Number Systems

September-14-10
12:24 AM

N - Natural Numbers
{1,2,3,..}

Z - Integers
{-,..,-1,0,1, .., 00}

Q - Rational Numbers
{5 p.qeR q#0}

Well Ordering Principle:
Every non-empty subset of N
contains a least element.

Proof by Contradiction:
Assume the opposite of what
you are trying to prove then
derive a contradiction

Coprime:

Two numbers are said to be
coprime when they have no
common factors.

N is well ordered.

Proof of Well-Ordering Principle :
Let S be a non-empty subset of N
Pickn €S

Go through all natural numbers starting at 1. If that number is in S then it is the least number and

terminate. This will terminate after at mostn steps.

Note: Z does not satisfy the WOP

Ex:Q ={xeQ, x=0}doesnot have WOP because, for instance { x € Q, x > 0} does not have a least

element.

Qs closed under +, -, X, +

Numbers that are not rational: Irrational Numbers
Eg.V2!eQ

Suppose V2 € Q <- Proof by contradiction
Then V2 =§where pgeZandq#0

Assume p, q are coprime
V2qg=p 2q%=p?-p?iseven - piseven
Say p = 2k for some k e Z

2q% = (2k)? = 4k

q? = 2k? - qiseven

This contradicts the assumption that p and q are coprime
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Mathematical Induction

September-15-10
10:30 AM

Theorem:
A certain and proved mathematical truth.

V - Forall

Principle of Mathematical Induction
Theorem:
For eachn e N let P(n) be a statement about n.
Suppose: (hypothesis)

1. P(1)istrue.

2. P(k+1) is true whenever P(k) is true
Then P(n) is true for everyn e N

Proof of Principle of Mathematical Induction
Suppose the conclusion is false (Proof by contradiction)
Then there is some n € N so that P(n) is not true.

Let S = {k e N: P(k) is not true}

Then S is a non-empty set of N

By W.O.P. S contains a least element, say n

Means P(n) is not true (becausen €S)

And ifke N and k < n , then P(k) is true

Noten #1,son -1eN

Hence P(n - 1) is true.

By assumption (2), P(n -1+1) = P(n ) is true.
This contradicts the previous observation that P(n ) is not
true.

Hence our initial claim was wrong, thus P(n) is true for alln €

N

Principle of Strong Induction
Suppose P(n) is a statement for eachn e N
Assume:
1. P(1)istrue
2. P(k)istrueifP(j)istrueforalljeN, withj <k
Then P(n) is true for alln e N

Proof of Principle of Strong Induction

Suppose conclusion is false.

Let S = {k e N: P(k) is not true}

Then S is a non-empty set of N

By W.0O.P. S contains a least element, say n

Means P(n ) is not true (becausen €S)

AndifkeNand k <n , then P(k) is true (becausen isthe
least element of S)

Hence P(n - 1)istrue.Inface, P(j)istrueVj<n,jeN

By assumption (2), P(n ) is true

This contradicts the previous observation that P(n ) is not
true.
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Induction to prove sum of geometric series formula

r o+l
P)=1+r+r2+r34+ .. +1"= T
P r—r?
= =7
1_

Must show P(k + 1) is true when P(Kk) is true

Assume P(k) is true and look at P(k+1)

r+ri4 Lk kil

=1kl okt (1 —r)  r—rk*2
1-r T 1-r

So P(k+1) is true

Make sure to check base case

Eg. P(n) = 100

If P(n) is true thenn > 100 and thereforen +1 = 100
However, P(1) is false

Example:
Prove 2" > n?lfn > 5

Two methods to approach:
P(n) = 2™** > (n + 4)? and base case is P(1)
P(n) = 2™ > n?and base case is P(5)

Note that if P(5) is true and P(k+1) is true whenever P(k) is true then
P(n) is true for alln > 5.

P(5) = 2% > 5% =32 > 25 is true.
P(k) = 2% > k?

Pk +1) =21 > (k + 1)?
=2x2k>k?24+2k+1

Pk +1)—Plk)=2F>2k+1

Lemma: 2" >2n+1,n>5
Pk)=2k>2k+1

Plk+1)=2x2k>2k+3
P(k+1) —P(k)=2k>2

Lemma: 2¥ >2,n>5

P(5) =32 > 2istrue

2k+1 =2x 2k

Therefore 2¥*1 > 2k for all integer k
Since 2% > 2,2k > 2

Since 2% > 2, if 2% > 2k + 1is true then 2¥*1 > 2(k + 1) + 1 istrue as
well.
Therefore, 2" >2n+1,n =5

Since 2™ > 2n + 1, if 28> k2 is true then 2%*1> (k + 1)? is true as well.
Therefore 2" > n%,n >5



Proof by StI'OI‘lg Induction Suppose f: N-> Q is defined by f(1) = 1,f(2) = 2,and f(n + 2) = %(f(n +1)+fn)),n=1
September-17-10
10:39 AM Prove Rangef€ Qand1<f(n) <2forallneN

Answer - use strong induction

Let P(n) be the statement that f(n) € Q
True forn=1andn=2

1
flk) =E(f(n -1+ f(n-2))

Assume f(j) € Q for all j<k in order to check f(k) € Q
And thus is true since f(k-1) and f(k-2) € Q and Q is a field.

By principle of induction, f(n) € Q forallne N

Now let P(n) be the statement 1< f(n) < 2
True forn=1, 2
Assume P(j) is true for j <k (and k > 3)

Then f(k) = (f(k — 1) + f(k — 2))
Since f(k) is the average of two number between 1 and 2, 1 < f(k) <2

Therefore P(k) is true
So by mathematical induction, P(n) is true for alln € N
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Inequalities

September-17-10
10:54 AM

Arithmetic / Geometric
mean inequality
Ifa,b > 0 then Vab S%(a+b)

Triangle Inequality
la+b| <|a] + |b]

|a-b[=]la] - b

Definition
Define R by stating its properties

1. Field: can +, -, X, = and "good" properties
a. Qs another field, Z is not a field
2. Order property
a. Thereis arelation < on R X R so that for every x, y € R either x <y ory < x or x =y and other
'good’ properties

Arithmetic / Geometric mean inequality
Ifa,b > 0 then Vab S%(a+b)

Proof:
0<(Va—-vB) =a —2vab+b
2Vab<a+b

1
\/Ebﬁz(a-l'b)

Absolute Values
lal = {aif a=0,—aif a <0}

Eg.
lal? = a?
Va2 = al

|x] <rmeans-r<x<r

|a-b| <rmeans-r<a-b<r
b-r<a<br
a-r<b<a-r

Triangle Inequality
la+b| <|a] + |b]

Proof:

-la] <a<|a|

-|b] <b < |b|

-(Ja| +|b]) <a+b<|a] + |b|

Corollary: Reverse Triangle Inequality
|a-b|={lal - b

Proof:

|a| = [(a-b) + b| < |a-b| + |b]| by triangle inequality
|a] - [b] < ]a-b]

Similarly, |b| = |(b-a) + a| < |b-a|] + |a] = |a-b]| + |a|
So |b| - |a] < |a - b| Together this implies:

|a-b| = lal - [bl]|
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Bounds

September-20-10
10:31 AM

Bounded Above

A non-empty subset A of an ordered set (think of R) is
said to be bounded above if there is some x € ordered set
such thata < xforeverya € A

Bounded Below

A non-empty subset A of an ordered set (think of R) is
said to be bounded above if there is some x € ordered set
such thata < xforeverya € A

Bounded
We say a is bounded if it is both bounded above and
bounded below.

Upper/Lower Bound
Any xwitha <x /a>xforalla € Ais called an upper
bound / lower bound for A.

Least Upper Bound (LUB) - Supremum or
Sup
A number x is called the least upper bound (LUB) of A if:
1. xis an upper bound for A
2. Ifyis any other upper bound for A, theny > x

Greatest Lower Bound (GLB) - Infemum or
Inf
A number x is called the greatest lower bound (GLB) of A
if:

1. xis alower bound for A

2. Ifyis any other upper bound for A, theny < x

LUB and GLB are unique.

Completeness Axiom R

(Completeness Property or "No Holes Property")
Every non-empty set of real numbers that is bounded
above has a LUB.

Formal Definition of R

R is an ordered field containing N, and has the
completeness axiom.
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Example:
Find a number, C, such that |f(x) < C| for all 2< x < 3 when
x3—-2x+1

2x —1
If )l =123 — 2x + 11 X

flx) =

1
12x — 11
I3 — 2 + 11 < Ix31 + 12x1 + 1

<27+6+1=34
12x —11=2x —1on2<x<3

>2x2-1=3

34 _ 34
SlIfl s FsolC ==
Bounds
Z - not bounded above or below
{q € Q: @ > 0} - bounded below but no x which is a lower bound belongs to the set

E.g.Q Oisthe GLB
11 1 1
EgA = i 1, E, 5, Z' E’ %
Upper bounds: 42, pi, 7
Lower bounds: -4,-100
LUB: 1 (Note 1 € A)
GUB:0 (Note 0 & A)
The set has a greatest element but no least element

Theorem:
x is the LUB for A < R iff:
1. Xisan upper bound for A
2. Foreveryz < x, thereissomea € Asuchthatz<a

Proof
(=) Assume x is the LUB of A
1. Holds directly from the definition
2. Take z < x. Then z is not an upper bound of A (property 2 of definition)
So there must be some a € Awitha >z
(Can also be written: For every € > 0 there exists some a € A such that x- € < a)

(&) Assume the two properties (1) and (2) stated with the theorem hold.
Want to prove x is the LUB of A so we must verify the two parts of the definition of LUB

1. (1) clearly holds as it is property (1) of the theorem.

2. To show part 2 of definition holds, take y any other upper bound for A. Suppose y < x. By
(2) of the theorem, there exists an a € A such that y < a. This contradicts the fact thaty is
an upper bound for A. Hence we must have thaty > x, satisfying property (2) of the
definition.

Therefore, x is the LUB

Exercise: State and prove the corresponding characterization for GLB



Completeness Axiom and R

September-20-10
11:20 AM

Completeness Axiom R

(Completeness Property or "No Holes Property")

Every non-empty set of real numbers that is bounded above
has a LUB.

Formal Definition of R
R is an ordered field containing N, and has the completeness

axiom.

Ordered Field

An ordered field is a field with a total ordering of its elements.

Total Order

A set is totally ordered when it has the following properties:
e Antisymmetry:Ifa<bandb < athena=b
e Transitivity: fa<bandb <cthena<c
e Totality:a<borb<a

Archimedean Property
Given any x € R there is some N € N such thatx <N

Corollary:
GLB{;:n€N}=0

Density of Rational Numbers
Ifx,y € Rand x <y, then there is some q € Q such that
x<q<y
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Proof of Archimedean Property

Suppose the Archimedean property is false.

Then there is some x € R with x > N for every N € N.

This means N is a set which is bounded above.

By the completeness property, N has a LUB, say z € R.

Then z-1 is not an upper bound (UB) for N hence there must be some
N € N which is bigger than z-1.

This means N +1 >z and since N + 1 € N this contradicts the
statement that z is an upper bound for N.

Proof of Corollary to Archimedean Property
1
S={-:neN}

0 is a lower bound since the set consists of positive numbers.
Letz > 0. Thenie R

By the Archimedean property, there exists N € N such that N > i

>z> %then z is not a lower bound for S
Therefore 0 is GLB(S)

Sketch of why V2 € R

Why is there a real number r withr > 0 and r? = 2
LetS={yeR:y% <2}

3/2 is an upper bound so S is non-empty and bounded above.
By the completeness axiom, S has a LUB, callitw € R

Certainly w > 0.
Exercise - Verify w? = 2

Proof of Density of Rational Numbers

Docasex>0

y —x > 0 so by corollary of the Archimedean principle there is some
N e Nsuchthaty — x >%<:)Ny> 1+ Nx

By Arch property, thereisan M € N with M > Nx.

Let M' be the smallest integer with this property.

(By well ordering principle of N)

Then M' -1 < Nx because M'-1 < M; and is an integer.
Nx<M' <Nx+1<Ny

<—<
XS <y



Convergence of a Sequence

September-24-10
10:33 AM

Sequence

A sequence is an infinite list of real numbers x4, x5, X3, ...
A sequence has a first element, 2nd element, etc. for each
natural number.

Ex:
1. 1,1,1,1,1,..
2. xp = % neN
3.-1,1,-1,1, ..
1
4. x1 =1, =3 xXp42 = §(xn+1 + x,)

Notation: (x,, )= o7 (x,,)

Convergence

Say the sequence (x,);-; converges to a real number L
provided for every € > 0 there is an index N € N such that
|x, — LI < eforalln>=N

In this case we say L is the limit of the sequence and write

lim x, =L
n-— oo

Orx, » Lasx, > o

Memorise this Definition

Divergence
If a sequence does not converge, it diverges.
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There can only be one L that a sequence converges to

Proof
Suppose x, = L, and x, = L,

Take ¢ = %IL2 — L4

There is some index N; so Ix, — Ll < ¢
Foralln > N; and there is some index N,
So lx, — Lyl < eforalln > N,

If N = max(Ny, N,) andn = N then

Both Ix, — Lil < eandlx, — L, < ¢
(wlog Ly < L,) - without loss of generality

Ly— e<x,<L;+e¢
Sol,— e<L;+¢
>L,— L <2e=L,—Lq

Contradiction.
Examples
1. 1,1,1,1,..
Converges to L= 1 since [x,, — 1| = 0 forall n
1
2. x, = ;,L =0

Prove this: Rough work - Get some € > 0. Want to pick N so

Ix, =0l < eforalln >N
1

|——0|<£

n

lc eVn=N

n

1
n>-
£

Take N > % (there is such an integer by the Archimedean property)

Work to hand in:
Let £ > 0. Take an integer N > %
Thenifn>N, 2 <~ <¢

n= N

HenceVn>=N, |x, — 0l <e¢
Therefore, lim, , o x, =0

_=nn

Tn2+1
Rough Work - Guess L =0

3. x,

Want
(-1)"
x2+1

Want

1 . 1 1 1
—— < &£ Notice —— < =-sotake N > =
n2+1 n2+1 n €

—0[< evn=N

Answer
1
Lets>0.TakeN2;
. -1)" 1 1 1
ThenlfnZN,( ) —-0| = <-=<-<g¢
nZ+1 nZ241 -~ n " N

Solim, , o x, =0

4, -1,1,-1,1, ...
Take € = %
Proof:

Say the sequence converges to L
Take ¢ =%andsay|xn—LI <evVn=N
Then both 11— LI <2and |-1 — LI <&

This would imply that |1 — (-1)| < 2e =1
False

5. x, =|r|"forlrl <1

Guess L=0

L>1s04--1=6>0

Ir| Irl

1

m:(1+6)"=1+n6+ wt 6"t =nd

[r*—0l=1IrI"< evn=N

— M

r\——_

—t”



Proof:
Lete > 0 and take N > é

Where8=%—1>0

Letn > N Thus [r™ — 0| = |r|" < [r|" sé< Z=¢
Therefore, ™ — 0
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Bounds and Convergence Squeeze Theorem
Suppose Vn = N,

September-27-10
eprember We have x,, <y, < z,

10:43 AV If (x,,) — L and (z,) - L
Bounded Then (y,) - L
Say the sequence (x;,) is bounded if there is some
real number C such that |x,| < CVn€N Proof
C is called a bound for the sequence. Lete>0.
Since (x,,) = L there is some N; € N such that |x,, —L| <&
Ex. Similarly, since (z,,) - L there is some N, € N such that |z,, — L| < e VYn= N,
X, = n - not bounded (and doesn't converge) Put N = max(Ny, N, Np). Letn =N
Xp = % - bounded by 1 (does converge) L-—e<xysypn<zp<L+e
= (—1)" - bounded by 1 (does not converge) This is valid because n > No
Ex.
n2
Xpn = ﬁ
GuessL =0
n? _ 4"
Can we prove = <= =R

Prove n? < 4™ by induction
True forn=1
Assume n? < 4™ and verify (n + 1)% < 4™+1

2 o (n+1)? n (n+1)? . . )
= n+1) —;1 (—n ) <4 (—n ) By induction hypothesis
Checkif (=) < 4

2 2

n+1 1
- 2 2 _
= ( - ) —(1+n) <22=4
Therefore (n + 1)2 < 47 x 4 = 47+1

. . 4n 4\
By induction, 5_" < s_n = (E)

Proof
Letx, =0

4
vn, z, = E)

n 4\
ThenOSs—nS(g) Vn
Xn <Yn <z, VnNEN

2
Applying the squeeze theorem, we can conclude :—n -0

Theorem

Every convergent sequence is bounded
Not bounded = does not converge

Proof

Suppose (x,) = L

Get N € N such that

lx, —LI <1 VYn>N
L—1<x,<L+1>Ix,I<ILI+1VneN

Take C = max(lxq 1, Ix1, 1x3], ..., lxy—1 1, IL1 + 1) €R

Cis abound for (x,). Clearly C = |x;|forj=1,..,N -1
Furthermore, C = [LI +1 = [x,| Vn >N

Therefore, (x,,) is bounded.
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Limit Laws

September-29-10
10:29 AM

Increasing Sequence
Say (x,) isincreasing if (x,,; = x,) VneEN

Decreasing Sequence
Say (x,,) is decreasing if (x4 < x,) VnEN

1 .
eg Xy = decreasing
X, = 1is both decreasing and increasing
X, = (=1)" is neither increasing nor decreasing

Monotone

Say (x,) is monotone if it is either increasing or
decreasing. (Not necessarily strictly
increasing/decreasing)

Monotone Convergence Theorem
Every monotonic bounded sequence converges.
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Suppose (x,) = L and (y,) - K

Addition Law
Ifz, = x, £ yy, then(z,)) > L+ K

Product Law
If z, = x,yp, then (z,) - L XK

Division Law

Ify, # 0forallnand K# 0
Xn L

Then (Zn) = (;) - E

Proof of Product Law

Take € > 0 and look at Ix,y, — LKI

= xp Yy — X, K) + (x, K — LK)I

< XYy — X, K1 + |x, K — LK| (by triangle inequality)

= 1%, 1y, — K1 + 1K11x, — LI

. £ .
Pick N; so Ix,, — LI Smlfnle

Recall, convergent sequences are bounded so there is a constant C such that Ix,,| < C Vn
Pick N, so that ly,, — K| < %VHZNZ
Let N = max(Ny, Np)
Thenifn > N, Ix,y, — LK1 < Ix,lly, — K| + IKllx, — LI
e IKle
=t2c Tk T

Monotone Convergence Theorem

Very important, equivalent to the completeness axiom

Every monotonic bounded sequence converges.

(However, a sequence can converge even if it is not monotonic)

Proof

Assume (x,,) is increasing (the decreasing case is similar - exercise)
Look at the set of real numbers S = {xy, x,,x3, ...}

Since the sequence was bounded, S is a bounded set.

By the completeness property, S has a least upper bound, say L
Claim: L = limx,,

Lete > 0, need to show that there is some N € NsuchthatL — e <xy <L+¢
Since L is an upper bound for S, x,, < L Vvn € N
Since L is the LUB, then L-¢ is not an upper bound for S. So there exists some N € N such that
xy>L—e
But (x,,) is increasing, so x,, = xy ifn >N
> L-¢
ThenVn>=N,L — e<x,<L+¢
Thus (x,) converges and L = lim x,,

Note:

The proof shows that every increasing sequence that is bounded above converges to the LUB of the

setixy, xp, X3, .. t

Example
1 1
Xn = 1+2—2+ +F

Does (x,) converge?

Xpy1 =Xnt+——
LTI T (4 1)2

So (x,,) is increasing

1 1 1 1 1 1
Xn = 1+(?+3—2)+(E+?+§+ﬁ
<142+t <o
- 4 16 -
So (x,) is abounded sequence and by the MCT converges

)+

Example

Recursively defined sequence
Leta, =1

Apy1 = %(Zan +5)forn>1

Does (a, ) converges and if so find the limit
7

a2=g>a1

11
a3=?>a2

Check if (a,,) is increasing and if a,, < 2
Provea, <2Vn

Proceed by induction. True for a;
Assume a; < 2, need to prove ag,q < 2



1 1 9
ak+1:E(Zak+5)Sg(2x2+5)=652
So by induction, a,, < 2 Vn

Provea,,; = a, VnTrueforn=1
Assume a; = ay_; and show a1 = ay

Q41 =%(2ak +5)= %(Zak,l +5)=aqa;

By MCT, (a, ) converges, say to L

(20, +5) > (2L +5)as ayyy — L
So L=z(2L+5)=L="2
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Subsequences (B-W Theorem)

October-01-10
10:35 AM

Peak Point
Call the term x, a peak point of our sequence if
Xy = Xpg1) X2, - O X 2 X, VN 2 k

Theorem
If (x,) is any sequence, then there is a
subsequence of (x;,) which is monotonic.

Bolzano-Weierstrass Theorem
If (x,) is a bounded sequence then it has a
convergent subsequence.

Cauchy

A sequence (x,,) is called Cauchy if for every € > 0,
there is some N € N such that |x, — x| < €

vn,m =N
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Sequence: xq, X3, X3, X4, X5, ..
Sub-sequence: x5, X5, X¢, Xg, .-

Theorem
If (x,,) is any sequence, then there is a subsequence of (x;;) which is monotonic.

Let (x;,,) be asequence and suppose

n, <n, <nz < --isalistof indices

Then the sequence x,, , Xp,, Xn,, - = (%n, )
Is called a subsequence of (x,,)

o

k=1

Ex. A subsequence of x, = (=1)"is (1,1,1,1,1, ...) where x,,, = x5

Proof
If (x;,) is any sequence, then there is a subsequence of (x,,) which is monotonic.

Case 1: There are infinitely many peak points

Take x,,, =first peak point

Xp,; =ith peak point

(xn, ) is a decreasing sequence and it is a subsequence of (x,,)

Case 2: There are finitely many peak points (possibly none)
Take x,,, to be the first term in the sequence after the last peak point. (x,, = x; if no peak points)

Since x;, is not a peak point, there is some n, > ny such that x,,, > x,,
Xp, is not a peak point since it comes after the last peak point, so 3 n; > n, such that x,,, > x,,, etc.

o . . .
(xp, )k , Isan increasing sequence

Bolzano-Weierstrass Theorem

(most likely on exam)
If (x,,) is a bounded sequence then it has a convergent subsequence.

By the previous proposition, (x,,) has a monotonic subsequence. It is also bounded.
By the Monotone Convergence Theorem, bounded monotone sequences converge, so this sequence
converges.

Cauchy Sequences
Proposition
If (x;,) is a convergent sequence then it is a Cauchy sequence.

Proof

Lete >0, weknow (x,,) = L

Ixp — Xl = |xy — L+ L —xp| < lx, — LI + Ix;,, — LI by triangle inequality
Pick N so Ix,, — LI S%VnZN

| LI+ 1 LI<£+€
Xn — Xm — —+-=¢
n m 2 2

So (xy,) is Cauchy

Proposition
Cauchy sequences are bounded

Proof

PickNso Ix, —x,1 <1Vn,m>=N

In particular, |x, —xy| <1

= Ixpl <1+ [xy|Vn=N

Take C = max(lx,|, Ix,1, ... Ixy_11, lIxyl + 1)
This is a bound for the sequence



Convergence of Cauchy Theorem: Every Cauchy sequence converges
October-01-10 Important - equivalent to completeness property and MCT

11:19 AM Proof
Let (x,,) be a Cauchy sequence
Then (x,,) is a bounded sequence

By Bolzano-Weierstrass, (x,) has a convergent subsequence (xnk):)_1 converges say to L.

We will prove (x,,) = L
Lete >0.Needto fineNso |x, — Ll < eifn>=N

2. Since (x;,) is Cauchy, we can choose N so |x,, — x| < %Vn, m >N
Pick Ny 50 |xp,, — L] <Zifk =N

1. Pickk>=N;andn, =N
Letn>N
Look at Ix, — LI < |x, — x| + |5, — L]

£

|2n, — LI < Eby 1.

£
[xn — 2, | < 5 by 2.

=>x,—Ll<e¢
Therefore, (x,) = L

Example:
Suppose (x,) satisfies |x,,1 — x,| < zi" vn
Prove it converges
We will prove it is Cauchy
Lete>0
Look at |x,, — x;,| (Wlog m < n)
= xXp —Xpq + X1 = Xn_p + o+ Xpyg — Xl
= 1%y = Xp—ql + Ixpg = Xppl + - X1 — X0
1 1 1 « 1 1 1 2

<2n—1 on—2 Zm_‘ 'ZjSZ_mxl 1_2_m
3

2 2.
—<—ifn>m=>N
2m = 2

. 2
PickNso— < ¢
2

Nice Proof:
Lete>0
Pick N so iN <e
2
Ifn > m > N, our work shows:
Xp —xpl =< —=<e¢

Hence (x,) is Cauchy and therefore converges

Note:
It is not enough for x,, — x,,,; — O for the sequence to be Cauchy

1,1,1,1
Example.1+5+§+z+§+~~
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Limits of Functions

October-04-10
11:02 AM

Limit L at point P

We say that f has a limit L at point p if Ve >0
there is some & > 0 such that whenever
0<lIlx—pl<éthenlf(x)—-Ll<e

Limits of Functions

f-A->B

Domain: l‘+£‘
{f(x):x€ A} =rangeof fS B =
Mainly A, BES R L 4

L—e<flx)<L+e¢

L..(_
p—6<x<p+$6

Say

limf(x)=1L
X-p
If this happens:

P-d p PS5

As € keeps getting smaller, there will always be some &
which has the function inside that rectangle.

Example 1
fx)=x+2
Find lim f(x)
x-1
GuessL =3
Lete>0
Find§>0s0if0<Ix —11<éthenlf(x)—-3I<e¢
Ifx)=3l=Ilx+2 -3l=Ix—-11<¢
Taked=¢

Proof:

Lete>0andtake§ =¢
IfOo<Ix+ 1l < dthenlx — 1l < g,
Solfix)=3l=Ix+2-3l=Ix—-1I<¢

Example 2

f(x) = x? + 2 Find limitatp =3

GuessL=11

= 1f(x) — 111 = Ix? = 91 = Ix — 3I|x + 3| and want < e when 0 < [x-3| < &
Taked < 1then2<x<4

Also want § <§

Proof:

Lete > 0and take5<min(1,§)

Ifo<Ix—31<§,thenlx —3I<1=22<x<4

Solx+31<7

Thus If(x) — 111 = 1x2 + 2 —11|=|x2—9|=|(x+3)(x—3)|57(x+3)<7x§=s

Example
(2x2-8) | 2x?—-4) 2x-2)x+2)
1m = lm = =2(x+2)=8
x->2 x—2 x->2 x—2 x—2
Proof:
Let8>Oandtake8=§
2x% -8
| —8|=I(2(x+2)—8|=|2x—4I=2Ix—2|
x—2
2_
If0 < Ix —21 < &, then |2—"—8| =2Ix — 21 <26 = ¢
. 2x2-8
Therefore, lim,_,, = = 8
Example
li _1
xliril«}x_?)
x 3171 3x 17 |3y

Take 6 < 1 as a start
Then |x-3| <6 =22<x<4=|3x|=>6
13—x1 Ix—3I

—=
13x1 6

<e&

Proof:

Let £ > 0 and take § = min(6¢,1)
fO<|x-3|<86=22<x<4,|3x|>6
And
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|1 1|_|x—3|<|x—3|<6<6s_
x 373 =76 66 °©
Example
Let
_ylifxeQ
fO=1girreq
Find
lim f(x)
xX-p
F has no limit at any point p
Proof:

Suppose lim,_,, f(x) = L

Picke = %andé‘ >0

Then then interval (p - §, p + 8) contains

X1 #p,x €EQandx, #p,x; € Q

[(flxg) = flxx) =11 —01=1

=1f(x) —L+L —fl)l S Iflx)) = LI+ 1f(x) —LI<e+e=1

(If delta worked in the definition of limit of f(x))

Thus contradiction showing 6 cannot work which proves there is no limita p
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Limit Laws

October-06-10
10:31 AM

lim f(x) or lim f(x)

x-p* X->p~
O0<x—p<d=>2p<x<p+4

or —6<x—p<0=>p—-46<x<p

Limit Laws

If

)]CI_I;%f = L,jlclzgg =K
Then

1. limf+g=L+tK
x-p

2. limfg=fg
X-p

3. 1li U = L K+0

' xlyzlag K if
Sincelimy_,, g =K # 0
Then for small §, g(x) # 0

fO<Ilx—pl<é

Squeeze Theorem
If fix) £ glx) < h(x) Vx # p and

limf=L= lim h
X-p (x—p)

Then,
limg=1L
x=p
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Exercise

lim f(x) =1L

X-p

If and only if

lim, f(x) =Land lim f(x) =1L
xX-p X—p

Proof of Squeeze Theorem
Given € > 0, choose § > 0 such that If(x) — Ll < eand lh(x) = LI < €if 0 < Ix —pl <
L—e<flx)<glx)<hlx)<L+e¢

= lmo =1 L
Exam.ple &69 '
RELCE Cihxe X

First, take x > 0, say x < %

sinlx) <x <a+b < tanx

sinx
P
x < tanx = sinx / cosx
sinx
cosx < ——

x
sinx
cosx <——<1forx>0
x

Take, instead, x < 0
cos x = cos |x|

sinx = —sin |x|

x = —lxl|

sin x sinlx|  sinlxl
X —lxl 1x1

Therefore,

sin x
cosx<——<1VvVx#0

x
So by squeeze theorem,
sin(x)
im =
x->0 X

0 <sinx <xforx>0
lim sinx =0
x—0"

—x <sinx <0ifx<0
lim sinx =0
x—0%



Continuous Functions

October-08-10
10:32 AM

Function
f-ACR->R

(A is the domain of f)

Continuous at a

Say fis continuous at a € A if Ve > 0 there exists
8 > 0 such thatif [x — al < § and x € A then
If(x) = fla)l < ¢

If A= (c,d) = {x:c<x<d}thentosayfis
continuous at a is the same as saying
)1(13(11 fx) = fla)

Continuous
Say fis continuous if f is continuous at eacha € A

Proposition:
fis continuous at x = a if and only if whenever
(x,) isasequence in A and (x,,) = a, then

(fxp)) — fla)

Proposition
If f is continuous at a and f(a) > 0 then there is an
interval I containing a with f(x) >0V x €1

Theorem

If f, g are continuous at a thenso are f+ g, f X g, cf
for a c constant,

f/gaslongasg(a) # 0
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Examples of continuity or discontinuity

lim () = L # f(2)

Jump discontinuity - no limitat x =a

Look at
o1
y= sin (;) x#0
0, x=0 This function has no limitatx = 0 so itis
1 discontinuous
—=2nk
x
1
= 2wk
Proposition:

fis continuous at x = a if and only if whenever (x,,) is a sequence in A and (x,) — a,
then (f(x,)) - fla)

Proof

n_yn

Assume fis continuous at a

Take (x,) a sequence in A with (x,,) - a

RTP (f(x,)) = fla)

RTP Ve > 0 there exists N such that |f(x,) — f(a)| < €ifn >N

Since fis continuous ata, 36 > 0s.t. If (x) — f(a)| < eifIx —al < Janda€A

Since (x;,) = a, we know there is some indexNsovn >N |x, —al < §

Take this choice of N.Ifn > N then Ix,, — al < § and so by the continuity and the choice
of delta, we have

If (xn) — fla)l < &= (flxy)) = fla)

Iy
Suppose fis not continuous at a

There is some € > 0 so no & will "work"

This means for each choice § >0, there is a "bad" x, meaning
Ix —al <édbutlf(x) — fla)l = ¢

Do thisforeachd =1/n,ne€N

For each §, get "bad" x and call it x;,

(xy) isasequence from A and Ix, —al < %

So (xy) > a

So we also know that If (x,) — fla)l = ¢

Therefore, (f(x,))! - f(x)

This contradicts the second statement.

Examples of continuity/discontinuity
_jlifxeqQ
Fo=loifxeq

Not continuous at any point because it has no limit at any point

Ex
If g(x) =1 atevery x € Q and g is continuous, then g(x) = 1 foreveryx € R
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Proof:

If a is rational then take (x,,) - a withall x, € Q
Say g is continuous at a, by proposition

9x) = g(@)

But g(x,) = 1Vn

Sogla) =1Va

Example Continuous on Irrationals and Discontinuous on Rationals
1
i m

flx) = nlfer and x = —wheren € Ngcdim,n) =1

0if x¢Qx=0 n
F is discontinuous atany a € Q \ {0}
Why?

Take € < 1/n. Then |f(x) —%l = |0 —%l > ¢

If a € Q then thereexistsx € (a —§,a+ §) forany 6 <0
Take a € Q,f(a) =0
Want [f(x) — fla)| < eVx € (a—6,a+9)

TakeNENso%<s
Ifx = Zwithn > N,then 0 < f(x) == <
Solflx)—-0l<e

1
-<e¢
N

Temporarily take § = 1 and consider (a — 1,a + 1)
There are only finitely many rations of the form % with n < Nin the interval (a-1, a+1)

Now take § < 1so (a-8,a+ &) misses all of these finitely many points %with n<N
Soifx€(a-5,a+ ) eitherxZ Qsof(x)=0=f(a)orx = %withn > N and then

1 1
flx)= ~ < 3 <€

Either way If(x) — fla)l <eVx €(a—6,a+6)
Thus if is continuous ata ¢ Q

Comment
Is there a function continuous on rationals and discontinuous on irrationals?
No, but very difficult to show.

Proposition
If f is continuous at a and f(a) > 0 then there is an interval I containing a with f(x) > 0V
x€l

Proof

Take e = f(a) > 0.

Get 8 > 0o |x-a| < §implies |f(x) - f(a)| <e & f(a) -e < f(x) <f(a) + ¢
=>f(x)>0vVx€e(a-6a+9d)

Theorem
If f, g are continuous at a then so are f+ g, f X g, cf for a ¢ constant,
f/gaslongasg(a) # 0

Proof
Just use limit laws for sequences in functions

Ex:

Polynomials are continuous functions.

To see this, note p(x) = x is continuous

Then p(x) = x™ is continuous V n € N

And p(x) = ¢,x™ is continuous V n € N

Sum of continuous functions are continuous so p(x) = a,x™ + -+ a;x + a is cont.
poly p(x)

poly q(x)

Continuous on its domain, or at all a € R except where q(a) =0

Rational functions =

Ex.

_ 3%+ 1if x>0
flx) = 1-xifx<0
fla)=1
lim f= lim3x2+1=1
x—at x—at

lim f=1lim1-x=1
x—a~ x-a~
Continuous everywhere.

The case at x = 0 is cont. because 3x2,1 — x are cont. everywhere
And lim,_,4 f(x) = f(a) as shown



Composition of Continuous Functions
ffACR—->R rangef=BCSR
gBER->R

geof:A-R
geoflx)=g(fx))

Theorem
If f is continuous at a and g is continuous at f(a), then g o f is continuous at a.

Proof

Equivalent to prove if (x,) - athen (g o f(x,)) = g o f(a)

Since (x,,) = a and fis continuous at a, (f(x,)) - f(a)

But g is continuous at a so whenever (y,,) = f(a)then (g(y,)) - g(f(a))
e Apply with y, = f(x,)
* So(gef(xn)) = (9(f(xn)) = g(fla)) = g > f(a)

Alternate Proof

Lete>0and find§ > 0so [x -a] <5 implies g o f(x) —gofla)l <e

=g(fx) —g(fla))| <e

Know g is continuous at f(a) so there exists §; > 0 such that |g(y) — g(f(a))| <
eifly —fla)l<é

Apply this with y = f(x)

Since fis continuous at a, there will be some §, > 0 such that [f(x) — f(a)] < §; when
Ix —al <4,

Take§ = 6, Thenlx —al <6 = If(x) — fla)| < 6; = |g(fla)) —g(fx))| <e
Therefore, g o fis continuous at a.
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Intermediate Value Theorem

October-15-10
10:32 AM

Intermediate Value Theorem

Suppose f- [a, b] = R is continuous

And f(a) < 0 and f(b) > 0 then there is some
¢ € [a, b] with f(c)=0

Corollary

If f-[a, b] = R is continuous and f(a) < f(b)
then for every z with f(a) < z < f(b) then
there is some c € [a, b] such that z = f(c)

MATH 147 Page 20

Continuity condition is essential: \_/—

Proof of Intermediate Value Theorem Or

Let A= {x € [a, b]: f(x) < 0}
a € Aso Ais non-empty

A C [a,b] so A is bounded v
By completeness property, A has a LUB, call it ¢

c>aascisanUBforAanda €A

¢ < b because b is also an UB for A and ¢ = LUB(A)

Soc€[a,b]

c —i< ¢ soitisnotan UB for A

SoEIanAwithc—%<xn <c

Of course, f(x,) <0

Ixy, —cl <;—>0asn - 00

Hence (x,) - ¢

Since f is continuous at c, this implies that

(flan)) = f(©)
Since f(x,) < 0Vn= flc) <0

This shows ¢ # b since f(b) > 0
Andsoc +% < b forlarge enough N

Soc+%€la,ban2N
c+l>cwc+l$A
n n
1
Hencef(c+;)20Vn2N

1 oo

(c + —) -c
N'n=nN

By continuity of f,

0<f(c+l)—>f(c)
- n
Soflc) 20

Since f(c) < 0and f(c) = 0then f(c) =0
|

Corollary
If f- [a, b] = R is continuous and f(a) < f(b) then for every z with f(a) < z < f(b) then there is
some c € [a, b] such that z = f(c)

Proof

Letg(x) =f(x) -z

g is continuous

g@)=f(@a)-z<0

gb) =f(b)-z>0

By LV.T there is some c € [a, b] with g(c) =0 =f(c) - z,so f(c) =z

Applications:
Any odd degree polynomial has at least one real root.

Proof
plx) = apx™ + ap_1x™ 1 + -+ a;x + ag, where n is odd
WE want to prove there is some c such that p(c) = 0
Wlog assume a,, is 1

An+1 a4 o
plx) =Xn(1 +T+"'+W+x—n)

Pick N so large that |x:£f| < %Vj =0,..,n-1

N P I YL LY.
p(NJ=N"(1+%+-~-+xiil+z—ﬁ)zm %)=N7n>0
p(—N)=(—NJ"(1+%+---+XZ11+;:—2)5 N*<0

p is continuous on [-N, N]
So by LV.T p has aroot in [-N, N]

Bisection Method of Finding Roots
Take a function on [a, b] wherea<0andb >0
Keep splitting the domain and taking the half where the sign of the two bounds are opposite.



Bounded Functions + EVT

October-18-10
10:29 AM

Bounded

Say fis bounded above if there exists M such that
flx) < Mvx

Say fis bounded if it is both bounded above and
below

Extreme Value Theorem
Suppose fla, bl = R is continuous
Then there are ¢, d € la, bl such that
fle) < flx) £ f(d)Vx € la, bl

In particular, fis bounded and f achieves
minimum and maximum values.
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Examples
fR->R
flx)=x
- Notbounded either above or below

£:(0,11 » R

1
flx) = X
- Bounded below but not above
- Has a minimum

f:(1,00) > R

1

flx)=—

X
-Bounded, however no minimum or maximum

Extreme Value Theorem
Suppose fla, bl - Ris continuous
Then there are ¢, d € la, bl such that
fle) < flx) < fd) Vx € la, bl

In particular, f is bounded and f achieves minimum and maximum values.

Proof of Extreme Value Theorem
Uses Bolzano-Weierstrass Theorem (any bounded sequence has a convergent subsequence)
Fact - If (x;;) = L then every subsequence of (x,,) = L)

1. First show that f is bounded
Suppose fis not bounded above.
Then V n € N, there is some x,, € la, bl with f(x,) > n. Consider the sequence (x,). Itis bounded.
By B-W Theorem, there is a convergent subsequence (x,, ) = L € la, bl
By continuity of f, f(xy, ) = f(L)
By construction sequence, f(xy, ) > ny so f(xy, ) is unbounded and therefore cannot be
converging because every convergent sequence is bounded.
This is a contradiction, so f is bounded above.
Similarly, we can prove fis bounded below = fis bounded

2. Look at S ={f(x) : x € [a, b]}
This is a non-empty set, and a bounded set by 1.
So S has a LUB and a GLB. Call LUB(S) =z
Then f(x) < zVxla,bl

And vVn € N, x € la, bl with f(x,) > Z—%

1
If (xy) — zI S;—>0asn - ©

So(flxy)) >z

Sequence (x,) is a bounded sequence, so by B-W Theorem it has a convergent subsequence. Say
(xn,) = d € la,bl

By continuity of fatd, f(xy, ) = f(d)

Since (f(xnk )) is a subsequence of (f(x,,)) which converges to z = (f(xnk )) -z

But limits are unique, therefore z = f(d)
In other words, f(d) = f(x) Vx € la, bl

Showing minimum value is left as an exercise.



Inverse Functions

October-18-10
11:01 AM

One-to-one Functions (Injections)

Say fis 1-1 if whenever x; # x, then f(x;) # f(x;)
In other words, pass the horizontal line test.
Increasing (or Strictly Increasing)

Say fis (strictly) increasing if whenever x, > x;
then f(x;) (>) = f(xy)

Theorem

If f:1a,bl = R is continuous and invertible, then fis
either strictly increasing or strictly decrasing.

MATH 147 Page 22

Examples
y=x%,not1—-1
y=sinx,not1—1
y=x3+1yes1-1

One-to-One Functions have inverses
Yy € Range f
Define f~1(y) = x when f(x) = y (unique choice of x)

Usually we write f~1(x) = y when f(y) = x
fofMx)=fly) =x

flofx) =x

= fof ! = f~lof = Identity Function
Exx=y+1=y= Ix=1

Range f = Domain f~1
Range f~! = Domain f

Theorem

If f:1a, bl - Ris continuous and invertible, then fis either strictly increasing or strictly decrasing.

Proof

Notice f(a) # f(b) since fis 1-1

Assume f(a) < f(b) (Leave f(a) > f(b) as exercise)
And we will show fis strictly increasing.

Assume f is not strictly increasing.
Then there is some y > x, but f(y) < f(x)
Casel:x #a

Clearly f(x) # f(a) because otherwise the function would not be 1-1 and therefore not be invertible

1. f(x) > f(a)
By L. V. T on [a, x] f takes on every value in [f(a), f(x)]
Similarly on [x, y] f takes on every value in [f(y), f(x)]
These intervals [f(a), f(x)] and [f(y), f(x)] overlap.
So values in overlap are taken on at least twice. Contradicts that fis 1-1

2. f(x) < f(a) same thing

Case2;x=a

There is some y > x such that f(y) < f(x) = f(a)

y € (a, b] since x € [a,b], and clearly y # b since f(y) < f(a) <f(b)
soy € (a,b)

By LLV.T on [a, y] f takes on every value in [f(y), f(a)]

Similarly, on [y, b] f takes on every value in [f(y), f(b)]

These intervals overlap on [f(a), f(b)], contradicts that fis 1-1

Consequence:

If f:1a,bl - Ris 1-1 and continuous then Range f = [c, d]

Proof:

Either fis strictly increasing or strictly decreasing. Say f is increasing.

Then Range f C [f(a), f(b)] and we get the entire interval on the range by the Intermediate Value

Theorem



Continuity of f~1

October-20-10
10:34 AM

Theorem

If f:1a,bl = Ris continuous and 1-1
Then Range f= [c,d] for some c, d and
f~ ¢, dl - [a, b] is continuous

Theorem
If f:1a,bl = Ris continuous and 1-1
Then Range f= [c,d] for some ¢, d and f ~%|c,d| — [a, b] is continuous

Proof

Suppose (x,) = xo where x,, € |c,d|

Want to prove f~(x,) = £ (x)

Let y, = f_l(xn):yo = f_l(XO)

We know f(y,) = x, and f(yg) = xg

Also, y,,y € la, bl

We proceed by contradiction and suppose y,, # ¥,

This means there exists some € > 0 such that for every N there is some n > N with |y, —yol = ¢
Pickny so yn, —yol = €

Think of N = n; + 1. Pickn, = N =n; + 1 5o |y, —yo| = ¢

Having picked yy, ... ¥n,, putN = n, + 1 And pickng,; = N so |ynk+1 -yl = ¢
Gives a subsequence (yy, ) with the property that |y, — yo| = € Vk

Ally,, € la, bl so(yy, ) is a bounded sequence.

By the Bolzano-Weierstrass Theorem this has a convergent subsequence call it (ynk ) ) with limit t.
]

t # yo because of the construction of (y,, )

F (Om,) = g, = 50

By continuity of f, f (ynk.) - f(t)
J
By uniqueness of limits, f(t) = x,
Butxy, = f(yo) = f(t) = f(¥) and sincefis 1-1t = y,
This is a contradiction, proving y,, = yo = f~1(x,) = f1(x,)
So 1 is continuous.

"Inverse" Trig Functions

Sin(x) is not invertible but sin(x) restricted to [— g,g] is invertible.
The inverse of this restriction is arc sin(x)

arcsin(x) = 6 € |—g,g|,x € |—1,1| withsin(0) = x

arccos(x)is the inverse of cos restricted to |0, 7|

sin(x)

cos(x)
arctan(x) is the inverse of tan restricted to (— %,g)

tan(x) = so tan(x) is periodic every Tt

Domain of arctan(x) is R and Range of arctan(x) = (— g,g)
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Natural Logarithm Logarithm Function

. 1
November-17-10 Considery = ?fort >0

10:45 AM Forx > 0,let A, = area bounded by the curvey = %, t axis and the vertical linest = 1,t = x
Properties of Logarithm Function Define Inx = | Axif x 21
1. Inab=Ilna+1Inb —Axif x <1
1 In1=0
2. In—=—Ina Inx >0 ifx>1
3. ]n&r)zrlnx Inx <0ifx<1

In x is strictly increasing and so it is invertible.

Properties
1. Inx")=rlnx ifreqQ
a. ln(l) =—lna
a
2. Inx > wasx — o

V M € N there is some N so thatifx > Nthenlnx > M

Proof of 2.
ConsiderIn2™ = nln2
If x > 2™, thenlnx > In2" soifIn2™ > M thenVx = 2", Inx >In2" > M

exp(x) is the inverse function of y = Inx
Range of In = (—o00, ) = Domain of exp
Inx > —wasx - 07

Domain In = (0, ) = Range of exp

exp0 =1sincelnl =0
In(expx) = x = exp(Inx)

Fact

exp(xr) = (expx)” forr € Q
Proof:

Lety = LHS = exp(xr)

Iny = In(expxr) = xr

RHS= (expx)"

InRHS = In((expx)”) = rin(expx) = rx
SoIn LHS = In RHS

ButInis 1-1 so LHS = RHS

Take x = 1. Givesexpr = (exp1)" =e" VreQ
Calle=exp1l

Forany x € R,

Define e* = exp(x)

This is consistent when x € Q

This gives us a definition for an irrational power

Define a* foranya>0,x €R
Seta* = e*"% = exp(xIna)
Consistent with what we know a* is whenx € Q

Proof of Properties
Uses the future
Proof of 1
Letf(x) =Inxb—Inx—1Inb
Notice f(1) =0
"(x) = ! b 1 0
fix) = xb x
So by the corollary to the Mean Value Theorem, f is constant

Hence f(x) = f(1) = 0 Vx
Proof of 3

Letg(x) =Inx" —rinx
Notice g(1) =0

! 1 r—1 r
g (x)= FT.X —; =0
Sog(x) =0Vvx

2 follows from 3

Inequalities
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Inx<x—-1vx>0
Letf(x) =lnx — (x — 1)

f1)=0
,()_1 1_1—x
fr=:-1==
(0,1] [[1,00) |

f>0 [f<0

Analysis of f' shows x=1 is the maximum value of f.
Sof(x) < f'(x) =0Vx

1 1
(1+x)1’<1+;x\7’x>0,p>1
1
Lafu)=u+xﬁ—1—%x
fl0)=1-1-0=0
1 1,1 1 1
flfx) == +x)? ——=—(—1—1)>0forx>0,p>1
P P\i+0)'

1
since(1+x) 7 >1
By the Increasing Function Theorem, f is strictly decreasing on [0, o)
Therefore f(0) =0 > f(x) Vx >0
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Differentiation

October-25-10
10:29 AM

Differentiable at a
Say fis differentiable at a (or x=a at (a, f(a)) ) if

. fla+h)—fla)
lim—
h—=0 h
exists.

Alternate definition of differentiability
Sometimes we put x = a + h Thenh — 0 isthe
same as X — a SO we can write

(x) — f(a)
umi——l¥—=fm)
x—a X —a
Derivative
When
limy_o
f'la)

n- ) .
w exists we denote this by

f'(a) is called the derivative of f at a.

This defines a function f, called the derivative
of f, which is defined on all the points at which f
is differentiable.

Differentiable
Say fis differentiable if it is differentiable at
every point in its domain.

Tangent Line

This is the line through the point (a, f(a)) with
slope f'(a)

Equation:

y —fla) = f'la)lx —a)

Theorem

If f is differentiable at a, then fis continuous at
a.
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Find slope with secant line on f through f(a), f(a+h)

The slope of the secant line is w average rate over [a, a+h)]
Examples
fix)=mx+b
. fla+h)—fta) .. ma+h)+b—ma—-b . mh
lim =li =lim—=m= f'(a)
h-0 h—0 h h>0 h
flx) =x8
_ flta+h)—fla) . la+h)®—ad a® +3a’h +3ah? + h3 —a® 5 )
lim = lim = =lim3a“+3ah+h
h—0 h h—-0 h h—0 h h—-0
=3a® = f'(a)
flx) =1Ixl
) =i la + hl—lal
flla)=lim——
1. a>0
. a+h—a_l_ h_1
hl—r>r(1) h - hl—r}(l)ﬁ B
2. a<0
I —a—h+a I h 1
N
3. a=0
I 0+hl =101 I |hl
[ I S Y
.l dl
lim —=1, lim —= -1
h-0* h h—0~

The limit does not exist, so f is not differentiable at 0.
f(x) = |x| is an example of a function that is continuous but not differentiable.

Theorem
If f is differentiable at a, then fis continuous at a.

Proof

RTP

limf(x) = fla)
x—a

Equivalently, prove

lim(f(x) — fla)) =0
x—=a

_fx)—fla)
flx)—fla) = p— (x —a)

Since both lim,,_,, % and lim,_,,(x — a) exist, by the product rule for limits

lim f(x) — fla) = fla) x0=0
x—=a

So fis continuous at a

Only one way, examples even exist of functions that are continuous at every point but differentiable
at no point.

Examples
Consider
xsin(l),ifx *0

x

0ifx=0

Does f'(0) exist?
_fo+h—f0)  (hsin(z)-0)
lim = lim = lim sin (—)
h—0 h h—0 h—0 h
Which has no limit

flx) =

==

>

1y
glx) = %XZSIH(;),lfx #0
0ifx=0
et
(hzsm(}—l) -0)

1
’ — 1 o A
g'(0) = ;113(1) = }gr(l)hsmh

Cannot apply product law of limits
1

|—Mghmﬂﬁﬂsw

lim £lhl =0

h—0

So by the squeeze theorem for functions, lim;_,, h sin (%) 0

Sog't0)=0

Squeeze of Absolute Values

Say IF(x)l £ 1G(x)| and

limGx) =0= limlGx)I =0
x—=a

x—a
Means givenany € > 0

36 > O such thatfor lx —al < §thenlG(x) — 0l < ¢



IFx)I < 16x)l < ¢giflx —al <6
Solimy_,4IF(x)l =0

Exercise

1
flx) = %x"‘ sin (x_ﬁ)'x #0
0,x=0

When is f(x) differentiable?
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Common Derivatives Derive Derivative of Sine Function
October-27-10

, d . . sin(a + h) — sin(a) . sinacosh+sinhcosa —sina
10:34 AM f'(a) = —sinx = lim = lim
dx x=a h—0 h h—-0 h

sin x . sina(cosh—1) sinhcosa

= lim +
d . h—-0 h h
—sinx = cosx sinh
dx lim——cosa = cosa

h-0 h
sin x is continuous cosh—1 cosh+1  cos’h—1 sin? h

li X = = lim —

) h cosh+1 ) hcosh 15 h (cosh + 1)
In x

sinh  sinf 1 |

h st cosh+1

ax"E Ty Pick § > 050 |“21| < 2if [h| < &
. ) = |sinh| < 2|h|if|h| < §

In x is continuous

exp X is continuous T

cosh>0ifhe |—5,§

Socosh+121ifh€|—§,§

:|;|<1ifh€|—g i
cosh+ 11— 2’2
0< [P Ginhx— | <2 x2in
| h s cosh+ 11—

If h| <8and 2x 2|]h| > 0ash—-0

By squeeze theorem,

sin? h y 1 0ash -0
—_ X —— -
h cosh+1 as
Therefore,
) . sina(cosh—1) sinhcosa
—sinx = lim + =cosa
dx x=a h-0 h h

Since both terms have limits, so the addition rule of limits applies

e . d .
So sin x is differentiable and S Sinx = cosx

Corollary
sin x is a continuous function.

Derive Derivative of Log Function
Definition of In: The area A,from t=1 to t=x under y=1/t

_JAifx =1
Inx=1_aifx<1
Casex>1
In(x +a) —Inx
im—
h—-0 h
wlog,x+h>1
Casea:h>0
A —A area undery = 1 between x and x + h
lim x+h X _ t
h—=0 h h
1 1
Xh <area<—Xh
x+h X

1 area 1
< <-
x+h h x L
By squeeze theorem, ? —~-as h -0
. (Un(x+h)—Inx) 1
lim, —mMmM ™ =—
h-0* h x

Caseb:h <0
Left as exercise but the same thing

Casex<1
Left as exercise

Corollary
In x is a continuous function
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Corollary
exp is a continuous function

This is also the proof of the fundamental theorem of calculus
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Rules for Differentiation Suppose f and g are differentiable at a

October-27-10 1. f + g are differentiable ataand (f + g)'(a) = f'(a) £ g'(a)
11:02 AM Proof left as exercise

2. Product Rule
f - g is differentiable ata and (fg)'(a) = f'(a)gla) + g'(a)f(a)
Proof

(f-gla+h)—f-gla))

(fg)'a) = lim -
im fla+h)gla+h)—flalgla+h)+ fla)gla+ h) — fla)gla)
h—0

+h) -
><g(a )—gla)

h

h
(a+h)—fla)
fathof@

= }lirr(l) gla+h) x
=gla)f'ta) + fla)g'(a)
g is continuous so (g(a+h)) — g(a) as (a+h) —»a

Corollary

Let f(x) = x™ Then f'(x) = nx""1
Proof

glx)=x g'(x)=1vx

This f is differentiable since it is the product of differentiable g
Proceed by induction on n. Have result forn =1

d - _
Assume —x" 1=(n—-1)x"2

d
d d
—xt=—xXxx" = 1xx" T+ n—Dx" 2 =x" 1 +x—1) = nx™?L
dx dx
Corollary

If p(x) is a polynomial then p is differentiable. (Since polynomials are just linear combinations
of x™ for various n

3. If gis differentiable at a and g(a) # 0 then 1/g is differentiable at a and

!

(%) (@) = — g'(a)

(g(ot))2
Corollary
ix‘” =-—nx"!forneN
dx

- 1
Proof: Write x ™™ = —;
X

4. Quotient Rule:
iis differentiable at a if f, g are differentiable ata and g(a) =0

_f'ta)gla) — g'la)fla)

(i) (a) = >
9 (gla))
Proof
(r-Y) = flarx -2+ r (2) @ = Fro—+ fa) 22
— ] = a a)|—]) (a) = a a
g gla) g gla) (g(a))z
_ f'la)gla) = g'la)f(a)
(9(@)’®
5. Chain Rule

Letf-A—> Randg-B - R
Suppose fis differentiable at a and g is differentiable at f(g(a)), then gof is differentiable at a
and (g of ) = g'(f(a))f'(a)

Proof

To prove this we need to look at

y gof x) —gofla) glfx))—g(fla)) flx)—fla)
xl—r>rcll x—a T x-a flx)—f(a) x—a

however, it is possible for f(x) — f(a) to be zero where x # a

Use Coratheodory Theorem

Coratheorory Theorem

If F is differentiable at a, then there is a function ¢ which is continuous at a, satisfies
Flx) —Fla) = ¢(x)(x — a) forallx and ¢(a) = F'(a)

Proof
Define
F(x)—F(a) .
g0 =1 x—a SF7C
F'(a),if x=a
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F(x) —F(a)

lim ¢p(x) = 11m l— . = F'(a) = ¢(a)

x—a

So ¢ is contmuous

Proof of Chain Rule Cont.
Since f is differentiable at a, there is a function ¢, continuous at a, satisfying
flx) — fla) = ¢p(x)(x —a)and ¢pla) = f'(a)

Similarly, since g is differentiable at f(a), there is a function i, which is continuous at
f(a), satisfying g(z) — g(f(a)) = Y(z)(z — fla)) and Y(f(a)) = g'(f(a))

Take z = f(x). This gives g(f(x)) — g(f(a)) = P(f(x))(f(x) — fla))
glfx))—glfla)) =yP(fx))px)x —a)

Calculate if possible

gof'(a) = _} g(f(x))—g(f(a)) — lim w(f(x”(p(x)(x_a)=im¢(f(x))¢(x)

X — x-a XxX—a
limy, ¢(x) = ¢(a) so the limit of ¢ at a exists.

Since f is continuous at a, f(x) - f(a)
So since 1 is continuous at f(a) of is continuous at a and therefore

,lcif}zwof(” =ofla) =P(fla))

Thus gof is differentiable at a and (gof)'(a) = Y(f(a))pla) = g'(f(a))f'(a)

Example:
1
Yy = cos (;)
differentiable everywhere on its domain
1
, 1 1 sin (—)
y'==sin(2)(-z) ==
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Derivatives of Inverse Functions

October-29-10
11:02 AM

Theorem

Let f be a continuous one-to-one function defined on an

open interval (c, d). Suppose that f is differentiable at the
pointa € (¢, d) and f'(a) # 0. Then f is differentiable at f(a)

and

Y fla)) =

f'ta)

Notation
f™ means the nth derivative of f

Inverse Trig

1
—arcsinx =
dx vI==x2
d 1
——arccosx = —
dx vI==x2
d " 1
—arctanx =
dx x2+1

Since £~ is continuous, (by continuity
of =1 theorem),
lim_o f~Yb+h)=f2b)=a

[

X
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If starting from f~1of = x we need to know apriori that £~ is differentiable at f(a) and f is
differentiable at a.

1
Ex.y = x3 = fla) f~'(a) = x3, which is not differentiable at 0, despite f being differentiable
everywhere. Problem: f'(0) = 0

Whenever f’'(a) = 0, f ! is not differentiable at f(a).

If f'(a) # 0 then
floflx)=x
Y fla)) X flta) =1

Y fla) -
" fta)

Theorem
Let f be a continuous one-to-one function defined on an open interval (c, d). Suppose that fis
differentiable at the pointa € (c, d) and f'(a) # 0. Then f' is differentiable at f(a) and

Y fla)) =

f'ta)

Proof

Write b = f(a)

C fTYb+h)-fb)

m-—-

h-0 h

f~ih)=a

f~Yb+h)=zwhereflz)=b+h

Writez=a+(z—a)=a+k

i fFAb+h—f b)) | at+tk—a i k . 1

7o K TN FZ) —b  he0flatki—fla) oo fla+ k) —fla)
k

k=fYb+h)—a=f"b+h)—f 1)
Ash - 0,f~X(b + h) > f~1(b) since f ! is continuous (by continuity of f ~*theorem)
soash—0,k—0

h=fla+k)—fla)
As k — 0, the continuity of f gives that f(a + k) = f(a) therefore h = 0

Hence,
, U +h)—fh) 1 1
s h TN flatb —fla)  fla

by using the differentiability of f at a and the quotient rule for limits, which can be applied since
f'lta)#0

Thus f 1 is differentiable at b=f(a) and (f~1)"(b) =
ie.

Y fla) =

1
fta)

f'ta)
or
X)) =———r—
f f'if~tx))
Examples

1
flx)=xn,neN
f=gtwhereglx)=x"n€eN

g'x)=nx"land g’'tx) =0iffx=0
By the theorem, fis differentiable at g(x) except for those x where g'(x) =0ie.x=0

1

) 1 1 1 xnt
x) = ; = == == =
gUE) i)™ e ot "

flx) = explx), f = g~ where glx) =Inx
g'\x) = * 0 for any x

1 1
fllx)=————=—"—=f(x)
g'(flx)) L

flx)

That is %exp(x) = explx)

Definition of x"

y=x",r€R

y =explrilnx) = expllnx)’ = x"
r—1

r r
o __ — T .
=explrlnx)—=x" X—=rx
y p o X

y=x* =explxlnx)

1
y' = exp(xlnx)(llnx+;x) =explxlnx)(Inx+1) =x*(nx+1)



-

4
£ [ %
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y =x* =explxlnx)

1
y' = exp(xlnx)(llnx +;x) =explxlnx)Unx+1) =x*(nx+ 1)

Inverse Trig Functions

y = arcsinx = f(x)

f(x) is the inverse of sin restricted to |—§,§|
1 1

sin’(f(x)) ~ coslarcsin x)

Except if there is a zero in the denominator

flix) =

Suppose arcsin(x) = 6, means sin(6) =xand 8 € |—g,§
So except where x + 1

d ] 1
—arcsiny = ———
dx VT —=x2
Similarly,

1
—arccos x = ———
dx vI==x2

1

—arctanx = —5———
dx sec2(arctan x)
Find sec? @ where tan 6 = x
an? 6+ 1 (sin% @ + cos? 6) 1 24
an = = = sec
4 cos? 6 cos? 60
—arctanx = ———
dx x2+1



Optimization Problems

November-03-10
10:30 AM

Local Maximum

A pointx is a local maximum for the function f if there
exists a § > 0 so that for every pointy € (x — §,x + §),
y € Domain f, we have f(y) < f(x).

Local Minimum

A pointx is a local maximum for the function f if there
exists a § > 0 so that for every pointy € (x — §,x + §),
y € Domain f, we have f(y) = f(x).

Global Maximum (Maximum)
A point x is a global maximum of fif f(y) < f(x) for all
y € Domain f

Global Maximum = Local Maximum, but the converse is
not true.

Critical Points Theorem

If f has a local maximum or minimum at some pointx €
(a,b) € Domain f, and if f is differentiable at x, then
f'(x)=0

Critical Point
Call x a critical point of fif f'(x) = 0
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Critical Points Theorem
If f has a local maximum or minimum at some pointx € (a, b) € Domain f, and if f is differentiable
atx, then f'(x)=0

Proof
Look at for h < & where § is as in the definition for local maximum

Hence f(x + h) < f(x)
Ifh > 0, then LXHV=/)

If h < 0 then

flx+h)—f(x)
h

<0

fx+h)-f(x) >0

. . (x+h)—f(x)
Since the limj,_, [lath)ojix)

flx+h)—flx)

exists (since f is differentiable at x), the right and left hand limits exist.
flx+h)—flx)

hll»r{)l- h h%l+ h
But
x+h)—flx)
lim # >0
h—0~ h
flx+h)—fx) <0
h—0+

And since the two sides are equal,
fax+h)—fx)
= =0=f®

Note
A point can be a critical point but not a local maximum/minimum. Example: x=0 at f(x) = x3

Finding Maximums/Minimums
Suppose f:la, bl = R which is continuous.
By the Extreme Value Theorem f has a global maximum and minimum.
The global max & min must also be a local max or min (respectively), and hence the theorem tells
us the can only occur at:
1. a, b (Endpoints of [a,b])
2. atapointx where f is not differentiable (singular point)
3. atacritical point
Generally there are only finitely many pointsin 1, 2, and 3, allowing you to evaluate f at each of
them and take the largest as the global maximum and the smallest as the local minimum.

Example
2
flx) =x—x30nl-1,8|
2 1
flix)=1- §x_§, dif f except at 0

fis continuous
E.V.T implies there is a global maximum and minimum

Candidates for max+min
1. -1,8
2. SPat0
3. CPat=
27

ft 1)—2f(0)—0f(8)— + fi8)=4
- VYR -
So the global max at x = 8 and the global minatx = —1

Problem
A right angle is moved along the diameter of a circle of radius r as shown.
Maximize the sum of length a+b.
Clearly,b>r
T
a+b=rsinf+rcosf +r,0¢€ |O’E|

(a+b) is differentiable everywhere and is continuous
Possible candidates:

1. 6=02
L 0=03

3. 0="1
T T4

(a+b)0) =a+b)(35)=2r
@+ b (E) = rx—x24+r=r(v2+1)
a =T o r=r

So our maximum is at 8 = %and the largest possible value for a+b is (V2 + 1)



Mean Value Theorem

November-05-10
10:28 AM

Mean Value Theorem

If f is continuous on [a, b] and differentiable
on (3, b) then there is a c € (a, b) such that
. . _fb)=fla)

===

Corollary
If f'(x) = 0 atevery x € [ interval then fis
constant over that interval.

Rolle's Theorem

Suppose fis continuous on [a, b] and
differentiable on (a, b). In addition, assume
fla) = f(b). Then there is some ¢ € (a,b)
such that f'(¢) = 0.

Corollary to MVT (Increasing Function
Theorem)
If f is continuous on [a, b] and f'(x) > 0 for

all x € (a, b) then fis strictly increasing on
b]

¥
AL

~F( <\
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There exists a tangent somewhere on
the function between a and b which is
equal to the secant between f(a) and

< = f(b)
1 = 1

Proof of Corollary to Mean Value Theorem
Leta <b, a, b €1. Then fis continuous and differentiable on [a, b]. By MVT, there is some
c € (a,b) € Iwith

. _fb)—fla)
f'tc) = b —a

So fis constant.

> f(b) = fla)

Note the importance of f'(x) = 0 at every x on an interval.
The function
+1ifx>0
flx) = %—1ifx<0
Is continuous and differentiable on it's domain, and f'(x) = 0 for all x on its domain, but f is not
constant.

To prove MVT, we

Proof of Rolle's Theorem

By E.V.T, f has a maximum and minimum on [a, b].

If either the maximum or minimum occurs at ¢ € (a, b) then by the critical points theorem,
f'tc)=0

Otherwise, both the maximum and minimum occur at the endpoints a, b. But f(a) = f(b) so the
maximum and minimum must be the same. So f is constant on [a, b]. Hence f’(x) = 0 at every

x € (a, b). So c could be any point in (a, b) in this case.

Proof of the Mean Value Theorem

Let L(x) = secant line joining (a, f(a)) to (b, f(b)) and g(x) = f(x) -L(x)
_ fb) — fla)

gx) = fx) ( b —a

g is continuous on [a, b] because fis a y=L(x) is continuous everywhere and g is the difference of

continuous functions. Similarly, g is differentiable on (a, b) since both f and y are and g is the

difference of differentiable functions.

Furthermore, gla) = 0 = g(b), so Rolle's Theorem applies

So g'(¢) = 0 for some c € (a,b)

(x—a)+f(a))

(b) — fla)
0=g'(c)=f"(c)=L'(c) =f"(c) — (]#)
b—a
Therefore
fb) - fla)
———=f(©

Increasing and Decreasing Functions

Proof of Corollary to MVT (f is increasing on the interval where f' > 0)
Takea<x<y<b
_ fy)-fx)

MVT applies to f, so there is some ¢ € (x,y) with f'(c) = po— > 0, by the assumption

y—x>0so f(y) — f(x) > 0so fis strictly increasing.

NOTE: The Converse is not true
Can have f strictly increasing and differentiable everywhere but f'(x) > 0 is not true for all x
y = x% = f(x), in which case f(0) = 0

Non-Decreasing
If f'(x) = 0 on (a, b) and continuous on [a, b] then fis increasing on [a, b]
Converse of Non-Decreasing case is true
If f is differentiable on (a, b) and increasing on (a, b), then f'(x) = 0 for all x € (a, b)
Proof:
, o flx+h)—fx)
f'lx) = }Ll_rg —
If h>0,then f(x + h) = f(x)
If h<0,then f(x + h) < f(x)

(x+h)—f(
Hence limu >
h—-0 h



Derivative Tests

November-08-10
10:40 AM

First Derivative Test
Assume f is continuous on [x, x,] and ¢ € (xq, x;) is either
aCPoraSP
1. Iff' > 0on(xy,c)and f' < 0on(c,x;)
Then cis a local maximum
2. Iff" < 0on(xq,¢)and f' > 0on (¢, xy)
Then cis a local minimum
3. If f' has the same sign on both sides of ¢, then c is
neither a local minimum or maximum.

Vertical Asymptote
A point on a function is an asymptote if either the left or
right hand limits at that point go to infinity.

Oblique Asymptote
The function approaches a line of non-zero slope asx = +
oo

Horizontal Asymptote
y=bwhere lim f(x)=b
x—+or —oo

Asymptotes on Polynomial Functions
degQ > degP wegetHA.y=0
degQ=degPwegetHA.y=b,b#0
degQ+ 1=degPwegetO Ay =mx+b

Concave Up
Say f is concave up on interval I if f'(x) increases on |

Concave Down
Say f is concave down on interval I if f'(x) decreases on [

Inflection Point
Call c an inflection point if f’(c) exists and the concavity of
f changesatc

Second Derivative Theorem
1. If f” > 0 onIthen fis concave up on
2. If f" < 0onIthen fis concave down onI
3. Iffhas an IP(Inflection Point) at c and f"'(c) exists,
then f"(c) =0

Second Derivative Test
Suppose f'(c) = 0.1If f"(c) > 0 then fhas a local min
atc. If f''(c) < 0, then f has a local max at c. If
f""(c) = 0 then we do not know.
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Example

flr)y=x3—12x+1
fllx)=3x2-12=3x—2)(x+2)
CP=+2

Sign of f'(x)

(-,-2) (-2,2) |(2,)

+ - +

fis strictly increasing on (-c0, -2] U [2, o) and strictly decreasing on [-2, 2]
-2 is alocal max, 2 is a local min

Example
Maximize, if possible, y = xe™ on 10, o0)

y=e*—xe*=e"*(1—x)
e ™™ >0 forall x

CPatx =1

[0.1] [1, )

- +
1 is alocal maximum, but it is also a global maximum since it is greater than every other
value on the range of f
. L1
So the maximum value of y is =

Example

Analyse the function
x2—2x+2

flx) =——

Domain f =R \ {1}
Continuous and differentiable on its domain

) = x(x —2)
I =G
CPon0,2
Can only change signson 0, 1, 2 ! ;
Sign of f' |
: [ *+
(0,01 [[0,1) (L,2] |[2,%)
+ ! N ! N ! +

Vertical asymptote atx =1

Cox2=2x+2 1

lim ———=limx—-—14+——=+40
x-1t X — x-1t X —
limx—1+——=—-

x-1" x—1

Local minimum at 2, local maximum at 0, asymptote at 1

. . 1
xl_lglm(ﬂm —(x—-1))= xl_l)rizlmx 3= 0
This is called an oblique asymptote.

Example of Inflection Point
3

y=x
Has an inflection pointatx =0
yr — 3X2
y!! = 6X

y'" is negative when x < 0 and positive when x > 0 so the concavity changes atx = 0

Proof of Second Derivative Theorem
1 and 2 are exercise, come from increasing function theorem.
3. Assume f’ increases on (x;,¢) and f’ decreases on (c, x,) so c is a local maximum
of f'. Since f' is differentiable, f"'(c) = 0 by the critical points theorem.

Second Derivative Test

Iff'(c) = f"(c) =0

Ex f(x) = x* inflection point at 0

f(x) = x*local min at 0

f(x) = —x*local max at 0

Impossible to tell from just "' (c)and f'(c)

Proof of other statements:
Case f''(c) >0

v o f'le+h)=f(c)
f'c) = LI%T >0
P - f'tc+h)
f(c)—Oso}lll_rgih >0
So f'(c + h) > 0 ifh >0 and small
and f'(c + h)< 0ifh < 0 and small
By increasing function theorem, f is decreasing to left of c and decreasing to the right of



c. By the first derivative test c is a local minimum.
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L'Hopital's Rule and CMVT

November-10-10
10:40 AM

Limit of Infinity
Write lim,._,, f(x) = o« if for every N € N there exists
6> 0 suchthatif Ix —al < éthen f(x) >N

L'Hopital's Rule
Assume f, g are differentiableon/ = la — §,a + 61
except possibly at a. Suppose
lim f(x) = lim g(x) = 0 or £ o
x—=a xX—a
Suppose g(x) # 0 for any x in I (except possibly a)
If
(x) (x)
lim = L then lim f_x =1L
x-a g’(X) x—a g(x)

Cauchy Mean Value Theorem

If f, g are continuous on [a, b] and differentiable on (a, b).

Then there is some c € (a, b) such that
(fb) —fla))g'tc) = g'(c)(g(b) — gla))

MATH 147 Page 39

Intuitive Idea of L'Hopital's Rule

Case:

f(a) =0 =g(a)

o fx) o fx)—=fla) o flx)—=fla) x—a

lim—— = lim = lim

x-ag(x) =x-aglx)—gla) x-a x-—a gx)—gla)
fla)

expect that to equal 7@

)

lim— =

xag'  g'la)

Trueiff', g' are continuousataand g'(a) # 0

By the Mean Value Theorem, f(x) — f(a) = f'(c,)(x — a)
If fis continuous on [a, x] and fis differentiable on (a, x)
gx) —gla) = g'(dy)(x —a)

If g is continuous on [a, X] and g is differentiable on (a, x)
Cy,dy € (a,x)

fx)=fla)  f'ledlx—a)  f'le)
gx)—gla)  g'ld)x—a)  g'(dy)

Asx - a, Cpdy > a
Suppose we get really lucky and ¢, = d,.
"(cy) !
[l li f—,(cx)

xl—r>rtllg'(dx) = xl—l;r(lz.g

Recall
lim,_, F(x) = L if and only if whenever (c¢,) — q, then lim;_,,, F(c,) =L

Then
)
xl—r%g'(dx)_xl—r%g’ Cx _xl—I}}zg’

Cauchy Mean Value Theorem

If f, g are continuous on [a, b] and differentiable on (a, b). Then there is some c €
(a, b) such that
(fb) = fla))g'(c) = f'(c)(gb) — gla))

So if there arises no division by zero trouble, that means
fb)—fla) f'(c)
gb)—gla)  g'(c)

Proof of CMVT

Define

h(x) = f(x)(g(b) — gla)) — g(x)(f(b) — fla))

h is continuous on [a, b] and differentiable on (a, b)

h(a) = fla)(gb) — gla)) — gla)(f(b) — f(a))

= fla)g(b) — fla)gla) — gla)f(b) + gla)f(a) = f(a)g(b) — gla)f(b)
h(b) = gb)f(a) — f(b)g(a)

h(a) = h(b)

By the Mean Value Theorem (Rolle's Theorem) there is some c € (a, b) such that
h'(c)=0

0=f"(c)gb) —gla)) —g'(c)f(b) — fla))

So

f'e)gb) —gla)) = g'(c)(f(b) — fla))

Examples
log x
im—
x-1sin(mx)
Being continuous, lim,_,; logx = 0,lim,_,; sin(zx) = 0
By L'Hopital's rule, study
1

! —

(logx)" x 1 . logx
im— - = lim =——=]im—
x~1(sinmx)’ x-1Tcosmx m  x-1sinmx

1 1 . (sinx —x)

im - =lim———
x->0Xx SInx x>0 XxSInx
limsinx —x =0
x—-0

limxsinx =0
x—-0

By L'Hopital's Rule
cosx —1

=lim———
x-0sinx + x cosx
Again
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limcosx —1=0
x—0

limsinx + xcosx =0
x—0

By L'Hopital's Rule again
sinx

im— - =
x-0 CcoSx + cosx —xsinx
So

1 1
lim——— =0
x-0x sinx

0
2

0



L'Hopital's Proof
November-12-10
10:31 AM

Cauchy Mean Value Theorem

If f, g are continuous on [a, b] and differentiable on (a,
b) then there is some ¢ € (a, b) such that

(fb) — fla))g'tc) = f'te)lgb) — gla))

Remarks on L'Hopital's Rule

1.

3.
4.

- o i f_
Iflim,_,,+ i L then lim,_,,+ 5= L
(with all other assumptions)
In cases where lim,_,, g(x) = o (or — o), the
behaviour of f does not matter, f does not need
to go to infinity.
a. Of course,if If|1 < C then automatically
limx_,af—] = 0iflim,_, glx) = o

L'Hopital'srule is valid if a = +oo
L'Hopital's rule is valid if L = t o0

’
The non-existence of lim,_,, é does not imply the

non-existence of lim,_,, f—]
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Assumptions

1. fand gare differentiable on I = la — §,a + &1 but not necessarily a
2. glx),g'(x) # 0onlexceptata
3. Suppose thatlim,_, f(x) = lim,_, glx) = 0 or +
o f'x)
4. lim =1L
x-a g'(x)
Want to prove:
(x)
lim f— =1L
x-a glx)

Cauchy Mean Value Theorem
If f, g are continuous on [a, b] and differentiable on (a, b) then there is some ¢ € (a, b) such that
(fh) —fla))g'tc) = f'c)glb) — gla))

Remember:
lim,_,, F(x) = L if and only if whenever (x,) = a then (F(x,)) = L

Proof Of L'Hopital's Rule
Case 1

limf=1limg=0
x—-a x-a

Define (or redefine) fand g at a by setting f(a) = 0 = gla)
This makes the functions continuous on [a — §, a + §] since lim,_,, f = 0 = f(a) and same for g
fand g are still differentiable on la — §,a) U (a,a + §1

Enough to prove limx%a+§ =L= limx_,a—g

To prove limx_,a+§ = L, itis enough to prove that whenever (x,,) = a,x, > a, then (g(xn) ) ->L

Take (x,) - a, x, >a.Wlogx, <a+6
f, g are continuous on [a, a + 6] and differentiable on (a, a + §)
Therefore continuous on [a, x,,] and differentiable on (a, x,,)

By the CMVT, there is some ¢,, € (a, x,,) with (f(x;,) — fla))g'(c,) = f e glxy) — gla))
By assumption, g'(¢,) # 0

Also, g(x,,) — gla) # 0, because by assumption g(x,) # 0 but gla) = 0 (or because by MVT
g9lx,) —gla) = g'(t,)x, —a)for some t, € (a,x,).But g'(t,) # 0)

Divide to get

fl,) —fla)  f'(cy) f’( )
= =—(c

glx,) —gla) g'lc,) g "

But f(a),gla) =0, so
f ’

E(Xn) = ?(Cn)

!
Asn — o, (c,) — a since (x,) — a. So since limxﬁaé = L by recalled fact concerning limits and

sequences,

r
111&10 ?(cn) =L
Therefore,
lim £(x )=1L
n—oo g n

So by the recalled fact again,

lim i =1L

X—?ag

Case 2

limf =1limg = oo
x—a x—a

Recall Definition:
limy_,, F = co means that V N € N there is some § > 0 such thatif 0 < |x —al < § then F(x) > N

Suffices to prove whenever (x, ) = a, then f—] (xp) =L
Take such a sequence with x,, € (a,a + 61
Consider each pair xj, x,,j <n
fand g are continuous and differentiable on [xy, x;] (or [x}, x,])
Apply CMVT to get ¢, between x; and x,,
(flxn) = £(x7)) g'(cjn) = f'(cin) (9Lxn) = glx;))
g #0so
f'(en) (gt0n) = g(x7))

f(an_f(xj)=

g’(cjn)
Look at
flxy) _ f(xj) _ fxn) _f(xj)
glx,) glx,) h glx,)



_ f'lcin) (g(xn) —g(xj)) _ f'lcin) (1 3 g(xj))
.g,(cin)g(xnJ g’(cjn) glxy)

So

fo) _ flg)  filem)  f7lem)gtxm)

9xn) g g'(cn)  g'(cn)glxg)

Know lim,_,4 g(x) = 00 = lim,,,,, glx,) = o

=0

= lim
n-o glx,)

Want to prove

f

E(Xn) -L

So

Foreverye > 0,3N€ Nso g(xn)—L <evVn=N
Fixe>0,(e<1)

there existsa § > 0 so thatif Ix — al < 6 then |£—:(x) - L| < §
Pick Ny sothatlx,, —al <§ifm >N,

Ifn,j = N; then lx, —al < §,and |x; —a| <&

Since x,, < ¢j < Xj 01 X; < Cjp, < Xy then |cj —al <8 Vj,n = Ny
Take j = Ny solcy,, —al <8VYn > N;

Hence
r

f £
|?(CN1n) —L| < § vn > Nl

In particular,
r

€
|?(ch,1) <ILI+Z<IL+1
By assumption
1
(glxy)) = oosog(xn) -0
Pick N = N; such thatforalln > N
1 £
<
gl = 3ULI+ 1)|glx, )]
and
€
S———if flxy, ) #0
3(f(xN1))
f fo1 g(xzvl
6 e - 1] < [ 20] + |22 —( Nln)|+| (eyn) =
Letn>N
|f(xzv1 If(le)Is _E
glxn) 3If(xN 3
g(xzvl) |9(XN1)| €
—_— (ULl+1) s ————F|g(x (LI+1) =5
glx,) f’( O e pTeaT 3(ILI+1)|g(xN1)||‘g( )l
f' £
[rtena) —2] =3
Therefore
|£(x P
g " 33
So
f
E(xn)—»Lasn—»oo
Therefore
lim — =
x—at g

And the same for the left hand limit, so
lim==

x—=a g

| |

Remarks

1. Iflimy_, + g— = L thenlim +§ =L
(with all other assumptions)
2. In cases where lim,_,, g(x) = oo (or — o), the behaviour of f does not matter, f does not need

to go to infinity.

x—-a

a. Of course,if If] < C then automaticallyliquai = 0iflim,_4 g(x) = 0

3. L'Hopital'sruleisvalidif a = too
4. L'Hopital's rule is valid if L = too
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Examples
Failure:

x—1 1
lim——=0,notlim-—=1
x-1 X x-11

r
The non-existence of lim,_,, % does not imply the non-existence of lim,_,, §
. x+sinx
lim ———=1
xX—00 X

. 1+cosx
but limy_,q

1

does not exist

Successful Examples
X

lim xe™ = lim —
xX—00 x—o0 X

1 X

lim —=0,s0 lim —=0
x—o0 eX x—o00 eX
Exercise: Prove

lim x"e*=0VneN

X—00
. @ . logx
lim x%logx, fora>0 = lim
x—0t x-0t x~@
) _ e
— = lim ——=0
x-0* —ax~9~ x-0t  a

So
lim x®logx =0
x-0t

i X — 13 X
Xlir(r]lJr x* = le1£1+ exp(lnx*)
= exp()}ir'él+xlnx)
Justification: Define
_yxlogxif x>0
Fo =1 e 2 o
lim F(x) =0=F(0)
x—0t
so F is continuous at 0
Asking for
lir(r)l+ exp(F(x)) = exp(F(0)) =exp0 =1
X

im (1+3)

Look at
X

141 = menleva(s+1)

X—00

Lety 2%
Asx - oo theny - 0%
. 1 . logll +y)

J}ng+ exp (;log(l + y)) = exp (J}L%Lf)
1
1

lim Y =

y-0t 1

1 x
so}ll_r)?o(l +;) =exp(l) =e
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Limits and Continuity
November-17-10
10:26 AM

Theorem
Iflimy_ f(x) = L and g is continuous at L, then
limy o gof (x) = glL) = glim,_,o, f(x))

;iigloexp(xlog(l +%)) = exp(ii_r)x{}oxlog(l +%))
Justification
Seen before that

) 1,
llm(1+;)—1

X—00

exp is continuous at 1, so this should hold true

Proof of Theorem
RTP that Ve > 0 there is a number N so that if x > N then [g(f(x)) —g(L)| < ¢

Know, given any €' > 0 there is N' so that if x > N'then If(x) — LI < &'
Know, given any € > 0 there is some § > 0 so thatif 1z — LI < § then Ig(z) — g(L)I < &

Fix € > 0. Take N so If(x) — LI < § when x > N where 8§ comes from the definition of continuity of g
atL.Letx>n,then If(x) — LI < §and|g(flx))—glL)| <e
Solimy,,g9(fx)) =g(L) m
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Taylor Polynomials

November-17-10
11:00 AM

Taylor Polynomial
The Taylor Polynomials of degree n at a for the function f
is the polynomial:
y=apta;x—a)+-+a,x—a)" =P, ,x)
where
f®(a)
%=
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Types of Taylor Polynomials
Pyqla) =a, = fla)

P, 4(x) = fla) + f'(a)(x — a) = tangent line to f at a

If(a)
! (x —a)?

Pyalx) = fla)+ f'la)x —a) +

If f is a polynomial of degree n then f(x) = B, 4(x)
Exercise: Write f = by + by(x —a) + -+ bp(x —a)"
Take derivatives to see b, = a;

The Taylor Polynomials are often good approximations of the function but not always

Example

flx) =sinx atx =0
f'(x) = cosx

f"(x) = —sinx
f""(x) = —cosx
f""(x) = sinx

fl0)=0
fli)=1
f')=0
fIN(O) = _1
ap=0
a; =
a,=0
1

as = —a
a, =0

1
as a
Taylor polynomial

x3 x5 X7

Pno =x—§+a—ﬁ+---endsatn



Taylor Polynomials Accuracy

November-19-10
10:28 AM

Taylor Polynomial
f - n times differentiable at a

Y )
Fra= 7

(x —a)k
k=0

Theorem
If fis n times differentiable at then
fle) = Palx)

i
AL (x —a)?

x—-a
Application of Theorem to Second Derivative Test
Suppose
flla)=0=f"ta) == f"Ua)
fMa)#0
1. Ifnis evenand f™(a) > 0, then f has a local
minimum ata
2. Ifnisevenand f™(a) < 0, then fhas alocal
maximum at a
3. Ifnis odd, then f has neither a local minimum nor a
local maximum at a

Comment
Can have f'™ (a) = 0 for every n without f being constant

in which the above theorem does not give any information.

Example:

1
flx) = %e_ﬁ,x #0

0,x=0
Local minimum at x=0 deispite the fact that £ (0) = 0
foralln

Proof of Theorem

Look at
) (k) (]
Foo —n_ L k,(“) (x —a)k Fio) —ypoal k,(“’ (x —a)k %
lim - = lim - :
x->a (x —a)” x->a (x —a)™ (x —a)™
So RTP
C fx) =0 x)  fMa)
lim =
x=a (x—a)® n!
n-1
k
(a)
Qulx) = ) ‘f Pl = Py_qqlx)
k=0
f"a) " Ha) _
= ! — —a)?+ .- _ g1
= fla) + f'la)x —a) + > (x —a)® + +(n_1)!(x a)
Qnla) = fla)
Q, is a polynomial, so continuous function, so lim,_,, Q(x) = Q(a)
Hence
lim f(x) — Qp(x) =0 = lim(x —a)"
x-a x-a
Apply L'Hopital's Rule
Look at
') = Qrx)
lim——
x—a nlx —a)*!
chli‘lgl Qnlx) = Qpla)
2f'(a) n—1)f" Ha)lx —a)™?

Qnlx) = f'(a) +

Qnla) = f'(a)
So
;lci—rgf’(x) —Qnlx) =f"la) = Qpla) =0
Apply L'Hopital's Rule again
f"(x) — Q(x)
ann— Dix —a)n—2

(x—a)+-+ T

Keep applying L'Hopital's Rule
Q) = f®a) vk =1,..,n—1

(x) — Qplx)
VAR CI.

o) — QM) ™M) — QRx)
= lim

m
x-a

(x—a)®  x-a nlx —a) x-a n!
Qy, is a polynomial of degree n-1 so Q,(ln) =0
™)
= lim

x—»a n!
But don't know that f™(x) is continuous

Notice Q7! is constant since @y, is a degree n-1 polynomial
So Q1 Y(x) = QF Ha) = M Ha)

Hence
. f7x) = Q) i [P =" Ma) 1fn( )
xod nl(x —a) = nl(x —a) Tl @

By the definition of the derivative of ™!

Therefore

C fl) =Qux)  fMa)
lim =
x-a (x—a)* n!

Application of Theorem to Second Derivative Test
Suppose

f'ta)=0=f"(a) == f"Ua)

f"a)#0

1. Ifnisevenand f™(a) > 0, then f has a local minimum at a
2. Ifnisevenand f™(a) < 0, then f has a local maximum at a
3. Ifnis odd, then f has neither a local minimum nor a local maximum at a

Proof

If fla) # 0, replace fby f(x) — f(a)

Subtracting a constant does not change any derivative or local extremum location.
So wlog we can assume f(a) =0

n
f¥ta) fMa)

Poolx) = ) - ) = ——ar

k=0
Theorem said

f™a) n

C fx) = Byax) W)= —a) o fx) f™a)
lim—————=0=lim - = lim -
x-a (x—a)" x-a (x —a)? x—a(x —a)® n!
Therefore
I fix)  f™Ma)
max—ar ol

Case n is even
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1. fa)>0

Ma)

n!
(x — a)™ is positive
sof(x)>0=f(a)asx —>a
So ais a local min

is positive

2. fMa) <0

f™a)
n!

(x — a)™ is positive

soflx) <0=f(a)asx—>a

So ais a local max

is negative

Case n is odd
(x — a)™ is positive when x > a and negative when x < a
So f(x) > 0 = f(a) as x approaches a from one side, and f(x) < 0 = f(a) as x approaches a from
the other side.
So f(a) is neither a local maximum or minimum.

is either positive or negative, but is constant
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Taylor's Theorem Example: Tangent Li:\e )
f"e)lx —a)

November-22-10 flx) =P alx) = 2

10:31 AM

Taylor's Theorem f"e)x — a)?
\ , (1) . |[fx) =Pyl £ sup —

Suppose f, f', ... f are defined on [a, X] celaxl

Then M(x — a)?

FUH () (x — @)+ E——
flx) = Byalx) = — If fis a continuous function on [a, x|

For some c € (a, x)

Similar statement for a < x Example: Sin x

flx) =sinx

a=0

f@ = +sinx,+cosx
If™c) <1vevn

So

1) = Pt )|<1(x—a)n+1 6
- _— - 00

flx nalx T asn

No loss of generality in assuming —g <x< g

(x_a)TH»l 2n+1

< ——which is accurate to 12 digits when n = 20
(m+1)! T (n+1)!

Proof of Taylor's Theorem
Think of x as fixed.
For each t € [a, x] write

LU — )k
foo=fr+ ) T tRW
k=1 :

Defines a function R(t) on Ix, al
$ FUE)x — 0k

R(t) = flx) — flt) — x

k=1

t=a
n

Rla) = flx) = fla) = )
k=1

F¥a)x — a)k
e flx) = Ppalx)
t=x

k) Kk
(x)(x —x)
R(x) = flx)—flx)— >f7= 0

k!
k=1
Define
Flt) = (x — )+t
(n+1)!
Fla) = (x —a)tt
YT m
Flx) =

Want to show

Rla) = Flx) — P M) —a)™tt
W= = b =0

orR(a) —Rx) = f™*V(c)(Fla) — F(x))

= f*1(c)Fla)

Want to apply Cauchy Mean Value Theorem to R and F
R, F are differentiable on [a, x] (because f™*1 exists on [a, X]

m+Dx-0)"(-1)  «—t)"

F'(t) =
(n+1)! n!

d f®e—0f e — ok N kix — o)1 f@)  fRD@e)x—0F  (x -0
dt k! - k! k! - k! (k—1)
R = i) ; FRED () x — )F FRO() o — )k

= L k! (k —1)!
o e —or MY -t
__f(“_(T_fm T
By CMVT

(Rta) — R(x))F'(¢c) =R'(c)(Fla) — Flx))
for some ¢ € (a,x)

(x — c)") _ fMox -t

(R(a) — R(x)) (—
n!

oy (Fla) — F(x))

R(a) —R(x) = f™*V(c)(Fla) — Flx))
Which is what we wanted to prove. m
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So
f(n+1)(C“x —q)nt1

fx) =B qax) = T

(x —a)™*?

(n+ 1!
So f(x) = Pyqlx) -0 if £+ () does not grow too quickly as n — oo

- 0asn - o
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. . f(x)=e*
Irrationality of e £ () = o

November-24-10 f(n)(O) —1vn

10:31 AM n

3 FEO0)(x — a)k 3 x? x3 x"
Pn,O_f(O)-l_Z Tl —1+x+a+§+”'+m
k=1

ecxn+1

f(x) = Pypo = CEED]

Takex=1

for some c € (0,x)

B e¢ - 3
T+ T (n+1)!

(1+1+1+ ! + -+ 1)
¢ 2731 n!
c€(0,1)

Suppose e =§forp,q EN

Then

128 1 1 e
5—1+1+E+"‘+E+(n+1)!
Take n > max(q, 3)
En!zn!+n!+n—!+£!+---+n—!+ nie
q 2 3 n (n+1)!

n=gq sogn is an integer
q

Cc

Cc

n! n!
Every term n!,?, o are integers

e’ e

< <
n+l1l n+1 n+1
This is impossible, so e is irrational

0< <1

e is in fact transcendental
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Newton's Method

November-24-10
10:45 AM

Theorem

Suppose f:la,bl - R, f, f', f" continuous,
fla) <0< f(b)and f'and f" > 0 on [a, b]
Suppose f(c) =0 for c € (a,b)

Define

f(xn)

Xn4+1 = Xn _f’(x )
n

forn=0,1,2,..

where x, € [c, b] then (x,,) is well defined and x,,
converges to c.

Accuracy
Let M; = maxif"(x):x € la, bl}
(M, exists because f" is continuous and use E.V.T)
Let M, = f'(a) (= min{f’(x):x € la, bl})
LetM >
M

Then
1 2n
lx, —cl < M(M(xo -0))

(Can use bisection method to bring x, close enough to
cthat M(xy —c)is< 1
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Finding Roots

Say f'is continuous on [a, b] and f(a) < 0 and f (b) > 0, by the intermediate
value theorem there is aroot c € [a, b] with f(¢) =0

Bisection Method
Need only a continuous function, keep cutting interval in half and checking
whether the midpoint is above or below zero.

Newton's Method

Suppose f > 0 on [a, b]
Then f is strictly increasing so the root c is unique.

Algorithm

Pick x4 € [c, b] (for example, pick xoy = b)
Inductively define

f )

f'(xp)

This sequence is called the Newton Iterates

Xn+1 = Xn —

Tangent line to f at x,,
y = flxn) + f1O)(x — %)
Crosses x axis at
0=f(xy)— f'(xp)(x —xy)
fxy) fxy)

f’(xn) =X—Xn =X =xn_f’(xn)

Proof of Theorem
Checkthatc <x; <xy < b
f(xo)
f'(xo)
flxg) = f(c)=0
Of course f'(xq) > 0
Therefore x; < x,

X1 = Xg

f(xo) — fc) ,
T x—c f'(to)

for some t, € (c,xg) by MVT

flxo) = f'(t)x9 — )

[0 =(xg—c)>c=xy — f(xo)
fr) ° 0 fr(ko)
to < xo and f' is strictly increasing so
f'(lto) < f’(lxo)

)~ Fixg)
) fx)
e S " Fx)

So
oo L) o flo)
O flte) T fllxg) T H

Proceed inductive and assume
b=2xg=2x12x22x,2¢C
Checkxg =2 x1 = 2%, 2 xp41 =€

B fx,)

Xn+1 = Xpn () < Xp
n

By MVT
flxn) —f(c)
Xp—C

Get

= f'(t,) for t, € (c,xy)

e fx)
S ()
th < xp = f'(ty) < f'xy)
fxy)

< L
<x, )

Hence x,, is a decreasing sequence which is bounded by low (by c¢) By MCT,



Xp > p Withc<p<b

Xp41 = Xp — f )

n+1 — An f’(xn)
Since fand f" are continuous at p, f(x,) = f(pland f'(x,) = f'(p) #0
By passing to the limit we see

f(p)

P=P~ 50 flp
So pis aroot, but c was the only root of fin [a, b]
So(x,) = ¢
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Newton's Method Accuracy

November-26-10
10:35 AM

Newton's Method

fila,bl - R, f.f' f"are continuous
f'.f" >0o0nla,bl

fla) <0< flb)and f(c) =0 for c € la, bl

Newton Iterates
flx,)

Define xp 41 = Xy, —m
n

,Xo € lc, bl
Thenx, - ¢

Accuracy

Let M; = maxif''(x) : X € la,blt

M; = f'(a) = minif'(x):x € la, bl}
Put M = M, /M,

Then Ix, —cl < M(Mlxo —c?"
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Proof of Accuracy

Already have seen that
fx,)

Tfit,)

for some t,, € (c,x,)

cC=X

flx,) ( flx,) )| ) fla) ) fg) = flg)f L))
7)1 =

Py =l = | — - - =

et T A= P T mn ) T\ T, [Feen ~ Fril ~ | Froo)f () |
)| ) = FOa)l I )y — )

Frel 1" (x)l n 1 ()1

For some u, € (t,, x,) by MVT
1" (up )ty — x)1 M
ws 1%, — €12 — = Mlx, — cI?

1f" L) M,
Write as MIxps1 — ¢l < (MIx, — c)? < ((Mlxy_q — c1)?)* < (MlIxg — cD?™
| |

Ix, — ¢

But things can go wrong if not all the hypothesises are satisfied.

/ / A

These examples need property that (x,,) does not converge
If (x,) = p, must f(p) = 0?

flxy)
Xn+1 = Xp _f’(x )
n
Xn+1 2P
Xn =P
flxn)
)

Assuming f is continuous at p
flxp) > flp)lasx, > p
Assuming f' is continuous at p
f'(x,) = f'(p), areal number
so
flxy)
f'(xy,)

-0=flx,)>0=f(p)=0

Example of Failure
x, = 0, f continuous and differentiable everywhere
but £(0) # 0

Step 1:

Claim for each n € N, there is a polynomial P, with
1. B(27") = -2nn

B(27V) = —2n(n + 1)

Pj(271) = 23n+1

Py(27+D)) = 23t D41

B W

Define g: (0,0) - R by
n=0

Pu) if x € (57 5| m =
2x—=2ifx>1
xlinf— Po=P(1)=0=g(1) = ,}L‘{Lg
Py(27"*) = —27(n + 1)
Ppq(270) = —2m(n 4+ 1)
lim g :gtz—(n+ll)

xo2—(n+1)

as RH and LH limits both equal g(2="*V) = p,,,(27"+D)
This shows g is continuous on (0, o)

g is even differentiable on (0, o)

Similar argument looking at RH and LH Newton quotients at 271

glx) =$

Step 2:
Define

x%sin(glx))+1,x>0
flx) =41, x=0

—x% 41, x<0

Clearly fis continuous everywhere and differentiable everywhere except zero. "Where the clearly

statement does not apply, because it's not clear."

o f) = f)
F10) = =
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Rt S
oo h -

. Rh%sin(gth))+1-1 )
hllr(rﬁf = lim hsing(h) = 0

Sof'(0) =0

fl27") =(27)?%singlh)+1=1vn
F(27m) = (27722301 = gt

Takexy, =1
_ flxg) 1 1
S TN R TR
flxp) 1 1 1
R Ty I I i

Could prove by induction

1
Xp = m vn
Therefore x, = 0 but f(0) # 0



* Implicit Differentiation

November-29-10 Start Wit?

10:49 AM y=—(x>+x)
y is strictly decreasing so it is invertible
x=—(y°+y)

To take the derivative:
1=-Gy*y' +vy")

What about

X"y +y3i+x2y+x=1

Don’t know if it's differentiable or a function

Can use the implicit differentiation theorem, but don't know it.
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Cardinality Say E is a finite set of n elements. Then E & {1, 2, ..., n}
i.e. there is a bijection (1-1, onto function)
November-29-10 f:E->{1,2,.,n}
10:56 AM
Example of countable sets
N
Bijection 2N
A function thatis 1-1 and onto. VA
N X N,s0is Q
Finite Set
A set E is finite if there is a bijection Countable sets are those which can be put in an ordered list because if E is countable, then there is a
f:E - {1,2,..,n} bijection f:N - E so E = {f(n)iy-,
for some unique n. Conversely, if E = {e, tn-4 then there is a bijection
ftE->N
The cardinality of E = n. e,Pn
Countable

Say a set E is countable if there is a bijection
f:E->Ntor f"h:N->E)

Any two countable sets have the same cardinality
IfE, F are countable, there is a bijection

g:-E->F

Uncountable
Say E is uncountable if E is not countable or finite.
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[rrationals

December-01-10
10:40 AM

Fact
A union of two countable sets is countable.

Theorem
E is either countable or finite iff there is a
map g: N — E thatis onto

Corollary
If h: E - Nis 1-1 then E is either countable
or finite

Corollary

If A € B and B is countable then A is either
countable or finite

If A € B and A is uncountable then B is
uncountable

Countable set E: There is a bijection

f:N->FE
E= {e]-}j:1 were e; = f(j)
Eg.E=Q
Suppose Q = {rj}j=1

£ €
LetIl- = (r] —E,r+;)

X = l Jlj =1{x:x € I; for some j}
j=1

Noticer; € X for each j

SoQcEX
>‘length I = >2—j = 2¢
j=1 j=t

R\ X has no intervals since every interval has to contain a rational number

Show (0, 1) is uncountable
Cantor Diagonal Argument

Suppose (0, 1) is countable, say (0,1) = {q; };il

Write out decimal expansion for each number, pick the expansion terminating with all 9's if there is

a choice

a; =0.ay1,a12,a13 -
a; =0.a34,a;5,a33 -
az =0.a3,,a3,,033 ...

Now define r € (0, 1) as follows:
r=0.11p13

T = .

J 4 lf aj,j =5

ré¢ {aj }j=1
Therefore (0,1) # {a; }11
So (0, 1) is not countable

Unaccountability of R

If R is countable there is a bijection
f:R->N

There is a bijection: R - (0, 1)
g(x) = arctan(x)

T
g R- (_EEJ bijection

1 1
h(x) = —arctanx + =
T 2

h:R - (0,1) is a bijection

hof™':N - (0,1)is a bijection

This contradicts the fact that (0, 1) is uncountable
So R is uncountable.

Proof of Fact (Union of two countable sets is countable)
If A, B are countable, then
A= {a] }j=1
LookatAUB = AU (B\A)
If B\A is finite, then AUB is an exercise
(just start counting a after counting all the elements of (B\A)
If B\A is not a finite set then say B\A = {¢; };1
Define bijection:
f:AU(B\A) - N
aj-2j—1
¢ = 2j

Corollary
The irrationals are uncountable. Since rationals are countable and R is uncountable.

Proof of Theorem (Countable/Finite iff onto from N)
=

Follows directly from the definition of countable/finite

=

Proof in textbook (take a function which is the onto function with every term that is a duplicate

removed)
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Corollary

If h: E - Nis 1-1 then E is either countable or finite

Proof:

Define g: N - E as follows:

If n € Range h, there is a unique e € E with h(e) =n because his 1-1
Then define g(n) =e

If n € Range h, then pick e* € E and define g(n) = e*
So g is an onto map, and therefor E is either countable or finite.

Corollary
1. If A € B and B is countable then A is either countable or finite
2. If A € B and A is uncountable then B is uncountable
Proof
1. B countable there is a bijection f : N - B
Define g : N - Aby g(n) = f(n) if f(n) € 4, and if f(n) & A then define g(n) = A" € 4
g:N - A is onto therefore, A is countable or finite

2. If Bis countable, then A is countable or finite but A is not countable or finite, so B is
uncountable.
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Cardinality and Unions

December-03-10
10:30 AM

Theorem
E is either countable or finite iff there is a map
f:N — E, which is onto.

Corollary
A countable union of countable or finite sets is
either countable or finite.

In other words: lfAj,j =1,2,3,...are either

countable or finite, then
o

A= l JA]- ={x € Aj for some j = 1,2,3,...}
j=1

Then A is either countable or finite

or more generally,

if Ay, @ € I are either countable or finite and I

is countable then

l JAO, =1{x € A, for somea € I}
ael

Proof of Corollary
Each 4; is either countable or finite, so there is an onto map f;: N — 4;
Define

hNxN- | )4
j=1
hij, k) =fik)EA; € A
h is onto, becauseif a € A4, thena € A; for some j and since fJ N — A; is onto there is some k € N
with fjlk) =a = h{j,k) =a
Let g:N — N x N is a bijection
Take h 0 g: N — A, which is onto
So the union is either countable or finite.

Example

Algebraic numbers are countable, and therefore Transcendental numbers are uncountable

Proof

Algebraic numbers are numbers which satisfy polynomials with integer coefficients and by the
minimal polynomial of an algebraic number, we mean the polynomial of minimal degree, with GCD
of the coefficients equal to 1, and a positive leading coefficient.

plx) = ax" + -+ a;x + ao, a; € Z,a, > 0,gcdlay, ...,a,) =1

A, =algebraic numbers whose minimal polynomials has degree n

Alg Numbers = l JAn

n=1
It's enough to prove each A, is countable
A, S 1all roots of integer polynomials of degree nt = l JR,,

PEP,

Where B, = all integer polynomials of degree n and R, = roots of polynomial p
Notice each R, is a finite set of at most n elements.
So it's enough to prove each B, is countable, because then each A,, will be contained in a countable
union of finite sets.

Defineamap F,: B, » Z""' by p = apx™ + - + a;x + ag » (ay, ..., a,ay) € Z*F1

Finally, have to prove Z"*! is countable. By induction on n.
7 % Z is countable, so Z™*1 is countable forn = 1

Assume Z¥ is countable and prove Z**!

Mt =7 X 7.

Let f: Z¥ - N be a bijection

and g: Z — N be a bijection

Define h : Z¥*1 - Nx Nby h(w,z) = (fw),g(z)), we Z¥K,x €L
h is a bijection,

Let H:N X N - N be a bijection then H o h : Z"*! - N is a bijection
This proves Z"*!

So P, is countable

So A, is countable

So the algebraic numbers are countable.

Z™,N™ are countable

What about "Z*"?

Now look at NN = {(ay,a,,as, ... ):a; € Nf = {f:N - N}
The set of all functions from N to N

10, 14N < NV
10, 11N ={(ay, ap, ...) : q; €10, 11}

(a1,a5,a3,..) €10,1N & » ;27
j=1

S010,1tN & 10,11

S010, 1N is uncountable.

Furthermore, 10, 11N & all subsets of N

(aq,ay,a;3,...) & Awherej € Aiff a =1

When there are finite elements in a set: {1, 2, ..., n} has 2™ elements
So 2N =10, 1N

So 2N is the next cardinality up, in fact the cardinality of R
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Assignments 20
Exam Midterm 30
December-06-10 Final 50

10:44 AM

Office Hours

Monday Dec 20 2:30-4:30

Friday Dec 17 1-3

or send an email to make an appointment

Previous Exam
2 proofs out of notes
4 definitions

Do some derivatives

Define BWT and EVT

Define Differentiability

Deal with a function defined differently on min/max
Find global and local extrema

Can you make a function diff at 0

State MVT

Increasing/Decreasing Concavity + Sketch graph
Invertability of Function and derivatives (application)

Suppose

limg(x) =0

xX—a

and |h(x)| < M Vx
prove

lim g(x)h(x) =0

Find f'(0)if
k(x) .
f/(x) — Tlfx *0
0Oifx=0

and k(0) = k'(0) =0,k"(0) =17
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