Sums

January-05-11
9:36 AM
Assignments due on Fridays

Let f be any bounded function over a closed interval. i.e. $f:\lfloor a, b\rfloor \rightarrow \mathbb{R}$
f may be +ve, -ve, and possibly discontinuous.

Let \mathcal{P} be a partition of $[a, b]$
Since f is bounded(bded) over each $\left[x_{j-1}, x_{j}\right]$
we get the numbers
$\sup \left\{f(x): x_{j-1} \leq x \leq x_{j}\right\}=\sup f\left[x_{j-1}, x_{j}\right]$
$\inf \left\{f(x): x_{j-1} \leq x \leq x_{j}\right\}=\inf f\left|x_{j-1}, x_{j}\right|$

Partition

A partition of $[a, b]$ is a strictly increasing list of numbers starting at a and ending at b.
Denoted
$\mathcal{P}: a=x_{0}<x_{1}<x_{2}<\cdots<x_{n-1}<x_{n}=b$

Uniform Partition

\mathcal{P} is called uniform when the x_{j} are equally spaced.

A Distance Problem

You go from A to B in a car, odometer broken, speedometer is working, and you have a watch. The trip takes two hours. Estimate the distance traveled.

Take time samples between 0 and 2
$0=t_{0}<t_{1}<t_{2}<t_{3}<\cdots<t_{n-1}<t_{n}=2$
On each time interval $\left|t_{j-1}, t_{j}\right|$, record the maximum speed V_{j} attained on that interval.
Over the interval $\left|t_{j-1}, t_{j}\right|$ you travel at most a distance max speed $*$ time $=V_{J}\left(t_{j}-t_{j-1}\right)$
Over the full time interval [0,2] you travelled at most a distance
$D=\sum_{j=1}^{n} V_{j}\left(t_{j}-t_{j-1}\right)$
If v_{j} is the minimum speed recorded over time interval $\left[t_{j-1}, t_{j}\right]$ then total distance travelled is at least
$d=\sum_{j=1}^{n} v_{j}\left(t_{j}-t_{j-1}\right)$
If each interval $\left[t_{j-1}, t_{j}\right]$ is small we expect $V_{j}-v_{j}$ to be small.
Then the difference
$D-d=\sum_{j=1}^{n}\left(V_{j}-v_{j}\right)\left(t_{j}-t_{j-1}\right)$
should be small.

Roughly

$D-d=\sum$ small \times small $=\sum$, really small $=$ fairly small
So actual distance covered is pinched between two estimates that are close to each other.

An Area Problem

Suppose a continuous (cts.) function (fun) f is defined over an interval [a,b] and $\mathrm{f} \geq 0$.
Estimate the are under f and over $[a, b]$.
Well, chop up [a, b] into a pieces.
$a=x_{0}<x_{1}<x_{2}<\cdots<x_{n-1}<x_{n}=b$
On each $\left|x_{j-1}, x_{j}\right|$ let $M_{j}=\max \left(\left\{f(x): x \in\left|x_{j-1}, x_{j}\right|\right\}\right)$ and let $m_{j}=\min \left(\left\{f(x): x \in\left|x_{j-1}, x_{j}\right|\right\}\right)$
If A_{j} is the actual area under f and over $\left[x_{j-1}, x_{j}\right]$ then,
$m_{j}\left(x_{j}-x_{j-1}\right) \leq A_{2} \leq M_{j}\left(x_{j}-x_{j-1}\right)$
Add up to get
$\sum_{j=1}^{n} m_{j}\left(x_{j}-x_{j-1}\right) \leq \sum_{j=1}^{n} A_{j}=$ total exact area under f and over $\lfloor a, b] \leq \sum_{j=1}^{n} M_{j}\left(x_{j}-x_{j-1}\right)$
If we make each $\left|x_{j-1}, x_{j}\right|$ small we expect $M_{j}-m_{j}$ to be small and thus
$\sum_{j=1}^{n}\left(M_{j}-m_{j}\right)\left(x_{j}-x_{j-1}\right)=\sum$ small \times small $=\sum$ very small $=$ smallish
So we have a good estimate for the area, since the difference between the bounds is small.

Upper and Lower Sums

January-07-11
9:28 AM
Let f be any bounded function over a closed interval. i.e. $f:\lfloor a, b\rfloor \rightarrow \mathbb{R}$

Let \mathcal{P} be a partition of [a, b]

Lower Sum

The lower sum for f using \mathcal{P} is
$L(f, \mathcal{P})=\sum_{j=1}^{n} \inf f\left|x_{j-1}, x_{j}\right|\left(x_{j}-x_{j-1}\right)$

Upper Sum

$U(f, \mathcal{P})=\sum_{j=1}^{n} \sup f\left|x_{j-1}, x_{j}\right|\left(x_{j}-x_{j-1}\right)$
Note:
$L(f, \mathcal{P}) \leq U(f, \mathcal{P})$
since $\inf f\left[x_{j-1}, x_{j}\right] \leq \sup f\left[x_{j-1}, x_{j}\right]$ and
add up inequalities

Refinement

A partition \mathcal{Q} of $[\mathrm{a}, \mathrm{b}]$ refines \mathcal{P} when the points of \mathcal{P} are also in \mathcal{Q}

Proposition 1

If \mathcal{Q} refines \mathcal{P} then
$L(f, \mathcal{P}) \leq L(f, Q) \leq U(f, Q) \leq U(f, \mathcal{P})$
Proposition 2 (Corollary)
If \mathcal{P}, Q are any partitions of $[a, b]$, then $L(f, \mathcal{P}) \leq U(f, Q)$

Let $f:\lfloor a, b\rfloor \rightarrow \mathbb{R}$ be a bounded function and
$\mathcal{P}: a=x_{0}<x_{1}<x_{2}<\cdots<x_{n-1}<x_{n}=b$ a partition of $\lfloor a, b\rfloor$
For each $\left[x_{j-1}, x_{j}\right]$ we have
$\sup \left\{f(x): x_{j-1} \leq x \leq x_{j}\right\}=\sup f\left[x_{j-1}, x_{j}\right]$ and
$\inf \left\{f(x): x_{j-1} \leq x \leq x_{j}\right\}=\inf f\left[x_{j-1}, x_{j}\right]$
Example
$f(x)=\left\{\begin{array}{c}x \text { on }\left[0, \frac{1}{2}\right) \\ x-1 \text { on }\left(\frac{1}{2}, 1\right] \\ 0 \text { at } \frac{1}{2}\end{array}\right.$

Use \mathcal{P} : $0<\frac{1}{2}<\frac{2}{3}<1$
$\sup f\left|0, \frac{1}{3}\right|=\frac{1}{3}, \inf f\left|0, \frac{1}{3}\right|=0$
$\sup f\left|\frac{1}{3}, \frac{2}{3}\right|=\frac{1}{2}, \inf f\left|\frac{1}{3}, \frac{2}{3}\right|=-\frac{1}{2}$
$\sup f\left|\frac{2}{3}, 1\right|=0, \inf f\left|\frac{2}{3}, 1\right|=-\frac{1}{3}$
Example
$f(x)=\left\{\begin{array}{l}1 \text { when } x \in \mathbb{Q} \\ 0 \text { when } x \notin \mathbb{Q}\end{array}\right.$
For every $\mathcal{P}: 0=x_{0}<x_{1}<\cdots<x_{n}=1$
we get
$L(f, \mathcal{P})=\sum \inf f\left\lfloor x_{j-1}, x_{j}\right\rfloor\left(x_{j}, x_{j-1}\right)=0$
$U(f, \mathcal{P})=\sum \sup f\left|x_{j-1}, x_{j}\right|\left(x_{j}-x_{j-1}\right)=\sum_{j-1}^{n} 1\left(x_{j}-x_{j-1}\right)=1$
Example
$f(x)=x^{2}$ on $[0,1]$
Take the uniform partition
$\mathcal{P}_{n}: 0=\frac{0}{n}<\frac{1}{n}<\frac{2}{n}<\frac{n-1}{n}<\frac{n}{n}=1$
Now

$$
\begin{gathered}
U\left(f, \mathcal{P}_{n}\right)=\left(\frac{1}{n}\right)^{2}\left(\frac{1}{n}-0\right)+\left(\frac{2}{n}\right)^{2}\left(\frac{2}{n}-\frac{1}{n}\right)+\left(\frac{3}{n}\right)^{2}\left(\frac{3}{n}-\frac{2}{n}\right)+\cdots+\left(\frac{n}{n}\right)^{2}\left(\frac{n}{n}-\frac{n-1}{n}\right) \\
=\frac{1^{2}}{n^{3}}+\frac{2^{2}}{n^{3}}+\frac{3^{3}}{n^{3}}+\cdots+\frac{n^{n}}{n^{3}}=\frac{1}{n^{3}}\left(\frac{n(n+1)(2 n+1)}{6}\right)=\frac{1}{6}\left(1+\frac{1}{n}\right)\left(2+\frac{1}{n}\right)
\end{gathered}
$$

Similarly,
$L(f, \mathcal{P})=\frac{1}{6}\left(1-\frac{1}{n}\right)\left(2-\frac{1}{n}\right)$

Refinements

Example
$0<\frac{1}{2}<3<3.2<5$ is refined by $0<\frac{1}{2}<1.7<3<3.2<4<5$

Proof of Proposition 1

Show $U(f, Q) \leq U(f, \mathcal{P})$
It suffices to check this when Q has just one point more than \mathcal{P} since we can induct over the number of points.
Say $\mathcal{P}: a=x_{0}<x_{1}<\cdots<x_{k-1}<x_{k}<\cdots<x_{n}=b$
Q: $a=x_{0}<x_{1}<\cdots<x_{k-1}<y<x_{k}<\cdots<x_{n}=b$
Now
$U(f, \mathcal{P})$
$=\sum_{j=1}^{k-1} \sup f\left[x_{j-1}, x_{j}\right]\left(x_{j}-x_{j-1}\right)+\sup f\left\lfloor x_{k-1}, x_{k}\right\rfloor\left(x_{k}-x_{k-1}\right)$
$+\sum_{j=k+1}^{n} \sup f\left\lfloor x_{j-1}, x_{j}\right\rfloor\left(x_{j}-x_{j-1}\right)$
$U(f, \mathcal{P})$
$=\sum_{j=1}^{k-1} \sup f\left[x_{j-1}, x_{j}\right]\left(x_{j}-x_{j-1}\right)+\sup f\left[x_{k-1}, y\right]\left(y-x_{k-1}\right)$
$+\sup f\left\lfloor y, x_{k}\right\rfloor\left(x_{k}-y\right)+\sum_{j=k+1}^{n} \sup f\left\lfloor x_{j-1}, x_{j}\right\rfloor\left(x_{j}-x_{j-1}\right)$
So we need to see that
$\sup f\left\lfloor x_{k-1}, x_{k}\right\rfloor\left(x_{k}-x_{k-1}\right) \geq \sup f\left\lfloor x_{k-1}, y\right\rfloor\left(y-x_{k-1}\right)+\sup f\left\lfloor y, x_{k}\right\rfloor\left(x_{k}-y\right)$
We know that $\sup f\left\lfloor x_{k-1}, x_{k}\right\rfloor \geq \sup f\left[x_{k-1}, y\right]$ and $\sup f\left\lfloor x_{k-1}, x_{k}\right\rfloor \geq \sup f\left[y, x_{k}\right]$ and thus
$\sup f\left\lfloor x_{k-1}, y\right\rfloor\left(y-x_{k-1}\right)+\sup f\left\lfloor y, x_{k}\right\rfloor\left(x_{k}-y\right)$
$\leq \sup f\left\lfloor x_{k-1}, x_{k}\right\rfloor\left(y-x_{k-1}\right)+\sup f\left\lfloor x_{k-1}, x_{k}\right\rfloor\left(x_{k}-y\right)$
$=\sup f\left\lfloor x_{k-1}, x_{k}\right\rfloor\left(x_{k}-x_{k-1}\right)$
QED

Proof of Proposition 2

Let \mathcal{R} be the partition of $[\mathrm{a}, \mathrm{b}]$ that includes all points of \mathcal{P} and \mathcal{Q} \mathcal{R} is called the common refinement of \mathcal{P} and \mathcal{Q}
By Proposition 1, we get
$L(f, \mathcal{P}) \leq L(f, \mathcal{R}) \leq U(f, \mathcal{R}) \leq U(f, Q)$

Integrable Definition

January-10-11
9:33 AM

Integrable Function and Integral

A function f is said to be integrable over $[\mathrm{a}, \mathrm{b}]$ iff $\sup _{P} L(f, P)=\inf _{Q} U(f, Q)$

The common number is the integral of f over $[a, b]$ We write:
$\int_{a}^{b} f=\sup _{P} L(f, P)=\inf _{Q} U(f, Q)$

Since $U(f, Q)$ is an upper bound for all $L(f, \mathcal{P})$'s we get $\sup \{L(f, \mathcal{P}): \mathcal{P}$ is any partition of $\lfloor a, b]\} \leq U(f, Q)$

Short notation:
$\sup _{\mathcal{P}} L(f, \mathcal{P}) \leq U(f, Q)$
Since $\sup _{P} L(f, P)$ is a lower bound for all $U(f, Q)$ we get $\sup _{P} L(f, P) \leq \inf _{Q} U(f, Q)$

Example
$f(x)=\left\{\begin{array}{l}1 \text { for } x \in \mathbb{Q} \\ 0 \text { for } x \notin \mathbb{Q}\end{array}\right.$ on $[a, b]$
We saw all $L(f, P)=0$ and all $U(f, Q)=1$
So
$\sup _{P} L(f, P)=0<1=\inf _{Q} U(f, Q)$
So f is not integrable
Example
$f(x)=x^{2}$ on $\lfloor 0,1\rfloor$
Using uniform partitions \mathcal{P}_{n} we got
$L\left(f, \mathcal{P}_{n}\right)=\frac{1}{6}\left(1-\frac{1}{n}\right)\left(2-\frac{1}{n}\right)$
$U\left(f, \mathcal{P}_{n}\right)=\frac{1}{6}\left(1+\frac{1}{n}\right)\left(2+\frac{1}{n}\right)$
Hence
$\inf _{Q} U(f, Q) \leq \frac{1}{3}$ since $\inf _{Q} U(f, Q) \leq$ all $U\left(f, P_{n}\right)$ and $\lim _{n \rightarrow \infty} U\left(f, P_{n}\right)=\frac{1}{3}$
Similarly, $\frac{1}{3} \leq \inf _{P} L(f, Q)$
$\frac{1}{3} \leq \sup _{P} L(f, P) \leq \inf _{Q} U(f, Q) \leq \frac{1}{3}$
so
$\int_{0}^{1} f=\frac{1}{3}$

Riemann's Integrability Criterion

January-12-11
9:37 AM

Proposition 3 - proof to know Riemann's Integrability Criterion $f:\lfloor a, b\rfloor \rightarrow \mathbb{R}$ is integrable if and only if for every $\varepsilon>0$, there is a partition R of [a, b] such that $U(f, R)-L(f, R)<\varepsilon$

Proposition 4

Every increasing/decreasing $f:\lfloor a, b\rfloor \rightarrow \mathbb{R}$ is integrable

Riemann Sum

Instead of using upper and lower sums, pick some value $f\left(a_{i}\right)$ in each section of the partition \mathcal{P}
$\sum_{i=1}^{n} f\left(a_{i}\right)\left(x_{i}-x_{i-1}\right)$
Approaches the integral as the partition gets finer.

We have seen that all
$L(f, P) \leq \operatorname{all} U(f, Q)$
Thus
$\sup _{P} L(f, P) \leq \inf _{Q} U(f, Q)$
If $=$ happens we say f is integrable on $[a, b]$ and its integral is
$\int_{a}^{b} f=\sup _{P} L(f, P)=\inf _{Q} U(f, Q)$

Proof of proposition 3

Suppose f is integrable and take $\varepsilon>0$. Then $\sup _{P} L(f, P)=\inf _{Q} U(f, Q)$
Hence there exist partitions P_{1}, Q_{1} such that
$\sup _{P} L(f, P)-\frac{\varepsilon}{2}<L\left(f, P_{1}\right)$
$U\left(f, Q_{1}\right)<\inf _{Q} U(f, Q)+\frac{\varepsilon}{2}$
Let R be a common refinement of P_{1} and Q_{1}
Then
$\sup _{P} L(f, P)-\frac{\varepsilon}{2}<L\left(f, P_{1}\right) \leq L(f, R) \leq U(f, R) \leq U\left(f, Q_{1}\right),<\inf _{Q} U(f, Q)+\frac{\varepsilon}{2}$
But
$\int_{a}^{b} f=\sup _{P} L(f, P)=\inf _{Q} U(f, Q)$
so
$\int_{a}^{b} f-\frac{\varepsilon}{2}<L(f, R) \leq U(f, R)<\int_{a}^{b} f+\frac{\varepsilon}{2}$
And therefore
$U(f, R)-L(f, R)<\varepsilon$
Conversely, say for every $\varepsilon>0$ there is a partition R such that $U(f, R)-L(f, R)<\varepsilon$
Then we have
$L(f, R) \leq \sup _{P} L(f, P) \leq \inf _{Q} U(f, Q) \leq U(f, R)$
So for every $\varepsilon>0$, we get
$0 \leq \inf _{\mathrm{Q}} U(f, Q)-\sup _{P} L(f, P)<\varepsilon$

$\inf _{Q} U(f, Q)-\sup _{P} L(f, P)=0$

Example
$a<c<b$, Put
$f(x)=\left\{\begin{array}{cc}0, & a \leq x<c \\ 1, & x=c \\ 0, & c<x \leq b\end{array}\right.$
Use Proposition 3. Take $\varepsilon>0$
Pick x_{1}, x_{2} such that $a<x_{1}<c<x_{2}<b$ and $x_{2}-x_{1}<\varepsilon$
Take R: $a<x_{1}<x_{2}<b$, a partition of $[a, b]$
$L(f, R)=0 \times\left(a-x_{1}\right)+0 \times\left(x_{2}-x_{1}\right)+0 \times\left(b-x_{2}\right)=0$
$U(f, R)=0 \times\left(a-x_{1}\right)+1 \times\left(x_{2}-x_{1}\right)+0 \times\left(b-x_{2}\right)<\varepsilon$
So $U(f, R)-L(f, R)<\varepsilon-0=\varepsilon$
So f is integrable and $\mathrm{J}_{a}^{b} f=0$
Proof of Proposition 4
Suppose $f:\lfloor a, b\rfloor \rightarrow \mathbb{R}$ is increasing (i.e. $a \leq x_{1} \leq x_{2}<b \Rightarrow f\left(x_{1}\right) \leq f\left(x_{2}\right)$)
If $f(x)=c=$ const then a simple calculation gives all $U(f, P)=\operatorname{all} L(f, P)=c(b-a)$
So
$\left.\right|_{a} ^{b} f=\sup _{P} L(f, P)=\inf _{Q} L(f, Q)=c(b-a)$
Now, suppose $f(x) \neq$ constant, so $f(b)>f(a)$
Take any $\varepsilon>0$

Pick a partition P: $a=x_{0}<x_{1}<\cdots<x_{n}=b$ such that all $x_{j}-x_{j-1}<\frac{\varepsilon}{f(b)-f(a)}$
Then

$$
\begin{aligned}
& U(f, P)-L(f, P)=\sum_{j=1}^{n}\left(\sup f\left|x_{j-1}, x_{j}\right|-\inf f\left|x_{j-1}, x_{j}\right|\right)\left(x_{j}-x_{j-1}\right) \\
& =\sum_{j=1}^{n}\left(f\left(x_{j}\right)-f\left(x_{j-1}\right)\right)\left(x_{j}-x_{j-1}\right)<\sum_{j=1}^{n}\left(f\left(x_{j}\right)-f\left(x_{j-1}\right)\right) \frac{\varepsilon}{f(b)-f(a)} \\
& =\frac{\varepsilon}{f(b)-f(a)} \times\left(f\left(x_{1}\right)-f\left(x_{0}\right)+f\left(x_{2}\right)-f\left(x_{1}\right)+\cdots+f\left(x_{n}\right)-f\left(x_{n-1}\right)\right) \\
& =\frac{\varepsilon}{f(b)-f(a)}(f(b)-f(a))=\varepsilon
\end{aligned}
$$

Example

$$
f(x)=\left\{\begin{array}{c}
\left.0 \text { on } \mid 0, \frac{1}{2}\right) \\
\left.\frac{1}{2} \text { on } \left\lvert\, \frac{1}{2}\right., \frac{2}{3}\right) \\
\left.\frac{2}{3} \text { on } \left\lvert\, \frac{2}{3}\right., \frac{3}{4}\right) \\
1 \text { at } 1
\end{array}\right\}
$$

Uniform Continuity

January-14-11
9:30 AM

Fact

$|\sin b-\sin a| \leq|b-a|$

Triangle Inequality

On a triangle, the distance between any two points is less than or equal to the sum of the distances between the other points, and greater than or equal to the difference in the distances of the other points.
$|a+b| \leq|a|+|b|$
$|a-b| \geq||a|-|b||$

Uniform Continuity

On midterm
A function $f: I \rightarrow \mathbb{R}$ is uniformly continuous on the interval I when for every $\varepsilon>0$ there is a $\delta>0$ such that $|f(x)-f(p)|<\varepsilon$ when $x, p \in I$ and $|x-p|<\delta$

Comparison of Continuities

Normal:
f cts. on I
$\forall \varepsilon>0 \forall p \in I \exists \delta>0$ s.t.
$\forall x \in I|x-p|<\delta \Rightarrow|f(x)-f(p)|<\varepsilon$
Uniform:
f unif. cts. on I
$\forall \varepsilon>0 \exists \delta>0$ s.t. $\forall p \in I \forall x \in I$
$|x-p|<\delta \Rightarrow|f(x)-f(p)|<\varepsilon$

Example

$f(x)=x+\sin (x)$ on \mathbb{R}
Take any $\mathrm{p} \in \mathbb{R}$ and show f is continuous at p
Take any $\varepsilon>0$. Let's find $\delta>0$ such that $|x+\sin x-(p+\sin p)|<\varepsilon$ when $|x-p|<\delta$ $|x+\sin x-p-\sin p| \leq|x-p|+|\sin x-\sin p| \leq|x-p|+|x-p|=2|x-p|$
Take $\delta=\frac{\varepsilon}{2}$
When $|x-p|<\delta$, we will get
$|x+\sin (x)-(p+\sin p)| \leq 2|x-p|<2 \delta=2\left(\frac{\varepsilon}{2}\right)=\varepsilon$
Example
$f(x)=x^{2}$ on \mathbb{R}
Take $p \in \mathbb{R}$. Check f is continuous at p. Take $\varepsilon>0$
Need $\delta>0$ so that $|x-p|<\delta \Rightarrow\left|x^{2}-p^{2}\right|<\varepsilon$
$\left|x^{2}-p^{2}\right|=|x+p||x-p|$
If we keep $|x-p|<1$, then $|x|-|p|<1$, so $|x|<|p|+1$
Then when $|x-p|<1$:
$\left|x^{2}-p^{2}\right| \leq(|x|+|p|)|x-p| \leq(|p|+1+|p|)|x-p|=(2|p|+1)|x-p|$
Take $\delta=\min \left\{1, \frac{\varepsilon}{2|p|+1}\right\}$

Now when $|x-p|<\delta$ we get
$\left|x^{2}-p^{2}\right| \leq(2|p|+1)|x-p|<(2|p|+1)\left(\frac{\varepsilon}{2|p|+1}\right)=\varepsilon$

Note:

In the first case, δ did not depend on p , while in the second case δ did depend on p . There is not a single δ that works for all possible points.
$f(x)=x+\sin x$ is uniformly continuous on \mathbb{R}. Right now don't know that $f(x)=x^{2}$ is not uniformly continuous.

Proof that $f(x)=x^{2}$ is not uniformly continuous on \mathbb{R}
Suppose f were unif. cts. on \mathbb{R} and look for contradiction.
So for $\varepsilon=1$ we have a $\delta>0$ such that $x, p \in \mathbb{R}$ and $|x-p|<\delta \Rightarrow\left|x^{2}-p^{2}\right|<1$
Let n be an integer so big that $\frac{1}{n}<\delta$
Then take $p=n$ and $x=n+\frac{1}{n}$. Clearly $|x-p|=\frac{1}{n}<\delta$
$\left|x^{2}-p^{2}\right|=\left|\left(n+\frac{1}{n}\right)^{2}-n^{2}\right|=\left|n^{2}+2+\frac{1}{n^{2}}-n^{2}\right|=2+\frac{1}{n^{2}}>1$

Sequences and Unif. Ctn.

January-17-11
9:28 AM
$f: I \rightarrow \mathbb{R}$ is uniformly continuous on the interval I means that for every $\varepsilon>0$ there is a $\delta>0$ such that $|f(x)-f(p)|<\varepsilon$ when $x, p \in I$ and $|x-p|<\delta$

Proposition 5

$f: I \rightarrow \mathbb{R}$ is not uniformly continuous on $\mathrm{I} \Leftrightarrow$ there exist sequences $x_{n}, p_{n} \in I$, such that $x_{n}-p_{n} \rightarrow 0$ while $f\left(x_{n}\right)-f\left(p_{n}\right) \nrightarrow 0$
equivalently
$f: I \rightarrow \mathbb{R}$ is uniformly continuous on $\mathrm{I} \Leftrightarrow$ \forall sequences $x_{n}, p_{n} \in I, x_{n}-p_{n} \rightarrow 0 \Rightarrow f\left(x_{n}\right)-$ $f\left(p_{n}\right) \rightarrow 0$

Proposition 6
If $f:|a, b| \rightarrow \mathbb{R}$ is continuous on a closed interval [a, b], then f is uniformly continuous.

Proof of Proposition 5

Say f is unif. cts. on I.
Take $x_{n}, p_{n} \in I$ and $x_{n}-p_{n} \rightarrow 0$
Want $f\left(x_{n}\right)-f\left(p_{n}\right) \rightarrow 0$
Take $\varepsilon>0$, we need to show $\left|f\left(x_{n}\right)-f\left(p_{n}\right)\right|<\varepsilon$ eventually
By uniform continuity of f , we have $\delta>0$ such that $|f(x)-f(p)|<\varepsilon$ when $\mathrm{x}, \mathrm{p} \in \mathrm{I}$ and $|x-p|<\delta$
Eventually $\left|x_{n}-p_{n}\right|<\delta \forall \mathrm{n} \geq \mathrm{N}$ and so $\left|f\left(x_{n}\right)-f\left(p_{n}\right)\right|<\varepsilon \forall n \geq N$
So $f\left(x_{n}\right)-f\left(p_{n}\right) \rightarrow 0$
Now suppose f is not unif. cts. on I
So there is a "bad" $\varepsilon>0$ that no $\delta>0$ can please
No $\delta=\frac{1}{n}$ can please this ε. For each such $\frac{1}{n}$ we pick up $x_{n}, p_{n} \in I$ such that
$\left|x_{n}-p_{n}\right|<\frac{1}{n}$ while $\left|f\left(x_{n}\right)-f\left(p_{n}\right)\right| \geq \varepsilon$
By the squeeze theorem, $x_{n}-p_{n} \rightarrow 0$ and clearly $\left|f\left(x_{n}\right)-f\left(p_{n}\right)\right| \rightarrow 0$

Example
Show $f(x)=\ln x$ is not uniformly continuous on $(0,1)$
Well, $\frac{1}{e^{n}}$ and $\frac{1}{e^{n+1}} \in(0,1)$ and $\frac{1}{e^{n}}-\frac{1}{e^{n+1}} \rightarrow 0$
But $\ln \left(\frac{1}{e^{n}}\right)-\ln \left(\frac{1}{e^{n+1}}\right)=-n-(-(n+1))=1 \leftrightarrow 0$

Proof of Proposition 6
Suppose f is not uniformly continuous.
Then there is a "bad" $\varepsilon>0$ such that no $\delta>0$ can please.
For all $\delta=\frac{1}{n}$, pick $x_{n}, p_{n} \in I$ such that $\left|x_{n}-p_{n}\right|<\frac{1}{n}$ but $\left|f\left(x_{n}\right)-f\left(p_{n}\right)\right| \geq \varepsilon$
Using Bolzano-Weierstrass we pick up a subsequence $p_{n_{k}}$ of p_{n} such that $p_{n_{k}} \rightarrow p \in[a, b]$ as $\mathrm{k} \rightarrow \infty$ Notice $x_{n_{k}}=p_{n_{k}}+\left(x_{n_{k}}-p_{n_{k}}\right) \rightarrow p+0=p$
So $f\left(x_{n_{k}}\right) \rightarrow f(p)$ as $k \rightarrow \infty$ and $f\left(p_{n_{k}}\right) \rightarrow f(p)$
Therefore $f\left(x_{n_{k}}\right)-f\left(p_{n_{k}}\right) \rightarrow p-p=0$ so $\exists K \in \mathbb{N}$ such that $\left|f\left(x_{n_{k}}\right)-f\left(p_{n_{k}}\right)\right|<\varepsilon \forall \mathrm{k} \geq \mathrm{K}$ But $\left|f\left(x_{n}\right)-f\left(p_{n}\right)\right| \geq \varepsilon \forall n$, a contradiction.
So f is uniformly continuous.

Integrability of Continuous

January-19-11

9:55 AM

Theorem 7

Every continuous function on a closed interval is integrable on that interval.

If $f:|a, b| \rightarrow \mathbb{R}$ is continuous and $\varepsilon>0$ is given, take $\delta>0$ such that $|x-p|<\delta \Rightarrow|f(x)-f(p)|<\frac{\varepsilon}{b-a}$ If $\mathcal{P}: a=x_{0}<x_{1}<\cdots<x_{n}=b$ is a partition constructed such that all $x_{j}-x_{j-1}<\delta$ then $U(f, \mathcal{P})-L(f, \mathcal{P})<\varepsilon$
So f is integrable on $[a, b]$.

Proof of Theorem 7

On each $\left|x_{j-1}, x_{j}\right|$ f gets a maximum and a minimum value by the extreme value theorem.
Pick u_{j}, v_{j} such that $f\left(u_{j}\right)=\sup f\left[x_{j-1}, x_{j}\right]$ and $f\left(v_{j}\right)=\inf f\left[x_{j-1}, x_{j}\right]$
$x_{j-1} \leq v_{j} \leq u_{j} \leq x_{j}$ so $u_{j}-v_{j} \leq x_{j}-x_{j-1} \Rightarrow \sup f\left|x_{j-1}, x_{j}\right|-\inf f\left|x_{j-1}, x_{j}\right|<\frac{\varepsilon}{b-a}$
$U(f, \mathcal{P})-L(f, P)=\rangle_{i=1}^{n}\left(\sup f\left|x_{i-1}, x_{i}\right|-\inf f\left|x_{i-1}, x_{i}\right|\right)\left(x_{i}-x_{i-1}\right)<\sum_{i=1}^{n} \frac{\varepsilon}{b-a}\left(x_{i}-x_{i-1}\right)$
$\left.=\frac{\varepsilon}{b-a}\right\rangle_{i=1}^{n}\left(x_{i}-x_{i-1}\right)=\frac{\varepsilon}{b-a}(b-a)=\varepsilon$
Estimating Integrals
To make an estimate of the integral of a continuous bounded function on [a, b], for an estimate within ε of the true integral, partition the interval into $\left[x_{j-1}, x_{j}\right]$ with $x_{j}-x_{j-1}<\frac{\varepsilon}{b-a}$ and sum the area of those rectangles.

Fundamental Theorem of Calculus I

January-21-11
9:32 AM
Observation
If f is integrable on $[\mathrm{a}, \mathrm{b}]$ and S is a number such that $L(f, \mathcal{P}) \leq S \leq U(f, \mathcal{P})$ for all partitions \mathcal{P} then $S=\int_{a}^{b} f$

Theorem 8
Fundamental Theorem of Calculus pt. 1
(Learn Proof)
If F, f are functions on $[a, b]$ such that

- f is integrable
- F is continuous on $[a, b]$
- $\mathrm{F}^{\prime}=\mathrm{f}$ over (a, b)

Then
$\left.\right|_{a} ^{b} f=F(b)-F(a)$
$F(x)$ is known as the antiderivative of f or the indefinite integral
Question: Is there a function F such that F^{\prime} is not integrable?

Notation

Non-mathematical reasoning
When f is continuous, we see $\int_{a}^{b} f \approx U(f, \mathcal{P})$ when \mathcal{P} is very fine.
$\left.U(f, \mathcal{P})=\rangle_{j} \sup f\left|x_{j-1}, x_{j}\right|\left(x_{j}-x_{j-1}\right) \approx\right\rangle_{j} f\left(x_{j}\right)\left(x_{j}-x_{j-1}\right)$
Pretend your \mathcal{P} is so fine that you make a cut at every x in $[a, b]$ Now you get "nano-thin" rectangles of "thickness" dx, height $f(x)$, and "area" $f(x) d x$.
"Add up" these "values" $f(x) d x$ using the "limiting sum" $J_{a}^{b_{m}}$ and we can write
$\left.\right|_{a} ^{b} f=\left.\right|_{a} ^{b} f(x) d x$
Another Useful Notation
$\left.F(x)\right|_{a} ^{b}$ or $|F(x)|_{a}^{b}$
means $F(b)-F(a)$

Proof of Fundamental Theorem

If $\mathcal{P}: a=x_{0}<x_{1}<\cdots<x_{n}=b$ is any partition of $[\mathrm{a}, \mathrm{b}]$ we will show that
$L(f, \mathcal{P}) \leq F(b)-F(a) \leq U(f, \mathcal{P})$
$F(b)-F(a)=\sum_{i=1}^{n}\left(F\left(x_{i}\right)-F\left(x_{i-1}\right)\right)$, rebuilt the telescope
Apply the Mean Value Theorem to F over each $\left[x_{j-1}, x_{j}\right]$, we pick up some $t_{j} \in\left(x_{j-1}, x_{j}\right)$ such that
$F\left(x_{j}\right)-F\left(x_{j-1}\right)=F^{\prime}\left(t_{j}\right)\left(x_{j}-x_{j-1}\right)=f\left(t_{j}\right)\left(x_{j}-x_{j-1}\right)$
$\inf f\left|x_{j-1}, x_{j}\right| \leq f\left(t_{j}\right) \leq \sup f\left|x_{j-1}, x_{j}\right|$
$\left.\left.\Rightarrow \sum_{i=1}^{n} \inf f\left|x_{i-1}, x_{i}\right|\left(x_{i}-x_{i-1}\right) \leq\right\rangle_{i=1}^{n} f\left(t_{i}\right)\left(x_{i}-x_{i-1}\right) \leq\right\rangle_{i=1}^{n} \sup f\left|x_{i-1}, x_{i}\right|\left(x_{i}-x_{i-1}\right)$ $\Rightarrow \begin{aligned} & i=1 \\ & \Rightarrow L(f, \mathcal{P}) \leq F(b)-F(a) \leq U(f, \mathcal{P})\end{aligned}$
So
$\left.\right|_{a} ^{b} f=F(b)-F(a)$
Example
Let $f(x)=\sin x$ over $[0, \pi]$
We know $F(x)=-\cos x$
By FTC (part 1)
$\left.\right|_{0} ^{\pi} f=-\cos \pi+\cos 0=-(-1)+1=2$
Example
$\left.\right|_{0} ^{1} \frac{1}{1+x^{2}} d x=\left.\arctan x\right|_{0} ^{1}=\frac{\pi}{4}-0=\frac{\pi}{4}$
Example
$\left.\right|_{1} ^{2} \frac{1}{x} d x=|\ln x|_{a}^{b}=\ln 2$
Example
$\left.\right|_{-1} ^{0}\left(x^{3}+2 x^{2}\right) d x=\left|\frac{1}{4} x^{4}+\frac{2}{3} x^{3}\right|_{-1}^{0}=0-\left(\frac{1}{4}-\frac{2}{3}\right)=\frac{5}{12}$

Anti-Derivatives

January-24-11
9:32 AM

Integral

Riemann Integral
Conventional integral over an interval using upper and lower sums

Indefinite Integral
The anti-derivative of a function plus a constant.

Integrand

That which is to be integrated.

Terminology

In order to calculate $\mathrm{J}_{a}^{b} f(x) d x$ using $\operatorname{FTC}(\mathrm{I})$ we need a function F such that $F^{\prime}=f$ Then we know
$\int_{a}^{b} f(x) d x=F(b)-F(a)$
Any function F such that $F^{\prime}=f$ is called an anti-derivative of f and is denoted by
$\mid f(x) d x$
with no endpoints. This is a function, while with endpoints is a number.
So FTC(I) said
$\left.\right|_{a} ^{b} f(x) d x=|f(x) d x|_{a}^{b}$
If F, G are two anti-derivatives of f on some interval I then $F^{\prime}=f=G^{\prime} \Rightarrow(G-F)^{\prime}=0$
$\Rightarrow G-F=c=$ const
$\Rightarrow G=F+c$
So one we have one anti-derivative F of f , we write
$\mid f(x) d x=F(x)+C$

Because of FTC(I), we also call
$\mid f(x) d x$
an indefinite integral of f.
Remember:
The left hand side (integral) is defined on its own. It is not defined through the anti-derivative.
So we need to find these indefinite integrals:

Anti-Derivative Rules

Know by heart
$\left\lvert\, x^{a} d x=\frac{x^{a+1}}{a+1}+C\right., a \in \mathbb{R}, a \neq-1$
$\left.\left|\frac{1}{x}=\ln \right| x \right\rvert\,+C$
$\int \sin x d x=-\cos x+C$
$\int \cos x d x=\sin x+C$
$\left\lvert\, \frac{1}{\cos ^{2} x} d x=\tan x+C\right.$
$\left\lvert\, \frac{1}{1+x^{2}} d x=\arctan x+C\right.$
$\int \frac{1}{\sqrt{1-x^{2}}} d x=\arcsin x+C$
$\mid e^{x} d x=e^{x}+C$

The Substitution Method
Suppose F, f, g, are functions. Here is the chain rule:

Derivative Style	Integration Style
If $F^{\prime}(u)=f(u)$	If
Then	$\mid f(u) d u=F(u)$
$F(g(x))^{\prime}=f(g(x)) g^{\prime}(x)$	then
	$\mid f(g(x)) g^{\prime}(x) d x=F(g(x))$

So in order to find some
$J=\mid f(g(x)) g^{\prime}(x) d x$
play the following substitution game.
Put $u=g(x)$
$\frac{d u}{d x}=g^{\prime}(x)$
$d u=g^{\prime}(x) d x$
Find
$\mid f(u) d u=F(u)$
$J=F(g(x))+C$

Example
$J=\left\lvert\, \frac{2 x}{1+x^{2}} d x\right.$
Put $u=1+x^{2} \Rightarrow \frac{d u}{d x}=2 x d x$
$\left.J=\left|\frac{1}{u} d u=\ln \right| u \right\rvert\,=\ln \left(1+x^{2}\right)+C$

Example
$J=\left|\frac{x}{1+x^{4}} d x=\frac{1}{2}\right| \frac{2 x}{1+\left(x^{2}\right)^{2}} d x$
Put $u=x^{2} \Rightarrow \frac{d u}{d x}=2 x \Rightarrow d u=2 x d x$
So $J=\frac{1}{2} \left\lvert\, \frac{d u}{1+u^{2}}=\frac{1}{2} \arctan u=\frac{1}{2} \arctan \left(x^{2}\right)+C\right.$

Example
$J=\int \frac{1}{x \ln x} d x$
Put $u=\ln x \Rightarrow d u=\frac{1}{x} d x$
$\left.J=\left|\frac{1}{u} d u=\ln \right| u \right\rvert\,=\ln \ln x+C$
Example
$J=\mid \sqrt{1-x^{2}} d x$
More obscure - trig substitution. Cleverly notice
$J=\left\lvert\,\left(1-x^{2}\right) \times \frac{1}{\sqrt{1-x^{2}}}=\int\left(1-\sin ^{2}(\arcsin x)\right)\left(\frac{1}{\sqrt{1-x^{2}}}\right) d x\right.$
Put $u=\arcsin x \Rightarrow d u=\frac{1}{\sqrt{1-x^{2}}} d x$
$J=\left(1-\sin ^{2} u\right) d u=\left|\cos ^{2} u d u=\frac{1}{2}\right|(\cos 2 x+1)=\frac{1}{2}\left|\cos 2 u d u+\frac{1}{2}\right| 1 d u=\frac{1}{4} \sin 2 u+\frac{1}{2} u$
$=\frac{1}{2} \sin u \cos u+\frac{1}{2} u=\frac{1}{2} \sin (\arcsin x) \cos (\arcsin x)+\frac{1}{2} \arcsin x=\frac{1}{2} x \sqrt{1-x^{2}}+\frac{1}{2} \arcsin x+C$

Integration Methods

January-26-11
9:33 AM

Integration by Parts

$J=|u d v=u v-| v d u$
Memorise

Integrating Rationals

Key Theorem

Every rational function can be expressed as a linear combination of the following functions:
$1, x, x^{2}, \ldots, x^{n} \ldots$
$\frac{1}{x-a}, \frac{1}{(x-a)^{2}}, \frac{1}{(x-a)^{3}}, \ldots, \frac{1}{(x-a)^{n}}, \ldots$

$$
\text { for any } a \in \mathbb{R}
$$

$\frac{1}{x^{2}+b x+c}, \frac{1}{\left(x^{2}+b x+c\right)^{2}}, \ldots, \frac{1}{\left(x^{2}+b x+c\right)^{n}}, \ldots$
Where $x^{2}+b x+c$ is irreducible
$\frac{x}{x^{2}+b x+c}, \frac{x}{\left(x^{2}+b x+c\right)^{2}}, \ldots, \frac{x}{\left(x^{2}+b x+c\right)^{n}}, \ldots$
Where $x^{2}+b x+c$ is irreducible
In other words, these functions form a basis for the set of all rational functions.

Thus we need to be able to integration the functions on this list, and write a rational function as a linear combination of these.

Change of Variables for Definite Integrals
If $F(u)=\mid f(u) d u$
$\left.\right|_{a} ^{b} f(g(x)) g^{\prime}(x) d x=\left.F(g(x))\right|_{a} ^{b}=F(g(b))-F(g(a))$
$=\left.\right|_{g(a)} ^{g(b)} f(u) d u$

Integration by Substitution

To integrate stuff like $J=\mathrm{J} f(g(x)) g^{\prime}(x) d x$
Put $u=g(x) \Rightarrow d u=g^{\prime}(x) d x$
Find $F(u)=J f(u) d u$
Write $J=F(g(x))+C$
But it's sometimes not easy to see what $u=g(x)$ to try. Try something and hope

Inverse Substitution Method

Example
We had
$J=\mid \sqrt{1-x^{2}} d x$
and discovered that $u=\arcsin x \Rightarrow d u=\frac{1}{\sqrt{1-x^{2}}} d x$ let to $J=J \cos ^{2} u d u$ then we got to
$J=\frac{1}{2} x \sqrt{1-x^{2}}+\frac{1}{2} \arcsin x+C$
But what if we did not know to try $u=\arcsin x$? Here is a way to $J \cos ^{2} u d u$
Put $x=\sin u \Rightarrow d x=\cos u d u$
$u=\arcsin x$
$\sqrt{1-x^{2}}=\sqrt{1-\sin ^{2} u}=\cos u$
$J=\left|\sqrt{1-x^{2}} d x=\right| \cos ^{2} u d u$
Then continue as before.
Example
$J=\mid \sqrt{1+e^{x}} d x$
Put $u=\sqrt{1+e^{x}} \Rightarrow e^{x}=u^{2}-1$
$d u=\frac{1}{2 \sqrt{1+e^{x}}} e^{x} d x=\frac{u^{2}-1}{2 u} d x$
$d x=\frac{2 u}{u^{2}-1} d u$
So
$J=\left|u \times \frac{2 u}{u^{2}-1} d u=2\right| \frac{u^{2}}{u^{2}-1} d u=2\left(\left|\frac{u^{2}-1}{u^{2}-1} d u+\right| \frac{1}{u^{2}-1} d u\right)$
Call
$J_{1}=\int \frac{1}{u^{2}-1} d u$
Use Partial Fractions
$\frac{1}{u^{2}-1}=\frac{1}{(u-1)(u+1)}=\frac{A}{u-1}+\frac{B}{u+1}$
$1=A(u+1)+B(u-1)=$
$u=1 \Rightarrow A=\frac{1}{2}$
$u=-1 \Rightarrow B=-\frac{1}{2}$
So
$J_{1}=\frac{1}{2}\left|\frac{d u}{u-1}-\frac{1}{2}\right| \frac{d u}{u+1}=\frac{1}{2} \ln |u-1|-\frac{1}{2} \ln |u+1|$
$J=2\left(u+\frac{1}{2} \ln |u-1|-\frac{1}{2} \ln |\mathrm{u}+1|\right)=2 \mathrm{u}+\ln |\mathrm{u}-1|-\ln |\mathrm{u}+1|$
$=2 \sqrt{1+e^{\mathrm{x}}}+\ln \left(\sqrt{1+\mathrm{e}^{\mathrm{x}}}-1\right)-\ln \left(\sqrt{1+\mathrm{e}^{\mathrm{x}}}+1\right)+C$
Integration by Parts
Say f, g are differentiable on I
Here is the product rule

Differentiation Style	Integration Style

$(f(x) g(x))^{\prime}$ $f(x) g(x)$
$=f(x) g^{\prime}(x)+f^{\prime}(x) g(x)=\int\left(f(x) g^{\prime}(x)+f^{\prime}(x) g(x)\right) d x$

So
$\int f(x) g^{\prime}(x) d x=f(x) g(x)-\int g(x) f^{\prime}(x) d x$
To exchange $\mathrm{J} f(x) g^{\prime}(x) d x$
Put $u=f(x) \Rightarrow d u=f(x) d x, \frac{d v}{d x}=g^{\prime}(x) \Rightarrow d v=g^{\prime}(x) d x$
$v=|d v=| g^{\prime}(x) d x$
Here you need to integrate this "part"
Write
$J=|u d v=u v-| v d u$

Example
$J=\mid x e^{x} d x$
Put $u=x \Rightarrow d u=d x$
$d v=e^{x} d x \Rightarrow v=\mid e^{x} d x=e^{x}$
This
$J=x e^{x}-\mid e^{x} d x=x e^{x}-e^{x}+C$

Example
$J=\mid x^{2} \cos x d x$
Put $u=x^{2}, d v=\cos x d x$
$d u=2 x d x, v=\int \cos x d x=\sin x$
$J=x^{2} \sin x-2 \mid x \sin x d x$
Put $u=x, d v=\sin x d x$
$d u=d x, v=\mid \sin x d x=-\cos x$
$J=x^{2} \sin x-2(-x \cos x+\mid \cos x d x)=x^{2} \sin x+2 x \cos x-2 \sin x+C$
Example
$J=\int \ln x d x$
Put $u=\ln x, d v=d x$
$d u=\frac{1}{x} d x, v=x$
$J=x \ln x-\left\lvert\, \frac{1}{x} x d x=x \ln x-x+C\right.$
Example
$J=\mid \arctan x d x$
Put $u=\arctan x, d v=d x$
$d u=\frac{1}{1+x^{2}} d x, v=x$
$J=x \arctan x-\left\lvert\, \frac{x}{1+x^{2}} d x\right.$
$J_{1}=\frac{1}{2} \left\lvert\, \frac{2 x}{1+x^{2}} d x=\frac{1}{2} \ln \left(1+x^{2}\right)\right.$
$J=x \arctan x-\frac{1}{2} \ln \left(1+x^{2}\right)+C$
Example
$J=\int e^{x} \sin x d x$
Put $u=e^{x}, d v=\sin x d x$
$d u=e^{x} d x, v=-\cos x$
$J=-e^{x} \cos x+\mid e^{x} \cos x d x$
$J_{1}=\int e^{x} \cos x d x$
Put $u=e^{x}, d v=\cos x d x$
$d u=e^{x}, v=\sin x d x$
$J_{1}=e^{x} \sin x-\mid e^{x} \sin x d x$
$J_{1}=e^{x} \sin x-J$
$J=-e^{x} \cos x+J_{1}=-e^{x} \cos x+e^{x} \sin x-J$
$2 J=e^{x} \sin x-e^{x} \cos x$
$J=\frac{e^{x} \sin x-e^{x} \cos x}{2}+C$
Example
Constant over irreducible quadratic - complete the square and use arctan
$J=\left\lvert\, \frac{d x}{x^{2}+x+1}\right.$
Complete square
$x^{2}+x+1=\left(x+\frac{1}{2}\right)^{2}+\frac{3}{4}=\frac{3}{4}\left(\frac{4}{3}\left(x+\frac{1}{2}\right)^{2}+1\right)=\frac{3}{4}\left(\left(\frac{2}{\sqrt{3}}\left(x+\frac{1}{2}\right)\right)^{2}+1\right)$
Put $u=\frac{2}{\sqrt{3}}\left(x+\frac{1}{2}\right), d u=\frac{2}{\sqrt{3}} d x \Rightarrow d x=\frac{\sqrt{3}}{2} d u$
So

$$
J=\left|\frac{1}{\frac{3}{4}\left(u^{2}+1\right)}\left(\frac{\sqrt{3}}{2}\right) d u=\frac{4}{3}\left(\frac{\sqrt{3}}{2}\right)\right| \frac{1}{u^{2}+1} d u=\frac{2}{\sqrt{3}} \arctan u=\frac{2}{\sqrt{3}} \arctan \left(\frac{2}{\sqrt{3}}\left(x+\frac{1}{2}\right)\right)+C
$$

Example of Rational Theorem
$J=\left\lvert\, \frac{x^{3}+x+1}{x^{2}-2 x-3} d x\right.$
Here, deg top \geq deg bottom
$J=\left\lvert\, x+2+\frac{8 x+7}{x^{2}-2 x-3} d x\right.$
Easily, $\mathrm{J} x+2 d x=\frac{1}{2} x^{2}+2 x$
$J_{1}=\left|\frac{8 x+7}{x^{2}-2 x-3} d x=\right| \frac{8 x+7}{(x-3)(x+1)} d x$
We try to solve
$\frac{8 x+7}{x^{2}-2 x-3}=\frac{A}{x-3}+\frac{B}{x+1}$
Get, check myself
$A=\frac{31}{4}, B=\frac{1}{4}$
$J_{1}=\frac{31}{4}\left|\frac{1}{x-3}+\frac{1}{4}\right| \frac{1}{x+1}=\frac{31}{4} \ln (|x-3|)+\frac{1}{4} \ln (|x+1|)$
$J=\frac{1}{2} x^{2}+2 x+\frac{31}{4} \ln (|x-3|)+\frac{1}{4} \ln (|x+1|)$

Rational Expansion

January-31-11
9:32 AM
A basis for spaces of rational functions is all: $x^{n}, n \in \mathbb{N}$
$\frac{1}{(x-a)^{n}}, a \in \mathbb{R}, n \in \mathbb{N}$
$\frac{1}{\left(x^{2}+b x+c\right)^{n}}, b, c \in \mathbb{R}, b^{2}-4 c>0, n \in \mathbb{N}$ $\frac{x}{\left(x^{2}+b x+c\right)^{n}}, b, c \in \mathbb{R}, b^{2}-4 c>0, n \in \mathbb{N}$

Example
$J=\int \frac{3 x^{2}+2}{(x+1)\left(x^{2}+x+1\right)} d x$
For the partial fraction expansion (write rational function in terms of basis)
$\frac{3 x^{2}+2}{(x+1)\left(x^{2}+x+1\right)}=\frac{A}{x+1}+\frac{B}{x^{2}+x+1}+\frac{C x}{x^{2}+x+1}$
And solve for $\mathrm{A}, \mathrm{B}, \mathrm{C}$. We get:
$3 x^{2}+2=A\left(x^{2}+x+1\right)+B(x+1)+C x(x+1)$
Put $x=-1$, get $A=5$
Put $x=0$, get $2=5+B \Rightarrow B=-3$
Put $x=1$, get $5=15-6+C \times 2 \Rightarrow C=-2$
So
$\frac{3 x^{2}+2}{(x+1)\left(x^{2}+x+1\right)}=\frac{5}{x+1}-\frac{3}{x^{2}+x+1}-\frac{2 x}{x^{2}+x+1}$
Need
$J_{1}=\int \frac{1}{x+1} d x=\ln (|x+1|)$
$J_{2}=\int \frac{1}{x^{2}+x+1} d x=\frac{2}{\sqrt{3}} \arctan \left(\frac{2}{\sqrt{3}} x+\frac{1}{\sqrt{3}}\right)$, see last lesson
$J_{3}=\int \frac{x}{x^{2}+x+1} d x$
Force $\left(x^{2}+x+1\right)^{\prime}$ on top and fix the damage
$J_{3}=\frac{1}{2} \int \frac{2 x+1}{x^{2}+x+1} d x-\frac{1}{2} \int \frac{d x}{x^{2}+x+1}=\frac{1}{2} \ln \left(x^{2}+x+1\right)-\frac{1}{2} J_{2}$
Put everything together again
$J=5 \ln |x+1|-\frac{4}{\sqrt{3}} \arctan \left(\frac{2}{\sqrt{3}} x+\frac{1}{\sqrt{3}}\right)-\ln \left(x^{2}+x+1\right)+C$

Example

$J=\int \frac{x}{\left(x^{2}-4 x+5\right)^{2}} d x$
First, force derivative of $x^{2}-4 x+5$ on top and fix
$J=\frac{1}{2} \int \frac{2 x-4}{\left(x^{2}-4 x+5\right)^{2}} d x+2 \int \frac{1}{\left(x^{2}-4 x+5\right)^{2}} d x$
$J_{1}=\int \frac{2 x-4}{\left(x^{2}-4 x+5\right)^{2}} d x$
Put $u=x^{2}-4 x+5$
$J_{1}=\int \frac{d u}{u^{2}}=-\frac{1}{u}=-\frac{1}{x^{2}-4 x+5}$
$J_{2}=\int \frac{d x}{\left(x^{2}-4 x+5\right)^{2}}$
Complete square of bottom
$x^{2}-4 x+5=(x-2)^{2}+1$
Put $u=(x-2)$
$J_{2}=\int \frac{d u}{\left(u^{2}+1\right)^{2}}$
Next do a trick.

$$
\begin{aligned}
& J_{2}=\int \frac{\left(u^{2}+1\right)}{\left(u^{2}+1\right)^{2}} d u-\int \frac{u^{2}}{\left(u^{2}+1\right)^{2}} d u \\
& J_{2}=\int \frac{d u}{u^{2}+1}-J_{3}=\arctan (x-2)-J_{3}
\end{aligned}
$$

Now do
$J_{3}=\int \frac{u^{2}}{\left(u^{2}+1\right)^{2}} d u=\int u \times \frac{u}{\left(u^{2}+1\right)^{2}} d u$
Put $v=u, d w=\frac{u}{\left(u^{2}+1\right)^{2}} d u$
$d v=d u, w=\int \frac{u}{\left(u^{2}+1\right)^{2}} d u=\frac{1}{2} \int \frac{2 u}{\left(u^{2}+1\right)^{2}} d u=-\frac{1}{2} \times \frac{1}{u^{2}+1}$
$J_{3}=-\frac{u}{2\left(u^{2}+1\right)}+\int \frac{1}{2\left(u^{2}+1\right)} d u=-\frac{u}{2\left(u^{2}+1\right)}+\frac{1}{2} \arctan (u)$
$J_{2}=\arctan (x-2)+\frac{u}{2\left(u^{2}+1\right)}-\frac{1}{2} \arctan (u)=\frac{1}{2} \arctan (x-2)+\frac{x-2}{2 x^{2}-8 x+10}$
$J=-\frac{1}{2\left(x^{2}-4 x+5\right)}+\frac{x-2}{x^{2}-4 x+5}+\arctan (x-2)$

Example
$J=\int \frac{d x}{\left(x^{2}+1\right)^{3}}$
Trick like before
$J=\int \frac{x^{2}+1}{\left(x^{2}+1\right)^{3}} d x-\int \frac{x^{2}}{\left(x^{2}+1\right)^{3}} d x$
$J_{1}=\int \frac{d x}{\left(x^{2}+1\right)^{2}}$, done in previous problem
$J_{2}=\int x \times \frac{x}{\left(x^{2}+1\right)^{3}} d x$
Use parts.
Put $u=x, d v=\frac{x}{\left(x^{2}+1\right)^{3}} d x, d u=d x$
$v=\frac{1}{2} \int \frac{d\left(x^{2}+1\right)}{\left(x^{2}+1\right)^{3}}=\frac{1}{2}\left(-\frac{1}{2} \times \frac{1}{\left(x^{2}+1\right)^{2}}\right)=-\frac{1}{4\left(x^{2}+1\right)^{2}}$
And now keep going with easier problems.

Properties of Integrals

February-02-11
9:35 AM

Proposition 1

A bounded $f:|a, b| \rightarrow \mathbb{R}$ is integrable iff there is a sequence of partitions \mathcal{P}_{n} of $[\mathrm{a}, \mathrm{b}]$ and a number S such that $L\left(f, \mathcal{P}_{n}\right) \rightarrow S$ and $U\left(f, \mathcal{P}_{n}\right) \rightarrow S$ as $n \rightarrow \infty$ then $S=J_{a}^{b} f$

Proposition 2
If f , g are integrable or $[\mathrm{a}, \mathrm{b}]$, then so is $f+g$ and $\left.\right|_{a} ^{b} f+g=\left.\right|_{a} ^{b} f+\left.\right|_{a} ^{b} g$

Linearity (follows from Prop 3, next lesson)
$\left.\right|_{a} ^{b}\left(c_{1} f_{1}+c_{2} f_{2}+\cdots+c_{n} f_{n}\right)$
$=\left.c_{1}\right|_{a} ^{b} f_{1}+\left.c_{2}\right|_{a} ^{b} f_{2}+\cdots+\left.c_{n}\right|_{a} ^{b} f_{n}$

Proof of Proposition 1

Suppose such P_{n} and S exist.
Clearly $U\left(f, P_{n}\right)-L\left(f, P_{n}\right) \rightarrow S-S=0$
So for $\varepsilon>0, U\left(f, P_{n}\right)-L\left(f, P_{n}\right)<\varepsilon$ eventually.
Thus f is integrable.
Also,
$L\left(f, P_{n}\right) \leq \sup _{P} L\left(f, P_{n}\right)=\left.\right|_{a} ^{b} f=\inf _{P} U(f, P) \leq U\left(f, P_{n}\right)$
Hence $S \leq \mathrm{J}_{a}^{b} f \leq S$ so $S=\int_{a}^{b} f$
Conversely suppose f is integrable over $[a, b]$
For each $\frac{1}{n}$ we get at P_{n} such that

$$
U\left(f, P_{n}\right)-L\left(f, P_{n}\right)<\frac{1}{n}
$$

Also $L\left(f, P_{n}\right) \leq \mathrm{J}_{a}^{b} f \leq U\left(f, P_{n}\right)$
Thus
$0 \leq U\left(f, P_{n}\right)-\left.\right|_{a} ^{b} f<\frac{1}{n}$
$0 \leq\left.\right|_{a} ^{b} f-L\left(f, P_{n}\right) \leq \frac{1}{n}$
So $U\left(f, P_{n}\right) \rightarrow \mathrm{J}_{a}^{b} f$ and $L\left(f, P_{n}\right) \rightarrow \mathrm{J}_{a}^{b} f$

Proof of Proposition 2
By proposition 1, we have partitions P_{n} and Q_{n} such that
$\left.L\left(f, P_{n}\right) \rightarrow\right|_{a} ^{b} f \leftarrow U\left(f, P_{n}\right)$
$\left.L\left(g, Q_{n}\right) \rightarrow\right|_{a} ^{b} g \leftarrow U\left(g, Q_{n}\right)$
Let R_{n} be the common refinement of P_{n} and Q_{n}
Then $L\left(f, P_{n}\right) \leq L\left(f, R_{n}\right) \leq U\left(f, R_{n}\right) \leq U\left(f, P_{n}\right)$
Squeeze and get $L\left(f, R_{n}\right) \rightarrow \mathrm{J}_{a}^{b} f \leftarrow U\left(f, R_{n}\right)$
Likewise, $L\left(g, R_{n}\right) \rightarrow \mathrm{J}_{a}^{b} g \leftarrow U\left(f, R_{n}\right)$
So $L\left(f, R_{n}\right)+L\left(g, R_{n}\right) \rightarrow \mathrm{J}_{a}^{b} f+\mathrm{J}_{a}^{b} g \leftarrow U\left(f, R_{n}\right)+U\left(g, R_{n}\right)$
What we really wanted was

$$
\left.L\left(f+g, R_{n}\right) \rightarrow\right|_{a} ^{b} f+\left.\right|_{a} ^{b} g \leftarrow U\left(f+g, R_{n}\right)
$$

We need to observe that for any

$$
\mathcal{P}: a=x_{0}<x_{1}<\cdots<x_{n}=b
$$

$L(f, \mathcal{P})+L(g, \mathcal{P}) \leq L(f+g, \mathcal{P}) \leq U(f+g, \mathcal{P}) \leq U(f, \mathcal{P})+U(g, \mathcal{P})$
For each $x \in\left[x_{j-1}, x_{j}\right]$ we have $f(x)+g(x) \leq \sup f\left[x_{j-1}, x_{j} \mid+\sup g\left[x_{j-1}, x_{j}\right]\right.$
$\Rightarrow \sup (f+g)\left|x_{j-1}, x_{j}\right| \leq \sup f\left|x_{j-1}, x_{j}\right|+\sup g\left[x_{j-1}, x_{j}\right]$
Now add up to get
$\rangle \sup (f+g)\left|x_{j-1}, x_{j}\right|\left(x_{j}-x_{j-1}\right)$
$\left.\leq\rangle_{i} \sup f\left|x_{j-1}, x_{j}\right|\left(x_{j}-x_{j-1}\right)+\right\rangle_{i} \sup g\left|x_{j-1}, x_{j}\right|\left(x_{j}-x_{j-1}\right)$
Hence $U(f+g, \mathcal{P}) \leq U(f, \mathcal{P})+U(g, \mathcal{P})$
And similarly, $L(f, \mathcal{P})+L(g, \mathcal{P}) \leq L(f+g, \mathcal{P})$
Back to R_{n} we get
$L\left(f, R_{n}\right)+L\left(g, R_{n}\right) \leq L\left(f+g, R_{n}\right) \leq U\left(f+g, R_{n}\right) \leq U\left(f, R_{n}\right)+U\left(g, R_{n}\right)$
By squeeze
$\left.L\left(f+g, R_{n}\right) \rightarrow\right|_{a} ^{b} f+\left.\right|_{a} ^{b} g \leftarrow U\left(f+g, R_{n}\right)$
So by Proposition 1, $f+g$ is integrable and
$\left.\right|_{a} ^{b} f+g=\left.\right|_{a} ^{b} f+\left.\right|_{a} ^{b} g$

Mult. and Splicing

February-04-11
9:33 AM

Proposition 3

If f is integrable on $[a, b]$ then so is $-f$ and $\mathrm{J}_{a}^{b}-f=-\mathrm{J}_{a}^{b} f$

Proposition 4

If f is integrable on $[a, b]$ and $c \geq 0$ then $c f$ is integrable and $\jmath_{a}^{b} c f=c \jmath_{b}^{a} f$

Proposition 5
If $c \in \mathbb{R}$ and f is integrable on $[\mathrm{a}, \mathrm{b}]$ then cf is integrable and $J_{a}^{b} c f=c J_{a}^{b} f$

Proposition 6: Splicing Property
Let $a<c<b$
A function f is integrable on $[a, b] \Leftrightarrow$ f is integrable on $[\mathrm{a}, \mathrm{c}]$ and on $[\mathrm{c}, \mathrm{b}]$ then $\left.\right|_{a} ^{b} f=\left.\right|_{a} ^{c} f+\left.\right|_{c} ^{b} f$

We saw that f is integrable on $[a, b] \Leftrightarrow$ there is a sequence of partitions P_{n} and a number S such that
$L\left(f, P_{n}\right) \rightarrow S \leftarrow U\left(f, P_{n}\right)$ and that $S=J_{a}^{b} f$
Proof of Proposition 3
For any bounded set A, let $-A=\{-a: a \in A\}$
We have
$\sup (-A)=-\inf (-A)$
$\inf (-A)=-\sup (-A)$
So for any partition $P: a=x_{0}<x_{1}<\cdots<x_{n}=b$ we have
$L(-f, P)=\sum_{j} \inf (-f)\left|x_{j-1}, x_{j}\right|\left(x_{j}-x_{j-1}\right)=\sum_{i}-\sup f\left|x_{j-1}, x_{j}\right|\left(x_{j}-x_{j-1}\right)=-U(f, P)$
Likewise, $U(-f, P)=-L(f, P)$
Sine f is integrable, have partitions P_{n} such that

$$
\left.L\left(f, P_{n}\right) \rightarrow\right|_{a} ^{b} f \leftarrow U\left(f, P_{n}\right)
$$

Hence

$$
L\left(-f, P_{n}\right)=-U\left(f, P_{n}\right) \rightarrow-\left.\right|_{a} ^{b} f \leftarrow-L\left(f, P_{n}\right)=U\left(-f, P_{n}\right)
$$

So by proposition 1 applied to $-f$ we get -f is integrable and $\mathrm{J}_{a}^{b}-f=-\int_{a}^{b} f$

Proposition 4

Have P_{n} such that $L\left(f, P_{n}\right) \rightarrow J_{a}^{b} f \leftarrow U\left(f, P_{n}\right)$
You can check $U\left(c f, P_{n}\right)=c U\left(f, P_{n}\right), L\left(c f, P_{n}\right)=c L\left(f, P_{n}\right)$
Hence $L\left(c f, P_{n}\right)=c L\left(f, P_{n}\right) \rightarrow c \int_{a}^{b} f \leftarrow c U\left(f, P_{n}\right)=U\left(c f, P_{n}\right)$
So cf is integrable and $J_{a}^{b} c f=c J_{a}^{b} f$

Proof of Proposition 5

If $c<0$, write $c=-(-c)$ where $-c>0$ and use Prop 3 \& 4
Thus $c f=-(-c f)$ is integrable and
$\left.\right|_{a} ^{b} c f=\left.\right|_{a} ^{b}-(-c f)=-\left.\right|_{a} ^{b}-c f=-\left.(-c)\right|_{a} ^{b} f=\left.c\right|_{a} ^{b} f$

Proof of Proposition 6

If $P: a=x_{0}<x_{1}<\cdots<x_{n}=c, Q: c=y_{0}<y_{1}<\cdots<y_{m}=b$
we can splice these to get
$P \vee Q: a=x_{0}<x_{1}<\cdots<x_{n}=c=y_{0}<y_{1}<\cdots y_{m}=b$
Easy(you do it)
$L(f, P \vee Q)=L(f, P)+L(f, Q)$
$U(f, P \vee Q)=U(f, P)+U(f, Q)$
Say f is integrable on $[a, c]$ and on $[c, b]$ thus have P_{n} of $[a, c]$ and Q_{n} of $[c, b]$ such that
$\left.L\left(f, P_{n}\right) \rightarrow\right|_{a} ^{c} f \leftarrow U\left(f, P_{n}\right)$
$\left.L\left(f, Q_{n}\right) \rightarrow\right|_{c} ^{b} f \leftarrow U\left(f, Q_{n}\right)$
Thus
$L\left(f, P_{n} \vee Q_{n}\right)=L\left(f, P_{n}\right)+\left.L\left(f, Q_{n}\right) \rightarrow\right|_{a} ^{c} f+\left.\right|_{c} ^{b} f \leftarrow U\left(f, P_{n}\right)+U\left(f, Q_{n}\right)=U\left(f, P_{n} \vee Q_{n}\right)$
By proposition 1 , f is integrable on $[a, b]$ and $J_{a}^{b} f=\int_{a}^{c} f+J_{c}^{b} f$
Conversely, suppose f is integrable on [a, b]. Check f is integrable on [a, c] and on [c, b]
If R is a partition of $[\mathrm{a}, \mathrm{b}] R: a=x_{0}<x_{1}<\cdots<x_{n}=b$ we refine R by inserting c . Get $R \cup\{c\}$
With $P: a=x_{0}<x_{1}<\cdots<x_{j-1}<c, Q: c<x_{j+1}<\cdots<x_{n}=b$
Have $R \cup\{c\}=P \vee Q$
For $\varepsilon>0$ have R such that $U(f, R)-L(f, R)<\varepsilon$
Taking P as shown, we get
$U(f, P)-L(f, P) \leq U(f, P)-L(f, P)+U(f, Q)-L(f, Q)=U(f, R \cup\{c\})-L(f, R \cup\{c\})$ $\leq U(f, R)-L(f, R)<\varepsilon$
So f is integrable on $\lfloor a, c\rfloor$ and on $[c, b]$ and by above, $\left.\rfloor_{a}^{b} f=\right\rfloor_{a}^{c} f+\int_{c}^{b} f$

Fundamental Theorem of Calculus II

February-07-11
9:31 AM

Fundamental Theorem of Calculus Pt. 2
Let f be continuous on an interval I
Then there is a function g defined on I such that $g^{\prime}(x)=f(x)$ for all x in I

More specifically, pick any $a \in I, \mathrm{x}$ and define the integral for
$g(x)=\int_{a}^{x} f(t) d t$
For each $x \in I$
Then $g^{\prime}(x)=f(x)$
Summary
$\left.f c t s \Rightarrow \frac{d}{d x}\right|_{a} ^{x} f(t) d t=f(x)$

Integral Function
$g(x)=\int_{a}^{x} f(t) d t$
Is the integral function of f.

A Useful Convention

Declare $\left.\right|_{a} ^{a} f=0$

- Consistent with splicing

$$
\left.\right|_{a} ^{a} f+\left.\right|_{a} ^{a} f=\left.\right|_{a} ^{a} f
$$

- Consistent with FTC 1
$\left.\right|_{a} ^{a} f=F(a)-F(a)$
If $b<a$ declare
$\left.\right|_{a} ^{b} f=-\left.\right|_{b} ^{a} f$
- Consistent with splicing

$$
\left.\right|_{a} ^{b} f+\left.\right|_{b} ^{a} f=\left.\right|_{a} ^{a} f=0
$$

- Consistent with FTC 1

$$
\left.\right|_{a} ^{b} f=-\left.\right|_{a} ^{b} f=-(F(a)-F(b))=F(b)-F(a)
$$

So we get general splicing
$\left.\right|_{a} ^{b} f+\left.\right|_{b} ^{c} f+\left.\right|_{c} ^{d} f+\left.\right|_{d} ^{e} f=\left.\right|_{a} ^{e} f$

Proof of FTC(II)
Know for Midterm
Say $a<x$, we need to show
$\frac{g(x+h)-g(x)}{h} \rightarrow f(x)$ as $h \rightarrow 0$
Do $h \rightarrow 0^{+}$first
Examine
$|g(x+h)-g(x)-f(x) h|=\left|\left.\right|_{a} ^{x+h} f(t) d t-\left.\right|_{a} ^{x} f(t) d t-f(x) h\right|$

$\leq\left.\right|_{x} ^{x+h}\left(\max _{t \in|x, x+h|}|f(t)-f(x)|\right) d t$
By monotonicity of integrals
$=\left.\left(\max _{t \in|x, x+h|}|f(t)-f(x)|\right)\right|_{x} ^{x+h} 1 d t=\max _{t \in|x, x+h|}|f(t)-f(x)| h$
Divide by h and get
$\left|\frac{g(x+h)-g(x)}{h}-f(x)\right| \leq \max _{t \in|x, x+h|}|f(t)-f(x)|=|f(s)-f(x)|$
For some $s \in\lfloor x, x+h\rfloor$ by EVT for $|f(t)-f(x)|$ on $\lfloor x, x+h\rfloor$
As $h \rightarrow 0^{+}$, get $s \rightarrow x$ and since f is continuous, $|f(s)-f(x)| \rightarrow 0$
So squeeze and
$\left|\frac{g(x+h)-g(x)}{h}-f(x)\right| \rightarrow 0$

Variations in order of $x, x+h$, a can be handled with the conventions of sign on integrals.

Examples
$\left.\frac{d}{d x}\right|_{0} ^{x} \sin \left(t^{2}\right) d t=\sin \left(x^{2}\right)$
$\left.\frac{d}{d x}\right|_{0} ^{\sqrt{x}} e^{t^{2}} d t=\frac{e^{\sqrt{x}}{ }^{2}}{2 \sqrt{x}}=\frac{e^{x}}{2 \sqrt{x}}$
Here we had $h(x)=\sqrt{x}, g(u)=\int_{0}^{u} e^{t^{2}} d t$
$\int_{0}^{\sqrt{x}} e^{t^{2}} d t=g(h(x))$
$(g(h(x)))^{\prime}=g^{\prime}(h(x)) h^{\prime}(x)=e^{(h(x))^{2}} h^{\prime}(x)=\frac{e^{x}}{2 \sqrt{x}}$
$\left.\frac{d}{d x}\right|_{x^{3}} ^{-5} \frac{\sin t}{t} d t=\frac{d}{d x}-\int_{-5}^{x^{3}} \frac{\sin t}{t} d t=-\frac{\sin \left(x^{3}\right)}{x^{3}} 3 x^{2}=-\frac{3 \sin \left(x^{3}\right)}{x}$

Example
$\left.\frac{d}{d x}\right|_{0} ^{x^{3}} \frac{1}{1+t^{4}} d t=\frac{1}{1+\left(x^{3}\right)^{4}} 3 x^{2}=\frac{3 x^{2}}{1+x^{12}}$
Example
Sketch
$g(x)=\int_{0}^{x} e^{-t^{2}} d t$
First check g is odd.
Verify $g(x)+g(-x)=0$
$(g(x)+g(-x))^{\prime}=g^{\prime}(x)-g^{\prime}(-x)=e^{-x^{2}}-e^{-(-x)^{2}}=0$
So $g(x)+g(-x)=c=$ const.
Plug in $x=0$ and get $g(0)-g(-0)=0-0=0$
Thus $g(x)+g(-x)=0$, so g is odd.
Now worry about $x \geq 0$.
Have $g^{\prime}(x)=e^{-x^{2}}>0 \Rightarrow g$ inc on $[0, \infty)$
$g^{\prime \prime}(x)=-2 x e^{-x^{2}}<0$ g conc. down

One more issue: does $g(x) \rightarrow \infty$ as $x \rightarrow \infty$ or does $\mathrm{g}(\mathrm{x})$ tend to some finite B as $x \rightarrow \infty$?
Use a comparison trick:
Know $e^{-t^{2}} \leq 2 t e^{-t^{2}}$ when $t \geq 1$
$g(x)=\int_{0}^{x} e^{-t^{2}} d t=\int_{0}^{1} e^{-t^{2}} d t+\left.\right|_{1} ^{x} e^{-t^{2}} d t \leq\left.\right|_{0} ^{1} e^{-t^{2}} d t+\left.\right|_{1} ^{x} 2 t e^{-t^{2}} d t$
Now get

$$
\begin{aligned}
& J=\mid 2 t e^{-t^{2}} d t, \text { Put } u=-t^{2} \Rightarrow-d u=2 t d t \\
& J=-\mid e^{u} d u=-e^{-t^{2}} \\
& \text { So } \\
& g(x) \leq\left.\right|_{0} ^{1} e^{-t^{2}} d t+\left|-e^{-t^{2}}\right|_{1}^{x}=\left.\right|_{0} ^{1} e^{-t^{2}} d t+\frac{1}{e}-e^{-x^{2}} \leq\left.\right|_{0} ^{1} e^{-t^{2}} d t+\frac{1}{e}=\text { fixed } B
\end{aligned}
$$

Thus $g(x)$ has a horizontal asymptote as $x \Rightarrow \pm \infty$

Volume

February-09-11
9:33 AM

The Disk Method

Say $f \geq 0$ on $[a, b]$, f continuous and the region below f is rotated about the x -axis to make a solid. Find the volume of the solid.
$V=\left.\right|_{a} ^{b} \pi f^{2}(x) d x$
The Shells Method
Say $0 \leq a<b$ and $f \geq 0$ and cts on $\lfloor a, b\rfloor$ Rotate region R about y -axis. Find resulting volume.
$V=\left.\right|_{a} ^{b} 2 \pi x f(x) d x$
Integral of Odd Functions If f is continuous and odd, then $\left.\right|_{-a} ^{a} f(t) d t=0$

Disk Method
Take partition \mathcal{P} of $[a, b]$ with sample points t_{i} in each $\left[x_{j-1}, x_{j}\right]$
The stick over $\left|x_{j-1}, x_{j}\right|$ of height $f\left(t_{j}\right)$ rotates about an axis to make a disk of volume
$\pi f\left(t_{j}\right)^{2}\left(x_{j}-x_{j-1}\right)$
The Riemann sum:
$\left.R\left(\pi f^{2}, \mathcal{P}, t_{1} \ldots t_{n}\right)=\right\rangle_{j} \pi f^{2}\left(t_{j}\right)\left(x_{j}-x_{j-1}\right)$
This makes the volume when P is very fine, i.e. when all $x_{j}-x_{j-1} \rightarrow 0$
in the limit we get
$V=\left.\right|_{a} ^{b} \pi f^{2}(x) d x=\left.\pi\right|_{a} ^{b} f^{2}(x) d x$

Example

Rotate the region under $y=\sin x$, over $[0, \pi]$ about the x axis, and find volume of the football.
$V=\left.\pi\right|_{0} ^{\pi} \sin ^{2} x d x=\left.\frac{1}{2} \pi\right|_{0} ^{\pi} 1-\cos 2 x d x=\frac{1}{2} \pi\left(\lfloor x\rfloor_{0}^{\pi}-\left|\frac{1}{2} \sin (2 x)\right|_{0}^{\pi}\right)=\frac{1}{2} \pi(\pi-0-0+0)=\frac{\pi^{2}}{2}$

Shells Method

Take sample partition P of $[\mathrm{a}, \mathrm{b}]$
The stick of height $f\left(t_{j}\right)$ sitting on $\left|x_{j-1}, x_{j}\right|$ spins about y-axis to generate a shell. $t_{j} \in\left|x_{j-1}, x_{j}\right|$
Shell has radius t_{j} and height $f\left(t_{j}\right)$, and thickness $\left(x_{j}-x_{j-1}\right)$
$V=2 \pi t_{j} f\left(t_{j}\right)\left(x_{j}-x_{j-1}\right)$
The Riemann sum:
${ }^{n}$
$\sum_{j=1} 2 \pi t_{j} f\left(t_{j}\right)\left(x_{j}-x_{j-1}\right)=R\left(2 \pi x f(x), P, t_{1} \ldots t_{n}\right)$
approximates our volume for small $x_{j}-x_{j-1}$
As $\left(x_{j}-x_{j-1}\right) \rightarrow 0$, we get
$V=\left.\right|_{a} ^{b} 2 \pi x f(x) d x$
Example
Rotate region under $y=\sin x$ over $|0, \pi|$ about y-axis to make a cake.
Find volume:
$V=\left.2 \pi\right|_{0} ^{\pi} x \sin x d x=2 \pi^{2}$
Example
The disk of centre $(2,0)$ and radius 1 rotates about y-axis to make a donut.
Find volume of torus (donut)
$(x-2)^{2}+y=1 \Rightarrow y= \pm \sqrt{1-(x-2)^{2}}$
$1 \leq x \leq 3$ and height $=2 \sqrt{1-(x-2)^{2}}$
The stick at x of height $2 \sqrt{1-(x-2)^{2}}$ and thickness dx revolves abouty-axis to make shell of volume
$d V=2 \pi x\left(2 \sqrt{1-(x-2)^{2}}\right) d x$
$V=\int_{1}^{3} 4 \pi x \sqrt{1-(x-2)^{2}} d x$
$u=x-2 \Rightarrow d u=d x$
$V=\left.4 \pi\right|_{-1} ^{1}(u+2) \sqrt{1-u^{2}} d u=\left.4 \pi\right|_{-1} ^{1} u \sqrt{1-u^{2}} d u+\left.8 \pi\right|_{-1} ^{1} \sqrt{1-u^{2}} d u$
By looking at a circle $y= \pm \sqrt{1-u^{2}}$ we get
$\left.\right|_{-1} ^{1} \sqrt{1-u^{2}} d u=\frac{\pi}{2}$
And since $u \sqrt{1-u^{2}}$ is odd,
$\int_{-1}^{1} u \sqrt{1-u^{2}} d u=0$
So
$V=8 \frac{\pi \pi}{2}=4 \pi^{2}$
Proof of Integrals of Odd Function
Let's first check that the integral for
$g(x)=\int_{0}^{x} f(t) d t$
is even. Want $g(-x)=g(x)$
Calculate derivatives
$g^{\prime}(x)=f(x)$
$(g(-x))=g^{\prime}(-x)(-1)=-f(-x)=f(x)$
So $g(-x)=g(x)+c$
Put $g(0)=g(0)+c \Rightarrow c=0$

$$
\begin{aligned}
& \text { So } g(x)=g(-x) \\
& \int_{-a}^{a} f(t) d t=-\int_{0}^{-a} f(t) d t+\int_{0}^{a} f(t) d t=-g(-a)+g(a)=g(a)-g(a)=0
\end{aligned}
$$

Series

February-14-11
9:34 AM

Sequence

A sequence is a list of numbers $x_{1}, x_{2}, \ldots, x_{n}, \ldots$
Know $x_{n} \rightarrow p$ as $n \rightarrow \infty$ means $\forall \varepsilon>0,\left|x_{n}-p\right|<\varepsilon$ eventually.

Fact: If x_{n} is monotone and bounded, then
$x_{n} \rightarrow$ some p
i.e.: $x_{1} \leq x_{2} \leq x_{3} \leq \ldots \leq$ some B
or $x_{1} \geq x_{2} \geq x_{3} \geq \ldots \geq$ some B
then $x_{n} \rightarrow$ some p

Series

A series is made up of 2 sequences.
Sequence of terms:

$$
x_{1}, x_{2}, x_{3}, \ldots, x_{n}, \ldots
$$

Sequence of sums (called partial sums)

$$
\begin{aligned}
& s_{1}=x_{1} \\
& s_{n}=s_{n-1}+x_{n}
\end{aligned}
$$

When the $s_{n} \rightarrow$ some s we say that our series converges to s .

Notation
$x_{1}+x_{2}+x_{3}+\cdots+x_{n}+\cdots$
$\sum_{k=1} x_{k}$ or \rangle, x_{k}
A series that converges is sometimes called summable.

Proposition 1

If $\sum_{k=1}^{\infty} x_{k}$ converges to s , then $x_{n} \rightarrow 0$
Caution:
If $x_{n} \rightarrow 0$, series $\sum x_{k}$ could still diverge

Geometric Series

Pick any $x \in \mathbb{R}$
and consider the geometric series:
$\sum_{k=0}^{\infty} x_{k}=1+x+x^{2}+x^{3}+\cdots$
This series converges $\Leftrightarrow|x|<1$
in that case it converges to $\frac{1}{1-x}$

Proof of Proposition 1

Let $s_{n}=x_{1}+x_{2}+\cdots+x_{n}$
Note $x_{n+1}=s_{n+1}-s_{n} \rightarrow s-s=0$
e. g.
$\sum_{k=1}^{\infty}(-1)^{-k}=-1+1-1+1-1+\cdots$
Here $(-1)^{k} \nrightarrow 0$ and series diverges
e.g.
$\sum_{k=1}^{\infty} \frac{1}{k^{\frac{1}{k}}}$
Check $\left(\frac{1}{n^{\frac{1}{n}}}\right) \rightarrow 0$?
Have
$\ln \left(\frac{1}{n^{\frac{1}{n}}}\right)=\ln 1-\frac{\ln n}{n} \rightarrow 0$
$\left(\frac{1}{n^{\frac{1}{n}}}\right) \rightarrow e^{0}=1$
Example
$1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\cdots$
$\left(\frac{1}{3}+\frac{1}{4}\right) \geq \frac{1}{2}$
$\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right) \geq \frac{1}{2}$
etc.
We see that with n big enough, se can make $s_{n} \geq$ any multiple of $1 / 2$. Thus s is not bounded.
Proof of Geometric Convergence
If $|x| \geq 1$, we see that $\left|x^{n}\right| \geq 1$
so $x^{n} \nrightarrow 0$ so $\sum_{k=0}^{\infty} x^{k}$ diverges
If $|x|<1$ we know
$1+x+\cdots+x^{n}=\frac{1}{1-x}-\frac{x^{n+1}}{1-x}$
$\left|\frac{x^{n+1}}{1-x}\right| \rightarrow 0$ when $|x|<1$
So $1+x+\cdots+x^{n} \rightarrow \frac{1}{1-x}$ as $n \rightarrow \infty$

Properties of Series

February-16-11
9:38 AM

Basic Facts

Addition
$\sum_{k=1}^{\infty} x_{k} \rightarrow s, \sum_{k=1}^{\infty} y_{k} \rightarrow u$
$\underset{\infty}{\Rightarrow}$
$\sum_{k=1}^{\infty}\left(x_{k}+y_{k}\right) \rightarrow x+y$
Multiplication
$\sum_{k=1}^{\infty} x_{k} \rightarrow s, \quad c \in \mathbb{R}$
$\sum_{k=1}^{\infty} c x_{k} \rightarrow c s$

Modifications

Any changes or deletions of a finite number of terms in $\sum x_{k}$ has no effect on convergence (although it may change the value converged to)

Monotonicity

If $x_{n} \geq 0$, the partial sums s_{n} are increasing. and s_{n} converges iff s_{n} is bounded.

Integral Test

Let $f:[1, \infty) \rightarrow \mathbb{R}$ be such that:

- f is continuous
- f decreases
- $f \geq 0$

Put $x_{k}=f(k)$ where $k=1,2,3, \ldots$
Then
$\sum_{k=1}^{\infty} x_{k}$ cges
\Leftrightarrow the sequence of integrals $\left.\right|_{1} ^{n} f(t) d t$ cges.
$\Leftrightarrow \int_{1}^{\infty} f(t) d t$ exists

Example

If $x_{1}+x_{2}+\cdots+x_{n}+\cdots+\cdots \rightarrow s$
and if we replace x_{1} by 7 and drop x_{2} then
$7+x_{3}+x_{4}+\cdots+x_{n}+\cdots \rightarrow x+7-x_{1}-x_{2}$

Example
Look at
$\sum_{k=0}^{\infty} \frac{1}{k!}=1+1+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\cdots+\frac{1}{n!}+\cdots$
Let's verify $s_{n}=1+1+\frac{1}{2!}+\frac{1}{3!}+\cdots+\frac{1}{n!}$
Make a comparison of terms
$\frac{1}{2!} \leq \frac{1}{2}$
$\frac{1}{3!} \leq \frac{1}{2^{2}}$
$\frac{1}{4!} \leq \frac{1}{2^{3}}$
$\frac{1}{n!} \leq \frac{1}{2^{n-1}}$
$s_{n} \leq 1+\frac{1}{2^{0}}+\frac{1}{2^{1}}+\frac{1}{2^{2}}+\cdots+\frac{1}{2^{n-1}} \leq 1+\frac{1}{1-\frac{1}{2}}=3$
So s_{n} converges to some e ≤ 3
Also notice $s_{n}>2$ for $n \geq 3$ so $2<e \leq 3$

Proof of Integral Test

Both $s_{n}=x_{1}+x_{2}+\cdots+x_{n}$ and $J_{1}^{n} f$ are increasing sequences.
So check s_{n} and $J_{1}^{n} f$ are bounded, or not, together.

Since f decreases,
$x_{2} \leq f(x) \leq x_{1}$ on $|1,2|$
$x_{k+1}<f(x) \leq x_{k}$ on $|k, k+1|$
$x_{n} \leq f(x) \leq x_{n-1}$ on $|n-1, n|$
Integrate over $\lfloor k, k+1\rfloor$
$x_{k+1}=\int_{k}^{k+1} x_{k+1} d t \leq\left.\right|_{k} ^{k+1} f(t) d t \leq\left.\right|_{k} ^{k+1} x_{k} d t=x_{k}$
So
$x_{2}+x_{3}+\cdots+x_{n} \leq\left.\sum_{k=1}^{n-1}\right|_{k} ^{k+1} f(t) d t \leq x_{1}+x_{2}+\cdots+x_{n-1}$
Splice
$s_{n}-x_{1} \leq \int_{1}^{n} f(t) d t \leq s_{n-1}$
Say
$\sum x_{k}$ cges
Then all $s_{n} \leq$ some bound B.
Then $\int_{1}^{n} f \leq B$ for all n
Since $\int_{1}^{n} f$ increases with n , we get $\mathrm{J}_{1}^{n} f \rightarrow$ some limit L
Say $\int_{1}^{n} f$ converges. Then all $\int_{1}^{n} f \leq$ some B
Then $s_{n}-x_{1} \leq$ this B so So $s_{n} \leq x_{1}+B$ and since s_{n} increases, we get s_{n} converges.

Example. P-Series
For $p>0$, e.g. $p=\frac{1}{2}, 1,1.1,2, \pi, \ldots$
The function
$f(x)=\frac{1}{x^{p}}$
is continuous, decreasing, and ≥ 0
We know
$\int_{1}^{n} \frac{1}{x^{p}} d x$
converges iff $\mathrm{p}>1$
Then
$\sum_{k=1}^{\infty} \frac{1}{k^{p}}$ converges iff $\mathrm{p}>1$
Example
$\sum_{n=2}^{\infty} \frac{1}{n \ln n}$
This is ≥ 0, cts, and decreasing
Look at
$f(x)=\frac{1}{x \ln x}$
$\int_{2}^{n} \frac{d x}{x \ln x}=\lfloor\ln \ln x\rfloor_{2}^{n}=\ln (\ln n)-\ln (\ln 2) \rightarrow \infty$
So
$\sum_{n=2}^{\infty} \frac{1}{n \ln n}$
Exercise
$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{2}}$
Show this converges

Estimation of Sum
February-18-11
9:29 AM
Integral Estimation
If
$\sum_{k=1}^{\infty} x_{k}=s$
$x_{k}>0$, decreasing
$\left.\right|_{n+1} ^{\infty} f \leq s-s_{n} \leq\left.\right|_{n} ^{\infty} f$
Where $f(k)=x_{k}$

Estimation of Sum

Likely to be on final
Say we know
$\sum_{k=1}^{\infty} x_{k}$
converges, but the sum s is a mystery.
Know $s_{n}=x_{1}+\cdots+x_{n} \approx s$ for large n
How close?
Given an $\varepsilon>0$
Find n such that $s_{n} \approx s$ with error $<\varepsilon$
$\left|s-s_{n}\right|<\varepsilon$

If
$s=\left.\right|_{k=1} ^{\infty} x_{k}$
was obtained by the integral test, here's how to answer our problem.

For $m>n \geq 1$ we have
$\left.\right|_{n+1} ^{m+1} f \leq x_{n+1}+x_{n+2}+\cdots+x_{m} \leq\left.\right|_{n} ^{m} f$
So

Example
Let $s=\Sigma_{k=1}^{\infty} \frac{1}{k^{3}}$
If $s-s_{n}<\frac{1}{100}$, then
$\left.\right|_{n+1} ^{\infty} \frac{1}{t_{3}} d t<\frac{1}{100}$
We see that
$\left.\right|_{\substack{n+1 \\ \text { So }}} ^{m} \frac{d t}{t^{3}}=\left|-\frac{1}{2 t^{2}}\right|_{n+1}^{m}=-\frac{1}{2 m^{2}}+\frac{1}{2(n+1)^{2}} \rightarrow \frac{1}{2(n+1)^{2}}$ as $n \rightarrow \infty$
$\frac{1}{2(n+1)^{2}}<\frac{1}{100} \Rightarrow(n+1)>\sqrt{50 \Rightarrow n>\sqrt{50}-1 \approx 6.07}$
So $n \geq 7$

Convergence Tests

March-02-11
12:12 AM

Proposition

If $0 \leq x_{k} \leq y_{k}$ and
$\sum_{k=1}^{\infty} y_{k}$
converges then
$\sum_{k=1}^{\infty} x_{k}$
converges.

Note:
When using comparison test, only care about end behaviour, not initial values.

Limit Comparison
If $0 \leq x_{k} \& 0<y_{k} \& \frac{x_{k}}{y_{k}} \rightarrow$ some L where $L \in$ $(0, \infty)$ then $\sum x_{k} \& \sum y_{k}$ converge or diverge together.

Condensation Test

Let $x_{1} \geq x_{2} \geq \ldots \geq 0$
Then $x_{1}+x_{2}+\cdots+x_{n}+\cdots$ converges iff $x_{1}+2 x_{2}+4 x_{4}+\cdots+2^{k} x_{2^{k}}$ converges.

Proof of Proposition
Let $s_{n}=x_{1}+x_{2}+\cdots+x_{n}$ and $t_{n}=y_{1}+\cdots+y_{n}$
Clearly s_{n} is increasing. Just check s_{n} bounded.
Know $t_{n} \leq$ some bound B. $s_{n} \leq t_{n}$ is obvious so $s_{n} \leq B$ so s_{n} converges.

Example
$\sum_{n=1}^{\infty} \frac{\sqrt{n}+5}{n^{2}-3}$ converge?
$\frac{\sqrt{n}+5}{n^{2}-3} \leq \frac{2 \sqrt{n}}{n^{2}-3}=\frac{2 \sqrt{n}}{\frac{1}{2} n^{2}+\frac{1}{2} n^{2}-3} \leq \frac{2 \sqrt{n}}{\frac{1}{2} n^{2}}=\frac{4}{n^{\frac{3}{2}}}$, eventually, when $\frac{1}{2} n^{2}-3>0$
Since
$\sum^{\infty} \frac{4}{n^{3 \backslash 4}}$
converges, (p-series with $p=\frac{3}{2}>1$), the original converges.
Example
$\sum_{i=1}^{\infty} \frac{1}{n^{1+\frac{1}{n}}}$ converge?
Notice $n^{\frac{1}{n}} \rightarrow 1$
$\frac{1}{n} \ln (n) \rightarrow 0 \Rightarrow e^{\frac{1}{n} \ln (n)}=n^{\frac{1}{n}} \rightarrow 1$
So $n^{\frac{1}{n}} \leq \frac{3}{2}$ eventually, thus $n^{1+\frac{3}{2} n} \leq \frac{3}{2} n$ eventually
$\frac{1}{n^{1+\frac{1}{n}}} \geq \frac{2}{3 n}$ eventually
But $\frac{2}{3 n}$ diverges so
$\sum_{n=1}^{\infty} \frac{1}{n^{1+\frac{1}{n}}}$ diverges

Proof of Limit Comparison

Say $2 y_{k}$ converges
Since $\frac{x_{k}}{y_{k}} \rightarrow L$ we get $\frac{x_{k}}{y_{k}} \leq L+1$ eventually
Thus $0<x_{k}<(L+1) y_{k}$ eventually
But
$\sum_{k=1}^{\infty}(L+1) y_{k}$
converges. By comparison, x_{k} converges too.
Conversely, say $\sum x_{k}$ converges. In this case use fact that $\frac{y_{k}}{x_{k}} \rightarrow \frac{1}{L}$ and $L \in(0, \infty)$ so y_{n} converges.
Example
$\sum_{n=1}^{\infty} \frac{\sqrt{n^{3}+n+1}}{n^{2}-5 n+8}$
We see that $\sqrt{n^{3}+n+1}$ is "like" $n^{\frac{3}{2}}$ and $n^{2}-5 n+8$ is "like" n^{2}, thus
$\frac{\sqrt{n^{3}+n+1}}{n^{2}-5 n+8}$ is "like" $\frac{n^{\frac{3}{2}}}{n^{2}}=\frac{1}{\sqrt{n}}$
Try limit comparison with $\sum \frac{1}{\sqrt{n}}$
$\frac{\frac{\sqrt{n^{3}+n+1}}{n^{2}-5 n+8}}{\frac{1}{\sqrt{n}}}=\frac{\sqrt{n^{4}+n^{2}+n}}{n^{2}-5 n+8}=\frac{\sqrt{1+\frac{1}{n^{2}}+\frac{1}{n^{3}}}}{1-\frac{5}{n}+\frac{8}{n^{2}}} \rightarrow 1$
Since $\sum \frac{1}{\sqrt{n}}$ diverges, so does
$\sum \frac{\sqrt{n^{3}+n+1}}{n^{2}-5 n+8}$

Example

Take
$\sum_{n=1}^{\infty} \frac{1}{n^{p}}$
where $\mathrm{p}>0$
It's condensation is
$\sum_{k=0}^{\infty} \frac{2^{k}}{\left(2^{k}\right)^{p}}=\sum_{k=0}^{\infty}\left(\frac{1}{2^{p-1}}\right)^{k}$
The geometric series
$\sum_{k=0}^{\infty}\left(\frac{1}{2^{p-1}}\right)^{k}$
converges $\Leftrightarrow \frac{1}{p-1}<1 \Leftrightarrow p-1>0 \Leftrightarrow p>1$

Proof of Condensation Test
Let $s_{n}=x_{1}+\cdots+x_{n}$
$t_{n}=x_{1}+2 x_{2}+\cdots+2^{k} x_{2^{k}}$
Since the x_{n} and t_{k} increase, it's enough to prove that s_{n} is bounded $\Leftrightarrow t_{k}$ is bounded
Say all $t_{n} \leq$ some bound B . For any n , take k so big that $n \leq 2^{k}$
Then $s_{n} \leq x_{1}+\left(x_{2}+x_{3}\right)+\left(x_{4}+x_{5}+x_{6}+x_{7}\right)+\cdots+\left(x_{2^{k}}+\cdots+x_{2^{k+1}-1}\right)$
$\leq x_{1}+2 x_{2}+4 x_{4}+\cdots+2^{k} x_{2^{k}}=t_{k} \leq B$
So t_{k} bounded $\Rightarrow s_{n}$ bounded
Next say all $s_{n} \leq$ some B. For any k we get
$t_{k}=x_{1}+2 x_{2}+4 x_{4}+8 x_{8}+\cdots+2^{k} x_{2^{k}}=2\left(\frac{1}{2} x_{1}+x_{2}+2 x_{4}+4 x_{8}+\cdots+2^{k-1} x_{k}\right)$
$\leq 2\left(x_{1}+x_{2}+\left(x_{3}+x_{4}\right)+\left(x_{5}+x_{6}+x_{7}+x_{8}\right)+\cdots+\left(x_{2^{k-1}+1}+\cdots+x_{2^{k}}\right)=2 s_{2^{k}} \leq 2 B\right.$ So s_{n} bounded $\Rightarrow t_{k}$ bounded.

Example
$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{p}}$, where $\mathrm{p}>0$ and fixed
Condensation is:
$\sum_{k=1}^{\infty} 2^{k} \times \frac{1}{2^{k}\left(\ln 2^{k}\right)^{p}}=\sum_{k=1}^{\infty}\left(\frac{1}{\ln 2}\right)^{p}\left(\frac{1}{k^{p}}\right)$
Since
$\sum_{k=1}^{\infty}\left(\frac{1}{\ln 2}\right)^{p}\left(\frac{1}{k^{p}}\right)$ converges $\Leftrightarrow p>1$
$\sum \frac{1}{n(\ln n)^{p}}$ converges $\Leftrightarrow p>1$

Convergence of Primes

March-02-11
9:55 AM

Convergence of Primes
Let $2,3,5,7,11, p_{n}$ be sequences of primes in increasing order.
Does
$\frac{1}{2}+\frac{1}{3}+\frac{1}{5}+\cdots+\frac{1}{p_{n}}+\cdots$ converge? No
Say $\sum \frac{1}{k}$ converges to s. So there is an index n such that
$s-s_{n}=\frac{1}{p_{n+1}}+\frac{1}{p_{n+2}}+\cdots+\frac{1}{p_{k}}+\cdots \leq \frac{1}{2}$
For any positive integer a, let
$J(n, a)=\#$ of integers from 1 to a that can be factored using only p_{1}, \ldots, p_{n} E.g.
$L(3,23)=\#$ integers from 1 to 23 that can be factored using 2,3,5
$L(3,23)=\#\{1,2,3,4,5,6,8,9,10,12,15,16,18,20\}=14$
If m is an integer from 1 to a that factors using only p_{1}, \ldots, p_{n}, write
$m=\left(p_{1}^{c_{1}} p_{2}^{c_{2}} \ldots p_{n}^{c_{n}}\right)\left(p_{1}^{d_{1}} \ldots p_{n}^{d_{n}}\right)^{2}$, where $c_{j} \in\{0,1\} \& d_{j} \geq 0$
$p_{1}^{c_{1}} p_{2}^{c_{2}} \ldots p_{n}^{c_{n}}$ has at most 2^{n} options
$p_{1}^{d_{1}} \ldots p_{n}^{d_{n}}$ has at most \sqrt{a} options
So $J(n, a) \leq 2^{n} \sqrt{a}$
Now get an upper bound for $a-J(n, a)$. If $p_{k}>p_{n}$, the number of integers from 1 to a that have p_{k} as a factor is $\leq \frac{a}{p_{k}}$

Thus
$a-J(n, a) \leq \frac{a}{p_{n+1}}+\frac{a}{p_{n+1}}+\cdots+\frac{a}{p_{k}}+\cdots=a \sum_{i=n+1}^{\infty} \frac{1}{p_{i}} \leq \frac{a}{2}$
So $a-J(n, a) \leq \frac{a}{2}$
$\frac{a}{2} \leq J(n, a) \leq 2^{n} \sqrt{a} \Rightarrow \sqrt{a} \leq 2^{n+1} \Rightarrow a \leq 4^{n+1} \forall a \in \mathbb{N}$
Clearly this is a contradiction.

Alternating Series

March-04-11
9:32 AM

Proposition

If $x_{1} \geq x_{2} \geq x_{3} \geq \ldots \geq x_{n} \geq \ldots$ all ≥ 0 and $x_{n} \rightarrow 0$, then the alternating series $x_{1}-x_{2}+x_{3}-x_{4}+\cdots+$ $(-x)^{n+1} x_{n}+\cdots$
converges.

Estimation of Limit

May be on exam
The error that s_{n} makes in estimating s is less than or equal to the next missing term.
$\left|s-s_{n}\right| \leq x_{n+1}$
Absolute Summability (Absolute Convergence)

A series

$\sum_{k=1}^{\infty} x_{k}$
converges absolutely, or is absolutely summable when $\sum_{i}^{\infty}\left|x_{k}\right|$

Proposition
If $\sum_{k=1}^{\infty}\left|x_{k}\right|$ converges, then $\sum_{k=1}^{\infty} x_{k}$ converges too
However, the converse fails.

Proof of Proposition

The decreasing assumption guarantees that the partial sums line up as shown:

$s_{2 n}=s_{2 n-1}-x_{2 n}$
$s_{2 n+1}=s_{2 n}+x_{2 n+1}$
Since $s_{2 n}$ are bounded by s_{1} (all $s_{2 n+1}$) and increasing then $s_{2 n} \rightarrow$ some s as $n \rightarrow \infty$
But $s_{2 n+1}=s_{2 n}+x_{2 n+1} \rightarrow s+0=s$
Hence $s_{n} \rightarrow s$ ■

Also notice s is between all s_{n} and s_{n+1} because $s_{2 n}$ increase to s and $s_{2 n+1}$ decrease to s Hence
$\left|s-s_{n}\right| \leq\left|s_{n+1}-s_{n}\right|=x_{n+1}$
Example
Does $\sum_{n=1}^{\infty}(-1)^{n} \frac{\ln n}{n}$ converge?
Clearly alternating.
Does $\frac{\ln n}{n} \rightarrow 0$? Yes
Does $\frac{\ln (n+1)}{n+1} \leq \frac{\ln n}{n}$?
Check:
Look at $\left(\frac{\ln x}{x}\right)^{\prime}$ for all real $\mathrm{x} \geq 1$

$$
\begin{aligned}
& \left(\frac{\ln x}{x}\right)^{\prime}=\frac{x\left(\frac{1}{x}\right)-\ln x}{x^{2}}=\frac{1-\ln x}{x^{2}}<0 \text { for } x>e \\
& \text { So eventually, } \frac{\ln x}{x} \text { decreases. Hence } \frac{\ln n}{n} \text { decreases eventually }
\end{aligned}
$$

So AST applies to
$\sum(-1)^{n} \frac{\ln n}{n} \rightarrow s$
Also
$\left|s-s_{10}\right| \leq \frac{\ln 11}{11} \approx 0.22$
Caution
For AST be sure x_{n} decreases.
$1-\frac{1}{2^{1}}+\frac{1}{2}-\frac{1}{2^{2}}+\frac{1}{3}-\frac{1}{2^{3}}+\frac{1}{4}-\frac{1}{2^{4}}+\frac{1}{5}-\frac{1}{2^{5}}+\cdots$
Clearly $1, \frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac{1}{3}, \frac{1}{8}, \frac{1}{4}, \frac{1}{16}, \frac{1}{5}, \frac{1}{32}, \ldots \rightarrow 0$, but is not decreasing.
Now
$s_{2 n}=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots+\frac{1}{n}\right)-\left(\frac{1}{2}+\frac{1}{2^{2}}+\cdots+\frac{1}{2^{n}}\right)$
Then
$\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}\right)=s_{2 n}+\left(\frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\cdots+\frac{1}{2^{n}}\right)$
If $s_{2 n} \rightarrow s$ as $n \rightarrow \infty$, then right side would converge to $s+1$, but left side diverges, so $s_{2 n}$ does not converge.

Absolute Summability Example
$1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\cdots+\frac{(-1)^{n-1}}{n}+\cdots$
converges by AST to s.
Rearrange the order of summation to get
$s=\left(1-\frac{1}{2}\right)-\frac{1}{4}+\left(\frac{1}{3}-\frac{1}{6}\right)-\frac{1}{8}+\left(\frac{1}{5}-\frac{1}{10}\right)-\frac{1}{12}+\left(\frac{1}{7}-\frac{1}{14}\right)-\frac{1}{16}+\left(\frac{1}{9}-\frac{1}{18}\right)-\frac{1}{20}+\cdots$
$=\frac{1}{2}-\frac{1}{4}+\frac{1}{6}-\frac{1}{8}+\frac{1}{10}-\frac{1}{12}+\cdots=\frac{1}{2}\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots\right)=\frac{1}{2} s \Rightarrow s=0$
By error estimate in AST we know
$\left|s-s_{1}\right|=|s-1| \leq \frac{1}{2}$ So $s \geq \frac{1}{2}$
Contradiction.

Rearranging infinite terms in a series may lead to a different sum, or changing the existence of a limit.

Proof of Proposition
Let $s_{n}=x_{1}+\cdots+x_{n}, t_{n}=\left|x_{1}\right|+\cdots+\left|x_{n}\right|$
Check that s_{n} is Cauchy.
Well, for $m>n \geq 1$
$\left|s_{m}-s_{n}\right|=\left|x_{m}+x_{m+1}+\cdots+x_{n+1}\right| \leq\left|x_{m}\right|+\left|x_{m+1}\right|+\cdots+\left|x_{n+1}\right|=\left|t_{m}-t_{n}\right| \rightarrow 0$ as $n, m \rightarrow \infty$ So s_{n} converges

Ratio Test

March-07-11
9:32 AM
Ratio Test for Absolute Convergence
Let $x_{n} \neq 0$ and $\left|\frac{x_{n+1}}{x_{n}}\right| \rightarrow L$ as $n \rightarrow \infty$
If $L<1$, then $\sum\left|x_{n}\right|$ converges
$L>1$, then $x_{n} \rightarrow 0$ and $\sum x_{n}$ diverge.

Proof of Ratio Test

Say $L<1$
Pick an r such that $L<r<1$
We know $\left|\frac{x_{n+1}}{x_{n}}\right|<r$ when $n \geq$ some N
Thus we get
$\left|x_{N}\right| \leq 1\left|x_{N}\right|$
$\left|x_{N+1}\right| \leq r\left|x_{N}\right|$
$\left|x_{N+2}\right| \leq r^{2}\left|x_{N}\right|$
$\left|x_{N+k}\right| \leq r^{k}\left|x_{N}\right|$
The geometric series
$\sum_{k=0}^{\infty}\left|x_{N}\right| r^{k}$ converges since $|\mathrm{r}|<1$
By comparison,
$\sum_{k=1}^{\infty}\left|x_{N+k}\right|$ converges
throw back in $\left|x_{1}\right|,\left|x_{2}\right|, \ldots,\left|x_{N-1}\right|$ and get
$\sum_{n=0}^{\infty}\left|x_{n}\right|$ converges
Say $L>1$
Thus eventually
$\left|\frac{x_{n+1}}{x_{n}}\right|>1$
So eventually we get
$\left|x_{N}\right|<\left|x_{N+1}\right|<\left|x_{N+2}\right|<\cdots$
So $x_{n} \rightarrow 0$ ■
Example
$\sum_{n=1}^{\infty} \frac{1}{n}$ diverges, $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges
$\left|\frac{\frac{1}{n+1}}{\frac{1}{n}}\right|=\left|\frac{n}{n+1}\right| \rightarrow 1$ as $n \rightarrow \infty$
$\left|\frac{\frac{1}{(n+1)^{2}}}{\frac{1}{n^{2}}}\right|=\left|\frac{n^{2}}{(n+1)^{2}}\right| \rightarrow 1$ as $n \rightarrow \infty$
So $L=1$ is useless
Example
$\sum_{n=1}^{\infty} \frac{n!}{n^{n}}(-1)^{n}$ converge absolutely?
See if ratio test helps
$\left|\frac{\left(\frac{(n+1)!(-1)^{n+1}}{(n+1)^{n+1}}\right)}{\frac{n!(-1)^{n}}{n^{n}}}\right|=\frac{(n+1) n^{n}}{(n+1)^{n+1}}=\left(\frac{n}{n+1}\right)^{n}=\frac{1}{\left(1+\frac{1}{n}\right)^{n}} \rightarrow \frac{1}{e}<1$ as $n \rightarrow \infty$
Yes

Limsup \& Root Test

March-07-11
9:59 AM

Limit Superior

Let x_{n} be a bounded sequence.
Say $c \leq x_{n} \leq b$ for all x .

Put $t_{n}=\sup \left\{x_{n}, x_{n+1}, x_{n+2}, \ldots\right\}$
Clearly
$b \geq t_{1} \geq t_{2} \geq \cdots \geq t_{n} \geq t_{n+1} \geq \cdots \geq c$
Thus $t_{n} \rightarrow$ some limit p and $t_{n} \geq p$
Write $p=\limsup x_{n}=$ limit superior of our sequence x_{n}

Convention
If x_{n} is not bounded above, put limsup $x_{n}=\infty$

Proposition

If x is bounded and $p=\limsup x_{n}$ then for any $\varepsilon>0$ we

- $x_{n}<p+\varepsilon$ eventually
- $p-\varepsilon<x_{n}$ infinitely often.
and $p=\limsup x_{n}$ is the only number that does this trick.
Ordinary limits satisfy these properties, so if a sequence has a limit, then the limit is the limit superior.

Proposition

If $p=\limsup x_{n}$ then there is a subsequence $x_{n_{k}}$ that converges to p . Also, if $x_{n_{k}}$ is any subsequence with a limit q , then $q \leq p$

Root Test
Have a series
${ }^{\infty} x_{k}$
$k=1$
and let $p=\limsup \sqrt[n]{\left|x_{n}\right|} \geq 0$

If $p<1$, then $\sum\left|x_{k}\right|$ converges
$p>1$, then $x_{n} \rightarrow 0$ and Σx_{k} diverges

Example
$\frac{2}{1}, 0, \frac{3}{2}, 0, \frac{4}{3}, 0, \frac{5}{4}, 0, \frac{6}{5}, 0, \frac{7}{6}, \ldots$
$p_{n}=2, \frac{3}{2}, \frac{3}{2}, \frac{4}{3}, \frac{4}{3}, \frac{5}{4}, \frac{5}{4}, \ldots$
$p=1$

Proof of Proposition

Say $p=\limsup x_{n}$ and take $\varepsilon>0$
Know $t_{n}=\sup \left\{x_{n}, x_{n+1}, \ldots\right\} \rightarrow \mathrm{p}$ decreasing
So $t_{N}<p+\varepsilon$ for some N .
Clearly for all $n \geq N$ we also get $x_{n}<p+\varepsilon$
Also all $t_{n} \geq p$
so $\sup \left\{x_{1}, x_{2}, \ldots\right\} \geq p \Rightarrow$ some $x_{n_{1}}>p-\varepsilon$
$\sup \left\{x_{n_{1}+1}, x_{n_{1}+2}, \ldots\right\} \geq p \Rightarrow$ some $x_{n_{2}}>p-\varepsilon$, where $n_{2}>n_{1}$
$\sup \left\{x_{n_{2}+1}, x_{n_{2}+2}, \ldots,\right\} \geq p \Rightarrow$ some $x_{n_{3}}>p-\varepsilon$
In this way, we come up with infinitely many $x_{n_{k}}>p-\varepsilon$

Next, suppose q also has the above traits. Want $q=p$
Say $p<q$ and get a contradiction.
Pick r such that $p<r<q$
Then we get $x_{n}<r$ eventually and $r<x_{n}$ infinitely often.
Impossible, so $q=p$

Proposition

Know $p-1<x_{n}<p+1$ infinitely often, so pick one such $x_{n_{1}}$
Next, $p-\frac{1}{2}<x_{n}<p+\frac{1}{2}$ so pick one such $x_{n_{2}}>x_{n_{1}}$
Etc. Thus we pick up a subsequence $x_{n_{k}}$ such that $p-\frac{1}{k}<x_{n_{k}}<p+\frac{1}{k}$
Let $k \rightarrow \infty$ and squeeze to get $x_{n_{k}} \rightarrow p$

Next say $x_{n_{k}} \rightarrow$ some q. Want $q \leq p$
What if $p<q$? Pick r such that $p<r<q$
Thus $r<x_{n_{k}}$ eventually with k , since $x_{n_{k}} \rightarrow q$. But $x_{n}<r$ eventually by first property of p. This is a contradiction so $q \leq p$.

Proof of Root Test
If $p<1$
Pick $p<r<1$, thus $\sqrt[n]{\left|x_{n}\right|}<r$ eventually. So $\left|x_{n}\right|<r^{n}$ eventually.
But $\sum r^{n}$ converges, so by comparison, $\sum\left|x_{n}\right|$ converges
If $1<p$, then $\sqrt[n]{\left|x_{n}\right|}>1$ eventually.
Then $\left|x_{n}\right|>1$ infinitely often, so $x_{n} \rightarrow 0$

Example
$x_{n}=\left\{\begin{array}{l}\frac{1}{2^{n}} n \text { odd } \\ \frac{1}{3^{n}} n \text { even }\end{array}\right.$
Does $\sum x_{n}$ converge?

Try ratio test:
$\left|\frac{x_{n+1}}{x_{n}}\right|=\left\{\begin{array}{l}\frac{\left(\frac{1}{3^{n+1}}\right)}{\frac{1}{2^{n}}}=\left(\frac{2}{3}\right)^{n}\left(\frac{1}{3}\right) n \text { odd } \\ \frac{1}{\frac{2^{n+1}}{\frac{1}{3^{n}}}=\left(\frac{3}{2}\right)^{n}\left(\frac{1}{2}\right) n \text { even }}\end{array}\right.$
$\lim _{n \rightarrow \infty}\left|\frac{x_{n+1}}{x_{n}}\right|$ not there
How about root test?
$\sqrt[n]{\left|x_{n}\right|}=\left\{\begin{array}{l}\frac{1}{2} n \text { odd } \\ \frac{1}{3} n \text { even }\end{array}\right.$
$\limsup x_{n}=\frac{1}{2}<1$
$\rangle,\left|x_{n}\right|$ converges

Permutations

March-09-11
10:05 AM
Proposition
Permutation on Absolutely Summable
If
$\sum_{k=1}^{\infty}\left|x_{k}\right|$ and $\left.s=\right\rangle_{k=1}^{\infty} x_{k}$
and σ is any permutation of $\{1,2,3,4, \ldots\}$
then
$\sum_{k=1}^{\infty} x_{\sigma(k)}=s$
Power Series
Pick any $a_{0}, a_{1}, a_{2}, \ldots a_{n}, \ldots$ coefficients and $x \in \mathbb{R}$
The series $a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}+\cdots=\sum_{k=0}^{\infty} a_{k} x^{k}$ Is a power series in x .

Example Permutations
1234567891011 ...
21436587109 ...
$\begin{array}{llllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & \ldots \\ 1 & 2 & 4 & 3 & 6 & 8 & 5 & 10 & 12 & 7 & 14 & 16 & 9 & \ldots\end{array}$
Proof of Proposition
Take any $\varepsilon>0$.
Want M such that
$\left|\sum_{k=1}^{m} x_{\sigma(k)}-s\right|<\varepsilon$, when $m \geq M$
First pick N such that

$$
\rangle,\left|x_{k}\right|<\varepsilon
$$

$k=N+1$
Next take M such that $x_{\sigma(1)}, \ldots, x_{\sigma(M)}$ includes all x_{1}, \ldots, x_{N}
Now when $m \geq M$ we get
$\left|\sum_{k=1}^{m} x_{\sigma(k)}-\sum_{k=1}^{N} x_{k}\right|=\mid$ a sum of finitely many x_{j} that excludes $x_{1}, \ldots x_{N} \mid$
$\leq \mid$ sum of finitely many $\left|x_{j}\right|$ that excludes $\left|x_{1}\right|, \ldots\left|x_{N}\right| \mid$ (by Triangle Inequality)
$\leq \sum_{k=N+1}^{\infty},\left|x_{k}\right|<\varepsilon$
$\left\rangle_{k=1}^{m} x_{\sigma(k)}-s\right| \leq\left|\sum_{k=1}^{m} x_{\sigma(k)}-\sum_{k=1}^{N} x_{k}\right|+| \rangle_{k=1}^{N} x_{k}-s\left|<\varepsilon+\left|\sum_{k=N+1}^{\infty}, x_{k}\right| \leq \varepsilon+\sum_{k=N+1}^{\infty},\left|x_{k}\right| \leq \varepsilon+\varepsilon=2 \varepsilon\right.$
Power Series
For which x does $\sum a_{k} x^{k}$ converge?
Always for $x=0$.
${ }^{\text {Alw }}$
$\rangle x^{k}$ converges $\Leftrightarrow|x|<1$
$k=0$
$\sum_{k=0}^{\infty} \frac{1}{k!} x^{k}$ converges for all x
Proof: Ratio test gives
$\left|\frac{\frac{x^{n+1}}{(n+1)!}}{\frac{x^{n}}{n!}}\right|=\frac{1}{n+1}|x| \rightarrow 0<1$
$\sum_{k=0}^{\infty} k!x^{k}$ converges only if $x=0$
Ratio:
$\left|\frac{(n+1)!x^{n+1}}{n!x^{n}}\right|=(n+1)|x| \rightarrow \infty>1$

Power Series

March-14-11
9:32 AM

Power Series

$\sum_{n=0}^{\infty} a_{n} x^{n}$

Proposition

Every power series does one of three things:

- Converge for just $x=0$
- Converge absolutely for all $x \in \mathbb{R}$
- For some $0<R<\infty$, converges absolutely when $|x|<R$ and when $|x|>R, a_{n} x^{n} \nrightarrow 0$ and

$$
\sum_{k=0}^{\infty} a_{k} x^{k} \text { diverges }
$$

Radius of Convergence
R is known as the radius of convergence for the power series. If converges for no $\mathrm{x}, R=0$ If converges for all $\mathrm{x}, R=\infty$

Case 1: $R=0$
Case 2: $R=\infty$
Case 3:R=$\frac{1}{\text { limsup } \sqrt[n]{\left|a_{n}\right|}}$

Interval of Convergence
$(-R, R),\lfloor-R, R\rfloor,(-R, R],[-R, R)$
0
\mathbb{R}

Power Series Functions

Since $\sum a_{k} x^{k}$ depends on x , we can make a function on the interval of convergence defined by $f(x)=\sum a_{k} x^{k}$

Proof of Proposition
Look at the sequence $\sqrt[n]{\left|a_{n}\right|}$
If $\sqrt[n]{\left|a_{n}\right|}$ is not bounded then for $|x| \neq 0, \sqrt[n]{\left|a_{n} x^{n}\right|}=\sqrt[n]{\left|a_{n}\right|}|x|$ is not bounded either. By the root test, $a_{n} x^{n} \nrightarrow 0$ and $\Sigma a_{k} x^{k}$ diverges. Case 1.

If $\sqrt[n]{\left|a_{n}\right|}$ is bounded then for any x we get limsup $\sqrt[n]{\left|a_{n} x^{n}\right|}=|x| \limsup \sqrt[n]{\left|a_{n}\right|}$
If limsup $\sqrt[n]{\left|a_{n}\right|}=0$, then so is limsup $\sqrt[n]{\left|a_{n} x^{n}\right|}=0<1$ so the root test says $\sum a_{n} x^{n}$ converges absolutely for all $x \in \mathbb{R}$

If $\limsup \sqrt[n]{\left|a_{n}\right|}>0$, the root test tells us that $\sum a_{k} x^{k}$ converges absolutely when $|x|<\frac{1}{\limsup \sqrt[n]{\left|a_{n}\right|}}$ and diverges when $|x|>\frac{1}{\text { limsup } \sqrt[n]{\left|a_{n}\right|}}$. Case 3
$R=\frac{1}{\limsup \sqrt[n]{\left|a_{n}\right|}}$
Example
$\sum_{n=0}^{\infty} \frac{n^{2}}{2^{n}} x^{n}$ radius?
$R=\frac{1}{\limsup \left(\sqrt[n]{\frac{n^{2}}{2^{n}}}\right)}=\frac{2}{\limsup (\sqrt[n]{n})^{2}}=2$
So the Radius is 2.

Illustrations of what can happen at $\pm R$
E.g.
$\sum_{n=1}^{\infty} \frac{1}{n} x^{n}$
Use ratio test, $\left|\frac{n x^{n+1}}{(n+1) x^{n}}\right| \rightarrow|x|$ as $n \rightarrow \infty$ so $\mathrm{R}=1$
Know
$\sum_{n=1}^{\infty} \frac{1}{n} x^{n}$ converges absolutely when $|\mathrm{x}|<1 \&$ not when $|\mathrm{x}|>1$
Now for $x=1$, get $\sum_{n=1}^{\infty} \frac{1}{n}(1)^{n}$ diverges
$x=-1$ get $\sum_{n=1}^{\infty} \frac{1}{n}(-1)^{n}$ converges but not absolutely
E.g.
$\sum_{n-1}^{\infty} \frac{1}{n^{2}} x^{n}, R=1$
For $x= \pm 1$, get $\sum \frac{1}{n^{2}}(-1)^{n}$ converges absolutely.
E.g.
$\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} x^{2 n}--x^{2}+\frac{1}{2} x^{4}-\frac{1}{3} x^{6}+\cdots$
By ratio test
$\left|\frac{\frac{(-1)^{n+1} x^{2(n+1)}}{n+1}}{(-1)^{n} x^{2 n}}\right|=\frac{n}{n+1}|x|^{2} \rightarrow|x|^{2}$ as $n \rightarrow \infty$
But ratio test says when $|x|^{2}<1 \&$ not when $|x|^{2}>1$
R=1

Derived Series

March-16-11
9:34 AM
Power Series Recap
Every power series
$\sum_{n=0}^{\infty} a_{n} x^{n}$
comes with a radius.
This is a quantity R where $0 \leq R \leq \infty$.
If $|x|<R, \sum\left|a_{n} x^{n}\right|$ converges and if $|x|>R, a_{n} x^{n} \rightarrow$
0 and $\sum a_{n} x^{n}$ diverges.
Thus, when $R>0$, power series create functions f on $(-R, R)$ by
$f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$

Derived Series

Let $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ on $(-R, R)$
The derived series is defined to be
$\sum_{n=1}^{\infty} n a_{n} x^{n-1}=a_{1}+2 a_{2} x+3 a_{3} x^{2}+\cdots+n a_{n} x^{n-1}+\cdots$
In other words, differentiate each term.

We will show that the radius of the derived series does not change (i.e. $=\mathrm{R}$) and $f^{\prime}(x)$ exists on $(-R, R)$ and
$f^{\prime}(x)=\sum_{n=1}^{\infty} n a_{n} x^{n-1}$

Here is why this is not obvious.
Here is
$f^{\prime}(x)=\lim _{t \rightarrow x} \frac{f(t)-f(x)}{t-x}=\lim _{t \rightarrow x} \frac{\sum_{n=0}^{\infty} a_{n} t^{n}-\sum_{n=0}^{\infty} a_{n} x^{n}}{t-x}=\lim _{t \rightarrow x} \sum_{n=0}^{\infty} a_{n} \frac{t^{n}-x^{n}}{t-x}$
$=\lim _{t \rightarrow x} \lim _{k \rightarrow \infty} \sum_{n=1}^{k} a_{n} \frac{t^{n}-x^{n}}{t-x}$
Next,
$\sum_{(n=1)}^{\infty} n a_{n} x^{n+1}=\lim _{k \rightarrow \infty} \sum_{n=1}^{k} n a_{n} x^{n-1}=\lim _{k \rightarrow \infty} \sum_{n=1}^{k}\left(a_{n} x^{n}\right)^{\prime}=\lim _{k \rightarrow \infty} \sum_{n=1}^{k} a_{n} \lim _{t \rightarrow \infty} \frac{t^{n}-x^{n}}{t-x}$
$=\lim _{k \rightarrow \infty} \lim _{t \rightarrow x} \sum_{n=1}^{k} a_{n} \frac{t^{n}-x^{n}}{t-x}$
Does
$\lim _{k \rightarrow \infty} \lim _{t \rightarrow x}=\lim _{t \rightarrow x} \lim _{k \rightarrow \infty}$?
Note. Can't always switch limits
E.g.
$x_{m n}=\left\{\begin{array}{l}1 \text { if } m \geq n \\ 0 \text { if } m<n\end{array}\right.$
$\left[\begin{array}{cccccc}1 & 0 & 0 & 0 & 0 & \cdots \\ 1 & 1 & 0 & 0 & 0 & \cdots \\ 1 & 1 & 1 & 0 & 0 & \cdots \\ 1 & 1 & 1 & 1 & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \end{array}\right]$
$\lim _{n \rightarrow \infty} \lim _{m \rightarrow \infty} x_{m n}=\lim _{n \rightarrow \infty} 1=1$
$\lim _{m \rightarrow \infty} \lim _{n \rightarrow \infty} x_{m n}=\lim _{m \rightarrow \infty} 0=0$

Uniform Convergence

March-16-11
9:59 AM

Norm (Sup-Norm, Uniform Norm)
Let f be a bounded function on an interval I.
The sup-norm of f on I is
$\|f\|_{I}=\sup \{|f(x)|: x \in I\}$
Properties of sup-norm
$\|f\|_{I}=0 \Leftrightarrow f=0=0$ function on I
$\|c f\|_{I}=|c|\|f\|_{I}$
$\|f+g\|_{I} \leq\|f\|_{I}+\|g\|_{I}$
Uniform Distance
For two functions f, g, on I their uniform distance is
$\|f-g\|_{I}=\sup _{x \in I}|f(x)-g(x)|$
Uniform Convergence of Sequences of Functions Given f_{n} on I we say that $f_{n} \rightarrow f$ (tends to f) uniformly on I when $\left\|f_{n}-f\right\|_{I} \rightarrow 0$ as $n \rightarrow \infty$

Notice
If $f_{n} \rightarrow f$ uniformly on I then
$\left|f_{n}(x)-f(x)\right| \leq\left\|f_{n}-f\right\|_{I} \rightarrow 0$
So $f_{n}(x) \rightarrow f(x) \forall x \in I$.
Pointwise Convergence
When $f_{n}(x) \rightarrow f(x) \forall x \in I$ we say that $f_{n} \rightarrow f$ pointwise on 1 .

Observation

Thus $f_{n} \rightarrow f$ unif on $I \Rightarrow f_{n} \rightarrow f$ ptw on I
However, $f_{n} \rightarrow f$ ptw on $I \nRightarrow f_{n} \rightarrow f$ unif on I
Continuity of Uniform Convergence
If $f_{n} \rightarrow f$ uniformly on I and the f_{n} are continuous on I, then f is continuous on l.

Integration of Uniform Convergence

If $f_{n} \rightarrow f$ uniformly on I and say f_{n}, f are integrable on I .
Then for every $\lfloor a, b\rfloor \subseteq I$ we get $\mathrm{J}_{a}^{b} f_{n} \rightarrow \mathrm{~J}_{a}^{b} f$
$\left.\lim _{n \rightarrow \infty}\right|_{a} ^{b} f_{n}=\left.\right|_{a} ^{b} \lim _{n \rightarrow \infty} f_{n}$
Note
$f_{n} \rightarrow f$ pointwise on $[a, b] \nRightarrow \int_{a}^{b} f_{n} \rightarrow \int_{a}^{b} f$

Sup-Norm Examples

$\|\sin x\|_{\mathbb{R}}=1$
$\|\sin x\|_{\left|0, \frac{\pi}{4}\right|}=\frac{1}{\sqrt{2}}$
$\|\arctan x\|_{\mathbb{R}}=\frac{\pi}{2}$
Find $\left\|x^{3}(1-x)\right\|_{[0,1]}$
Use derivatives
$f(x)=x^{3}(1-x) \Rightarrow f^{\prime}(x)=x^{2}(3-4 x)$
Max at $\frac{3}{4}$
$\left\|x^{3}(1-x)\right\|=f\left(\frac{3}{4}\right)=\left(\frac{3}{4}\right)^{3}\left(1-\frac{3}{4}\right)=\frac{27}{256}$
Proofs
$\|c f\|_{I}=\sup _{x \in I}|c f(x)|=\sup _{x \in I}|c||f(x)|=|c| \sup _{x \in I}|f(x)|=|c|\|f\|_{I}$
For every $x \in I$ we know
$|f(x)+g(x)| \leq|f(x)|+|g(x)| \leq\|f\|_{I}+\|g\|_{I} \forall x \in I$
So $\|f\|_{I}+\|g\|_{I}$ is an upper bound for $|f(x)+g(x)|$ so
$\|f+g\|_{I} \leq\|f\|_{I}+\|g\|_{I}$
Sequences of Functions Examples
on $\lfloor 0,1\rfloor, f_{n}(x)=x^{n}$
Take any power series $\sum_{n=0}^{\infty} a_{n} x^{n}$ with radius $R>0$
Let $s_{n}(x)=\sum_{k=0}^{n} a_{k} x^{k}$ on $(-R, R)$
Let f be such that $f^{(n)}(p)$ all exist where $p \in I$
Get Taylor Polynomials:

$$
T_{0}(x)=f(p)
$$

$$
T_{1}(x)=f(p)+f^{\prime}(p)(x-p)
$$

$$
T_{2}(x)=f(p)+f^{\prime}(p)(x-p)+\frac{f^{\prime \prime}(p)}{2!}(x-p)
$$

$$
T_{n}(x)=f(p)+f^{\prime}(p)(x-p)+\cdots+\frac{f^{(n)}(p)}{n!}(x-p)^{n}
$$

Counterexample to $f_{n} \rightarrow f$ ptw $\Rightarrow f_{n} \rightarrow f$ unif?
Example:
$f_{n}(x)=x^{n}$ on $\lfloor 0,1\rfloor$
See that:
$f_{n}(x) \rightarrow\left\{\begin{array}{c}0 \text { when } 0 \leq x<1 \\ 1 \text { when } x=1\end{array}\right.$
So $f_{n} \rightarrow f$ pointwise on $\lfloor 0,1\rfloor$ where
$f(x)=\left\{\begin{array}{c}0 \text { when } 0 \leq x<1 \\ 1 \text { when } x=1\end{array}\right.$
However,

$$
\left\|f_{n}-f\right\|_{[0,1 \mid}=\sup _{x \in[0,1]}\left|x^{n}-f(x)\right|=1 \nrightarrow 0
$$

Proof of Continuity of Uniform Convergence

May be on Exam
Take $p \in I$ and $\varepsilon>0$
Need $\delta>0$ so that $|f(x)-f(p)|<\varepsilon$ when $|x-p|<\delta$
Since $\left\|f_{n}-f\right\|_{I} \rightarrow 0$, we have an N such that $\left\|f_{N}-f\right\|_{I}<\frac{\varepsilon}{3}$
Now, f_{N} is continuous at p so take $\delta>0$ such that $\left|f_{N}(x)-f_{N}(p)\right|<\frac{\varepsilon}{3}$
when $|x-p|<\delta$.
Now for $|x-p|<\delta$ we get
$|f(x)-f(p)| \leq\left|f(x)-f_{N}(x)\right|+\left|f_{N}(x)-f_{N}(p)\right|+\left|f_{N}(p)-f(p)\right|$
$\leq 2\left\|f_{N}-f\right\|_{I}+\left|f_{N}(x)-f_{N}(p)\right|<\frac{2 \varepsilon}{3}+\frac{\varepsilon}{3}=\varepsilon$

Example

$f_{n}(x)=x^{n}(1-x)$ on $[0,1]$
Clearly for all $x \in[0,1], f_{n}(x) \rightarrow 0$ i.e. $f_{n} \rightarrow 0$ pointwise on $|0,1|$
Does $f_{n} \rightarrow 0$ uniformly on $[0,1]$?
We need $\left\|f_{n}-0\right\|_{|0,1|}$

Proof of Integration of Power Series

Know for Exam
$0 \leq\left|\left.\right|_{a} ^{b} f_{n}(t) d t-\left.\right|_{a} ^{b} f(t) d t\right| \leq\left.\right|_{a} ^{b}\left|f_{n}(t)-f(t)\right| d t \leq\left.\right|_{a} ^{b}\left\|f_{n}-f\right\|_{I} d t=\left\|f_{n}-f\right\|_{I}(b-a) \rightarrow 0$ So squeeze.

Example of failure for pointwise


```
Here, \(J_{0}^{1} f_{n}=1\)
but \(f_{n} \rightarrow 0\) pointwise on \([0,1]\)
\[
\left.\right|_{0} ^{1} 0=0
\]
```


Series of Functions

March-21-11
9:39 AM

Series of Functions

Given a sequence of functions,
$f_{1}(x), f_{2}(x), \ldots, f_{n}(x), \ldots$ on I form the partial sum functions:
$s_{1}(x)=f_{1}(x)$
$s_{2}(x)=f_{1}(x)+f_{2}(x)$
$s_{n}(x)=f_{1}(x)+\cdots+f_{n}(x)$
\vdots
We say $\sum_{n=1}^{\infty} f_{n}(x)$ converges uniformly on I when s_{n} \rightarrow some function s uniformly on I

The Weierstrass M-Test
Let f_{n} functions defined on I and $\left\|f_{n}\right\|_{I} \leq$ some const M_{n}
If $\sum_{n=1}^{\infty} M_{n}$ converges, then $\sum_{n=1}^{\infty} f_{n}$ converges uniformly on I

Example
Power series $\sum_{n=0}^{\infty} a_{n} x^{n}$ comes from
$s_{1}(x)=a_{0}$
$s_{2}(x)=a_{0}+a_{1} x$
\vdots
$s_{n}(x)=a_{0}+\cdots+a_{n} x^{n}$
\vdots

Problem
If
$s(x)=\sum_{k=0}^{\infty} a_{k} x^{k}$ on $(-R, R)$
Does
$s_{n}(x)=\sum_{k=0}^{n} a_{k} x^{k} \rightarrow s(x)$ uniformly on (-R, R)?
No.

Example
$s(x)=\frac{1}{1+x^{2}}=\frac{1}{1-(-x)^{2}}=1-x^{2}+x^{4}-x^{6}+\cdots+(-1)^{n} x^{2 n}+\cdots$ on $(-1,1)$
Here, $s_{2 n}(x)=1-x^{2}+x^{4}-\cdots+(-1)^{n} x^{2 n} \nrightarrow s(x)$ uniformly on $(-1,1)$
Check:
$s_{2 n}(x)=\frac{\left(1-\left(-x^{2}\right)^{n+1}\right)}{1-\left(-x^{2}\right)}=\frac{1}{1+x^{2}}+(-1)^{n} \frac{x^{2 n+2}}{1+x^{2}}$
Thus
$\left\|s-s_{2 n}\right\|_{(-1,1)}=\left\|\left(\frac{x^{2 n+2}}{1+x^{2}}\right)\right\|_{(-1,1)}=\frac{1}{2} \forall n \nrightarrow 0$

Proof of Weierstrass M-Test

Let $s_{n}=\sum_{k=1}^{n} f_{k}$
For each $x \in I$ we have $\left|f_{k}(x)\right| \leq\left\|f_{k}\right\|_{I} \leq M_{k}$
By comparison,
$\sum_{k=1}^{\infty}\left|f_{k}(x)\right|$ converges since $\sum M_{k}$ converges
So $\sum_{\substack{k=1 \\ \infty}}^{\infty} f_{k}(x)$ converges to some $s(x)$.
So $\sum_{k=1} f_{k}$ converges pointwise, check if it converges uniformly
So for all $x \in I$ we have
$\left|s(x)-s_{n}(x)\right|=\left|\sum_{k=n+1}^{\infty} f_{k}(x)\right| \leq \sum_{k=n=1}^{\infty}\left|f_{k}(x)\right| \leq \sum_{k=n+1}^{\infty} M_{k} \forall x \in I$
So $\left\|s-s_{n}\right\|_{I} \leq \sum_{k=n+1} M_{k}$
Since $\sum_{k=n+1}^{\infty} M_{k} \rightarrow 0$ as $n \rightarrow \infty$
Squeeze to see that $\left\|s-s_{n}\right\|_{I} \rightarrow 0$ as $n \rightarrow \infty$
Example: Riemann Zeta Function
Take the 'p series' $(p=x)$
$\sum_{n=1}^{\infty} \frac{1}{n^{x}}$
which converges when $x>1$

Call $\zeta(x)=\sum_{n=1}^{\infty} \frac{1}{n^{x}}$ for $x>1, x \in(1, \infty)$
Well,
$\frac{1}{n^{x}}=\frac{1}{e^{x \ln n}}$ are continuous on $(1, \infty)$
So $\zeta_{n}(x)=\sum_{k=1}^{n} \cdot \frac{1}{k^{x}}$ are continuous on $(1, \infty)$ for all n

We wish $\zeta_{n} \rightarrow \zeta$ uniformly on ($1, \infty$)
Sorry. It does not happen.
Check this:
By error estimate from integral test, for a fixed $x>1$
$\int_{n+1}^{\infty} \frac{d t}{t^{x}} \leq \zeta(x)-\zeta_{n}(x)$
$\int_{n+1}^{\infty} \frac{d t}{t^{x}}=\frac{1}{x-1} \frac{1}{(n+1)^{x-1}} \rightarrow \infty$ as $x \rightarrow 1^{+}$
Do this integral yourself.
So $\left\|\zeta-\zeta_{n}\right\|_{(0, \infty)}=\infty \nrightarrow 0$
How to rescue the situation?
Pick any $b>1$
We will check that $\zeta_{n} \rightarrow \zeta$ uniformly on $\left.\mid b, \infty\right)$
Use the M-test with $M_{n}=\frac{1}{n^{b}}$
Clearly $\frac{1}{n^{x}} \leq \frac{1}{n^{b}} \forall x \geq b \Rightarrow\left\|\frac{1}{n^{x}}\right\|_{(b, \infty)} \leq \frac{1}{n^{b}}$
Now $\sum_{n=1}^{\infty} \frac{1}{n^{b}}$ converges since $b>1$
Thus $\zeta_{n} \rightarrow \zeta$ uniformly on $\lfloor b, \infty)$
Since ζ_{n} are continuous on $[b, \infty)$, so is ζ continuous on $[b, \infty)$
Hence, ζ is continuous on ($1, \infty$). For every $x>1$, there is a b such that $1<b<x$ so ζ is continuous at x .

Power Series

March-25-11
9:34 AM
Uniform Convergence of Power Series
Let $\rangle_{k}^{\infty} a_{k} x^{k}$
$=f(x)$ on $(-R, R)$ and $|a, b|$ is any closed interval
inside $(-R, R)$, then the series converges uniformly on $|a, b|$.
Continuity of Power Series
If $f(x)=\sum_{k=0}^{\infty} a_{k} x^{k}$ on $(-R, R)$
then f is continuous on $(-R, R)$

Derived \& Integrated Series
Given $f(x)=\sum_{k=0}^{\infty} a_{k} x^{k}=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}+\cdots$ on $(-R, R)$

Derived Series:
$\sum_{1}^{\infty} k a_{k} x^{k-1}=a_{1}+2 a_{2} x+3 a_{3} x^{2}+\cdots+n a_{n} x^{n-1}+\cdots$ $\sum_{k=1}$
Integrated Series:
$\sum_{k=0}^{\infty} \frac{a_{k}}{k+1} x^{k+1}=a_{0} x+\frac{a_{1}}{2} x^{2}+\cdots+\frac{a_{n}}{n+1} x^{n+1}+\cdots$
Radii of Derived Series
If $\sum_{k=0}^{\infty} a_{k} x^{k}$ has radius R , then so does $\sum_{k=1}^{\infty} k a_{k} x^{k-1}$

Proof of Uniform Convergence of Power Series
Let $c=\max \{|a|,|b|\} \in \mid 0, R)$
For all $x \in[a, b]$ we have
$|x| \leq c$ so $\left|a_{n} x^{n}\right| \leq\left|a_{n}\right||x|^{n} \leq\left|a_{n}\right| c^{n}=\left|a_{n} c^{n}\right|$
Now, $\rangle\left|a_{k} c^{k}\right|$ converges since $c<$ radius R
Also $\left\|a_{n} x^{n}\right\|_{|a, b|} \leq\left|a_{n} c^{n}\right|$
By the M-test $\sum_{k=0} a_{k} x^{k}$ converges uniformly on $|a, b|$
Proof of Continuity of Power Series
Pick $p \in(-R, R)$. Want f continuous at p .
Enclose p by some $|a, b| \in(-R, R)$
Now, $s_{n}(x)=\sum_{k=0}^{n} a_{k} x^{k}$ converges uniformly on $[\mathrm{a}, \mathrm{b}]$ to $f(x)=\sum_{k=0}^{\infty} a_{k} x^{k}$
Since s_{n} are continuous on [a, b], f is continuous at p .■
Proof of Radii of Derived Series
The series $\sum_{k=1}^{\infty} k a_{k} x^{k}$ has the same radius of converges as derived series $\sum_{k=1}^{\infty} k a_{k} x^{k-1}$

Differentiation an Integration Theorem

March-28-11
9:33 AM
If $s(x)=\sum_{k=0}^{\infty} a_{x} x^{n}$ for $x \in(-R, R)$, the $\operatorname{summs}_{n}(x)=\sum_{k=0}^{n} a_{k} x^{k}$
converge uniformly on every $\lfloor a, b\rfloor \subseteq(-R, R)$, but not necessarily on $(-R, R)$.
Thus $S(x)$ is continuous on $(-R, R)$

Derived series
$\sum_{i}^{\infty} k a_{k} x^{k-1}$
$k=1$
Integrated Series
$\sum_{k=0}^{\infty} \frac{a_{k}}{k+1} x^{k+1}$

Proposition

$\sum_{k=1}^{\infty} a_{k} x^{k} \& \sum_{k=1}^{\infty} k a_{k} x^{k-1}$ have the same radius
Corollary
$\sum a_{k} x^{k} \& \sum \frac{a_{k}}{k+1} x^{k+1}$ have the same radius too
(Since the derived series of the integrated series is the beginning again.

Integrated Series Formula

If $s(x)=\sum_{k=0}^{\infty} a_{k} x^{k}$ on $(-R, R) \&\lfloor a, b\rfloor \subseteq(-R, R)$ then
$\left.\right|_{a} ^{b} s(t) d t=\left.\sum_{k=0}^{\infty} a_{k}\right|_{a} ^{b} t^{k} d t$

Special Case

Pick any $x \in(-R, R)$. Use $\lfloor a, b\rfloor=\lfloor 0, x\rfloor$
Get $\int_{0}^{x} s(t) d t=\left.\sum_{k=0}^{\infty} a_{k}\right|_{0} ^{x} t^{k} d t=\sum_{k=0}^{\infty} \frac{a_{k}}{k+1} x^{k+1}$

Derived Series Formula
If $f(x)=\sum_{k=0}^{\infty} a_{k} x^{k}$ on $(-R, R)$
then f is differentiable and
$f^{\prime}(x)=\sum_{k=1}^{\infty} k a_{k} x^{k-1} \forall x \in(-R, R)$

Proof of Proposition
Let $R=$ radius for $\sum_{k=0}^{\infty} a_{k} x^{k}$
For $x \in(-R, R)$ pick t such that $|x|<t<R$
Know $\sum_{k=0}\left|a_{k} t^{k}\right|$ converges
To get that $\sum_{k=1}^{\infty}\left|k a_{k} x^{k-1}\right|$ converges, we will show
$\sum_{k=0}^{\infty}\left|k a_{k} x^{k}\right|$ converges.
Do limit comparison of
$\sum_{k=0}^{\infty}\left|k a_{k} x^{k}\right|$ with $\sum_{k=0}^{\infty}\left|a_{k} t^{k}\right|$
Look at
$\left|\frac{k a_{k} x^{k}}{a_{k} t^{k}}\right|=k\left|\frac{x}{t}\right|^{k} \cdot\left|\frac{x}{t}\right|<1$ so $k\left|\frac{x}{t}\right|^{k} \rightarrow 0$ as $k \rightarrow \infty$
Thus $\frac{\left|k a_{k} x^{k}\right|}{\left|a_{k} t^{k}\right|}<1$ eventually with k so eventually
$\left|k a_{k} x^{k}\right|<\left|a_{k} t^{k}\right|$
Since $\sum, a_{k} t^{k}$ converges, so does $\sum,\left|k a_{k} x^{k}\right|$ by comparison.

Furthermore, if $|x|>R$ then $\left|a_{n} x^{n}\right| \nrightarrow 0$ hence $\left|n a_{n} x^{n}\right|=n\left|a_{n} x^{n}\right| \nrightarrow 0$ So $\sum k a_{k} x^{k}$ diverges.

Proof of Integrated Series Formula
$\left.s_{n}(x)=\right\rangle_{k=0}^{n} a_{k} x^{k} \rightarrow s(x)$ uniformly on $|a, b|$
Hence $\left.\left.\right|_{a} ^{\substack{k=0 \\ b}} s_{n}(t) d t \rightarrow\right|_{a} ^{b} s(t) d t$
i.e. $\left.\right|_{a} ^{b}\left(\sum_{k=0}^{n} a_{n} t^{k}\right) d t=\left.\left.\sum_{k=0}^{n} a_{k}\right|_{a} ^{b} t^{k} d t \rightarrow\right|_{a} ^{b} s(t) d t$

Proof of Derived Series Formula
Let $g(x)=\sum_{k=1}^{\infty} k a_{k} x^{k-1}$
Note g is continuous on $(-R, R)$, since it is a power series.
Just saw
$\left.\right|_{0} ^{x} g(t) d t=\sum_{k=1}^{\infty} \frac{k a_{k}}{k} x^{k}=\sum_{k=1}^{\infty} a_{k} x^{k} \forall x \in(-R, R)$
So $f(x)=a_{0}+\left.\right|_{0} ^{x} g(t) d t$
By FTCII get
$f^{\prime}(x)=g(x)$
Application
Prove
$e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots+\frac{x^{n}}{n!}+\cdots=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}$
$R=\infty$, check with ratio test
Let $f(x)=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}$
Want $f(x) \stackrel{k=0}{=} e^{x}$
Notice $f^{\prime}(x)=\sum_{k=1}^{\infty} \frac{1}{\cdot k!} k x^{k-1}=\sum_{k=1}^{\infty} \frac{1}{(k-1)!} x^{k-1}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}=f(x)$
Now find
$\left(\frac{f(x)}{e^{x}}\right)^{\prime}=\frac{e^{x} f^{\prime}(x)-f(x)\left(e^{x}\right)^{\prime}}{e^{2 x}}=0$
So $\frac{f(x)}{e^{x}}=C \Rightarrow f(x)=C e^{x}$
$f(0)=1=1 \times e^{0}$ so
$f(x)=e^{x}$

March-30-11
9:35 AM
Lifting Principle for Integration If $f(x) \leq g(x)$ on (a, ∞) then
$\left.\right|_{a} ^{x} f(t) d t \leq\left.\right|_{a} ^{x} g(t) d t$

Fun Stuff with Power Series
Getting power series for known function. Good to memorise these expansions

$$
\text { We did } e^{x}=\sum_{n=0}^{\infty} \frac{1}{n!} x^{n} \text { on all of } \mathbb{R}
$$

Know $\frac{1}{1+x}=\frac{1}{1-(-x)}=1-x+x^{2}-x^{3}+\cdots$ for $|x|<1$
Integrate

$$
\ln (1+x)=\int_{0}^{x} \frac{d t}{1+t}=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots \text { for }|x|<1
$$

$\frac{1}{1+x^{2}}=1-x^{2}+x^{4}-x^{6}+x^{8}-\cdots$
Integrate

$$
\arctan x=\int_{0}^{x} \frac{d t}{1+x^{2}}=1-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots+(-1)^{n} \frac{x^{2 n+1}}{2 n+1}+\cdots \text { for }|x|<1
$$

Estimate this integral using power series, with error $<10^{-5}$
$\int_{0}^{\frac{1}{2}} e^{-x^{2}} d x$
Know $e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots+\frac{x^{n}}{n!}+\cdots$
So $e^{-x^{2}}=1-x^{2}+\frac{x^{4}}{2!}-\frac{x^{6}}{3!}+\cdots+(-1)^{n} \frac{x^{2 n}}{n!}+\cdots$
Integrate
$\int_{0}^{x} e^{-t^{2}} d t=x-\frac{x^{3}}{3}+\frac{x^{5}}{5 \times 2!}-\frac{x^{7}}{7 \times 3!}+\frac{x^{9}}{9 \times n!}+\cdots+(-1)^{n} \frac{x^{2 n+1}}{(2 n+1) \times n!}+\cdots$
Plug in $x=\frac{1}{2}$ and get
$\int_{0}^{\frac{1}{2}} e^{-t^{2}} d t=\frac{1}{2}-\frac{1}{2^{3} \times 3}+\frac{1}{2^{5} \times 5 \times 2!}-\frac{1}{2^{7} \times 7 \times 3!}+\frac{1}{2^{9} \times 9 \times 4!}+\cdots \quad x \in \mathbb{R}$
By error formula in AST we know
$\int_{0}^{\frac{1}{2}} e^{-t^{2}} d t \approx \frac{1}{2}-\frac{1}{2^{3} \times 3}+\frac{1}{2^{5} \times 5 \times 2!}-\frac{1}{2^{7} \times 7 \times 3!}=\frac{12399}{26880}$
With error $\leq \frac{1}{2^{9} \times 9 \times 4!}=\frac{1}{110529} \leq 10^{-5}$
Power series for sin and cos
Start with $\cos x \leq 1$ on $10, \infty)$
Lift 1:

$$
\left.\int_{0}^{x} \cos t d t \leq \int_{0}^{t} d t \text { on } \mid 0, \infty\right) \Rightarrow \sin x \leq x
$$

Lift 2:

$$
\begin{aligned}
& \int_{0}^{x} \sin t d t \leq \int_{0}^{x} t d t \\
& -\cos x+1 \leq \frac{x^{2}}{2}
\end{aligned}
$$

Lift 3:

$$
\begin{aligned}
& \int_{0}^{x}\left(1-\frac{t^{2}}{2}\right) d t \leq \int_{0}^{x} \cos t d t \\
& x-\frac{x^{3}}{x!} \leq \sin x
\end{aligned}
$$

Lift 4

$$
\begin{aligned}
& \int_{0}^{x}\left(t-\frac{t^{3}}{3!}\right) d t \leq \int_{0}^{x} \sin t d t \\
& \frac{x^{2}}{2!}-\frac{x^{4}}{4!} \leq-\cos x+1 \\
& \cos x \leq 1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!} \text { on }[0, \infty)
\end{aligned}
$$

Lift 5

$$
\sin x \leq x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}
$$

By extending the pattern we learn $\sin \mathrm{x}$ is always between
$x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots+(-1)^{n} \frac{x^{2 n-1}}{(2 n-1)!}$ and
$x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots+(-1)^{n} \frac{x^{2 n-1}}{(2 n-1)!}+(-1)^{n+1} \frac{x^{2 n+1}}{(2 n+1)!}$
Thus for $x \geq 0$
$\left|\sin x-\left(x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots+(-1)^{n} \frac{x^{2 n-1}}{(2 n-1)!}\right)\right| \leq\left|\frac{x^{2 n+1}}{(2 n+1)!}\right|$
But this is good for $x \leq 0$ too since all the functions are odd.
But regardless of x
$\left|\frac{x^{2 n+1}}{(2 n+1)!}\right| \rightarrow 0$ as $n \rightarrow \infty$
Thus $\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots+(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}$
Differentiating gives
$\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots+(-1)^{n} \frac{x^{2 n}}{(2 n)!}$

Let $\varphi(x)=|x|$ on $[-1,1]$ and extend to \mathbb{R} by the rule $\varphi(x+2)=\varphi(x)$

Note:

1. $|\varphi(x)-\varphi(y)| \leq|x-y|$ because slope from $(x, \varphi(x))$ to $(y, \varphi(y))$ is ≤ 1
2. If x, y have no integer strictly between them, then $\varphi(x)-\varphi(y)= \pm(x-y)$

Now take the series
$f(x)=\sum_{n=0}^{\infty}\left(\frac{3}{4}\right)^{n} \varphi\left(4^{n} x\right)=\varphi(x)+\frac{3}{4} \varphi(4 x)+\frac{9}{16} \varphi(16 x)+\frac{27}{64} \varphi(64 x)+\cdots$
Observe that
$\left\|\left(\frac{3}{4}\right)^{n} \varphi\left(4^{n} x\right)\right\|_{\mathbb{R}} \leq\left(\frac{3}{4}\right)^{n} \& \sum_{n=0}^{\infty}\left(\frac{3}{4}\right)^{n}$ converges, by M test so does w
So series converges uniformly on \mathbb{R} by M-test and since each $\left(\frac{3}{4}\right)^{n}$ is continuous so $f(x)$ is continuous on \mathbb{R} as well.

This f , which is all teeth is nowhere differentiable on \mathbb{R}
Let $x \in \mathbb{R}$
We will find a sequence where $t_{m} \rightarrow 0$ while
$\left|\frac{f\left(x+t_{m}\right)-f(x)}{t_{m}}\right| \rightarrow \infty$ as $n \rightarrow \infty$
Note
$\frac{\left(f\left(x+t_{m}\right)-f(x)\right)}{t_{m}}=\sum_{n=0}^{\infty} \frac{\left(\frac{3}{4}\right)^{n}\left(\varphi\left(4^{n}\left(x+t_{m}\right)\right)-\varphi\left(4^{n} x\right)\right)}{t_{m}}$
For each $m=1,2,3, \ldots$ there is no integer strictly between $4^{m} x$ and $4^{m} x \pm \frac{1}{2}$
Put $t_{m}=\left\{\begin{array}{l}\frac{1}{2 \times 4^{m}} \text { if no integer in }\left(4^{m} x, 4^{m} x+\frac{1}{2}\right) \\ -\frac{1}{2 \times 4^{m}} \text { if no integer in }\left(4^{m} x-\frac{1}{2}, 4^{m} x\right)\end{array}\right.$
Clearly $t_{m} \rightarrow 0$ as $m \rightarrow \infty$
These t_{m} were chosen so that
$4^{m} x \& 4^{m}\left(x+t_{m}\right)=4^{m} x+4^{m} t_{m}=4^{m} x \pm \frac{1}{2}$
have no integer between them
Now look at $\frac{f\left(x+t_{m}\right)-f(x)}{t_{m}}$
For $n>m$ we get
$4^{m}\left(x+t_{m}\right)=4^{n} x+4^{n} t_{m}=4^{n} x+$ even integer
So $\varphi\left(4^{n}\left(x+t_{m}\right)\right)=\varphi\left(4^{n} x\right)$
Thus $\frac{\left(f\left(x+t_{m}\right)-f(x)\right)}{t_{m}}=\sum_{n=0}^{m}\left(\frac{3}{4}\right)^{n}\left(\frac{\left(\varphi\left(4^{n}\left(x+t_{m}\right)\right)-\varphi\left(4^{n} x\right)\right)}{t_{m}}\right)$
When $n=m$ we get
$\left(\frac{3}{4}\right)^{m} \frac{\varphi\left(4^{m}\left(x-t_{m}\right)\right)-\varphi\left(4^{m} x\right)}{t_{m}}= \pm\left(\frac{3}{4}\right)^{m} \frac{4^{m} x-4^{m} t_{m}-4^{m} x}{t_{m}}= \pm 3^{m}$
Since no integer between the two
So $\left|\frac{f\left(x+t_{m}\right)-f(x)}{t_{m}}\right|=\left| \pm 3+\sum_{n=0}^{m-1}\left(\frac{3}{4}\right) \frac{\left(\varphi\left(4^{n}\left(x+t_{m}\right)\right)-\varphi\left(4^{n} x\right)\right)}{t_{m}}\right|$
$\geq 3^{m}-\sum_{n=0}^{m-1}\left(\frac{3}{4}\right)^{n}\left|\frac{\varphi\left(4^{n}\left(x+t_{m}\right)\right)-\varphi\left(4^{n} x\right)}{t_{m}}\right| \geq 3^{m}-\sum_{n=0}^{m-1}\left(\frac{3}{4}\right)^{n}\left|\frac{4^{n}\left(x+t_{m}\right)-4^{n} x}{t_{m}}\right|=3^{m}-\sum_{n=0}^{m-1} 3^{n}$
$=3^{m}-\left(\frac{3^{m}-1}{2}\right)=\frac{3^{m}}{2} \rightarrow \infty$

Estimating π

9:34 AM

Know $\arctan x=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\frac{x^{9}}{9}-\cdots$ for $|x|<1$
Saw for $x=1$, that $\frac{\pi}{4}=\arctan 1=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots$
However, this is too slow.
Here's an identity about arctan that helps
$\arctan x+\arctan y=\arctan \left(\frac{x+y}{1-x y}\right)$, when $0 \leq x y<1, \quad x, y \geq 0$

Proof of arctan identity
Pick any $y>0$ and x such that $0 \leq x<\frac{1}{y}$
Let $f(x)=\arctan x$
$g(x)=\arctan \left(\frac{x+y}{1-x y}\right)$
For $\left.x \in \mid 0, \frac{1}{y}\right)$ we have

$$
\begin{aligned}
& f^{\prime}(x)=\frac{1}{1+x^{2}} \\
& g^{\prime}(x)=\frac{1}{1+\left(\frac{x+y}{1-x y}\right)^{2}} \times \frac{(1-x y)-(x+y)(-y)}{(1-x y)^{2}}=\frac{1+y^{2}}{(1-x y)^{2}+(x+y)^{2}} \\
& =\frac{1+y^{2}}{1-2 x y+x^{2} y^{2}+x^{2}+y^{2}+2 x y}=\frac{1+y^{2}}{1+x^{2} y^{2}+x^{2}+y^{2}}=\frac{1+y^{2}}{\left(1+x^{2}\right)\left(1+y^{2}\right)}=\frac{1}{1+x^{2}}
\end{aligned}
$$

So $g(x)=f(x)+C$
Put $\mathrm{x}=0$, get $g(0)=\arctan y=f(0)+c=c$
Hence $\arctan \left(\frac{x+y}{1-x y}\right)=\arctan x+\arctan y$

Example
$4 \arctan \frac{1}{5}=2\left(\arctan \frac{1}{5}+\arctan \frac{1}{5}\right)=2 \arctan \left(\frac{\frac{2}{5}}{1-\frac{1}{2^{5}}}\right)=2 \arctan \left(\frac{5}{12}\right)$
$=\arctan \left(\frac{5}{12}\right)+\arctan \left(\frac{5}{12}\right)=\arctan \left(\frac{\frac{10}{12}}{1-\frac{25}{144}}\right)=\arctan \left(\frac{120}{119}\right)$
Example
$\arctan 1+\arctan \left(\frac{1}{239}\right)=\arctan \left(\frac{1+\frac{1}{239}}{1-\frac{1}{239}}\right)=\arctan \left(\frac{240}{238}\right)=\arctan \left(\frac{120}{119}\right)$
Thus $\frac{\pi}{4}+\arctan \left(\frac{1}{239}\right)=4 \arctan \left(\frac{1}{5}\right) \Rightarrow \pi=16 \arctan \left(\frac{1}{5}\right)-4 \arctan \left(\frac{1}{239}\right)$

Now,
$\arctan \frac{1}{239}=\frac{1}{239}-\frac{1}{3 \times 239^{3}}+\cdots$
$a=\frac{1}{239} \approx \arctan \frac{1}{239}$ with error $\leq \frac{1}{3 \times 239^{2}}=$
$4 a=\frac{4}{239} \approx 4 \arctan \frac{1}{239}$ with error $\leq \frac{4}{3 \times 239^{2}}$
and
$\arctan \frac{1}{5}=\frac{1}{5}-\frac{1}{3 \times 5^{3}}+\frac{1}{5 \times 5^{5}}-\frac{1}{7 \times 5^{7}}+\frac{1}{9 \times 5^{9}}-\frac{1}{11 \times 5^{11}}+\cdots$
So $b=\frac{1}{5}-\frac{1}{3 \times 5^{3}}+\frac{1}{5 \times 5^{5}}-\frac{1}{7 \times 5^{7}}+\frac{1}{9 \times 5^{9}} \approx \arctan \left(\frac{1}{5}\right)$ with error $\leq \frac{1}{11 \times 5^{11}}$
$16 b \approx 16 \arctan \left(\frac{1}{5}\right)$ with error $\leq \frac{16}{11 \times 5^{11}}$

Errors

If $a_{1} \approx b_{1}$ with error $\leq c_{1}$
and $a_{2} \approx b_{2}$ with error $\leq c_{2}$ then $a_{1}-a_{2} \approx b_{1}-b_{2}$ with error $\leq c_{1}+c_{2}$

So
$16 b-4 a \approx \pi$ with error $\leq \frac{4}{3 \times 239^{3}}+\frac{16}{11 \times 5^{11}} \leq 1.3 \times 10^{-7}$
Well,

$$
\begin{aligned}
& 16 b-4 a=\frac{92388592868}{29408203125} \approx 3.14159258473906 \\
& \pi \approx 3.141592654 \\
& \pi-(16 b-4 a)=6.9 \times 10^{-8}
\end{aligned}
$$

