} c_{i i_{0}}\right)\left|u_{i_{0}}\right|={ }_{4}\left|u_{i_{0}}\right|$
1: Since $\lambda^{N} u=\left(A^{N}\right)^{T} u$
2: Since $c_{i i_{0}}>0$ do not need absolute values about them.
3: An equality iff $u_{i_{0}}=u_{i} \forall i$
4: $\left(A^{N}\right)^{T}$ has row sums 1
This is an equality therefore if $u_{i_{0}}>0$ then $u_{i} \geq 0 \forall i$.
3 must be made equal so $u_{i}=u_{i_{0}} \forall i$ so 2 is also an equality.
$\therefore u_{i}=u_{i_{0}} \Rightarrow u \in \operatorname{sp}\left\{\left|\begin{array}{c}1 \\ 1 \\ \vdots \\ 1\end{array}\right|\right\}$
$\therefore \lambda u=A^{T} u=u \Rightarrow \lambda=1$
So $\sigma(A) \subseteq\{1\} \cup \mathbb{D}$
$\operatorname{nul}(A-I)=\operatorname{nul}\left(A^{T}-I\right)=1$
\therefore Single Jordan block for 1
$A \sim\left(I_{k}+J_{k}\right) \oplus \sum_{i=1}^{s} J\left(\lambda_{i}, k_{i}\right),\left|\lambda_{i}\right|<1$
$I_{k}+J_{k}=S^{-1} A S$
$\left(S^{-1} A S\right)^{m}=\left(I+J_{k}\right)^{m} \oplus \sum_{i=1}^{s} J\left(\lambda_{i}, k_{i}\right)^{m}$,
For $|\lambda|<1$
$J(\lambda, k)^{m}=\left(\lambda I_{k}+J_{k}\right)^{m}=\lambda^{m} I_{k}+\binom{m}{1} \lambda^{m-1} J_{k}+\binom{m}{2} \lambda^{m-2} J_{k}^{2}+\cdots+\binom{m}{k-1} \lambda^{m+1-k} J_{k}^{k-1}$
$=\left(\begin{array}{cccc}\lambda^{m} & m \lambda^{m-1} & \ldots & \binom{m}{k-1} \lambda^{m+1-k} \\ & \ddots & & \vdots\end{array}\right) \rightarrow 0$ as $m \rightarrow \infty$
$\left(I_{k}+J_{k}\right)^{m}=\left(\begin{array}{cccc}1 & m & \ldots & \left(\begin{array}{c}\dot{m} \\ \\ \\ \\ \ddots\end{array}\right)\end{array}\right)$
$m=1:(1) \rightarrow(1)$
$m \geq 2:\binom{m}{1}\left\|\left(I+J_{k}\right)^{2}\right\| \geq m \rightarrow \infty$
On the other hand
$\left\|\left(S^{-1} A S\right)^{m}\right\|_{2}=\left\|S^{-1} A^{m} S\right\|_{2} \leq\left\|S^{-1}\right\|_{2}\left\|A^{m}\right\|_{2}\|S\|$
A^{m} is a transition matrix so
$>b_{i j}=1 \geq b_{i j} \geq 0$
$\begin{aligned} & i=1 \\ & b_{i j}^{2}\end{aligned} \leq b_{i}$
So $\left.\left\|A^{m}\right\|_{2}^{2}=\sum_{j=1}^{n} \sum_{i=1}^{n} b_{i j}^{2} \leq \sum_{j=1}^{n}\right\rangle_{i=1}^{n} b_{i j}=n$
$\left.\|\left(I+J_{k}\right)^{m}+\right\rangle, J\left(\lambda_{i}, k_{i}\right)^{m}\|=\| S^{-1} A S\|\leq \sqrt{n}\| S\left\|_{2}\right\| S^{-1} \|_{2}$
$\left.\|\left(I+J_{k}\right)^{m}+\right\rangle^{\oplus} J\left(\lambda_{i}, k_{i}\right)^{m} \| \geq m$ If $n u l(A-I)^{2} \geq 2$
$\therefore \operatorname{nul}(A-I)^{2}=1$

Proof of Corollary

The last argument shows that
$\left.\left(S^{-1} A S\right)^{m}=(1) \oplus\right\rangle_{i=1}^{s} J\left(\lambda_{i}, k_{i}\right)^{m} \rightarrow(1) \oplus 0$
This is the idempotent in $\mathrm{A}(\mathrm{T})$ with range $\operatorname{ker}(T-I)$
$A^{m}=S T^{m} S^{-1} \rightarrow S((1) \oplus 0) S^{-1}=L$
L is the idempotent in $\mathrm{A}(\mathrm{A})$ with range $\operatorname{ker}(A-I)$
So $\operatorname{ker} L=\operatorname{span}\left\{\operatorname{ker}\left(A-\lambda_{i}\right)^{d_{i}}, 1 \leq i \leq s\right\}$
Let $v \in \operatorname{ker}(A-I)$

Know $u=\left(\begin{array}{c}1 \\ 1 \\ \vdots \\ 1\end{array}\right)$ is an eigenvector for A^{T}, eigenvalue 1
So $u^{T} A=u^{T}$. Look at $A^{m}\left(\frac{1}{n} u\right)$
$u^{T}\left(A^{m} \frac{1}{n} u\right)=\left(u^{T} A^{m}\right) \frac{1}{n} u=u^{T} \frac{1}{n} u=\frac{n}{n}=1$
$\frac{1}{n} u$ is a probability vector (w prob. vector $\Leftrightarrow w_{i} \geq 0, u^{t} w=\sum w_{i}=1$)
$u^{T}\left(A^{m} \frac{1}{n} u\right)=1$
$\left(A^{m}\right)_{i j} \geq 0 \Rightarrow\left(A^{m} \frac{1}{n} u\right)_{i} \geq 0 \forall i$
Eventually $\left(A^{m}\right)_{i j}>0 \Rightarrow\left(A^{m} \frac{1}{n} u\right)>0$
$L \frac{1}{n} u=\lim _{m \rightarrow \infty} A^{m} \frac{1}{n} u=c v, \quad$ probability vector
$\operatorname{ran} L=\operatorname{ker}(A-I)=I v$
Normalize v so that $u^{T} v=1 \Rightarrow \therefore c=1$
$A^{m}\left(\frac{1}{n} u\right) \rightarrow v$
$v=A v=A^{m} v=\left(b_{i j}\right)\left(\begin{array}{c}v_{1} \\ \vdots \\ v_{n}\end{array}\right)=\left(\begin{array}{c}v_{1} \\ \vdots \\ v_{n}\end{array}\right)$
For m large $m_{i j}>0, v_{i} \geq 0$
$\therefore v_{i}=\sum_{j=1}^{n} b_{i j} v_{i}>0$
$L \in A(A)$
$L A=\lim _{m \rightarrow \infty} A^{m} A=\lim _{m \rightarrow \infty} A^{m+1}=L$
$A L=\lim _{m \rightarrow \infty} A^{m+1} L$
Write
$L=\left|\alpha_{1} \& \alpha_{2} \& \ldots \& \alpha_{n}\right|, \alpha_{i} \in \mathbb{R}^{n}$
$L=A L=\left|A \alpha_{1} \& A \alpha_{2} \& \ldots \& A \alpha_{n}\right|$
$\therefore A \alpha_{i}=\alpha_{i}$, so $\alpha_{i}=c_{i} v$
Similarly,
$L=\left|\begin{array}{c}\beta_{1}^{T} \\ \beta_{2}^{T} \\ \vdots \\ \beta_{n}^{T}\end{array}\right|, \beta \in \mathbb{R}^{n}$
$L=L A=\left|\begin{array}{c}\beta_{1}^{T} A \\ \beta_{2}^{T} A \\ \vdots \\ \beta_{n}^{T} A\end{array}\right|$
$\therefore \beta_{i}^{T} A=\beta_{i}^{T}$ or $A^{T} \beta_{i}=\beta_{i}$
$\therefore \beta_{i}=d_{i} u, u=\left(\begin{array}{c}1 \\ 1 \\ \vdots \\ 1\end{array}\right)$
So each row of L has all entries the same.
If $v=\left|\begin{array}{c}v_{1} \\ v_{2} \\ \vdots \\ v_{n}\end{array}\right| \Rightarrow L=c\left|\begin{array}{cccc}v_{1} & v_{1} & \ldots & v_{1} \\ v_{2} & v_{2} & \ldots & v_{2} \\ \vdots & \vdots & \ddots & \vdots \\ v_{n} & v_{n} & \ldots & v_{n}\end{array}\right|$
L is a transition matrix $\therefore c=1$
$\left.L=\left|\begin{array}{cccc}v_{1} & v_{1} & \ldots & v_{1} \\ v_{2} & v_{2} & \ldots & v_{2} \\ \vdots & \vdots & \ddots & \vdots \\ v_{n} & v_{n} & \ldots & v_{n} \\ w_{1} & \end{array}\right|=\left|\begin{array}{c}v_{1} \\ v_{2} \\ \vdots \\ v_{n}\end{array}\right| 11 \quad 1 \quad \ldots \quad 1 \right\rvert\,$
$w=\left|\begin{array}{c}w_{1} \\ w_{2} \\ \vdots \\ w_{n}\end{array}\right|$ probability vector
$\lim _{m \rightarrow \infty} A^{m} w=L w=\left(v u^{T}\right) w=v\left(u^{T} w\right)=v$

Markov Chain Example

October-28-11
9:30 AM

Example: Hardy-Weinberg Law

A certain gene has a dominant form G and a recessive form g . Each individual has either GG, Gg, or gg. At time 0 , the probability distribution of these types is $\left(p_{0}, q_{0}, r_{0}\right)$.
Assume:

1) The distribution is the same for both sexes
2) This gene does not affect reproductive capability
p_{0} of time, father is GG. Probabilities for offspring in terms of mother's type:
$\left.\begin{array}{ccc}\text { GG } & & G g \\ \mid 1 & \frac{1}{2} & 0 \\ & 0 \\ 0 & \frac{1}{2} & 1 \\ L_{0} & 0 & 0\end{array}\right\rfloor$
q_{0} of time, father is Gg. Probability of offspring is
GG Gg gg
$\left|\begin{array}{lll}\left\lvert\, \frac{1}{2}\right. & \frac{1}{4} & 0 \\ \frac{1}{4} & \frac{1}{2} & \frac{1}{2} \\ \frac{2}{2} & \frac{2}{2} \\ 0 & \frac{1}{4} & \frac{1}{2}\end{array}\right|$
r_{0} of time, father is $g g$. Probability of offspring is
$\left.\begin{array}{lll}0 & 0 & 0 \\ \mid 1 & \frac{1}{2} & 0 \\ 1 & 2 & 1 \\ 0 & \frac{1}{2} & 1\end{array}\right]$
Total probability:
$p_{0}\left|\begin{array}{ccc}1 & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & 1 \\ 0 & 0 & 0\end{array}\right|+q_{0}\left[\begin{array}{ccc}\frac{1}{2} & \frac{1}{4} & 0 \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \lfloor & \frac{1}{4} & \frac{1}{2}\end{array}\left|+r_{0}\right| \begin{array}{ccc}0 & 0 & 0 \\ 1 & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & 1\end{array} \left\lvert\,=\left[\left.\begin{array}{ccc}p_{0}+\frac{1}{2} q_{0} & \frac{1}{2} p_{0}+\frac{1}{4} q_{0} & 0 \\ \frac{1}{2} q_{0}+r_{0} & \frac{1}{2} p_{0}+\frac{1}{2} q_{0}+\frac{1}{2} r_{0} & p_{0}+\frac{1}{2} q_{0} \\ 0 & \frac{1}{4} q_{0}+\frac{1}{2} r_{0} & \frac{1}{2} q_{0}+r_{0}\end{array} \right\rvert\,=M\right.\right.\right.$
Let $\alpha_{0}=p_{0}+\frac{1}{2} q_{0}, \beta_{0}=\frac{1}{2} q_{0}+r_{0}$
$M=\left\lvert\, \begin{array}{lll}\mid \alpha_{0} & \frac{1}{2} \alpha_{0} & 0 \\ \beta_{0} & \frac{1}{2} & \alpha_{0} \\ {\left[\left.\begin{array}{lll}2 & \beta_{0} & \beta_{0}\end{array} \right\rvert\,\right.}\end{array}\right.$
To find the new probability distribution for the next generation, apply this to the probability distribution of females.
$\left.\left\lvert\, \begin{array}{lll}\alpha_{0} & \frac{1}{2} \alpha_{0} & 0 \\ \mid \beta_{0} & \frac{1}{2} & \alpha_{0} \\ \mid \\ 0 & \frac{1}{2} \beta_{0} & \beta_{0}\end{array}\right.\right]\left|\begin{array}{c}p_{0} \\ q_{0} \\ r_{0}\end{array}\right|=\left[\begin{array}{c}\alpha_{0}\left(p_{0}+\frac{1}{2} q_{0}\right) \\ \beta_{0} p_{0}+\frac{1}{2} q_{0}+\alpha_{0} r_{0} \\ \beta_{0}\left(\frac{1}{2} q_{0}+r_{0}\right)\end{array}\right]=\left|\begin{array}{c}\alpha_{0}^{2} \\ 2 \alpha_{0} \beta_{0} \\ \beta_{0}^{2}\end{array}\right|$
Get a new transition matrix for a new generation (by applying the above with $\left|\begin{array}{c}\alpha_{0}^{2} \\ 2 \alpha_{0} \beta_{0} \\ \beta_{0}^{2}\end{array}\right|$, substituted for $\left|\begin{array}{c}p_{0} \\ q_{0} \\ r_{0}\end{array}\right|$.
$\alpha_{1}=p_{1}+\frac{1}{2} q_{1}=a_{0}^{2}+\frac{1}{2} 2 \alpha_{0} \beta_{0}=\alpha_{0}\left(\alpha_{0}+\beta_{0}\right)=\alpha_{0}$
$\beta_{1}=r_{1}+\frac{1}{2} q_{1}=\beta_{0}^{2}+\alpha \beta=\beta_{0}$
So the new transition matrix
$\left|\begin{array}{lll}\alpha_{1} & \frac{1}{2} \alpha_{1} & 0 \\ \beta_{1} & \frac{1}{2} & \alpha_{1} \\ \mid \\ 0 & \frac{1}{2} \beta_{1} & \beta_{1}\end{array}\right|=\left|\begin{array}{lcc}\alpha_{0} & \frac{1}{2} \alpha_{0} & 0 \\ \beta_{0} & \frac{1}{2} & \alpha_{0}\end{array}\right|$
\therefore system is Markov.
In 2nd generation, new probabilities:
$\left|\begin{array}{c}p_{2} \\ q_{2} \\ r_{2}\end{array}\right|=\left|\begin{array}{ccc}\alpha_{0} & \frac{1}{2} \alpha_{0} & 0 \\ \beta_{0} & \frac{1}{2} & \alpha_{0} \\ {\left[\begin{array}{lll} \\ 0 & \frac{1}{2} \beta_{0} & \beta_{0}\end{array}\right]}\end{array}\right| \begin{gathered}\alpha_{0} \\ 2 \alpha_{0} \beta_{0} \\ \beta_{0}^{2}\end{gathered}\left|=\left|\begin{array}{c}\alpha_{0}^{3}+\alpha_{0}^{2} \beta_{0} \\ \alpha_{0}^{2} \beta_{0}+\alpha_{0} \beta_{0} \\ \alpha_{0} \beta_{0}^{2}+\beta_{0}^{3}\end{array}\right|=\left|\begin{array}{c}\alpha_{0}^{2}\left(\alpha_{0}+\beta_{0}\right) \\ \alpha_{0} \beta_{0}\left(\alpha_{0}+1+\beta_{0}\right) \\ \beta_{0}^{2}\end{array}\right|=\left|\begin{array}{c}\alpha_{0}^{2} \\ 2 \alpha_{0} \beta_{0} \\ \beta_{0}^{2}\end{array}\right|=\left|\begin{array}{c}p_{1} \\ q_{1} \\ r_{1}\end{array}\right|\right.$
Stabilizes after 1 generation.

Inner Product Space

October-28-11
9:55 AM

Inner Product

An inner product on a vector space V over $\mathbb{F}=\mathbb{C}$ or \mathbb{R} is a
function $\langle *, *\rangle: V \times V \rightarrow \mathbb{F}$ s.t.

1. $\langle\alpha v+\beta w, u\rangle=\alpha\langle v, u\rangle+\beta\langle w, u\rangle$

Linear in first variable
2. $\langle v, w\rangle=\langle w, v\rangle$
3. $\langle v, v\rangle>0$ if $v \neq 0$

Positive Definite
$2 \Rightarrow$
$\langle u, \alpha v+\beta w\rangle=\alpha\langle u, v\rangle+\beta\langle u, w\rangle$

Norm

The norm on $(V,\langle\rangle$,$) is \|v\|=\sqrt{\langle v, v\rangle}$

Theorem

$v, u \in V, \alpha \in \mathbb{F}$

1) $\|\alpha v\|=|\alpha|\|v\|$
2) $\|v\| \geq 0,\|v\|=0 \Leftrightarrow v=0$
3) Cauchy-Schwarz inequality $|\langle u, v\rangle| \leq\|u\| \cdot\|v\|$ Equality $\Leftrightarrow u, v$ collinear
4) Triangle inequality
$\|u+v\| \leq\|u\|+\|v\|$ Equality $\Rightarrow u, v$ collinear

Conjugate in 2nd Variable

$2 \Rightarrow$
$\langle u, \alpha v+\beta w\rangle=\langle\alpha v+\beta w, u\rangle=\alpha\langle v, u\rangle+\beta\langle w, u\rangle=\alpha\langle v, u\rangle+\beta\langle w, u\rangle$ $=\alpha\langle u, v\rangle+\beta\langle u, w\rangle$
Conjugate linear in second variable.
Sesquilinear form (1/2 linear)

Examples

1) $V=\mathbb{C}^{n},\left\langle\left(x_{i}\right),\left(y_{i}\right)\right\rangle=\sum_{i}^{n} x_{i} y_{i}$
2) $V=\mathbb{R}^{n},\left\langle\left(x_{i}\right),\left(y_{i}\right)\right\rangle=\sum_{i=1}^{n} x_{i} y_{i}$ (dot product)
3) $V=\mathbb{C}^{2},<\binom{x_{1}}{x_{2}},\binom{y_{1}}{y_{2}}>=x_{1} y_{1}-x_{1} y_{2}-x_{2} y_{1}+3 x_{2} y_{2}$

Check properties:

1. Linear in 1st variable
2. Symmetric
3. $<\binom{x_{1}}{x_{2}},\binom{x_{1}}{x_{2}} \geq\left|x_{1}\right|^{2}-x_{1} x_{2}-x_{2} x_{1}+3\left|x_{2}\right|^{2}=\left|x_{1}-x_{2}\right|\left|x_{1}-x_{2}\right|+2\left|x_{2}\right|^{2}$
$=\left|x_{1}-x_{2}\right|^{2}+2\left|x_{2}\right|^{2} \geq 0$
And equals 0 iff $x_{1}, x_{2}=0$, So positive definite.
4) $V=C\lceil 0,1 \mid$ (Continuous functions from $[0,1]$ to $[0,1]$)
$<f, g>=\left.\right|_{0} ^{1} f(x) g(x) d x$
1. Linear in 1st variable
2. Symmetric
3. $\langle f, f\rangle=\left.\right|_{0} ^{1}|f(x)|^{2} d x$

$$
\text { If } f \neq 0, f\left(x_{0}\right) \neq 0 \text { by continuity }|f(x)| \geq \delta>0 \text { on }\left(x_{0}-r, x_{0}+r\right)
$$

$$
\therefore\left||f(x)|^{2} d x \geq\right|_{x_{0}-r}^{x_{0}+r} \delta^{2} d x>0
$$

Proof of Theorem

1,2 easy
3. $\boldsymbol{w l o g} v \neq 0$.
$0 \leq\|u+\alpha v\|^{2}=<u+\alpha v, u+\alpha v>=<u, u>+\alpha<v, u>+\alpha<u, v>+|\alpha|^{2}<v, v>$ Take $\alpha=t<u, v\rangle, t \in \mathbb{R}$
$=\langle u, u\rangle+\left.t|<u, v\rangle\right|^{2}+t \mid\left\langle u, v>\left.\right|^{2}+t^{2}\right|\left\langle u, v>\left.\right|^{2}\|v\|^{2}\right.$
Quadratic; minimized if $t=\frac{1}{m^{2}}$
$0 \leq\|u+\alpha v\|^{2}=\|u\|^{2}-\frac{2}{\|v\|^{2}}|<u, v>|^{2}+\frac{|\langle u, v\rangle|^{2}\|v\|^{2}}{\|v\|^{4}}=\|u\|^{2}-\frac{|\langle u, v\rangle|^{2}}{\|v\|^{2}}$
$\left.\therefore|<u, v\rangle\right|^{2} \leq\|u\|^{2}\|v\|^{2}$
Equality $\Rightarrow 0=\left\|u-\frac{\langle u, v\rangle}{\|v\|^{2}} v\right\|^{2} \Rightarrow \mathrm{u}$ is a multiple of v
4. $\|x+y\|^{2}=\langle x+y, x+y\rangle=\langle x, x\rangle+\langle x, y\rangle+\langle y, x\rangle+\langle y, y\rangle$ $=\|x\|^{2}+2 \operatorname{Re}(\langle x, y\rangle)+\|y\|^{2} \leq\|x\|^{2}+2\|x\|\|y\|+\|y\|^{2}=(\|x\|+\|y\|)^{2}$ equality $\Leftrightarrow x, y$ collinear and $\langle x, y\rangle \geq 0$

Example
$\left.\left.\left\rangle_{i=1}^{n} x_{i} y_{i}\right| \leq(\rangle,\left|x_{i}\right|^{2}\right)(\rangle,\left|y_{i}\right|^{2}\right)$
Example
$\left|\left.\right|_{0} ^{1} f(x) g(x) d x\right| \leq\left(\left.\right|_{0} ^{1}|f(x)|^{2} d x\right)\left(\left.\right|_{0} ^{1}|g(x)|^{2} d x\right)$

Orthogonality

October-31-11
9:35 AM

Orthogonal

Say u is orthogonal to $v(u \perp v)$ if $\langle u, v\rangle=0$

Orthonormal

A set $\left\{e_{i}\right\}_{i \in I}$ is orthonormal if
$\left\langle e_{i}, e_{j}\right\rangle= \begin{cases}0 & i \neq j \\ 1 & i=j\end{cases}$
If $M \subseteq V$, let $M^{\perp}=\{v \in V:\langle v, m\rangle=0 \forall m \in M\}$

Remarks

1. If $u \perp v$, then $\|u+v\|^{2}=\langle u+v, u+v\rangle=$ $\|u\|^{2}+2 \operatorname{Re}\langle u, v\rangle+\|v\|^{2}=\|u\|^{2}+\|v\|^{2}$ Pythagorean Law
2. M^{\perp} is a subspace

If $u, v \in M^{\perp}, \alpha, \beta \in \mathbb{C}, m \in M$ $\langle\alpha u+\beta v, m\rangle=\alpha\langle u, m\rangle+\beta\langle v, m\rangle=0$

Lemma

Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be an orthonormal (o.n.) set, and $x \in \operatorname{span}\left\{e_{1}, \ldots, e_{n}\right\}$ then
$x=\sum_{i=1}^{n}\left\langle x, e_{i}\right\rangle e_{i}=\sum_{i=1}^{n} \alpha_{i} e_{i}$
If $y \in \sum_{i=1}^{n} \beta_{i} e_{i}$, then $\langle x, y\rangle=\sum_{i=1}^{n} \alpha_{i} \beta_{i}$
and $\|x\|=\sqrt{\sum_{i=1}^{n}\left|a_{i}\right|^{2}}$

Note

If $\left\{e_{1}, \ldots, e_{n}\right\}$ are orthonormal, and $v \in V$, then
$v-\sum_{i=1}^{n}\left\langle v, e_{i}\right\rangle e_{i} \perp s p\left\{e_{1}, \ldots, e_{n}\right\}$

Gram-Schmidt Process

Start with a set of vectors $\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$
Build an o.n. set with the same span.

1. Throw out v_{j} if $v_{j} \in \operatorname{sp}\left\{v_{1}, \ldots, v_{j-1}\right\}$ So wlog $\left\{v_{1}, \ldots, v_{m}\right\}$ is independent
2. Let $e_{1}=\frac{v_{1}}{\left\|v_{1}\right\|}$

Let $e_{2}=\frac{v_{2}-\left\langle v_{2}, e_{1}\right\rangle e_{1}}{\left\|v_{2}-\left\langle v_{2}, e_{2}\right\rangle e_{1}\right\|}$
...
3. If e_{1}, \ldots, e_{k-1} are defined and o.n. Let

$$
e_{k}=\frac{v_{k}-\sum_{i=1}^{k-1}\left\langle v, e_{i}\right\rangle e_{i}}{\left\|v_{k}-\sum_{i=1}^{k-1}\left\langle v, e_{i}\right\rangle e_{i}\right\|}
$$

$\operatorname{span}\left\{e_{1}, \ldots, e_{k}\right\}=\operatorname{span}\left\{v_{1}, \ldots, v_{k}\right\}$

Lemma

If $\left\{e_{i}\right\}$ are orthonormal, then they are linearly independent.

Lemma

Every finite dimensional subspace $M \subseteq V$ has an orthonormal basis.

Proof of Lemma

Write $x=\sum_{i=1}^{n} \alpha_{i} e_{i}$
$\left\langle x, e_{j}\right\rangle=\left\langle\sum a_{i} e_{i}, e_{j}\right\rangle=\sum_{i=1}^{n} a_{i}\left\langle e_{i}, e_{j}\right\rangle=\alpha_{j}$
$\langle x, y\rangle=\left\langle\sum_{i=1}^{n} \alpha_{i} e_{i}, \sum_{j=1}^{n} \beta_{j} e_{j}\right\rangle=\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \beta_{j}\left\langle e_{i}, e_{j}\right\rangle=\sum_{i=1}^{n} \alpha_{i} \beta_{i}$
Example
$H=C[0,1]$ with
$\langle f, g\rangle=\int_{0}^{1} f(x) g(x) d x$
Let $e_{n}(x)=e^{2 \pi i n x}, n \in d Z$
$\left\langle e_{n}, e_{m}\right\rangle=\int_{0}^{1} e^{2 \pi i n x} e^{2 \pi i m x} d x=\int_{0}^{1} e^{2 \pi i(n-m) x} d x$
$=\left\{\begin{array}{c}1,\left.\quad \begin{array}{c}n=m \\ 2 \pi i(n-m) \\ 2 \pi i(n-m) x\end{array}\right|_{0} ^{1}=1-1=0, \quad n \neq m\end{array}\right.$
So $\left\{e_{n}, n \in \mathbb{Z}\right\}$ is orthonormal
If $c \in C[0,1]$ get a series
$\sum_{n=-\infty}^{\infty}\left\langle f, e_{n}\right\rangle e_{n}=\sum_{-\infty}^{\infty} \tilde{f}(n) e^{e \pi i n}$
Fourier Series

Proof of Lemma

If $0=\sum_{i=1}^{n} a_{i} e_{i}$
then $0=\|0\|=\left\|\sum_{i=1}^{n} a_{i} e_{i}\right\|=\sum_{i=1}^{n}\left|a_{i}\right|^{2}$
$\therefore a_{i}=0 \forall i$

Proof of Lemma

Take a basis $\left\{v_{1}, \ldots, v_{k}\right\}$ for M and apply the Gram-Schmidt Process to get an orthonormal basis.

Proof of Theorem(Projection)

1.

$\operatorname{ran} P=\operatorname{sp}\left\{e_{1}, \ldots, e_{n}\right\}=M$
ker $P=\left\{v:\left\langle v, e_{i}\right\rangle=0\right.$ for $\left.1 \leq i \leq n\right\}=\left\{e_{1}, \ldots, e_{n}\right\}^{\perp}$
$=\left(s p\left\{e_{1}, \ldots, e_{n}\right\}\right)^{\perp}=M^{\perp}$
If $w \in M, w=\sum_{i=1}^{n} a_{i} e_{i}$
$P w=\sum\left\langle w, e_{i}\right\rangle e_{i}=\sum_{i=1}^{n} a_{i} e_{i}=w$
$P^{2} v=P(P v)=P v$
\therefore Projection onto M
2.
$v \in V, P v \in M$
$\left\langle v-P v, e_{i}\right\rangle=0$ for $1 \leq i \leq n$
$\therefore v-P v \in M^{\perp}$
$v=P v+(v-P v)$
$\|v\|^{2}=\|P v\|^{2}+\|v-P v\|^{2}$ (Pythagorean)
Suppose $m \in M$
$v-m=(P v-m)+(v-P v)$
$\therefore\|v-m\|^{2}=\|P v-m\|^{2}+\|v-P v\|^{2} \geq\|v-P v\|^{2}$
equality $\Leftrightarrow m=P v$
$\therefore P v$ is the unique closest point
$\therefore P v$ is the only projection onto M because $P v=$ the closest point on M■
$I-P$ is written P^{\perp} and P^{\perp} is the projection onto M^{\perp}

Every finite dimensional subspace $M \subseteq V$ has an orthonormal basis.

Projection

V inner product space. $P \in \mathcal{L}(V)$ is a projection if $P=P^{2}$ (idempotent) s.t. ker $P \perp \operatorname{ran} P$

Theorem (Projection)

Let M be a finite dimensional subspace of V with orthonormal basis $\left\{e_{1}, \ldots, e_{n}\right\}$. Define $P \in \mathcal{L}(V)$ by $P v=\sum_{i=1}^{n}\left\langle v, e_{i}\right\rangle e_{i}$
Then:

1) P is the projection of V onto M (i.e. $\operatorname{ran} P=M, \operatorname{ker} P=M^{\perp}, P=P^{2}$)
2) $v \in V,\|v\|^{2}=\|P v\|^{2}+\|v-P v\|^{2}$
3) $P v$ is the unique closest point in M closest to v

Corollary - Bessel's Inequality
If V is an inner product space and $\left\{e_{n}: n \in S\right\}$ is orthonormal then
$\sum_{n \in S}\left|\left\langle v, e_{n}\right\rangle\right|^{2} \leq\|v\|^{2} \quad \forall v \in V$

Corollary

$f \in C[0,1], \quad\left\{e^{2 \pi i n x}: n \in \mathbb{Z}\right\}$ orthonormal
So if $a_{n}=\int_{0}^{1} f(x) e^{2 \pi i n x} d x$
then $\sum_{h=-\infty}^{\infty}\left|a_{n}\right|^{2} \leq \int_{0}^{1}|f(x)|^{2} d x$
$\therefore P v$ is the only projection onto M because $P v=$ the closest point on M■
$I-P$ is written P^{\perp} and P^{\perp} is the projection onto M^{\perp}

Proof of Corollary

If S is finite, not problem
Let $M=\operatorname{sp}\left\{e_{n}: n \in S\right\}$
$P v=\sum_{n \in S}\left\langle v, e_{n}\right\rangle e_{n}$
and $\|v\|^{2} \geq\|P v\|^{2}=\sum_{n \in S}\left|\left\langle v, e_{n}\right\rangle\right|^{2}$
If S is infinite for each finite $F \subseteq S$ let $M_{f}=s p\left\{e_{n}, n \in F\right\}$
P_{F}, projction onto M_{F}
Then $\|v\|^{2} \geq\left\|P_{F} v\right\|^{2}=\sum_{n \in F}\left|\left\langle v, e_{n}\right\rangle\right|^{2}$
$\therefore\|v\|^{2} \geq \sup _{F \subseteq S, \text { finite }} \sum_{n \in F}\left|\left\langle v, e_{n}\right\rangle\right|^{2}=\sum_{n \in S}\left|\left\langle v, e_{n}\right\rangle\right|^{2}$
At most $\|v\|^{2}$ coefficients $\left\langle v, e_{n}\right\rangle$ have $\left|\left\langle v, e_{n}\right\rangle\right| \geq 1$
Otherwise \exists finite $N>\|v\|^{2}$ and $|F|=N$ s.t. $\left|\left\langle v, e_{n}\right\rangle\right| \geq 1, n \in F$
$\Rightarrow \sum_{n \in F}\left|\left\langle v, e_{n}\right\rangle\right|^{2}=N>\|v\|^{2}$
At most $4^{k}\|v\|^{2}$ coefficients with $\left|\left\langle v, e_{n}\right\rangle\right| \geq \frac{1}{2^{k}}$
$F_{k}=\left\{n:\left|\left\langle v, e_{n}\right\rangle\right| \geq \frac{1}{2^{k}}\right\}$
$\|v\|^{2} \geq \sum_{F_{k}}\left|\left\langle v, e_{n}\right\rangle\right|^{2} \geq \frac{\left|F_{k}\right|}{4^{k}}$
$\therefore\left|F_{k}\right| \leq 4^{k}\|v\|^{2}$
So $\left\{n:\left\langle v, e_{n}\right\rangle \neq 0\right\}=\bigcup_{k \geq 0}\left\{k:\left|\left\langle v, e_{n}\right\rangle\right| \geq 2^{-k}\right\}$
Is countable
List them $n_{1}, n_{2}, n_{3}, \ldots$
$\sum_{i=1}^{\infty}\left|\left\langle v, e_{n_{i}}\right\rangle\right|^{2}=\lim _{\mathrm{k} \rightarrow \infty} \sum_{\mathrm{i}=1}^{\mathrm{k}}\left|\left\langle v, e_{n_{i}}\right\rangle\right|^{2}$
$\therefore \sum_{n \in S}\left|\left\langle v, e_{n}\right\rangle\right|^{2} \leq\|v\|^{2}$

Canonical Forms in Inner Product Spaces

Theorem

If V is a complex inner product space, $\operatorname{dim} V<\infty, T \in \mathcal{L}(V)$.
Then there is an orthonormal basis $\beta=\left\{e_{1}, \ldots, e_{n}\right\}$ such that $[T\rfloor_{\beta}$ is upper triangular.

Adjoint

V inner product space, $T \in \mathcal{L}(V)$
The adjoint of T is the linear map T^{*} such that
$\left\langle T^{*} v, w\right\rangle=\langle v, T w\rangle \forall v, w \in V$

Fix an orthonormal basis $\xi=\left\{e_{1}, \ldots, e_{n}\right\}$
$\left.T\right|_{\xi}=\left|t_{i j}\right|_{n \times n}$
$t_{i j}=\left\langle T e_{j}, e_{i}\right\rangle$
Then $\left|T^{*}\right|_{\xi}=\left|t_{j i}\right|_{n \times n}$

Proposition
If $S, T \in \mathcal{L}(V)$ then

1) $\left(S^{*}\right)^{*}=S$
2) $(\alpha S+\beta T)^{*}=\alpha S^{*}+\beta T^{*}$
3) $I^{*}=I$
4) $(S T)^{*}=T^{*} S^{*}$

Hermitian (Self-Adjoint)
$T \in \mathcal{L}(V)$ is Hermitian or self-adjoint if $T=T^{*}$
If $T=\left|t_{i j}\right|=T^{*}=\left|t_{j i}\right|$
Then $t_{j i}=t_{i j}$ and $t_{i i}=t_{i i} \in \mathbb{R}$
If we check that $|T|_{\beta}=\left|T^{*}\right|_{\beta}$ then it has $|T|_{\xi}=\left|T^{*}\right|_{\xi}$ on every basis.

Reason:
$T=T^{*} \Leftrightarrow\langle T u, v\rangle=\langle u, T v\rangle \forall u, v \in V$
This is basis independent.
Theorem
If $T \in \mathcal{L}(V), V$ finite and a \mathbb{C} inner product space, and $T=T^{*}$,
then there is an orthonormal basis ξ such that
$|T|_{\xi}=\left|\begin{array}{ccc}d_{1} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & d_{n}\end{array}\right|$ is diagonal with $d_{i} \in \mathbb{R}$
So $\sigma(T) \subseteq \mathbb{R}$ and $\operatorname{ker}\left(T-\lambda_{i} I\right) \perp \operatorname{ker}\left(T-\lambda_{j} I\right)$ if $\lambda_{i} \neq \lambda_{j} \in \sigma(T)$

Corollary
If V is a finite \mathbb{R}-inner product space. $T \in \mathcal{L}(V)$ s.t. $T=T^{*}$
then there is an orthonormal basis ξ such that
$|T|_{\xi}=\left|\begin{array}{ccc}d_{1} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & d_{n}\end{array}\right|$ is diagonal

Proof of Theorem

Since \mathbb{C} is algebraically closed, $p_{T}(x)$ splits into linear terms. Hence there is a basis $\left\{v_{1}, \ldots, v_{n}\right\}$ such that T is upper triangular with respect to $\left\{v_{i}\right\}$

Apply Gram-Schmidt process to $\left\{v_{1}, \ldots, v_{n}\right\}$ to an orthonormal basis $\left\{e_{1}, \ldots, e_{n}\right\}$
$T v_{1}=t_{11} v_{1}$
Since $e_{1}=\frac{v_{1}}{\left\|v_{1}\right\|}, T e_{1}=t_{11} e_{1}$
$T_{2} v_{2}=t_{22} e_{2}+t_{12} e_{1}$
$e_{2}=\frac{v_{2}-\left\langle v_{2}, e_{1}\right\rangle e_{1}}{\left\|v_{2}-\left\langle v_{2}, e_{1}\right\rangle e_{1}\right\|}=a_{1} v_{1}+a_{2} v_{2}$
$T e_{2}=a_{1} T v_{1}+a_{2} T v_{2} \in \operatorname{sp}\left\{v_{1}, v_{2}\right\}$
T upper Δ with respect to $\left\{v_{1}, \ldots, v_{n}\right\}$ means $M_{k}=s p\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ is invariant for T But $\operatorname{span}\left\{e_{1}, \ldots, e_{k}\right\}=\operatorname{span}\left\{v_{1}, \ldots, v_{k}\right\}$
$\left.\therefore T e_{k} \in M_{k}\left(\text { i.e. } T e_{k}=\right\rangle_{i=1}^{k} b_{i k} e_{i}\right)$
So $[T]_{\beta}$ is upper triangular.
What is T^{*} ?
Fix an orthonormal basis $\xi=\left\{e_{1}, \ldots, e_{n}\right\}$
$|T|_{\xi}=\left|t_{i j}\right|_{n \times n}$
$T e_{j}=\sum_{i=1}^{n} t_{i j}, e_{i} \Rightarrow\left\langle T e_{j}, e_{i}\right\rangle=t_{i j}$
$\left\langle T^{*} e_{j}, e_{i}\right\rangle=\left\langle e_{j}, T e_{i}\right\rangle=\left\langle T e_{i}, e_{j}\right\rangle=t_{j i}$
So $\left[T^{*}\right\}_{\xi}=\left|t_{i j}\right|$
Conjugate transpose of T
So we can define a linear transformation
$T^{*} \in \mathcal{L}(V)$ with $\left[T^{*}\right\rfloor_{\xi}=\left|t_{j i}\right|$
Need to check that the identity holds for all vectors $v, w \in T$
Take $v=\sum_{i=1}^{n} \alpha_{i} e_{i}, \quad w=\sum_{j=1}^{n} \beta_{j} e_{j}$
Calculate
$\left.\left.\left.\left.\left.\left.\left\langle T^{*} v, w\right\rangle=\left\langle T^{*}\right\rangle_{i=1}^{n} \alpha_{i} e_{i},\right\rangle_{j=1}^{n} \beta_{j} e_{j}\right\rangle=\right\rangle_{i=1}^{n},\right\rangle_{j=1}^{n} \alpha_{i} \beta_{j}\left\langle T^{*} e_{i}, e_{j}\right\rangle=\right\rangle_{i=1}^{n},\right\rangle_{j=1}^{n} \alpha_{i} \beta_{j}\left\langle T e_{j}, e_{i}\right\rangle$
$\left.\left.\left.=\rangle_{i=1}^{n}\right\rangle_{j=1}^{n} \alpha_{i} b_{j}\left\langle T e_{j}, e_{i}\right\rangle=\langle T\rangle_{j=1}^{n} \beta_{j} e_{j},\right\rangle_{i=1}^{n} \alpha_{i} e_{i}\right\rangle=\langle T w, v\rangle=\langle v, T w\rangle$
So T^{*} is a well defined linear map.
Proof of Proposition
1.

Fix an orthonormal basis ξ
$\lfloor S\rfloor_{\xi}=\left|s_{i j}\right|$
$\left\lfloor S^{*}\right\rfloor_{\xi}=\left|s_{j i}\right|$
$\left\lfloor S^{* *}\right\rfloor_{\xi}=\left|s_{i j}\right|=\lfloor S\rfloor_{\xi}$
2.
$|\alpha S|_{\xi}=\left|\alpha S_{i j}\right|$
$\left\lfloor(\alpha S)^{*}\right\rfloor_{\xi}=\left|\alpha s_{j i}\right|=\alpha\left|s_{j i}\right|=\alpha\left\lfloor S^{*}\right\rfloor_{\xi}$
$\lfloor T\rfloor_{\xi}=\left|t_{i j}\right|$
$|\alpha S+\beta T|_{\xi}=\left|\alpha s_{i j}+\beta t_{i j}\right|_{\xi}$
$\left\lfloor(\alpha \mathrm{S}+\beta \mathrm{T})^{*}\right\rfloor_{\xi}=\left|\alpha S_{j i}+\beta t_{j i}\right|=\alpha\left|s_{j i}\right|+\beta\left|t_{j i}\right|=\alpha\left\lfloor S^{*}\right\rfloor_{\xi}+\beta\left\lfloor T^{*}\right\rfloor_{\xi}$
3.
$I=\left|\begin{array}{ccc}1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & 1\end{array}\right|=I^{*}$
4.
$S=\left|s_{i j}\right|_{n \times n^{\prime}} \quad T=\left|t_{i j}\right|_{n \times n}$
$S^{*}=\left|s_{j i}\right|, \quad T=\left|t_{j i}\right|$
$S T=\left|\sum_{k=1}^{n} s_{i k} t_{k j}\right|_{n \times n}$
$\therefore(S T)^{*}=\left|\sum_{k=1}^{n} s_{j k} t_{k i}\right|$
$T^{*} S^{*}=| \rangle_{k=1}^{n} t_{k i} S_{j k} \mid=(S T)^{*}$
Proof of Theorem
Since V is a \mathbb{C}-vector space there is an orthonormal basis ξ such that $[T\rfloor_{\xi}$ is upper triangular.
$|T|_{\xi}=\left|\begin{array}{ccc}t_{11} & \cdots & t_{1 n} \\ \vdots & \ddots & \vdots \\ 0 & \cdots & t_{n n}\end{array}\right|=\left|T^{*}\right|_{\xi}=\left|\begin{array}{ccc}t_{11} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ t_{n 1} & \cdots & t_{n n}\end{array}\right|$
If $i<j, t_{i j}=0$ If $i=j, t_{i i}=t_{i i} \in \mathbb{R}$
$\therefore|T|_{\xi}=\left|\begin{array}{ccc}t_{11} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & t_{n n}\end{array}\right|, t_{i i} \in \mathbb{R}$
$\sigma(T)=\left\{t_{i i}: 1 \leq i \leq n\right\} \subseteq \mathbb{R}$
$\operatorname{ker}\left(T-\lambda_{i} I\right)=s p\left\{e_{j}: t_{j j}=\lambda_{i}\right\}$ are pairwise orthogonal.

Proof of Corollary
Fix an orthonormal basis $\beta, T=\left\lfloor t_{i j}\right\rfloor_{\beta}=\left\lfloor t_{j i}\right\rfloor_{\beta}$
Think of T as acting on \mathbb{C}^{n}
$T=T^{*}$ so by Theorem $p_{T}(x)=\left.\right|_{i=1} ^{n} \mid\left(x-\lambda_{i}\right)$ and $\lambda_{i} \in \mathbb{R}$
So p_{T} splits in $\mathbb{R}|x|$
\therefore T is triangularizable over $\mathbb{R} \exists \zeta$ s.t. $|T|_{\zeta}$ is upper triangular
Apply Gram-Schmidt to basis to get an orthonormal basis ξ and $\lfloor T\rfloor_{\xi}$ is upper Triangular and self adjoint, so the same argument shows $|T|_{\xi}$ is diagonal.

Unitary Maps

November-04-11

Unitary and Orthogonal Maps

$\mathrm{V}, \mathrm{W} \mathbb{C}$ - inner product spaces.
$U \in \mathcal{L}(V, W)$ is called unitary iff it is invertible and preserves inner product: $\left\langle U v_{1}, U v_{2}\right\rangle_{W}=\left\langle v_{1}, v_{2}\right\rangle_{V}$

If V, W are \mathbb{R}-inner product spaces, call such a map orthogonal.
Theorem
If $\operatorname{dim} V=\operatorname{dim} W<\infty, U \in \mathcal{L}(V, W)$, TFAE

1) U is unitary
2)

a. U preserves inner product
b. U is isometric (preserves norm)
3)
a. U sends every orthonormal basis of V to an orthonormal basis for W
b. U sends some orthonormal basis of V to an orthonormal basis of W

Remark
If $V=\mathbb{C}=s p\left\{e_{1}\right\}, W=\mathbb{C}^{2}=s p\left\{f_{1}, f_{2}\right\}$
$T\left(\alpha e_{1}\right)=\alpha f_{1}$ preserves inner product but not onto so not invertible.
Proposition
$U \in \mathcal{L}(V, W)$ is unitary \Leftrightarrow
$U^{*} U=I_{V}$ and $U U^{*}=I_{W} \Leftrightarrow$
$U^{-1}=U^{*}$

Unitarily Equivalent

Say two transformations $S \in \mathcal{L}(V)$ and $T \in \mathcal{L}(W)$ are unitarily
equivalent iff \exists unitary $U \in \mathcal{L}(V, W)$ s.t. $T=U S U^{-1}=U S U^{*}$
Corollary
If T is self-adjoint $\left(T=T^{*}\right)$ then $T \cong D$ (T unitarily equivalent to D$)$ where D is diagonalizable with real entries.

Just a restatement of theorem that T is diagonalizable with respect to an orthonormal basis $\left\{f_{1}, \ldots, f_{n}\right\}$ say $T f_{i}=d_{i} f_{i}, d_{i} \in \mathbb{R}$

Say $T=\left|t_{i j}\right|$ in $\left\{e_{1}, \ldots, e_{n}\right\}$ orthonormal basis. Let $U e_{i}=f_{i} 1 \leq i \leq n$ Then U is unitary (takes one orthonormal basis to another) and $\left(U^{*} T U\right) e_{i}=U^{*} T f_{i}=U^{*} d_{i} f_{i}=d_{i} e_{i}$ ($U^{*}=U^{-1}$, so $U^{*} f_{i}=e_{i}$)
$\therefore D=U^{*} T U=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$

Proof of Theorem

$1 \Rightarrow 2$ a By definition
$2 \mathrm{a} \Rightarrow 2 \mathrm{~b}$
$\|U v\|^{2}=\langle U v, U v\rangle=\langle v, v\rangle=\|v\|^{2}$
$2 \mathrm{~b} \Rightarrow 2 \mathrm{a}$
Assignment 5 \#5a
$\left\langle U v_{1}, v_{2}\right\rangle=\frac{1}{4}\left(\left\|v_{1}+v_{2}\right\|^{2}-\left\|v_{1}-v_{2}\right\|^{2}+i\left\|v_{1}+i v_{2}\right\|^{2}-i\left\|v_{1}-i v_{2}\right\|^{2}\right)$
$2 \mathrm{a} \Rightarrow 3 \mathrm{a}$
If $\left\{e_{1}, \ldots, e_{n}\right\}$ is an orthonormal basis for V , Let $f_{i}=U e_{i}$
$\left\langle f_{i}, f_{j}\right\rangle=\left\langle U e_{i}, U_{j}\right\rangle=\left\langle e_{i}, e_{j}\right\rangle=\delta_{i j} \therefore\left\{f_{i}\right\}$ is orthonormal
Since $\operatorname{dim} W=\operatorname{dim} V,\left\{f_{i}\right\}$ is an orthonormal basis.
$3 \mathrm{a} \Rightarrow 3 \mathrm{~b}$ Obvious
$3 \mathrm{~b} \Rightarrow \mathrm{a}$
Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be an orthonormal basis such that $f_{i}=U e_{i}$ is an orthonormal basis for W .
U takes a basis for V to a basis for $\mathrm{W} \therefore \mathrm{U}$ is invertible
Let $v_{1}=\sum, \alpha_{i} e_{i}, v_{2}=\sum, \beta_{j} e_{j}$
$\left.\left\langle v_{1}, v_{2}\right\rangle=\right\rangle_{i=1}^{n} \alpha_{i} \beta_{i}$
$U v_{1}=\sum, \alpha_{i} f_{i}, \quad U v_{2}=\sum, \beta_{j} f_{j}$
$\left.\left.\left.\therefore\left\langle U v_{1}, U v_{2}\right\rangle=\langle \rangle, \alpha_{i} f_{i},\right\rangle, \beta_{j} f_{j}\right\rangle=\right\rangle, \alpha_{i} \beta_{i}=\left\langle v_{1}, v_{2}\right\rangle$
So it preserves inner product. $\therefore U$ is unitary

Proof of Proposition

3nd and 2rd statements are clearly equivalent.
\Rightarrow
Let $v_{1}, v_{2} \in V, w_{i}=U v_{i}$
$\left\langle v_{1}, U^{*} w_{2}\right\rangle=\left\langle U v_{1}, w_{2}\right\rangle=\left\langle U v_{1}, U v_{2}\right\rangle=\left\langle v_{1}, v_{2}\right\rangle=\left\langle v, U^{-1} w_{2}\right\rangle$
$\left\langle v_{1}, U^{*} w_{2}-U^{-1} w_{2}\right\rangle=0 \forall v_{1} \in V$
$\therefore U^{*} w_{2}=U^{-1} w_{2}, \forall w_{2} \in U V=V$ i.e. $U^{*}=U^{-1}$
\Leftarrow
U is invertible and
$\left\langle U v_{1}, U v_{2}\right\rangle=\left\langle U^{*} U v_{1}, v_{2}\right\rangle=\left\langle v_{1}, v_{2}\right\rangle$ preserves \langle,

Normal Maps

November-07-11
9:40 AM

Definition

$N \in \mathcal{L}(V)$ is normal if $N^{*} N=N N^{*}$

Theorem

$T \in \mathcal{L}(V)$ is normal \Leftrightarrow
There is an orthonormal basis which diagonalizes T .

Corollary

If T is normal and
$\sigma(T)=\left\{\lambda_{1}, \ldots, \lambda_{s}\right\}$ then $m_{T}(x)=\left.\right|_{i=1} ^{s}\left(x-\lambda_{i}\right)$
and $V_{i}=\operatorname{ker}\left(T-\lambda_{i} I\right)$ are pairwise orthogonal

Corollary

If U is unitary, then
$\sigma(Y) \subseteq \mathbb{T}=\{\lambda:|\lambda|=1\}$
and U is diagonalizable w.r.t. some o.n. basis.

Corollary

If N is normal $\sigma(N)=\left\{\lambda_{1}, \ldots, \lambda_{s}\right\}$ and $V_{i}=\operatorname{ker}\left(N-\lambda_{i} I\right)$
The idempotent $E_{i} \in \mathcal{A}(N)$ onto V_{i} is the orthonormal projection of V onto V_{i}. Moreover $N=\sum_{i=1}^{s} \lambda_{i} E_{i}$

Corollary

If p is a polynomial, N normal write $N=\sum_{i=1}^{s} \lambda_{i} E_{i}, E_{i}$ as above
Then $p(N)=\sum_{i=1}^{s} p\left(\lambda_{i}\right) E_{i}$

Rank 1 Matrices

Suppose $T \in \mathcal{L}(V, W)$ and $\operatorname{rank}(T)=1$
Let $K=\operatorname{ker} T \subseteq V$
$\mathrm{n}=\operatorname{dim} V=\operatorname{nul}(T)+\operatorname{rank}(T)=\operatorname{dim} K+1$
$\therefore \operatorname{dim} K=n-1$
Pick a unit vector $e \in V, e \perp K$. Let $w=T e(\neq 0$ since $e \neq K)$ $V=K \oplus K^{\perp}=K \oplus \mathbb{F} e$
If $v \in V, v=k+\lambda e, k \in K, \lambda \in \mathbb{F}$
$T v=T(k+\lambda e)=\lambda T e=\lambda w$
Think of $e=\left|\begin{array}{c}\alpha_{1} \\ \alpha_{2} \\ \vdots \\ \alpha_{n}\end{array}\right|$ as a $n \times 1$ matrix
So $e \in \mathcal{L}(\mathbb{F}, V)$ by $e(\lambda)=\lambda e$
$e^{*}=\left\lfloor\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\rfloor \in \mathcal{L}(V, \mathbb{F})$ is a $1 \times n$ matrix
If $v \in V, \quad v=\left|\begin{array}{c}v_{1} \\ \vdots \\ v_{n}\end{array}\right|$
$\left.e^{*} v=\left|\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right| \begin{gathered}v_{1} \\ v_{2} \\ \vdots \\ v_{n}\end{gathered} \right\rvert\,=\sum_{i=1}^{n} \alpha_{i} v_{i}=\langle v, e\rangle$
$e^{*}(k+\lambda e)=0+\lambda\|e\|^{2}=\lambda$
$w e^{*}=\left|\begin{array}{c}w_{1} \\ w_{2} \\ \vdots \\ w_{n}\end{array}\right|\left|\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right|=\left|\begin{array}{cccc}w_{1} \alpha_{1} & w_{1} \alpha_{2} & \ldots & w_{1} \alpha_{n} \\ w_{2} \alpha_{1} & w_{2} \alpha_{2} & \ldots & w_{2} \alpha_{n} \\ \vdots & \vdots & \ddots & \vdots \\ w_{n} \alpha_{1} & w_{n} \alpha_{2} & \ldots & w_{n} \alpha_{n}\end{array}\right|$
$w e^{*} \in \mathcal{L}(\mathbb{F}, W) \cdot \mathcal{L}(V, \mathbb{F})=\mathcal{L}(V, W)$
$\left(w e^{*}\right)(k+\lambda e)=\lambda w=T(k+\lambda e)$
$T=w e^{*}=T e e^{*}$

Example of Normal Maps

1. $T=T^{*}$ are normal $(T T=T T)$
2. Unitaries are normal $\left(U^{*} U=I=U U^{*}\right)$
3. If D is diagonal w.r.t an orthonormal basis
$D=\operatorname{diag}\left(d_{1}, d_{2}, \ldots,\right), D^{*}=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$
$D^{*} D=D D^{*}=\operatorname{diag}\left(\left|d_{1}\right|^{2},\left|d_{2}\right|^{2}, \ldots,\left|d_{n}\right|^{2}\right)$

Proof of Theorem

\Leftarrow Example 3
\Rightarrow If T is normal then $\|T x\|=\left\|T^{*} x\right\| \forall x \in V$ because:
$\|T x\|^{2}=\langle T x, T x\rangle=\left\langle x, T^{*} T x\right\rangle=\left\langle x, T T^{*} x\right\rangle=\left\langle T^{*} x, T^{*} x\right\rangle=\left\|T^{*} x\right\|^{2}$
Choose an orthonormal basis $\left\{e_{1}, \ldots, e_{n}\right\}$ so that $|T|_{\beta}$ is upper Δ
$T=\left|\begin{array}{cccc}t_{11} & t_{12} & \ldots & t_{1 n} \\ 0 & t_{22} & \ldots & t_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & t_{n n}\end{array}\right|, T^{*}=\left|\begin{array}{cccc}t_{11} & 0 & \ldots & 0 \\ t_{12} & t_{22} & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ t_{1 n} & t_{1 n} & \ldots & t_{n n}\end{array}\right|$
$\left\|T e_{1}\right\|^{2}=\left\|t_{11} e_{i}\right\|^{2}=\left|t_{11}\right|^{2}$
$\left\|T e_{1}\right\|^{2}=\left\|T^{*} e_{1}\right\|^{2}=\left\|t_{11} e_{1}+t_{12} e_{2}+\cdots+t_{1 n} e_{n}\right\|^{2}=\sum_{j=1}^{n}\left|t_{1 j}\right|^{2}=\left|t_{11}\right|^{2}+\sum_{j=2}^{n}\left|t_{i j}\right|^{2}$
$\therefore t_{1 j}=0$ for $2 \leq j \leq n$
Repeat $\left\|T e_{2}\right\|=\left|t_{22}\right|=\left\|T^{*} e_{2}\right\|=\sqrt{\sum_{j=2}^{n}\left|t_{2 j}\right|^{2}}$
$\therefore t_{2 j}=03 \leq j \leq n$
$\therefore T$ is diagonal

Proof of Corollary

Since T is diagonalizable wrt some basis, $m_{T}(x)=\|\left(x-\lambda_{i}\right)$ has only simple roots. Say $\left\{e_{i}\right\}_{i=1}^{n}$ orthonormal, $T e_{i}=d_{i} e_{i}$
$V_{j}=\operatorname{ker}\left(T-\lambda_{j} I\right)=s p\left\{e_{i}: d_{i}=\lambda_{j}\right\}$
$\therefore V_{j}$ are pairwise \perp

Proof of Corollary

U normal \therefore diagonalizable
Say $U e_{i}=d_{i} e_{i},\left\{e_{i}\right\}$ orthonormal
$\left\|U e_{i}\right\|=\left\|e_{i}\right\|=1$
$\left\|U e_{i}\right\|=\left|d_{i}\right|\left\|e_{i}\right\|=\left|d_{i}\right|$
$\therefore\left|d_{i}\right|=1$

Proof of Corollary

E_{i} is the projection onto V_{i}
The range of E_{i} is V_{i} and
$\operatorname{ker}\left(E_{i}\right)=\sum_{i}, V_{j}=V_{i}^{\perp}$
$V_{i}=s p\left\{e_{k}: d_{k}=\lambda_{i}\right\}$
$\rangle, V_{j}=\operatorname{sp}\left\{e_{k}: d_{k} \neq \lambda_{i}\right\}=V_{i}^{\perp}$
$j \neq i$
$N E_{i}=E_{i} N=\lambda_{i} E_{i}$
So $N=N\left(\sum_{i=1}^{s} E_{i}\right)=\sum_{i=1}^{s} \lambda_{i} E_{i}$

Example

Orthogonal projection on to $\mathbb{F e}$
$T e=e$ so
$T=e e^{*}=\left|\begin{array}{c}\alpha_{1} \\ \vdots \\ \alpha_{n}\end{array}\right| \begin{array}{lll}\alpha_{1} & \ldots & \left.\alpha_{n}\right\rfloor=\left|\alpha_{i} \alpha_{j}\right|\end{array}$

Polar Decomposition

November-09-11
9:30 AM

Complex

$z \in \mathbb{C}, z=r e^{i \theta}, \quad r=|z|,\left|e^{i \theta}\right|=1$

Positive

$T \in \mathcal{L}(V), V \mathbb{C}$-vector space is positive if $T=T^{*}$ and $\sigma(T) \subseteq[0, \infty)$ Write $T \geq 0$

Proposition

If $T \in \mathcal{L}(V)$ then $T^{*} T \geq 0$
Square Root
$T^{*} T$ can be diagonalized with orthonormal basis $\xi=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$
$\left[T^{*} T\right]_{\xi}=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right), \quad d_{i} \geq 0$
$\sqrt{d_{i}}$ the square root of d_{i}
$\lfloor A\rfloor_{\xi}=\operatorname{diag}\left(\sqrt{d_{1}}, \sqrt{d_{2}}, \ldots, \sqrt{d_{n}}\right)$ and $A^{2}=T^{*} T$
i.e. A is the square root of $T^{*} T$ call this $|T|$ (absolute value of T)

Fact (Homework)
The square root of $T^{*} T$ is unique
Want to write $T=U|T|$
Partial Isometry
A partial isometry is a map $U \in \mathcal{L}(V, W)$ such that $\left.U\right|_{\operatorname{ker} U^{\perp}}$ is isometric (preserves norm)

Examples

$U: \mathbb{C}^{2} \rightarrow \mathbb{C}^{3}$ by $U(x, y)=(x, y, 0)$
$U^{*}: \mathbb{C}^{3} \rightarrow \mathbb{C}^{2}$ by $U(x, y, z)=(x, y)$-not unitary
U unitary is a partial isometry

Proposition

$U \in \mathcal{L}(V, W)$ TFAE

1. U is a partial isometry
2. $U^{*} U$ is a projection $\left(\right.$ onto $\left.(\operatorname{ker} U)^{\perp}\right)$
3. $U U^{*}$ is a projection (onto $\operatorname{ran} U$)
4. $U=U U^{*} U$

Theorem (Polar Decomposition)

If $T \in \mathcal{L}(V, W)$ then there is a unique partial isometry U with $\operatorname{ker} U=\operatorname{ker} T$ such that $T=U|T|\left(|T|=\sqrt{T^{*} T}\right)$

S-Numbers

The s-numbers of $T \in \mathcal{L}(V, W)$ are the eigenvalues of $|T|$ (including multiplicity) in decreasing order.

Geometry of how T acts
$|T|=\operatorname{diag}\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ wrt $\left\{e_{1}, e_{n}\right\}$
If considering the action on a unit sphere, T stretches it onto an ellipsoid (axis length defined by s-numbers). U is a partial rotation in space.

Proof of Proposition

$\left(T^{*} T\right)^{*}=T^{*} T^{* *}=T^{*} T$
If $T^{*} T x=\lambda x,\|x\|=1$
$\lambda=\langle\lambda x, x\rangle=\left\langle T^{*} T x, x\right\rangle=\langle T x, T x\rangle=\|T x\|^{2} \geq 0$
$\therefore T^{*} T \geq 0$

Proof of Proposition

$1 \Rightarrow 2$
$\operatorname{ker} U \supseteq \operatorname{ker} U^{*} U$
$x \in \operatorname{ker} U^{*} U \Rightarrow 0=\left\langle U^{*} U x, x\right\rangle=\langle U x, U x\rangle=\|U x\|^{2}$
$\therefore x \in \operatorname{ker} U, \operatorname{ker} U \subseteq \operatorname{ker} U^{*} U$
$\therefore \operatorname{ker} U=\operatorname{ker} U^{*} U$
If $x \perp$ ker U then $\|U x\|=\|x\|$
$\langle x, x\rangle=\|x\|^{2}=\|U x\|^{2}=\langle U x, U x\rangle=\left\langle U^{*} U x, x\right\rangle$
$\operatorname{ran}\left(U^{*} U\right) \perp \operatorname{ker} U$ since $y \in \operatorname{ker} U$:
$\left\langle U^{*} U x, y\right\rangle=\langle U x, U y\rangle=\langle U x, 0\rangle=0$
$x, y \in(\operatorname{ker} U)^{\perp}$
$\left\langle U^{*} U x, y\right\rangle=\langle U x, U y\rangle=\langle x, y\rangle$ (because of isomorphic)
$U^{*} U x \in(\operatorname{ker} U)^{\perp}$
Take orthonormal basis $\left\{e_{1}, \ldots, e_{k}\right\}$ for $(\operatorname{ker} U)^{\perp}$
$\left\langle U^{*} U e_{i}, e_{j}\right\rangle=\left\langle e_{i}, e_{j}\right\rangle=\delta_{i j}$
$\therefore U^{*} U e_{i}=\sum\left\langle U^{*} U e_{i}, e_{j}\right\rangle e_{i}=e_{i}$
$\therefore U^{*} U x=x$ for $x \in(\operatorname{ker} U)^{\perp}$
$\therefore U^{*} U$ is the projection onto $(\operatorname{ker} U)^{\perp}$
$2 \Rightarrow 1$, if $x \in(\operatorname{ker} U)^{\perp}$
$\|U x\|^{2}=\langle U x, U x\rangle=\left\langle U^{*} U x, x\right\rangle=\langle x, x\rangle=\|x\|^{2}$
$1 \Rightarrow 3$
Claim:
If U is a partial isometry so is U^{*}

Claim
$\operatorname{ker} U^{*}=(\operatorname{ran} U)^{\perp}$
Proof of Claim
If $y \perp \operatorname{ran} U$, then $0=\langle y, U x\rangle \forall x \in V$
$0=\left\langle U^{*} y, x\right\rangle$, Take $x=U^{*} y$
$0=\left\langle U^{*} y, U^{*} y\right\rangle=\left\|U^{*} y\right\|^{2}$
If $y \in \operatorname{ker} U^{*}, x \in V$
$\langle y, U x\rangle=\left\langle U^{*} y, x\right\rangle=0$
$\therefore y \perp$ ran U
$\therefore \operatorname{ker} U^{*} \perp \operatorname{ran} U$
On the ran U
$U^{*}(U x)=P_{\text {ker } U}^{\perp} x$
$y \in \operatorname{ran} U$ replace x by $U^{*} U x$ becomes $x-U^{*} U x \in \operatorname{ker} U$
$0=U x-U U^{*} U x \Rightarrow U x=U U^{*} U x(2 \Rightarrow 4)$
$y=U x, x=U^{*} U x, U^{*} y=U^{*} U x=x$
$y=U x, \quad x=U^{*} U x$
$U^{*} y=x$
$\left\|U^{*} y\right\|=\|x\|=\|U x\|=\|y\|$
U^{*} is a partial isometry
\Leftrightarrow
$U U^{*}=U^{* *} U^{*}$ is a projection
$4 \Rightarrow 2$
$U=U U^{*} U$
$\therefore U^{*} U=U^{*} U U^{*} U=\left(U^{*} U\right)^{2}$
Self adjoint, idempotent \therefore projection
Proof of Polar Decomposition Theorem
Diagonalize $|T|=\operatorname{diag}\left(s_{1}, s_{2}, \ldots, s_{n}\right), \quad s_{1} \geq s_{2} \geq \cdots \geq s_{n} \geq 0$

Claim
$\|T x\|=\||T| x\| \forall x \in V$
Proof
$\left.\||T| x\|^{2}=\langle | T|x,|T| x\rangle=\left.\langle | T\right|^{2} x, x\right\rangle=\left\langle T^{*} T x, x\right\rangle=\langle T x, T x\rangle=\|T x\|^{2}$
$\operatorname{ker}|T|=\operatorname{ker} T=s p\left\{e_{i}: s_{i}=0\right\}$
$\operatorname{ran}|T|=\operatorname{sp}\left\{e_{i}: s_{i}>0\right\}=(\operatorname{ker} T)^{\perp}$
Define U on $\operatorname{ran}|T|$ by $U(|T| x)=T x$
U is isometric on $\mathrm{ran}|T|$ by

Claim
Define $\left.U\right|_{\text {ker } T}=0$
$U\left(\sum a_{i} e_{i}\right)=U\left(\sum_{i=1}^{k} a_{i} e_{i}\right), \sum_{i=1}^{k} a_{i} e_{i} \in \operatorname{ran} T$
U is a partial isometry $T=U|T|$
Remark
$\left\{e_{1}, \ldots, e_{k}\right\}$ orthonormal basis for $(\operatorname{ker} T)^{\perp}$. Let $f_{i}=U e_{i}, 1 \leq i \leq k$ f_{i} are orthonormal in W
$|T|=\sum_{i=1}^{k} s_{i} e_{i} e_{i}^{*}, e_{i} e_{i}^{*}$ is projection to $\mathbb{C} e_{i}$
$T=U|T|=\sum_{i=1}^{k} s_{i}\left(f_{i} e_{i}^{*}\right)$, rank 1 projection sends $e_{i} \mapsto f_{i}$
$U=\sum_{i=1}^{k} f_{i} e_{i}^{*}$

Least Square Approximation

November-11-11

9:30 AM
An experiment is run to test whether the output, y is a linear function of the input variables: x_{1}, \ldots, x_{n}
Run the experiment m times ($m \gg n$) to get a bunch of data.

x_{1}	x_{2}	\ldots	x_{n}	y_{n}
x_{11}	x_{12}		$x_{1 n}$	y_{1}
\vdots	\vdots	\vdots	\vdots	\vdots
$x_{m 1}$	\ldots	\ldots	\ldots	y_{m}

Looking for $a_{1}, \ldots, a_{n} \in \mathbb{R}$ or \mathbb{C} so that
$\sum_{j=1}^{n} a_{j} x_{i j} \approx y_{i}$ for $1 \leq i \leq m$
$\operatorname{minimize}_{a_{1}, \ldots, a_{n}}\left(\sqrt{\sum_{i=1}^{m} \cdot\left|y_{i}-\sum_{y=1}^{n} a_{j} x_{i j}\right|^{2}}\right)$
Let $X_{1}=\left|\begin{array}{c}x_{11} \\ x_{12} \\ \vdots \\ x_{1 m}\end{array}\right|, \ldots, X_{j}=\left|\begin{array}{c}x_{j 1} \\ x_{j 2} \\ \vdots \\ x_{j m}\end{array}\right|, \quad 1 \leq j \leq n, \quad Y=\left|\begin{array}{c}y_{1} \\ y_{2} \\ \vdots \\ y_{m}\end{array}\right|$
Problem becomes
$\operatorname{minimize}_{a_{1}, \ldots, a_{n}}\left\|Y-\sum_{j=1}^{n} a_{j} X_{j}\right\|_{2}=\operatorname{dist}\left(Y, \operatorname{span}\left\{X_{1}, \ldots, X_{n}\right\}\right)=\left\|Y-P_{s p\left\{X_{j}\right\}} Y\right\|_{2}$
We must choose a_{1}, \ldots, a_{n} so that $\left.\sum_{j=1}^{n} a_{j} X_{j}=P_{S p\left\{X_{j}\right\}}\right\}^{Y}$
These are the scalars such that $\left\langle Y-\sum_{j=1}^{n} a_{j} X_{j}, X_{i}\right\rangle=0, \quad 1 \leq i \leq n$
$\left\langle Y-\sum_{j=1}^{n} a_{j} X_{j}, X_{i}\right\rangle=\left\langle Y, X_{i}\right\rangle-\sum_{j=1}^{n} a_{j}\left\langle X_{j}, X_{i}\right\rangle=X_{i}^{*} Y-\sum_{j=1}^{n} a_{i} X_{j}^{*} X_{i}$
Let $X=\left\lfloor X_{1}, \ldots, X_{n}\right\rfloor$, then $X^{*} Y=\left|\begin{array}{c}X_{1}^{*} \\ \mathrm{X}_{2}^{*} \\ \vdots \\ \mathrm{X}_{\mathrm{n}}^{*}\end{array}\right| Y=\left|\begin{array}{c}X_{1}^{*} Y \\ X_{2}^{*} Y \\ \vdots \\ X_{n}^{*} Y\end{array}\right|=\left[\begin{array}{c}\sum_{j=1}^{n} a_{j} X_{1}^{*} X_{j} \\ \sum_{j=1}^{n} a_{j} X_{2}^{*} X_{j} \\ \vdots \\ \vdots \\ \sum_{j=1}^{n} a_{j} X_{n}^{*} X_{j}\end{array}\right]$
$X^{*} X=\left|\begin{array}{c}\mathrm{X}_{1}^{*} \\ \mathrm{X}_{2}^{*} \\ \vdots \\ \mathrm{X}_{n}^{*} \\ n\end{array}\right|\left[\begin{array}{llll}X_{1} & X_{2} & \ldots & X_{n}\end{array}\right]=\left|\begin{array}{ccc}X_{1}^{*} X_{1} & \ldots & X_{1}^{*} X_{n} \\ \vdots & \ddots & \vdots \\ X_{n}^{*} X_{1} & \ldots & X_{n}^{*} X_{n}\end{array}\right|$
$\left|\begin{array}{c}a_{1} \\ a_{2} \\ \vdots \\ a_{n}\end{array}\right|=\left[\left.\begin{array}{c}\sum_{j=1}^{n} a_{j} X_{1}^{*} X_{j} \\ \sum_{j=1}^{n} a_{j} X_{2}^{*} X_{j} \\ \vdots \\ \sum_{j=1}^{n} a_{j} X_{n}^{*} X_{j}\end{array} \right\rvert\,=X^{*} X a=X^{*} Y\right.$
If X_{1}, \ldots, X_{n} are linearly independent then X has rank n .
Claim
$\operatorname{rank}\left(X^{*} X\right)=\operatorname{rank} X$
Proof
$\operatorname{rank}(X)=\operatorname{dim}($ domain $)-\operatorname{nul}(X)=n-\operatorname{nul}(X)$

Example

x_{1}	x_{2}	y	ax
7	3	1.6	1.86
9	2	2.1	1.94
5	5	2.0	2.02
4	6	2.2	2.10
3	1	0.8	0.73
3	2	1.1	0.98

$X^{*} X=\left|\begin{array}{cc}189 & 97 \\ 97 & 79\end{array}\right|, X^{*} Y=\left|\begin{array}{c}54.6 \\ 35.2\end{array}\right|$
$\left(X^{*} X\right)^{-1}=\left(\begin{array}{cc}0.0143 & -0.0176 \\ -0.0176 & 0.0324\end{array}\right)$
$a=\left|\begin{array}{l}0.161 \\ 0.243\end{array}\right|$
$\operatorname{rank}\left(X^{*} X\right)=n-n u l X^{*} X$
If $x \in \operatorname{ker} X$ then $X^{*} X x=X^{*} 0=0$, so $x \in \operatorname{ker} X^{*} X$
If $x \in \operatorname{ker} X^{*} X, 0=\left\langle X^{*} X x, x\right\rangle=\langle X x, X x\rangle=\|X x\|^{2}$, so $x \in \operatorname{ker} X$
\therefore If X_{1}, \ldots, X_{n} is linearly independent then $X^{*} X$ is invertible.d $X^{*} X a=X^{*} Y$
$\therefore a=\left(X^{*} X\right)^{-1} X^{*} Y$

Sesquilinear Forms

November-11-11
10:09 AM

Sesquilinear Form

$\mathrm{V} \mathbb{C}$ vector space.
A function $F: V \times V \rightarrow \mathbb{C}$ is a sesquilinear form if it is linear in the first variable and conjugate linear in the second variable.
$F\left(a_{1} v_{1}+a_{2} v_{2}, w\right)=a_{1} F\left(v_{1} w\right)+a_{2} F\left(v_{2}, w\right)$
$F\left(v, a_{1} w_{1}+a_{2} w_{2}\right)=a_{1} F\left(v, w_{1}\right)+a_{2} F\left(v, w_{2}\right)$

Definitions

Say F is Hermitian if $F(w, v)=F(v, w)$
F is non-negative if F is Hermitian and $F(v, v) \geq 0$
F is positive if $F \geq 0$ and $F(v, v)>0$ for $v \neq 0$

Theorem
If $F: V \times V \rightarrow \mathbb{C}$ is sesquilinear form, then there is a unique $T_{F} \in \mathcal{L}(V)$ such that $F(v, w)=\left\langle T_{F} v, w\right\rangle$ for $v, w \in V$

Moreover, the map $F \mapsto T_{F}$ is a linear isomorphism from the vector space of sesquilinear forms onto $\mathcal{L}(V)$

Principal Axis Theorem

If $F(x, y)$ is a Hermitian sesquilinear form then \exists an orthonormal basis $\left\{e_{1}, \ldots, e_{n}\right\}$ and $d_{i} \in \mathbb{R}$ s.t.
$\left.\left.F(\rangle, \alpha_{i} e_{i},\right\rangle, \beta_{i} e_{i}\right)=\sum_{i=1}^{n} d_{i} \alpha_{i} \beta_{i}$
e_{i} are principal axes.

Symmetric Quadratic Form

A symmetric quadratic form on \mathbb{R}^{n} is
$q\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} x_{i} x_{j}, \quad$ where $a_{i j}=a_{j i} \in \mathbb{R}$
Any quadratic form in \mathbb{R}^{n}
$q(x)=\rangle,\rangle, b_{i j} x_{i} x_{j}$
Replace $b_{i j}$ by $a_{i j}=\frac{b_{i j}+b_{j i}}{2}$ now it is symmetric.
Diagonalization
Again, this quadratic form can be diagonalized
$A=\left|a_{i j}\right|=A^{*}$
\exists o.n. basis $\left\{e_{1}, \ldots, e_{n}\right\}$ of \mathbb{R}^{n} consisting of eigenvalues
$A e_{i}=d_{i} e_{i}, \quad 1 \leq i \leq n, \quad d_{i} \in \mathbb{R}$
$e_{i}=\begin{gathered}c_{1 i} \\ c_{2 i} \\ \vdots \\ c_{n i}\end{gathered}, \quad U=\left|\begin{array}{llll}e_{1} & e_{2} & \ldots & e_{n}\end{array}\right|=\left|c_{i j}\right|_{n \times n^{\prime}} \quad U$ orthogonal
$U^{*} A U=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)=D$
$q\left(x_{1}, \ldots, x_{n}\right)=\langle A| \begin{gathered}x_{1} \\ \vdots \\ x_{n}\end{gathered}\left|,\left|\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right|\right\rangle=\left\langle U D U^{*}\right| \begin{gathered}x_{1} \\ \vdots \\ x_{n}\end{gathered}\left|,\left|\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right|\right\rangle$
$\left.\left.=\left\langle D U^{*}\right| \begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\left|, U^{*}\right| \begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array} \right\rvert\,\right)$
$U^{*}\left|\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right|=\left|\begin{array}{c}e_{1}^{*} \\ \vdots \\ e_{n}^{*}\end{array}\right|\left|\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right|=\left|\begin{array}{c}\left\langle x, e_{1}\right\rangle \\ \vdots \\ \left\langle x, e_{n}\right\rangle\end{array}\right|=\left[\begin{array}{c}\sum_{i=1}^{n} c_{i 1} x_{i} \\ \vdots \\ \vdots \\ \sum_{i=1} c_{i n} x_{i}\end{array}\right], c_{i j} \in \mathbb{R}$
$q\left(x_{1}, \ldots, x_{n}\right)=\sum_{j=1}^{n} d_{j}\left(\sum_{i=1}^{n} c_{i j} x_{i}\right)^{2}$

Proof
Fix an orthonormal basis $\xi=\left\{e_{1}, \ldots, e_{n}\right\}$ for V. F sesquilinear form.
$\operatorname{Need}\left\langle T e_{j}, e_{i}\right\rangle=F\left(e_{j}, e_{i}\right), 1 \leq i, j \leq n$
Let $\lfloor T\rfloor_{\xi}=\left|t_{i j}\right|_{n \times n}$ where $t_{i j}=\left\langle T e_{j}, e_{i}\right\rangle$
T is the unique map on $\mathcal{L}(V)$ such that $\left\langle T e_{j}, e_{i}\right\rangle=F\left(e_{j}, e_{i}\right), 1 \leq i, j \leq n$
Let $v=\sum_{i=1}^{n}{ }_{n} a_{i} e_{i}, \quad w=\sum_{i=1}^{n} b_{i} e_{i}$
$\left.\left.\left.\langle T v, w\rangle=\rangle_{i=1}^{n}\right\rangle_{j=1}^{n} a_{j} b_{i}\left\langle T e_{j}, e_{i}\right\rangle=\right\rangle_{i=1}^{n}\right\rangle_{j=1}^{n} a_{j} b_{i} F\left(e_{j}, e_{i}\right)=\sum_{i=1}^{n} b_{i} F\left(\sum_{j=1}^{n} a_{j} e_{j}, e_{i}\right)$
$\left.\left.=F(\rangle, a_{j} e_{j},\right\rangle, b_{i} e_{i}\right)=F(v, w)$
Show T_{F} is uniquely determined by $\mathrm{F}, F \mapsto T_{F}$ is linear.
$T_{F}=0 \Leftrightarrow F=0 \therefore 1$ to 1
Onto if $T \in \mathcal{L}(V)$, define $F(v, w)=\langle T v, w\rangle$ is sesquilinear
So $F \mapsto T$, onto

Proof of Principal Axis Theorem
$F(x, y)=\langle A x, y\rangle=\left\langle x, A^{*} y\right\rangle$
$F(x, y)=F(y, x)=\langle A y, x\rangle=\langle x, A y\rangle$
$\therefore A=A^{*}$ is Hermitian
A is diagonalizable w.r.t orthonormal basis
$\xi=\left\{e_{1}, \ldots, e_{n}\right\}$
$|A|_{\xi}=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right), \quad d_{i} \in \mathbb{R}$
$\left.\left.\left.\left.\left.\left.\left.F(\rangle, \alpha_{i} e_{i},\right\rangle, \beta_{i} e_{i}\right)=\langle A\rangle, \alpha_{i} e_{i},\right\rangle, \beta_{i} e_{i}\right\rangle=\langle \rangle, d_{i} \alpha_{i} e_{i},\right\rangle, \beta_{i} e_{i}\right\rangle=\right\rangle, d_{i} \alpha_{i} b_{i}$

Conics

November-14-11
10:07 AM

Ellipse

Take two points F_{1}, F_{2}, with separation $2 c$. Pick $a>c$
Ellipse is $\left\{P=(x, y):\left|P-F_{1}\right|+\left|P-F_{2}\right|=2 a\right\}$

$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
$b^{2}=a^{2}-c^{2}$

Hyperbola

Take two points F_{1}, F_{2} with separation $2 c$
Hyperbola is $\left\{(x, y):\left|P F_{1}\right|-\left|P F_{2}\right|=2 a\right\}$
$F_{1}=(-c, 0), \quad F_{2}=(c, 0)$
$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
$c^{2}=a^{2}+b^{2}$

Parabola

Focus and line. The set of points equidistant to focus and line.

Formula of an Ellipse

Translate so $F_{1}=(-c, 0), F_{2}=(c, 0)$
$\{(x, y):|(x+c, y)|+|(x-c, y)|=2 a\}=\left\{(x, y): \sqrt{(x+c)^{2}+y^{2}}+\sqrt{(x-c)^{2}+y^{2}}=2 a\right\}$
$\sqrt{(x+c)^{2}+y^{2}}=2 a-\sqrt{(x-c)^{2}+y^{2}}$
$(x+c)^{2}+y^{2}=4 a^{2}-4 a \sqrt{(x-c)^{2}+y^{2}}+(x-c)^{2}+y^{2}$
$4 a \sqrt{(x-c)^{2}+y^{2}}=4 a^{2}-4 c x$
$x^{2}-2 c x+c^{2}(x-c)^{2}+y^{2}=a^{2}-2 c x+\frac{c^{2} x^{2}}{a^{2}}$
$\frac{a^{2}-c^{2}}{a^{2}} x^{2}+y^{2}=a^{2}-c^{2}$
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{a^{2}-c^{2}}=1$
General Conic
$a x^{2}+b x y+c y^{2}+d x+e y+f=0$
$a x^{2}+b x y+c y^{2}$ is the quadratic form
$A=\left|\begin{array}{ll}a & \frac{b}{2} \\ \frac{b}{2} & c\end{array}\right|$
$\left\langle A\binom{x}{y},\binom{x}{y}\right\rangle=a x^{2}+b x y+c y^{2}$
Diagonalize w.r.t. orthonormal basis:
Eigenvectors $v_{1}=\binom{\alpha_{1}}{\beta_{1}}, \quad v_{2}=\binom{\alpha_{2}}{\beta_{2}}$
$A v_{1}=\lambda_{1} v_{1}$
$A v_{2}=\lambda_{2} v_{2}$
$U=\left(\begin{array}{ll}\alpha_{1} & \alpha_{2} \\ \beta_{1} & \beta_{2}\end{array}\right)$ orthogonal matrix
$U^{*}=\left(\begin{array}{ll}\alpha_{1} & \beta_{1} \\ \alpha_{1} & \beta_{2}\end{array}\right)$
$U^{*} A U=\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right)=\mathrm{D}, \quad \mathrm{A}=\mathrm{UDU}^{*}$
So
$a x^{2}+b x y+c y^{2}=\left\langle A\binom{x}{y},\binom{x}{y}\right\rangle=\left\langle U D U^{*}\binom{x}{y},\binom{x}{y}\right\rangle=\left\langle D U^{*}\binom{x}{y}, U^{*}\binom{x}{y}\right\rangle$
$=\left\langle D\binom{\alpha_{1} x+\beta_{1} y}{\alpha_{2} x+\beta_{2} y},\binom{\alpha_{1} x+\beta_{1} y}{\alpha_{2} x+\beta_{1} y}\right\rangle=\lambda_{1}\left(\alpha_{1} x+\beta_{1} y\right)^{2}+\lambda_{2}\left(\alpha_{2} x+\beta_{2} y\right)^{2}$
$\lambda_{1} \lambda_{2}=\operatorname{det} D=\operatorname{det} A$
$\lambda_{1} \lambda_{2}>0$ ellipse
$\lambda_{1} \lambda_{2}=0$ parabola
$\lambda_{1} \lambda_{2}<0$ hyperbola
Write $\binom{d}{e}=d^{\prime}\binom{\alpha_{1}}{\beta_{1}}+e^{\prime}\binom{\alpha_{2}}{\beta_{2}}$
$d x+e y=d^{\prime}\left(\alpha_{1} x+\beta_{1} y\right)+e^{\prime}\left(\alpha_{2} x+\beta_{2} y\right)$
The equation
$a x^{2}+b x y+c y^{2}+d x+d y+f=0$
becomes
$\lambda_{1}\left(\alpha_{1} x+\beta_{1} y\right)^{2}+\lambda_{2}\left(\alpha_{2} x+\beta_{2} y\right)^{2}+d^{\prime}\left(\alpha_{1} x+\beta_{1} y\right)+e^{\prime}\left(\alpha_{2} x+\beta_{2} y\right) i+f=0$
$\lambda_{1}\left(\alpha_{1} x+\beta_{1} y+\frac{d^{\prime}}{2 \lambda_{1}}\right)^{2}+\lambda_{2}\left(\alpha_{2} x+\beta_{2} y+\frac{e^{\prime}}{e \lambda_{2}}\right)^{2}=\left(\frac{d^{\prime 2}}{2 \lambda_{1}}+\frac{e^{\prime 2}}{2 \lambda_{2}}-f\right)=f^{\prime}$
$\lambda_{1}\left(\alpha_{1} x+\beta_{1} y\right)^{2}+\lambda_{1} \frac{2 d^{\prime}}{2 \lambda_{1}}\left(\alpha_{1} x+\beta_{1} y\right)+\frac{d^{\prime 2}}{4 \lambda_{1}}+\lambda_{2}\left(\alpha_{2} x+\beta_{2} y\right)^{2}+\alpha_{2} \frac{2 e^{\prime}}{2 \lambda_{2}}\left(\alpha_{2} x+\beta_{2} y\right)+\frac{e^{\prime 2}}{4 \lambda_{2}}$
Translate to eliminate constants
$\frac{d^{\prime}}{2 \lambda_{1}}, \frac{e^{\prime}}{2 \lambda_{2}}$
Rotate by U to get
$\lambda_{1} x^{2}+\lambda_{2} y^{2}=f^{\prime}$
$\frac{x^{2}}{\alpha^{2}}+\frac{y^{2}}{\beta_{2}^{2}}=1$

Duality
November-16-11
10:00 AM
Dual Space
If V is a vector space over \mathbb{F} then the dual space of V is
$V^{*}=\mathcal{L}(V, \mathbb{F})$. Elements of V^{*} are called linear functionals.
Fix a basis $\beta=\left\{v_{1}, \ldots, v_{i}, \ldots, v_{n}\right\}$ for V
Define $\delta_{j} \in V^{*}$ by $\delta_{j}\left(\sum_{i=1}^{n} \alpha_{i} v_{i}\right)=\alpha_{j}$
$\delta_{j}\left(v_{i}\right)= \begin{cases}0, & i \neq j=1 \\ 1, & i=j=\delta_{i j}\end{cases}$

Kronecker Delta

Proposition
$\operatorname{dim} V^{*}=\operatorname{dim} V$ and $\left\{\delta_{1}, \ldots, \delta_{n}\right\}$ is a basis for V^{*}
(Called the dual basis of $\left\{v_{1}, \ldots, v_{n}\right\}$)
Note
$V^{* *}=\mathcal{L}\left(V^{*}, \mathbb{F}\right)$
If $v \in V$ define $v \in V^{* *}$ by $v(\varphi):=\varphi(v), \varphi \in V^{*}$
$v(a \varphi+b \psi)=(a \varphi+b \psi)(v)=a \varphi(v)+b \psi(v)=a v(\varphi)+b v(\psi)$
Thus there is a natural linear map
$i: V \rightarrow V^{* *}$ by $i(v)=v$
This is linear.

Theorem

The natural map $i: V \rightarrow V^{* *}$ is an isomorphism.
Remark
This fails dramatically for infinite dimensional vectors spaces.

Example

Let $c_{00}=$ \{sequences $\left(x_{1}, x_{2}, x_{3}, \ldots\right) x_{i}=0$ except for finitely often $\}$
$e_{i}=(0, \ldots, 0,1,0, \ldots)$ is a basis for c_{00}
$\left.\varphi \in C_{00}^{*}, \quad \varphi\left(e_{i}\right) \alpha_{i}, \quad \varphi=\right\rangle, \alpha_{i} \delta_{i}$
$c_{00}^{*}=s=\left\{\right.$ all sequences $\left.\left(\alpha_{1}, \alpha_{2}, \ldots\right)\right\}$
$\operatorname{dim} S=2^{x_{0}}$
S^{*} is humongous.

Isomorphism

Since we have an isomorphism $i: V \rightarrow V^{* *}$ we say
$V^{* *}=V$ and identify $i(v)$ with v.
V is reflexive

Dual Space Basis
Suppose $\varphi \in V^{*}$
Let $\varphi\left(v_{i}\right)=\beta_{i}, 1 \leq i \leq n$
$\psi=\rangle^{n} \beta_{j} \delta_{j} \in V^{*}$ ${ }_{j=1}^{n}$
$\psi\left(v_{i}\right) \geqslant \beta_{j} \delta_{i}\left(v_{i}\right)=\beta_{i}$
A linear map is determined by what it does to a basis, so $\varphi=\psi$
Proof of Proposition
I expressed every $\varphi \in V^{*}$ as a linear combination of $\delta_{1}, \ldots, \delta_{n}$ which are linearly independent.
$0=\rangle_{i}^{n} a_{i} \delta_{i}$
$0=\left(\sum_{i=1}^{i=1} a_{i} f_{i}\right)\left(v_{j}\right)=a_{j}$
$\Rightarrow a_{1}=a_{2}=\cdots=a_{n}=0$
So $\delta_{1}, \ldots, \delta_{n}$ are linearly independent span $V^{*} \therefore$ is a basis.
$\operatorname{dim} V^{*}=n=\operatorname{dim} V$ ■

Proof of Theorem

Fix a basis v_{1}, \ldots, v_{n} for V
Construct the dual basis $\delta_{1}, \ldots, \delta_{n}$ for V^{*}
Construct the dual dual basis $\varepsilon_{1}, \ldots, \varepsilon_{n}$ for $V^{* *}$
$v_{i}\left(\delta_{j}\right)=\delta_{j}\left(v_{i}\right)=\delta_{i j}$
$\varepsilon_{i}\left(\delta_{j}\right)=\delta_{i j}$
So v_{i} and e_{i} agree on a basis $\therefore v_{i}=e_{i}$
So $\left.i\left(\sum_{j=1}^{n} a_{j} v_{j}\right)=\right\rangle_{j=1}^{n} a_{j} \varepsilon_{j}$ is 1-1 and onto ■

Duality on Inner Product Spaces

November-18-11
9:31 AM

Theorem

Let V be an inner product space. Then for each $\varphi \in V^{*}$ there is a unique $w \in V$ s.t. $\varphi(v)=\langle v, w\rangle \forall v \in V$

The map which sends $\varphi \mapsto w$ is a conjugate linear map of V^{*} onto V.

Corollary

V inner product space, we convert V^{*} to an inner product space by
$\left.\left\rangle, \alpha_{i} \delta_{i},\right\rangle, \beta_{i} \delta_{i}\right\rangle=\sum_{i=1}^{n} \alpha_{i} \beta_{i}$
If $\varphi \in V^{*}$ then $\|\varphi\|_{V^{*}}=\sup _{\substack{\|v\| \leq 1 \\ v \in V}}|\varphi(v)|$
Notation
$\left.\left(\nu, \alpha_{i} e_{i},\right\rangle, \beta_{j} \delta_{j}\right)=\sum_{j=1}^{n} \beta_{i} \delta_{j}\left(\sum_{i=1}^{n} \alpha_{i} e_{i}\right)$

Definition

Let V be a finite dimensional vector space.
If $S \subseteq V$ let $S^{\perp}=\left\{\varphi \in V^{*}: \varphi(s)=0 \forall s \in S\right\}$
This is the annihilator of S

Proposition

$S \subseteq V$ then

1. S^{\perp} is a subspace of V^{*}
2. $S^{\perp \perp}=\operatorname{span}(S)$
3. $\operatorname{dim} S^{\perp}+\operatorname{dim} S^{\perp \perp}=\operatorname{dim} V$

Relationship between perps.
H inner product space
H^{*} conjugate linear isometric $\mathrm{v} \ldots$.. to H
$\varphi \in H^{*}, \exists!y \in H$ s.t. $\varphi(x)=\langle x, y\rangle, \varphi \rightarrow y$ conjugate linear
$M \subset H, M^{\perp}=H(-) M=\{y:\langle x, y\rangle=0 \forall x \in M\}$
$M^{\perp}=M^{0}=\{\varphi: \varphi(x)=0 \forall x \in M\}$

Proof

Let $\xi=\left\{e_{1}, \ldots, e_{n}\right\}$ be an orthonormal basis for V . Let $\delta_{1}, \ldots, \delta_{n}$ be the dual basis for V^{*}
If $\varphi \in V^{*}$, let $\varphi\left(e_{i}\right)=\beta_{i}, 1 \leq i \leq n$
So $\varphi=\sum_{i=1}^{n} \beta_{i} \delta_{i}$ because $\left(\sum_{j=1}^{n} \beta_{j} \delta_{j}\right)\left(e_{i}\right)=\beta_{i}$
Want $w \in V$ s.t. $\left\langle e_{i}, w\right\rangle=\beta_{i}, 1 \leq i \leq n$
$\left.\left\langle e_{i},\right\rangle_{i=1}^{n} \beta_{i} e_{i}\right\rangle=\beta_{i}$
So define $T: V^{*} \rightarrow V$ by
$T\left(\sum_{i=1}^{n} \beta_{i} \delta_{i}\right)=\sum_{i=1}^{n} \beta_{i} e_{i}$
$T \varphi=w=\rangle_{i=1}^{n} \beta_{i} e_{i}$
$\left.\left.\left.\langle v, w\rangle=\langle \rangle, \alpha_{i} e_{i},\right\rangle, \beta_{i} e_{i}\right\rangle=\right\rangle, \alpha_{i} \beta_{i}=\varphi(v)$
T is not linear-it is conjugate linear. T is 1-1 and onto \quad ■

Proof of Corollary

Clearly this makes V^{*} an inner product space
Let $\varphi=\rangle_{j=1}^{n} \beta_{j} \delta_{j} \in V^{*}$
$\|\varphi\|_{V^{*}}=\sqrt{\sum_{j=1}^{n}\left|\beta_{j}\right|^{2}}$
If $v \in V, \quad v=\rangle_{i=1}^{n} \alpha_{i} e_{i}$
$\left.|\varphi(v)|=\left|(\rangle, \alpha_{i} e_{i},\right\rangle, \beta_{j} \delta_{j}\right)\left|=\left|\sum_{i=1}^{n} \alpha_{i} \beta_{i}\right| \leq \sqrt{\sum_{1}\left|\alpha_{i}\right|^{2}} \sqrt{\rangle,\left|\beta_{i}\right|^{2}}=\|v\|_{V}\|\varphi\|_{V^{*}}\right.$
So get:
$\sup _{v \in V}|\varphi(v)| \leq \sup _{\|v\| \leq 1}\|v\|\|\varphi\|_{V^{*}}=\|\varphi\|_{V^{*}}$
$\|v\| \leq 1$
To get equality, take
$v=\frac{\sum_{i=1}^{n} \beta_{i} e_{i}}{\sqrt{\sum\left|\beta_{i}\right|^{2}}}, \quad \varphi(v)=\frac{\sum_{i=1}^{n} \beta_{i} \beta_{i}}{\sqrt{\sum\left|\beta_{i}\right|^{2}}}=\sqrt{\lambda\left|b_{i}\right|^{2}}=\|\varphi\|_{V^{*}}$

Proof of Proposition

1.

$0 \in S^{\perp}$
If $\varphi, \psi \in S^{\perp}, \quad s \in S, \quad \alpha, \beta \in F$
$(\alpha \varphi+\beta \psi)(s)=\alpha \varphi(s)+\beta \psi(s)=0$
2.
$S^{\perp \perp}$ is a subspace of $V^{* *}=V$ which contains S because $s \in S, \varphi \in S^{\perp}$
$i(s) \sim s(\varphi)=\varphi(s)=0$
So $S^{\perp \perp} \supseteq \operatorname{span}(S)$
Suppose $v \notin \operatorname{span}(S)$
Take a basis for S, say $v_{1}, \ldots, v_{k}(\operatorname{dim} S=k)$ and extend too a basis $v_{1}, \ldots, v_{k}, v, v_{k+2}, \ldots, v_{n}$ Note, used v in the basis.

Let $\delta_{1}, \ldots, \delta_{n}$ be the dual basis of V^{*}
$\delta_{k+1}\left(v_{i}\right)=0, \quad 1 \leq i \leq k \Rightarrow \delta_{k+1} \in S^{\perp}$
$\delta_{k+1}(v)=1 \neq 0, \quad \therefore v \notin S^{\perp \perp}$
So $S^{\perp \perp} \subseteq \operatorname{span} S \therefore$ equal
3.

Claim:
$S^{\perp}=\operatorname{span}\left\{\delta_{k+1}, \ldots, \delta_{n}\right\}, \quad j \geq k+1: \delta_{j}\left(v_{i}\right)=0$ for $1 \leq i \leq k \Rightarrow \delta_{j} \in S^{\perp}$
So $\operatorname{span}\left\{\delta_{k+1}, \ldots, \delta_{n}\right\} \subseteq S^{\perp}$
Let $\varphi=\rangle_{j=1} \beta_{i} \delta_{i} \in S^{\perp}$
$0=\varphi\left(v_{i}\right)=\beta_{i} \Rightarrow \varphi \in \operatorname{sp}\left\{\delta_{k+1}, \ldots, \delta_{n}\right\}, \quad i \leq i \leq k$
$\operatorname{dim} S=k, \operatorname{dim} S^{\perp}=n-k, n+n-k=n$

Transpose

November-21-11
9:39 AM

Transpose Map

If $T \in \mathcal{L}(V, W)$ define the transpose of T to be the map $T^{t} \in \mathcal{L}\left(W^{*}, V^{*}\right)$ by $\left(T^{t} \varphi\right)(v)=\varphi(T v)$
$T^{t} \varphi=\varphi \circ T \in \mathcal{L}(V, \mathbb{F})$

Claim

T^{t} is a linear map

Claim

"transpose" is a linear map
$(\alpha S+\beta T)^{t}=\alpha S^{t}+\beta T^{t}$

Theorem
$T \in \mathcal{L}(V, W), T^{t} \in \mathcal{L}\left(W^{*}, V^{*}\right)$

1. If $\beta=\left\{v_{1}, \ldots, v_{m}\right\}$ basis for $V, \beta^{\prime}=\left\{\delta_{1}, \ldots, \delta_{m}\right\}$ for V^{*} $\mathcal{C}=\left\{w_{1}, \ldots, w_{n}\right\}$ basis for $W, \mathcal{C}^{\prime}=\left\{\varepsilon_{1}, \ldots, \varepsilon_{n}\right\}$ for W^{*}

If $|T|_{\beta}^{\mathcal{C}}=\left|t_{i j}\right|_{m \times n}$, then $=\left|t_{j i}\right|_{n \times m}$
2. $T \mapsto T^{t}$ is a linear isomorphism of $\mathcal{L}(V, W)$ onto $\mathcal{L}\left(W^{*}, V^{*}\right)$
3. $\operatorname{ran} T^{t}=(\operatorname{ker} T)^{\perp}$ and $\operatorname{ker} T^{t}=(\operatorname{ran} T)^{\perp}$
4. $\operatorname{rank} T^{t}=\operatorname{rank} T$

Proof of Claim

$T^{t}(\alpha \varphi+\beta \psi)(v)=(\alpha \varphi+\beta \psi)(T v)=\alpha \varphi(T v)+\beta \psi(T v)=\left(\alpha T^{t} \varphi+\beta T^{t} \psi\right)(v)$
Proof of Claim
$\varphi \in W^{*}, v \in V$
$(\alpha S+\beta T)^{t}(\varphi)(v)=\psi((\alpha S+\beta T)(v))=\psi(\alpha S v+\beta T v)=\alpha \varphi(S v)+\beta \psi(T v)$
$=\alpha\left(S^{t} \varphi\right)(v)+\beta\left(T^{t} \psi\right)(v)=\left(\alpha S^{t}+\beta T^{t}\right)(\varphi)(\psi)$
Proof of Theorem
1
$\left(\left|T^{t}\right|_{\mathcal{C}}^{\beta^{\prime}}\right)_{i j}=a_{i j}$ where $\left(T^{t} \varepsilon_{j}\right)\left(v_{i}\right)=\left(\sum_{k=1}^{m} a_{k j} \delta_{k}\right)\left(v_{i}\right)=a_{i j}$
$\left(T^{t} \varepsilon_{j}\right)\left(v_{i}\right)=\varepsilon_{j}\left(T v_{i}\right)=\varepsilon_{j}\left(\sum_{k=1}^{n} t_{k i} w_{k}\right)=t_{j i}$
$\therefore\left|T^{t}\right|_{\mathcal{C}^{\prime}}^{\beta^{\prime}}=\left|t_{j i}\right|=\left(|T|_{\beta}^{\mathcal{C}}\right)^{t}$
The matrix of the transpose is the transpose of the matrix.

2
$E_{i j}=\left|b_{k l}\right|$ where $b=1$ if $k=i, j=l$ and $b=0$ otherwise
$E_{i j}$ is a basis for $\mathcal{L}(V, W) . E_{i}=w_{i} \delta_{j}$
$E_{i j}^{t}=E_{j i}$ sends a basis for $\mathcal{L}\left(W^{*}, V^{*}\right)$ to a basis for $\mathcal{L}(V, W) . \therefore 1-1$ and onto.
3
$\varphi \in \operatorname{ker} T^{t} \in W^{*} \Leftrightarrow 0=T^{t} \varphi \in V^{*}$
$\Leftrightarrow 0=T^{t} \varphi(v) \forall v \in V=\varphi(T v) \Leftrightarrow \varphi \in(\operatorname{ran} T)^{\perp}$
$\therefore v \in \operatorname{ker} T=\operatorname{ker} T^{t t}=\left(\operatorname{ran} T^{t}\right)^{\perp}$
$\therefore(\operatorname{ker} T)^{\perp}=\left(\operatorname{ran} T^{t}\right)^{\perp \perp}=\operatorname{ran} T^{t}$

4
$\operatorname{rank} T^{t}=\operatorname{dim} \operatorname{ran} T^{t}=\operatorname{dim}(\operatorname{ker} T)^{\perp}=\operatorname{dim} V-\operatorname{dim} \operatorname{ker} T=\operatorname{ran} T$

Since
$M \subseteq V$, basis for M , extend for V. Dual space $\delta_{1}, \ldots, \delta_{n}$
$M^{\perp}=s p\left(\delta_{k+1}, \ldots, \delta_{n}\right\} \Rightarrow \operatorname{dim} M^{\perp}=n-\operatorname{dim} M$

Quotient Spaces

November-21-11
10:02 AM

Quotient Space

V vector space, M subspace of V
Say $v_{1} \equiv v_{2}$ iff $v_{1}-v_{2} \in M$
$\frac{V}{M}$ is the set of equivalence classes $v=v+M$
Make $\frac{V}{M}$ into a vector space by
$t v=t(v+M)=t v+M$
$v+w=(v+w)$
$\frac{V}{M}$ is called the quotient space of V by M.
The map $\Pi: V \rightarrow \frac{V}{M}$ by $\Pi(v)=v$ is called the quotient map.

Proposition

$\Pi \in \mathcal{L}\left(V, \frac{V}{M}\right)$ is surjective and $\operatorname{ker} \Pi=M$.

Theorem

If M is a subspace of V then $M^{*} \cong \frac{V^{*}}{M^{\perp}}$ (isomorphic to) and $\left(\frac{V}{M}\right)^{*} \cong M^{\perp}$

Relations

$V^{*} \rightarrow_{R} M^{*}$
$V^{*} \rightarrow_{q}\left(\frac{V^{*}}{M^{\perp}}\right) \rightarrow_{R} M^{*}$
$R\left(\varphi+M^{\perp}\right)=R \varphi$ well defined because of
$\varphi_{1}, \varphi_{2} \in \varphi, \quad \varphi_{1}-\varphi_{2}=\psi \in M^{\perp}$
$\left.\varphi_{2}\right|_{M}=\left.\varphi_{1}\right|_{M}+\left.\psi\right|_{M}=\left.\varphi_{1}\right|_{M}$
$\therefore R 1-1$

Proof of Well Definition

If $v_{1} \equiv v_{2}$ then $v_{1}-v_{2}=m \in M$
$\therefore t v_{1}-t v_{2}=t m \in M$
$\therefore t v_{1} \equiv t v_{2}$
So $t v$ is independent of choice of representative.
If $v_{1} \equiv v_{2}, w_{1} \equiv w_{2}$ say $w_{1}-w_{2}=n \in M$
$v_{2}+w_{2}=v_{1}+m+w_{1}+n=\left(v_{1}+w_{1}\right)+(m+n), \quad(m+n) \in M$
$\therefore v_{2}+w_{2} \equiv v_{1}+w_{1}$
So $v+w=(v+w)$ is well defined.

Proof of Proposition

Π is linear, surjective by definition.
$\operatorname{ker} \Pi=\{v: v \neq 0\}=\{v: v \in M\}=M$

Proof of Theorem

Let $\Pi: V \rightarrow \frac{V}{M}$ be the quotient map, then $\Pi^{t}:\left(\frac{V}{M}\right)^{*} \rightarrow V^{*}$
$\operatorname{ker} \Pi^{t}=(\operatorname{ran} \Pi)^{\perp}=\{0\}$
$\therefore \Pi^{t}$ is injective
$\operatorname{ran} \Pi^{t}=(\operatorname{ker} \Pi)^{\perp}=M^{\perp}$
So Π^{t} maps $\left(\frac{V}{M}\right)^{*} 1-1$ and onto $M^{\perp} . \therefore$ Linear isomorphism The connection is given by :
Take $\varphi \in\left(\frac{V}{M}\right)^{*}, \Pi^{t} \varphi=\varphi \circ \Pi \in V^{*}$
$(\varphi \circ \Pi)(m)=\varphi(0)=0 \forall m \in M$
So $\left(\frac{V^{*}}{M^{\perp}}\right)^{*} \cong M^{\perp \perp}=M$
$\therefore \frac{V^{*}}{M^{\perp}}=\left(\frac{V^{*}}{M^{\perp}}\right)^{* *} \cong M^{*}$
If $\varphi \in V^{*}$ the restriction map $R \varphi=\left.\varphi\right|_{M}$ is a linear map of V^{*} onto M^{*} $\operatorname{ker} R=\left\{\varphi:\left.\varphi\right|_{M}=0\right\}=M^{\perp}$

Convex Sets

November-23-11
9:33 AM

Convexity

A subset \mathbb{C} of \mathbb{R} or \mathbb{C} is convex if $\forall c_{1}, c_{2} \in C \forall 0 \leq t \leq 1,(1-t) c_{1}+t c_{2} \in C$

Hyperplane

H is a hyperplane if $\exists \varphi \in V^{*}, \varphi \neq 0$ such that $H=\{v: \operatorname{Re} \varphi(v)=a\}$
A half space is a set of form $H^{+}=\{v: \operatorname{Re} \varphi(v) \geq a\}$
Note: H and H^{+}are convex.

Proposition

1. The intersection of convex sets is convex.
2. If $S \subseteq V, \operatorname{conv}(S)$ is the smallest convex set containing S

$$
\left.\left\rangle_{i=1}^{r} t_{i} s_{i}: r \in \mathbb{N}, s_{i} \in S, t_{i} \geq 0,\right\rangle_{i=1}^{r} t_{i}=1\right\}
$$

Theorem (Carathéodory)

If V is a real vector space of dimension $\mathrm{n}, S \subseteq V$ then every point in $\operatorname{conv}(S)$ is a convex combination of $n+1$ points in S

Remark

1. If V is a complex vector space of dimensions n, then it is a real vector space of dimension 2 n . So $2 n+1$ points are needed.
2. In \mathbb{R}^{n} take $S=\left\{0, e_{1}, e_{2}, \ldots, e_{n}\right\}$ the point

$$
\frac{1}{n+1} 0+\sum_{i=1}^{n} \frac{1}{n+1} e_{i} \in S \text { requires } n+1 \text { points. }
$$

Corollary
If $S \subseteq V$ is compact, $\operatorname{dim} V=n<\infty$ then $\operatorname{conv}(S)$ is compact.

Remark: From Calculus

A set $C \subseteq \mathbb{R}^{n}$ is sequentially compact if every sequence $\left\{c_{n}: n \geq 1\right\}$ of points in C has a convergent subsequence $\lim _{k \rightarrow \infty} c_{n_{k}}=c, c \in C$

Heine-Bore Theorem
$C \subseteq \mathbb{R}^{n}$ is compact $\Leftrightarrow \mathrm{C}$ is closed and bounded
Extreme Value theorem
If C compact, $f: C \rightarrow \mathbb{R}$ is continuous then f attains its maximum and minimum values.

Proof of Proposition

1.

$C_{i}, i \in I$ are convex sets in V
$C=| | C_{i}, \quad \mathrm{c}_{1}, \mathrm{c}_{2} \in C, \quad 0 \leq t \leq 1$
$c_{1}, c_{2} \in C_{i} \Rightarrow(1-t) c_{1}+t c_{2} \in C_{i} \forall i$
$\therefore c_{1}, c_{2}, \in C$
2.
$\operatorname{conv}(S)$ exists - it is the intersection of all convex sets containing S
Claim
${ }^{r} t_{i} s_{i} \in \operatorname{conv}(S), \quad s_{1} \in \operatorname{conv}(S)$
$i=1$
Suppose
$v_{k}=\sum_{i=1}^{k}\left(\frac{t_{i}}{\sum_{j=1}^{k} t_{j}}\right) s_{i} \in \operatorname{conv}(S)$
True for $k=1$
If true for k then
$v_{k+1}=\left(\frac{\sum_{i=1}^{k} t_{i}}{\sum_{i=1}^{k+1} t_{i}}\right) v_{k}+\left(\frac{t_{k+1}}{\sum_{i=1}^{k+1} t_{i}}\right) s_{k+1} \in \operatorname{conv}(S)$
Convex combinations of 2 points of $\operatorname{conv}(S)$
By induction $v_{r}=\sum_{i=1}^{r} t_{i} s_{i} \in \operatorname{conv}(S)$
If $\sum_{i=1}^{r} t_{i} s_{i}, \sum_{j=1}^{r^{\prime}} t_{j}^{\prime} s_{j}^{\prime}, \quad t_{i} t_{j}^{\prime} \geq 0, \quad \sum_{i=1}^{r} t_{i}=1=\sum_{j=1}^{r^{\prime}} t_{j}^{\prime}$
For $\left.0 \leq u \leq 1, \quad(1-u) \sum_{i=1}^{r} t_{i} s_{i}+u\right\rangle_{i=1}^{r} t_{i}^{\prime} s_{i}^{\prime}=1$
So the convex combination of two convex combination of two convex combinations of points in S is a convex combinations of points in S
$\left.\therefore\left\rangle_{i=1}^{r} t_{i} s_{i}: r \geq 1, t_{i} \geq 0,\right\rangle, t_{i}=1, s_{i} \in S\right\}$ is the smallest convext set $\supseteq S$

Proof of Theorem

Take a point $v \in \operatorname{conv}(S)$. Can write $\left.v=\sum_{i=1}^{r} t_{i} s_{i}, \quad s_{i} \in S, t_{i} \geq 0,\right\rangle, t_{i}=1$
Claim
If $r \geq n+2$, we can find another convex combination equal to v using fewer of the $\left\{s_{i}\right\}$'s.
wlog, $t_{i}>0$ (if $t_{i_{0}}=0$ throw $s_{i_{0}}$ out of the set)
The set $\left\{s_{1}-s_{r}, s_{2}-s_{r}, \ldots, s_{r-1}-s_{r}\right\}$ has $r-1 \geq n+1$ elements \Rightarrow linearly dependent.
$\therefore \exists a_{i} \in \mathbb{R}$, not all zero such that
$0=\sum_{i=1}^{r-1} a_{i}\left(s_{i}-s_{r}\right)=\sum_{\substack{i=1 \\ r}}^{r-1} a_{i} s_{i}+a_{r} s_{r}$ where $\left.a_{r}=-\right\rangle_{i=1}^{r-1} a_{i}$
So $\sum_{i=1} a_{i}=0$ and $0=\sum_{i=1} a_{i} s_{i}$
Let $J=\left\{i: a_{i}<0\right\}, \quad$ Let $\delta=\min _{i \in J}\left\{\frac{t_{i}}{\left|a_{i}\right|}\right\}=\frac{t_{i_{0}}}{\left|a_{i_{0}}\right|}$, for some $i_{0} \in J$
$\left.\left.v=\rangle_{i=1}^{r} t_{i} s_{i}+\delta\right\rangle_{i=1}^{r} a_{i} s_{i}=\right\rangle_{i=1}^{r}\left(t_{i}+\delta_{i} a_{i}\right) s_{i}$
$i \in J: t_{i}+\delta a_{i} \geq t_{i}+\frac{t_{i}}{\left|a_{i}\right|} a_{i}=t_{i}-t_{i}=0$
$i_{i}: t_{i_{0}}+\delta a_{i_{0}}=t_{i_{0}}-t_{i_{0}}=0$
$i \notin J: t_{i}+\delta a_{i} \geq t_{i} \geq 0$
$\left.\sum_{i=1}^{r}\left(t_{i}+\delta a_{i}\right)=\sum_{i=1}^{r} t_{i}+\delta\right\rangle_{i=1}^{r} a_{i}=1+\delta 0=1$
This new combination does not need $s_{i_{0}}$ because the coefficient is 0 . So we have reduced r to $r-1$.

Proof of Corollary
Every $v \in \operatorname{conv}(S)$ is the convex combination of $n+1$ points in S
$\left.S^{n+1}=\left\{\left(s_{1}, s_{2}, \ldots, s_{n+1}\right): s_{i} \in S\right\}, \quad \Delta_{n+1}=\left\{\left(t_{1}, \ldots, t_{n+1}\right): t_{i} \geq 0,\right\rangle_{i=1}^{n+1} t_{i}=1\right\}$
$S^{n+1} \times \Delta_{n+1} \subseteq V^{n+1} \times \mathbb{R}^{n+1}, S^{n+1}$ compact
$f: S^{n+1} \times \Delta_{n+1} \rightarrow V_{n+1}, \quad f\left(\left(s_{1}, s_{2}, \ldots, s_{n+1}, t_{1}, t_{2}, \ldots, t_{n+1}\right)\right)=\sum_{i=1}^{n+1} t_{i} s_{i}$
f is continuous
The continuous image of a compact set is compact (by EVT)
$\operatorname{conv}(S)=f\left(S^{n+1} \times \Delta_{n+1}\right)$ is compact

Convexity

November-25-11
9:32 AM

Theorem

Let V be a finite dimensional inner produce space $(\mathbb{F}=\mathbb{R}$ or $\mathbb{C})$.
$C \subseteq V$ closed convex set, $p \in V, p \notin C$
Then there is a unique point $c_{0} \in C$ closet to p .
Let $\varphi(x)=\left\langle x, p-c_{0}\right\rangle$
Then $\operatorname{Re} \varphi(p)>\operatorname{Re} \varphi\left(c_{0}\right) \geq \operatorname{Re} \varphi(c) \forall c \in C$
i.e. $C \subseteq\left\{x: \operatorname{Re} \varphi(x) \leq \operatorname{Re} \varphi\left(c_{0}\right)\right\}$, this is called a half space

Separation Theorem

V finite dimensional vector space over \mathbb{R} or \mathbb{C}
$C \subseteq V$ closed convex set, $p \in V, p \notin C$
Then $\exists \varphi \in V^{*}$ such that
$\operatorname{Re} \varphi(p)>\sup _{c \in C} \operatorname{Re} \varphi(c)$

Corollary
If C is a closed subset of V then C is the intersection of all closed half spaces which contain it.

Proof
Define $f: C \rightarrow \mathbb{R}$ by $f(c)=\|p-c\|^{2}$
f is continuous, $f(c)>0$
Pick $c_{1} \in C$ the closest point lies in $C \cap B_{\left\|p-c_{1}\right\|}(p)$, which is closed and bounded.
So f achieves its minimum value by the extreme value theorem.
So there is at least one closest point c_{0}

Uniqueness

Suppose $c_{0}, c_{1} \in C$ are both closest
$\left\|p-c_{0}\right\|=\left\|p-c_{1}\right\|=\delta \leq\|p-c\| \forall c \in C$
But then $\frac{c_{0}+c_{1}}{2} \in C$ and if $c_{0} \neq c_{1}$ then $\left\|p-\frac{c_{0}+c_{1}}{2}\right\|<\delta$, by geometry
Alternatively
$\left\|p-\frac{c_{0}+c_{1}}{2}\right\|^{2}=\left\langle\frac{p-c_{0}}{2}+\frac{p-c_{1}}{2}, \frac{p-c_{0}}{2}+\frac{p-c_{1}}{2}\right\rangle$
$=\left\|\frac{p-c_{0}}{2}\right\|^{2}+2 \operatorname{Re}\left\langle\frac{p-c_{1}}{2}, \frac{p-c_{0}}{2}\right\rangle+\left\|\frac{p-c_{1}}{2}\right\|^{2} \leq \frac{1}{4} \delta^{2}+2\left\|\frac{p-c_{1}}{2}\right\|\left\|\frac{p-c_{0}}{2}\right\|+\frac{1}{4} \delta^{2}=\delta^{2}$
Inequality is Cauchy-Schwartz and must hold with equality
$\therefore \frac{p-c_{1}}{2}=t \frac{p-c_{0}}{2}, t>0$, but $t=1 \therefore c_{1}=c_{0}$
So the closest point is unique.,
$\varphi(x)=\left\langle x, p-c_{0}\right\rangle$
$\varphi\left(p-c_{0}\right)=\left\|p-c_{0}\right\|^{2}>0$
$\varphi\left(p-c_{0}\right)=\varphi(p)-\varphi\left(c_{0}\right)$
$\therefore \operatorname{Re} \varphi(p)=\operatorname{Re} \varphi\left(c_{0}\right)+\left\|p-c_{0}\right\|^{2}>\operatorname{Re} \varphi\left(c_{0}\right)$
Claim
$\operatorname{Re} \varphi(c) \leq \operatorname{Re} \varphi\left(c_{0}\right) \forall c \in C$
If not, $\exists c_{2} \in C$ s.t.
$\operatorname{Re} \varphi\left(c_{2}\right)=\operatorname{Re} \varphi\left(c_{0}\right)+\varepsilon, \quad \varepsilon>0$
$\operatorname{Re} \varphi\left(p-c_{2}\right)=\operatorname{Re} \varphi(p)-\operatorname{Re} \varphi\left(c_{2}\right)=\operatorname{Re} \varphi(p)-\operatorname{Re} \varphi\left(c_{0}\right)+\varepsilon=\operatorname{Re} \varphi\left(p-c_{0}\right)-\varepsilon$
$=\left\|p-c_{0}\right\|^{2}-\varepsilon$
Look at $f(t)=\left\|p-\left((1-t) c_{0}+t c_{2}\right)\right\|^{2}$
$=\left\langle(1-t)\left(p-c_{0}+t\left(p-c_{2},(1-t)\left(\left(p-c_{0}\right)+t\left(p-c_{2}\right)\right\rangle\right.\right.\right.$
$=(1-t)^{2}\left\|p-c_{0}\right\|^{2}+2 \operatorname{Re}\left(t(1-t)\left(p-c_{2}, p-c_{0}\right)\right)+t^{2}\left\|p-c_{2}\right\|^{2}$
$=\left(1-2 t-t^{2}\right)\left\|p-c_{0}\right\|^{2}+2\left(t-t^{2}\right) \operatorname{Re} \varphi\left(p-c_{2}\right)+t^{2}\left\|p-c_{2}\right\|^{2}$
$=(1-t)^{2}\left\|p-c_{0}\right\|^{2}-2\left(t-t^{2}\right) \varepsilon+t^{2}\left\|p-c_{2}\right\|^{2}$
$f^{\prime}(t)=-2 t\left\|p-c_{0}\right\|^{2}-(2-4 t) \varepsilon+2 t\left\|p-c_{2}\right\|^{2}$
$f^{\prime}(0)=-2 \varepsilon$, decreasing
So for $t>0$, small, $f(t)<f(0)$ so c_{0} is not the smallest point.

Proof of Separation Theorem

Pick a basis $\left\{v_{1}, \ldots, v_{n}\right\}$ for V. Impose an inner product:
$\left.\left.\left\rangle, \alpha_{i} v_{i},\right\rangle, \beta_{i} v_{i}\right\rangle=\right\rangle_{i=1}^{n} \alpha_{i} \beta_{i}$
Use previous Theorem to get $\varphi \in V^{*}$ such that
$\operatorname{Re} \varphi(p)>\operatorname{Re} \varphi\left(c_{0}\right)=\sup _{\mathrm{c} \in \mathrm{C}} \operatorname{Re} \varphi(c)$

Proof of Corollary

Let $\left\{A_{\alpha}\right\}$ be the set of all closed half spaces such that $H \supseteq C$
Clearly $C \subseteq I I H_{\alpha}$
But if $p \notin C, \exists \varphi \in V^{*}$ s.t.
$\operatorname{Re} \varphi(p)>\sup _{c \in C} \operatorname{Re} \varphi(c)=C$
$H=\{x: \operatorname{Re} \varphi \leq L\}$ half space
$C \subseteq H, p \notin H, \therefore p \notin| | H_{\alpha}$

Normed Vector Spaces

November-28-11
9:30 AM
$F=\mathbb{R}, \mathbb{C}$

Norm

A norm on a vector space V over \mathbb{F} is a function $\|\cdot\|: V \rightarrow \mid 0, \infty)$ such that

1) $\|v\| \geq 0, \quad\|v\|=0 \Leftrightarrow v=0$ (positive definite)
2) $\|t v\|=|t|\|v\| \forall t \in \mathbb{F}$, (homogeneous)
3) $\|v+w\| \leq\|v\|+\|w\|, \quad$ (triangle inequality)

Unit Ball
B_{v} or $B_{1}(0)=\{v:\|v\| \leq 1\}$

Proposition

($V,\|\cdot\|$) normed vector space then B_{v} is convex, $0 \in B_{V}$, balanced (if $v \in B_{v}, t v \in B_{v} \forall|t|=1$). Hence $|t| \leq 1$ by convexity.

Example
If V, W are normed vector spaces, then $\mathcal{L}(V, W)$ can be normed by
$\|T\|=\sup _{\|v\|_{V} \leq 1}\|T v\|_{W}$
1)
$\|T v\| \geq 0 \Rightarrow\|T\| \geq 0$
$\|T\|=0 \Rightarrow\|T v\|=0 \forall v \Rightarrow T v=0 \forall v \Rightarrow T=0$
2)
$\|t T\|=\sup _{\|v\|_{V} \leq 1}\|t T v\|_{W}=\sup _{\|v\|_{V} \leq 1}|t|\|T v\|_{W}=|t|\|T\|$
3)
$S, T \in \mathcal{L}(V, W)$
$\|S+T\|=\sup _{\|v\|_{V} \leq 1}\|(S+T) v\|_{W} \leq \sup _{\|v\|_{V} \leq 1}\|S v\|_{W}+\|T v\|_{W}$
$\leq \sup _{\|v\| \leq 1}\|S v\|+\sup _{\|v\| \leq 1}\|T v\|=\|S\|+\|T\|$
Special Cases

1) $W=\mathbb{F}, \mathcal{L}(V, \mathbb{F})=V^{*}$ dual norm on V^{*} $\|\varphi\|=\sup _{\|v\| \leq 1}|\varphi(v)|$
2) $W=V, \mathcal{L}(V)$ algebra
$\|S T\| \leq \sup _{\|v\| \leq 1}\|S(T v)\| \leq \sup _{\|w\| \leq\|T\|}\|S w\|=\|T\| \sup _{\|w\| \leq 1}\|S w\|$
$=\|T\| \cdot\|S\|$
3) $T \in \mathcal{L}(V, W), v \in V$

$$
\|T v\|=\|T\| v\left\|\left(\frac{v}{\|v\|}\right)\right\|=\|v\|\left\|T\left(\frac{v}{\|v\|}\right)\right\| \leq\|T\| \cdot\|v\|
$$

Lemma
V finite dimensional normal space.
Let $T:\left(F^{n},\|\cdot\|_{2}\right) \rightarrow V$ be a linear isomorphism
Then T is uniformly continuous

Theorem

V finite dimensional normal vector space
$T: \mathbb{F}^{n} \rightarrow V$ linear isomorphism
Then \exists constants $0<c<C<\infty$ such that
$c\|v\| \leq\|T v\| \leq C\|v\| \forall v \in V$

Equivalent

Say two norms $\|\cdot\|_{a}$ and $\|\cdot\|_{b}$ are equivalent if $\exists 0<c_{1}, c_{2}$ such that $c_{1}\|v\|_{a} \leq\|v\|_{b} \leq c_{2}\|v\|_{a}$
$\frac{1}{c_{2}}\|v\|_{b} \leq\|v\|_{a} \leq \frac{1}{c_{1}}\|v\|_{b}$

Corollary

If V is a finite dimensional normed vector space then any two norms on V are equivalent.

Convergence

Say a sequence $v_{n} \in V$ converges to v_{0} if $\lim _{n \rightarrow \infty}\left\|v_{n}-v_{0}\right\|=0$
Corollary says that convergence in a finite dimensional normal space is independent of choice of the norm.

So $\left(V,\|\cdot\|_{a}\right)$ and $\left(V,\|\cdot\|_{b}\right)$ have the same closed sets, hence the same open sets.
B_{v} is a closed balanced convex set containing 0 on the interior.
If $\left\|v_{n}\right\| \leq 1, v_{n} \rightarrow v_{0} \Rightarrow\left\|v_{0}\right\| \leq 1$
$\left(\varepsilon>0, \exists n\left\|v_{n}-v_{0}\right\|<t \therefore\left\|v_{0}\right\| \leq\left\|v_{n}\right\|+\left\|v_{0}-v_{n}\right\| \leq 1+\varepsilon\right.$ Let $\varepsilon \rightarrow 0$ $\|\cdot\|$ is continuous in the norm

Examples

1
$\|v\|=\sqrt{\langle v, v\rangle}$
$V=\mathbb{C}^{n}$ usual inner product
B_{V} is unit ball in Euclidean norm
2
$V=\mathbb{C}^{n}, v=\left(a_{1}, \ldots, a_{n}\right)$
$\|v\|_{\infty}=\max \left\{\left|a_{i}\right|, i \leq i \leq n\right\}$
Satisfies 1, 2
$\|v+w\|=\left\|a_{1}+b_{1}, \ldots, a_{n}+b_{n}\right\|_{\infty}=\max \left(\left|a_{i}+b_{i}\right|\right\} \leq \max \left(\left|a_{i}\right|+\left|b_{i}\right|\right)$
$\leq \max \left(\left|a_{i}\right|\right)+\max \left(\left|b_{i}\right|\right)=\|v\|_{\infty}+\|w\|_{\infty}$
$B_{l_{n}^{\infty}(\mathbb{R})}=|-1,1|^{n}=\left\{\left(a_{i}\right):\left|a_{i}\right| \leq 1\right\}$
$B_{l_{n}^{\infty}(\mathbb{C})}=\mathbb{D}^{n}=\left\{\left(a_{i}\right):\left|a_{i}\right| \leq 1\right\}$
3
$l_{n}^{1}, \quad V=\mathbb{C}^{n}$ or \mathbb{R}^{n}
$\left.\|v\|_{1}=\right\rangle_{i=1}^{n}\left|a_{i}\right|$
Satisfies 1, 2
$\|v+w\|_{1}=\sum_{i=1}^{n}\left|a_{i}+b_{i}\right| \leq \sum_{i=1}^{n}\left|a_{i}\right|+\left|b_{i}\right|=\|v\|_{1}+\|w\|_{1}$
4
$l_{n}^{p}, \quad 1<p<\infty, V=\mathbb{F}^{n}$
$\|v\|_{p}=\left(\sum_{i=1}^{n}\left|a_{i}\right|^{p}\right)^{\frac{1}{p}}$
Satisfies 1, 2
Satisfies 3 but hard to prove
Ex: $p=\frac{1}{2}$
$\|v\|_{\frac{1}{2}}=\left(\sqrt{\left|a_{1}\right|}+\sqrt{\left|a_{2}\right|}\right)^{2}$
Does not satisfy 3

Proof of Proposition

Balanced follows from 2
Convex follows from 3, 2
$\|v\| \leq 1,\|w\| \leq 1,0 \leq t \leq 1$
$\|t v+(1-t) w\| \leq\|t v\|+\|(q-t) w\| \leq|t| \times 1+|1-t| \times 1=1$
Proof of Lemma
Let e_{1}, \ldots, e_{n} be the standard basis of \mathbb{F}^{n}.
Let $v_{1}=T e_{i}$ this is a basis for V
$\left.w=\left(a_{1}, \ldots, a_{n}\right)=\right\rangle_{i=1}^{n} e_{i}$
$\left.\|T w\|=\|\rangle_{i=1}^{n} a_{i} v_{i}\left\|\leq \sum_{i=1}^{n}!\right\| a_{i} v_{i} \|=\right\rangle_{i=1}^{n} \mid a_{i}\| \| v_{i} \| \leq \sqrt{\sum_{i=1}^{n}\left|a_{i}\right|^{2}} \sqrt{\sum_{i=1}^{n}\left\|v_{i}\right\|^{2}}$
$\|T\|=\sup _{\|w\| \leq 1}\|T w\| \leq \sqrt{\sum_{i=1}^{n}\left\|v_{i}\right\|^{2}}=L$
$\therefore\left\|T w_{1}-T w_{2}\right\|=\left\|T\left(w_{1}-w_{2}\right)\right\| \leq\|T\|\left\|w_{1}-w_{2}\right\| \leq L\left\|w_{1}-w_{2}\right\|$
This is a Lipschitz function.
If $\varepsilon>0$, let $\delta=\frac{\varepsilon}{L},\left\|w_{1}-w_{2}\right\|<\delta \Rightarrow\left\|T w_{1}-T w_{2}\right\|<L \delta=\varepsilon$
$\therefore T$ is uniformly continuous \square
Proof of Theorem
Lemma shows $C=\|T\|<\infty$
Let $S=\left\{w \in \mathbb{F}^{n}:\|w\|_{2}=1\right\}$, unit space
T is $1-1, \mathrm{~s} T s \neq 0 \forall x \in S$
T is continuous, S is compact so by Extreme Value Theorem the minimum values is attained:
$\inf _{w \in S}\|T \cdot w\|=\left\|T w_{0}\right\|=c \neq 0$

II \| $v_{n}\left\|\leq 1, v_{n} \rightarrow v_{0} \Rightarrow\right\| v_{0} \| \leq 1$
$\left(\varepsilon>0, \exists n\left\|v_{n}-v_{0}\right\|<t \therefore\left\|v_{0}\right\| \leq\left\|v_{n}\right\|+\left\|v_{0}-v_{n}\right\| \leq 1+\varepsilon\right.$ Let $\varepsilon \rightarrow 0$ $\|\cdot\|$ is continuous in the norm
$\{v:\|v\| \geq 1\}$ is closed so $\{v:\|v\|<1\}=B_{1}(0)$ is open.
ı is 1 -ı, s ıs $\neq \mathrm{u}$ vx
T is continuous, S is compact so by Extreme Value Theorem the minimum values is attained:
$\inf _{w \in S}\|T \cdot w\|=\left\|T w_{0}\right\|=c \neq 0$
By Homogeniety $c\|w\|_{2} \leq\|T w\| \leq C\|w\|_{2}$

Proof of Corollary

Let $T: \mathbb{F}^{n} \rightarrow V$ isometric
Use Theorem, get $0<c_{1}, C_{1}, c_{2}, C_{2}$
$c_{1}\|w\|_{2} \leq\|T w\|_{a} \leq C_{1}\|w\|_{2}$
$c_{2}\|w\|_{2} \leq\|T w\|_{b} \leq C_{2}\|w\|_{2}$
$\frac{c_{2}}{C_{1}}\|T w\|_{a} \leq c_{2}\|w\|_{2} \leq\|T w\|_{b} \leq C_{2}\|w\|_{2} \leq \frac{C_{2}}{c_{1}}\|T v\|_{a} \square$

Norms

November-30-11
9:30 AM

V normed vector space
$V^{*}=\mathcal{L}(V, \mathbb{F})$ has the dual norm
$\|\varphi\|=\sup _{\|v\| \leq 1}|\varphi(v)|$
$\|v\| \leq 1$
$V^{* *}$ has a norm, $\quad i: V \rightarrow V^{*}, \quad v(\varphi)=i(v)(\varphi)=\varphi(v)$
$\|v\|_{V^{* *}}=\sup _{\varphi \in V^{*}}|v(\varphi)|=\sup _{\sup }|\varphi(v)| \leq \sup \|\varphi\|_{V^{*}}\|v\|_{V}=\|v\|_{V}$ $\|\varphi\| \leq 1 \quad\|\varphi\| \leq 1$

Theorem
The natural injection $i: V \rightarrow V^{* *}$ is isometric
i.e. $\|i(v)\|_{V^{* *}}=\|v\|_{V}$

Corollary
If $v \in V$, then $\exists \varphi \in V^{*}$ with $\|\varphi\| \leq 1$ and $\varphi(v)=\|v\|$

Quotient Norm

If M is a subspace of a finite dimensional subspace V, put the
quotient norm on $\frac{V}{M}$ by
$v=|v|_{M}=v+M=\{w: w \equiv v \bmod M\}=\{w: w-v \in M\}$
$\|v\|_{\frac{V}{M}}=\inf _{m \in M}\|v+m\|=\inf \{\|w\|: w \in|v|\}=\operatorname{dist}(v, M)$

Proposition

The quotient norm is a norm.

Question

If $M \subseteq V$ showed $M^{*} \cong \frac{V^{*}}{M^{\perp}}, M^{\perp}=\left\{\varphi \in V^{*}:\left.\varphi\right|_{M}=0\right\},\left(\frac{V}{M}\right)^{*} \cong M^{\perp}$
These are linear isomorphisms.
Are they isometric when V is normed?

Lemma

If $T \in \mathcal{L}(V, W)$ is an isometric isomorphism, then $T^{t} \in \mathcal{L}\left(W^{*}, V^{*}\right)$ is also in isometric isomorphism.

Theorem
V finite dimensional normed space, $M \subseteq V$ subspace. Then the linear isomorphisms
$M^{*} \cong\left(\frac{V^{*}}{M^{\perp}}\right)$ and $\left(\frac{V}{M}\right)^{*} \cong M^{\perp}$ are isometric.

Corollary

If $M \subseteq V, f \in M^{*}$ then $\exists \varphi \in V^{*}$ s.t. $\left.\varphi\right|_{M}=f$ and $\|\varphi\|=\|f\|$

Proof of Theorem

Have $\|v\|_{V^{* *}} \leq\|v\|_{V} \Rightarrow \sup B_{V} \subseteq B_{V^{*}}$
Suppose $v \in V$, $\|v\|>1$. By the separation theorem $\exists \varphi \in V^{*}$ such that
$\operatorname{Re} \varphi(v)>\sup _{x \in B_{v}} \operatorname{Re} \varphi(x)=\sup _{x \in B_{v}} \operatorname{Re} \varphi(\lambda x)=\sup _{x \in B_{V}} \sup _{|\lambda|=1} \operatorname{Re} \lambda \varphi(x)=\sup _{x \in B_{V}}|\varphi(x)|=\|\varphi\|$
Let $\psi=\frac{\varphi}{\|\varphi\|}, \quad\|\psi\|=1, \quad|\psi(v)| \geq \operatorname{Re} \psi(v)>\frac{\|\varphi\|}{\|\varphi\|}=1$
So $\|v\|=\sup _{\|\varphi\|_{V^{*} \leq 1}}|v(\varphi)| \geq|v(\psi)|>1$
Thus $\|v\|>1 \Rightarrow\|v\|>1$
$\therefore B_{V} \supseteq B_{V^{* *}} \Rightarrow B_{V}=B_{V^{* *}} \Rightarrow\|v\|_{V^{* *}}=\|v\|_{V}$
because $\|v\|=\inf \left\{t \geq 0: v \in t B_{V}\right\}=\inf \left\{t \geq 0: v \in t B_{V^{* *}}\right\}$
Proof of Corollary
$\|v\|=\|v\|=\sup _{|\varphi| \leq 1}|v(\varphi)|=\sup _{|\varphi| \leq 1}|\varphi(v)|=\left|\varphi_{0}(v)\right|, \quad$ attained by EVT
Choose $|\lambda|=1$ such that $\lambda \varphi_{0}(v)=\left|\varphi_{0}(v)\right|=\|v\|$
Take $\varphi=\lambda \varphi_{0}$

Proof of Quotient Norm

1) $\|v\| \geq 0,\|v\|=0 \Leftrightarrow \operatorname{dist}(v, M)=0 \Leftrightarrow v \in M \Leftrightarrow v=0$
2) $\|(t v)\|=\|t v\|=\operatorname{dist}(t v, M)=|t| \operatorname{dist}(v, M)=|t|\|v\|$
3) $\|(v+w)\|=\inf _{m \in M}\|v+w+m\|=\inf _{m_{1} m_{2} \in M}\left\|\left(v+m_{1}\right)+\left(w+m_{2}\right)\right\|$

$$
\leq \inf _{\substack{m_{1} \in M \\ m_{2} \in M}}\left\|v+m_{1}\right\|+\left\|w+m_{2}\right\|=\|v\|+\|w\|
$$

So $\frac{V}{M}$ has a norm
Proof of Lemma
$T: V \rightarrow W$ is $1-1$, onto and $\|T v\|=\|v\| \forall v \in V$
$\therefore T\left(B_{V}\right)=B_{W}$. Now let $\varphi \in W^{*}$
$\left\|T^{t} \varphi\right\|_{V^{*}}=\sup _{v \in B_{V}}\left|\left(T^{t} \varphi\right)(v)\right|=\sup _{v \in B_{V}}|\varphi(T v)|=\sup _{w \in B_{W}}|\varphi(w)|=\|\varphi\|_{W^{*}}$
So T^{t} is isometric
$\operatorname{ker} T^{t}=(\operatorname{ran} T)^{\perp}=W^{\perp}=\{0\} \therefore 1-1$
$\operatorname{ran} T^{t}=(\operatorname{ker} T)^{\perp}=\left\{0_{V}\right\}^{\perp}=V^{*} \therefore$ onto

Proof of Theorem

Recall the quotient map $\Pi: V \rightarrow \frac{V}{M}, \pi(v)=v, \Pi$ is onto, $\operatorname{ker} \Pi=M$
$\Pi^{t}:\left(\frac{V}{M}\right)^{*} \rightarrow V^{*}, \quad \operatorname{ker} \Pi^{t}=(\operatorname{ran} \Pi)^{\perp}=\left(\frac{V}{M}\right)^{\perp}=\{0\}, \quad \operatorname{ran} \Pi^{t}=(\operatorname{ker} \Pi)^{\perp}=M^{\perp}$
So Π^{t} maps $\left(\frac{V}{M}\right)^{*} 1-1$ and onto $M^{\perp} \therefore$ linear isomorphism
Take $f \in\left(\frac{V}{M}\right)^{*}, \quad \Pi^{t} f=\varphi=f \circ \Pi \in M^{\perp}$
$\|f\|_{\left(\frac{V}{M}\right)^{*}}=\sup _{v \in \frac{V}{M}}|f(v)|=\sup _{\substack{v \in V \\\|v\| \leq 1}}|f(\Pi(v))|=\sup _{\operatorname{dist}_{v \in V}(v, M) \leq 1}|\varphi(v)|=\sup _{\substack{v \in V \\ \operatorname{dist}(v, M) \leq 1}}|\varphi(v+M)|$
If $\operatorname{dist}(v, M) \leq 1$ then $\exists m \in M$ so $\|v+m\| \leq 1$ so $v \in B_{V}+M$
Conversely, if $v \in B_{V}+M$ then $\operatorname{dist}(v, M) \leq 1$
$\|f\|_{\left(\frac{V}{M}\right)^{*}=\sup _{\substack{v \in V \\ m \in M \\ \operatorname{dist}(v, M) \leq 1}}|\varphi(v+M)|=\sup _{\substack{\|v\| \leq 1 \\ m \in M}}|\varphi(v+m)|=\sup _{\|v\| \leq 1}|\varphi(v)|=\|\varphi\||.|l| l|}^{\|}$
So Π^{t} is an isometric isomorphism of $\left(\frac{V}{M}\right)^{*}$ onto M^{\perp}
Apply that to $M^{\perp} \subseteq V^{*}$
$\left(\frac{V^{*}}{M^{\perp}}\right) \cong\left(M^{\perp}\right)^{\perp} \subseteq V^{* *}$ which is isomorphic to $M \subseteq V$

So we have an isometric isomorphism
$J:\left(\frac{V^{*}}{M^{\perp}}\right)^{*} \rightarrow M$ by new lemma $J^{t}: M^{*} \rightarrow\left(\frac{V^{*}}{M^{\perp}}\right)^{* *}=\frac{V^{*}}{M^{\perp}} \boldsymbol{\square}$

Proof of Corollary

$f \in M^{*} \cong \frac{V^{*}}{M^{\perp}}$ is isometric isomorphism
$\exists \varphi \in V^{*}$ s.t. $f \leftrightarrow \varphi=\varphi+M^{\perp}$
So $\left.\varphi\right|_{M}=f,\|f\|=\|\varphi\|=\inf _{\psi \in M^{+}}\|\varphi+\psi\|$
Since $\operatorname{dim} V \leq \infty$, this inf is attainable from EVT
$\|f\|=\left\|\varphi+\psi_{0}\right\|, \varphi+\psi_{0}$ is the desired extensions
$\left.\left(\varphi+\psi_{0}\right)\right|_{M}=\left.\varphi\right|_{M}+\left.\varphi_{0}\right|_{M}=f+0=f$

Norms in Matrices

December-02-11
9:53 AM

Matrix Norm

V normed finite dimensional.
A norm on $\mathcal{L}(V)$ usually should have an additional property
4) $\|S T\| \leq\|S\|\|T\|$

Trace Norm

$T \in \mathcal{L}(V) . \mathrm{V}$ finite dimensional inner product space.
Polar decomposition
$T=U D$
$D=\sqrt{ } T^{*} T \cong \operatorname{diag}\left(s_{1}, s_{2}, \ldots, s_{n}\right), \quad s_{1} \geq s_{2} \geq \cdots \geq s_{n} \geq 0$
S-numbers of T, $s_{i}=s_{i}(T)$
$\|T\|_{1}=\sum_{i=1}^{n} s_{i}(T)$

1) $\|T\|_{1} \geq 0$, if $\|T\|=0 \Rightarrow s_{i}=0 \forall i \Rightarrow D=0 \Rightarrow T=0$
2) $s_{i}(t T)=t s_{i}(T)$ since $t T=U(t D)$

Lemma 1

If $\left\{e_{i}\right\}_{1}^{n},\left\{f_{i}\right\}_{1}^{n}$ are orthonormal bases for V , then
$\sum_{i=1}^{n} \mid\left\langle T e_{i}, f_{i}\right\rangle \leq \leq\|T\|_{1}$

Corollary

$\|S+T\|_{1} \leq\|S\|_{1}+\|T\|_{1}$
Hence $\|\cdot\|_{1}$ is a norm

Lemma 2

$T \in \mathcal{L}(V), \quad 1 \leq j \leq n$
$s_{j}(T)=\inf _{\operatorname{rank}(F) \leq j-1}\|T-F\|_{\infty}=\operatorname{dist}\left(T, \mathcal{F}_{j-1}\right)$ matrix of rank
$\leq j-1$
Corollary
If $A, T \in \mathcal{L}(V)$, then
$s_{j}(A T) \leq\|A\|_{\infty} s_{j}(T)$,
$s_{j}(T A) \leq\|A\|_{\infty} s_{j}(T)$
Corollary ${ }^{2}$
$A, T \in \mathcal{L}(V)$ then
$\|A T\|_{1} \leq\|A\|_{\infty}\|T\|_{1} \leq\|A\|_{1}\|T\|_{1}$
$\|T A\|_{1} \leq\|T\|_{1}\|A\|_{\infty}$
Therefore $\|\cdot\|_{1}$ is a matrix norm

Remark

Same argument shows that
$\|A T\|_{2} \leq\left\|A_{\infty}\right\|\|T\|_{2}, \quad\|T A\|_{2} \leq\left\|T_{2}\right\|\|A\|_{\infty}$
Theorem
The dual of $\left(\mathcal{L}(V),\|\cdot\|_{\infty}\right)$ is $\left(\mathcal{L}(V),\|\cdot\|_{1}\right)$ via a paring $\varphi_{T}(A)=\operatorname{Tr}(A T)$

Remark 1

$\|\cdot\|_{1}$ is unitarily invariant
If $T \in \mathcal{L}(V), U, V$ unitary then $\|U T V\|_{1}=\|T\|_{1}$
Remark 2
Ky Fan Norms
$\|T\|_{K F_{K}}=\sum_{i=1}^{k} s_{i}(T)$
is a unitarily invariant matrix norm

Theorem (Ky Fan)
Every unitarily invariant matrix norm on \mathcal{M}_{n} is a convex combination of the Ky Fan norms.

Examples

1) $\|T\|=\sup _{\|v\| \leq 1}\|T v\|<\infty$ by EVT

Restrict to an inner product space ($V,($,$))$
2) $\|T\|=\|T\|_{\infty}=\sup _{\|v\|=1}\|T v\|$

Polar decomposition $T, ~ \sqrt{T^{*}} T=D$ unique positive square root
D is diagonalizable. \exists orthonormal basis $\left\{u_{1}, \ldots, u_{n}\right\}$
$D u_{i}=s_{i} u_{i} 1 \leq i \leq n, \quad s_{1} \geq s_{2} \geq \cdots \geq s_{n} \geq 0$
U partial isometry, $U: \operatorname{ran} D \rightarrow \operatorname{ran} T$ isometrically, $T=U D$
Let $v_{i}=U u_{i}\left\{v_{i} \mid s_{i}>0\right\}$ is orthonormal

$$
T=\sum_{i=1} s_{i} v_{i} u_{i}^{*}
$$

$$
\left.\|T\|_{\infty}=\sup _{\|v\|=1}\|T v\|=\sup _{\|v\|=1}\|U D v\|=\sup _{\|v\|=1}\|D v\|=\sup _{\substack{v=2 a_{i} u_{i} \\ 2\left|a_{i}\right|^{2}=1}} \|\right\rangle, s_{i} a_{i} u_{i} \|
$$

$$
=\sup _{\Sigma\left|a_{i}\right|^{2}=1} \sqrt{\sum_{i=1}^{n} s_{i}^{2}\left|a_{i}\right|^{2}}=s_{1} \sup _{\sum\left|a_{i}\right|^{2}=1} \sqrt{\rangle\left.| | a_{i}\right|^{2}}=s_{1}
$$

3) $\|T\|_{2}$ fix an orthonormal basis $\left\{e_{1}, \ldots, e_{n}\right\}=\xi$

$$
T=|T|_{\xi}=\left|t_{i j}\right|
$$

$$
\text { Define }\|T\|_{2}=\sqrt{\sum_{i, j=1}^{n}\left|t_{i j}\right|^{2}}
$$

Makes \mathcal{M}_{n} into an inner product space

$$
\begin{aligned}
& |S|=\left|s_{i j}\right|, \quad\langle | S|,|T|\rangle=\sum_{i, j=1}^{n} s_{i j} t_{i j} \\
& \left|T^{*}\right| \xi=\left|t_{j i}\right|, \quad\left|S T^{*}\right| \xi=\left|\sum_{k=1}^{n} s_{i k} t_{j k}\right| \text { has } \sum_{k=1}^{n} s_{i k} t_{i k} \text { on diagonal }(i, i) \\
& \therefore\langle | S|,|T|\rangle=\operatorname{tr}\left(S T^{*}\right) \\
& \left.\left.\left.\left.\|S T\|_{2}^{2}=\right\rangle_{i=1}^{n}\right\rangle\left._{j=1}^{n}| \rangle_{k=1}^{n} s_{i k} t_{k j}\right|^{2} \leq\right\rangle_{i=1}^{n}\right\rangle_{j=1}^{n}\left(\sum_{k=1}^{n}\left|s_{i k}\right|^{2}\right)\left(\sum_{l=1}^{n}\left|t_{l j}\right|^{2}\right) \\
& \left.\left.\left.=(\rangle_{i=1}^{n}\right\rangle_{k=1}^{n}\left|s_{i k}\right|^{2}\right)\left(\sum_{j=1}^{n}\right\rangle\left|t_{l j}\right|^{2}\right)=\|S\|_{2}^{2}\|T\|_{2}^{2}
\end{aligned}
$$

If U, V are unitary

$$
\|U T V\|_{2}^{2}=\langle U T V, U T V\rangle=\operatorname{tr}\left((U T V)(U T V)^{*}\right)=\operatorname{tr}\left(U T V V^{*} T^{*} U^{*}\right)=\operatorname{tr}\left(U T T^{*} U^{*}\right)
$$

$$
=\operatorname{tr}\left(U^{*} U T T^{*}\right)=\operatorname{tr}\left(T T^{*}\right)=\|T\|_{2}^{2}
$$

So $\|U T V\|_{2}=\|T\|$ (unitarily invariant norm) (so is $\|T\|_{\infty}$)
In particular, this definition does not depend on choice of o.n. basis.
If f_{1}, \ldots, f_{n} o.n. basis ζ. Let $U e_{i}=f_{i}$,
$\left|a_{i j}\right|=|T|_{\zeta}=U|T|_{\xi} U^{*}=U\left|t_{i j}\right| U^{*}$
$\sqrt{\sum_{i, j=1}^{n}\left|a_{i j}\right|^{2}}=\left\|U T U^{*}\right\|=\|T\|^{2}=\sqrt{\sum_{i, j=1}^{n}\left|t_{i j}\right|^{2}}$
$T=U D$ polar decomposition, $U u_{i}=v_{i}, 1 \leq i \leq k, s_{k}>0, s_{k+1}=0$
extend v_{1}, \ldots, v_{k} to orthonormal basis. Define $V u_{i}=v_{i}, 1 \leq i \leq n$ Unitary $T=U D=V D$
$\|T\|_{2}=\|U D\|_{2}=\|D\|_{2}=\sqrt{\sum_{i=1}^{n} s_{i}^{2}}, \quad$ where $|D|_{U}=\operatorname{diag}\left(s_{1}, s_{2}, \ldots, s_{n}\right)$
Proof of Lemma 1
$T=U D$
Choose an orthonormal basis $\left\{u_{i}\right\}_{1}^{n}$ which diagonalizes D. $\quad D u_{i}=s_{i} u_{i}, 1 \leq i \leq n$
Let $v_{i}=U u_{i}, \quad 1 \leq i \leq \begin{gathered}k \text { if } s_{k+1}=0 \\ n \text { if } s_{n}>0\end{gathered}$
$T=\rangle_{j=1}^{k} s_{j}\left(v_{j} u_{j}^{*}\right)$
$\sum_{i=1}^{n}\left|\left\langle T e_{i}, f_{i}\right\rangle=\right\rangle_{i=1}^{n}| |_{j=1}^{k} s_{j}\left\langle\left(e_{i}, u_{j}\right\rangle\left\langle v_{j}, f_{i}\right\rangle\right|$
$\left.\leq\rangle_{j=1}^{k} s_{j}\right\rangle_{i=1}^{n}\left|\left\langle e_{i}, u_{j}\right\rangle\right|\left|\left\langle v, f_{i}\right\rangle \leq_{\text {c.s. }}\right\rangle_{j=1}^{n} s_{j} \sqrt{\sum_{i=1}^{n}\left|\left\langle u_{j}, e_{i}\right\rangle\right|^{2}} \sqrt{\sum_{i=1}^{n}\left|\left\langle v_{j}, f_{i}\right\rangle\right|^{2}}=\sum_{j=1}^{n} s_{j}\left\|u_{j}\right\|\| \| v_{j} \|=\sum_{j=1}^{k} s_{j}$
$=\|T\|_{1}$
Proof of Corollary
$S+T=U E, \quad E=|S+T|=\sqrt{(S+T)^{*}(S+T)}$
$S+T=\sum_{i=1}^{n} s_{i}(S+T) v_{i} u_{i}^{*}, \quad\left\{u_{i}\right\}_{1}^{n},\left\{v_{i}\right\}_{1}^{n}$ orthonormal $\left.\left.\left.\|S+T\|_{1}=\right\rangle_{i=1}^{n} s_{i}=\right\rangle_{i=1}^{n}\left\langle(S+T) u_{i}, v_{i}\right\rangle \leq| \rangle_{i=1}^{n}\left\langle S u_{i}, v_{i}\right\rangle|+|\right\rangle_{i=1}^{n}\left\langle T u_{i}, v_{i}\right\rangle \mid \leq_{\text {Lemma } 1}\|S\|_{1}+\|T\|_{1}$ So $\Delta \leq$ holds hence $\|\cdot\|_{1}$ is a norm ■

Proof of Lemma 2

Write $T=\rangle_{i=1}^{n} s_{i}\left(v_{i} u_{i}^{*}\right), \quad$ Let $F_{j}=\sum_{(i=1)}^{j-1} s_{i}\left(v_{i} u_{i}^{*}\right) \in \mathcal{F}_{j-1}$
Let $\left.T-F_{j}=\right\rangle_{i=j}^{n} s_{i}\left(v_{i} u_{i}^{*}\right)=U \operatorname{diag}\left\{0,0, \ldots, 0, s_{j}, \ldots, s_{n}\right\}$
$\left\|T-F_{j}\right\|=\left\|T-F_{j}\right\|_{\infty}=\max s_{i}\left(T-F_{j}\right)=s_{j}, \therefore \operatorname{dist}\left(T, \mathcal{F}_{j-1}\right) \leq s_{j}$
Suppose $\operatorname{rank}(F) \leq j-1, \operatorname{nul}(F) \geq n-(j-1)=n+1-j$
$\operatorname{dim}\left(s p\left\{u_{1}, \ldots, e_{n}\right\}\right)+\operatorname{nul}(F) \geq j+n-(j-1)=n+1$
$\therefore \operatorname{dim}\left(s p\left\{u_{1}, \ldots, u_{j}\right\} \cap \operatorname{ker} F\right) \geq 1$
Pick $x \in \operatorname{sp}\left\{u_{1}, \ldots, u_{j}\right\} \cap \operatorname{ker} F,\|x\|=1, \quad x=\sum_{i=1}^{j} a u_{i} \in \operatorname{ker} F$
$\therefore\|T-F\| \geq\|(T-F) x\|=\|T x\|=\|\rangle_{i=1}^{j}\left(s_{j} a_{i}\right) v_{i}\left\|=\sqrt{\sum_{i=1}^{n} s_{i}^{2}\left|a_{i}\right|^{2}} \geq s_{j} \sqrt{\rangle,\left|a_{i}\right|^{2}}=s_{j}\right\| x \|$
$=s_{j}$
Proof of Corollary
$s_{j}(A T)=\operatorname{dist}\left(A T, \mathcal{F}_{j-1}\right) \leq\left\|A t-A f_{j}\right\|_{\infty}=\left\|A\left(T-F_{j}\right)\right\| \leq\|A\|_{\infty}\left\|T-F_{j}\right\|_{\infty}=\|A\|_{\infty} s_{j}(T)$
Other side is similar.
Proof of Corollary ${ }^{2}$
$\left.\left.\|A T\|_{1}=\right\rangle_{i=1}^{n} s_{i}(A T) \leq\right\rangle_{i=1}^{n}\|A\|_{\infty} s_{i}(T)=\|A\|_{\infty}\|T\|_{1}$
Other side is similar

Proof of Theorem

Choose orthonormal basis $\xi=\left\{e_{1}, \ldots, e_{n}\right\}$ matrix units $E_{i j}$ basis for $\mathcal{L}(V), 1 \leq i, j \leq n$
$\varphi \in \mathcal{L}(V)^{*}, \quad$ Let $t_{i j}=\varphi\left(E_{i j}\right), \quad$ Let $T=\left|t_{j i}\right|_{\xi}$
So if $|A|_{\xi}=\left|a_{i j}\right|, A \in \underset{n}{\mathcal{L}(V)}$
$\left.\left.\left.\operatorname{tr}(A T)=\rangle_{i=1}^{n}|A T|_{i i}=\right\rangle_{i=1}^{n},\right\rangle_{j=1}^{n}|A|_{i j}\left|T \mathrm{I}_{j i}=\right\rangle_{i=1}^{n}\right\rangle_{j=1}^{n} a_{i j} t_{i j}$
$A=\sum_{1} a_{i j} E_{i j}, \quad \varphi(A)=\geqslant, a_{i j} \varphi\left(E_{i j}\right)=\sum_{1} a_{i j} t_{i j}$
So $\varphi(A)=\operatorname{Tr}(A T)=\varphi_{T}(A)$
$\|\varphi\|=\sup _{\|A\|_{\infty} \leq 1}|\varphi(A)|=\sup _{\|A\|_{\infty} \leq 1}|T r(A T)|$
$=\sup _{\|A\|_{\infty} \leq 1}| \rangle_{i=1}^{n}\left\langle A T e_{i}, e_{i}\right\rangle \mid \leq_{\text {Lemma } 1} \sup _{\|A\|_{\infty} \leq 1}\|A T\|_{1} \leq_{\text {Corollary }}{ }^{2} \sup _{\|A\|_{\infty} \leq 1}\|A\|_{\infty}\|T\|_{1}=\|T\|_{1}$
$T=U D, \quad$ Let $A=U^{*}, \quad\|A\|_{\infty}=1$
$\varphi_{T}(T)=\operatorname{Tr}\left(U^{*} U D\right)=\operatorname{Tr}(D)=\operatorname{Tr}\left(\operatorname{diag}\left(s_{1}, s_{2}, \ldots, s_{n}\right)\right)=\|T\|_{1}$
$\therefore\left\|\varphi_{T}\right\| \geq\|T\|_{1} \quad \therefore\left\|\varphi_{T}\right\|=\|T\|_{1}$
Proof of Remark 1
$\|U T V\|_{1} \leq\|U\|_{\infty}\|T\|_{1}\|V\|_{\infty}=\|T\|_{1}$
$\|T\|_{1}=\left\|U^{*}(U T V) V^{*}\right\|_{1} \leq\left\|U^{*}\right\|_{\infty}\|U T V\|_{1}=\|U T V\|_{1}$

