
{1, 2, 3, … }
N - Natural Numbers

{ -∞, …, -1, 0, 1, …, ∞} 
Z - Integers

{
 

 
, p, q ϵ R, q ≠0}

Q - Rational Numbers

Well Ordering Principle:
Every non-empty subset of N
contains a least element.

Proof by Contradiction:
Assume the opposite of what 
you are trying to prove then 
derive a contradiction

Coprime: 
Two numbers are said to be 
coprime when they have no 
common factors.

N is well ordered.
Proof of Well-Ordering Principle :
Let S be a non-empty subset of N
Pick n

0

ϵ S

Go through all natural numbers starting at 1. If that number is in S then it is the least number and 
terminate. This will terminate after at most n

0

steps.

Note: Z does not satisfy the WOP

Ex: Q

+

= { x ϵ Q, x ≥ 0} does not have WOP because, for instance { x ϵ Q, x > 0} does not have a least 
element.

Q is closed under +, -, ×, ÷

Numbers that are not rational: Irrational Numbers

Eg.  2
 

!ϵ Q

Suppose  2
 

ϵ Q   <- Proof by contradiction

Then   2
 

= 
 

 
where p, q ϵ Z and q ≠ 0

Assume p, q are coprime

 2
 

          2     →   is even → p is even 

Say p = 2k for some k ϵ Z
  2    2      
     2   → q is even 

This contradicts the assumption that p and q are coprime

Number Systems
September-14-10
12:24 AM
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Theorem:
A certain and proved mathematical truth.

∀ - For all

Principle of Mathematical Induction
Theorem:
For each n ϵ N  let P(n) be a statement about n.

P(1) is true.1.
P(k+1) is true whenever P(k) is true2.

Suppose: (hypothesis)

Then P(n) is true for every n ϵ N

Proof  of Principle of Mathematical Induction
Suppose the conclusion is false (Proof by contradiction)
Then there is some n ϵ N so that P(n) is not true.
Let S = {k ϵ N: P(k) is not true}
Then S is a non-empty set of N
By W.O.P. S contains a least element, say n

0

Means P(n) is not true (because n

0

ϵ S)
And if k ϵ N and k < n

0

, then P(k) is true
Note n

0

≠ 1, so n

0

-1 ϵ N
Hence P(n

0

- 1) is true.

By assumption (2), P( n

0

-1+1) = P(n

0

) is true.
This contradicts the previous observation that P(n

0

) is not 
true.
Hence our initial claim was wrong, thus P(n) is true for all n ϵ
N

Principle of Strong Induction
Suppose P(n) is a statement for each n ϵ N

P(1) is true1.
P(k) is true if P(j) is true for all j ϵ N, with j < k2.

Assume:

Then P(n) is true for all n ϵ N

Proof of Principle of Strong Induction
Suppose conclusion is false.
Let S = {k ϵ N: P(k) is not true}
Then S is a non-empty set of N
By W.O.P. S contains a least element, say n

0

Means P(n

0

) is not true (because n

0

ϵ S)
And if k ϵ N and k < n

0

, then P(k) is true (because n

0

is the 
least element of S)
Hence P(n

0

- 1) is true. In face, P(j) is true ∀ j < n

0

, j ϵ N

By assumption (2), P(n

0

) is true
This contradicts the previous observation that P(n

0

) is not 
true.

Induction to prove sum of geometric series formula

     1            …    
       

1   

  1  
    

1   
  

Must show P(k + 1) is true when P(k) is true
Assume P(k) is true and look at P(k+1)
      …        

 
             1    

1   
 

      

1   
So P(k+1) is true

Make sure to check base case
Eg.      1  
If P(n) is true then    1  and therefore   1  1  
However, P(1) is false

Example:
Prove      If    

Two methods to approach:
     2          and base case is P(1)
     2    and base case is P(5)

Note that if P(5) is true and P(k+1) is true whenever P(k) is true then 
P(n) is true for all n ≥ 5.

     2     32  2 is true.
     2    

    1  2       1  

 2  2     2  1
    1       2  2  1

Lemma: 2  2  1,    
     2  2  1
    1  2  2  2  3
    1        2  2

Lemma: 2  2,    
     32  2 is true
2    2  2 

Therefore 2    2 for all integer k 
Since 2  2, 2  2

Since 2  2, if 2  2  1is true then 2    2   1  1 is true as 
well.
Therefore, 2  2  1,    

Since 2  2  1, if 2    is true then  2       1  is true as well.
Therefore 2    ,    

Mathematical Induction
September-15-10
10:30 AM
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Suppose f: ℕ -  ℚ  is defined by f 1    1, f 2    2, and     2  
 

 
     1       ,   1

Prove Range f ⊆ ℚ and 1 ≤ f n  ≤ 2 for all n ∈ ℕ

Answer - use strong induction

Let P n  be the statement that f n  ∈ ℚ
True for n = 1 and n = 2

     
1

2
     1      2  

Assume f j  ∈ ℚ for all j<k in order to check f k  ∈ ℚ
And thus is true since f(k-1) and f(k-2  ∈ ℚ and ℚ is a field.

By principle of induction, f n  ∈ ℚ for all n ∈ ℕ

Now let P n  be the statement 1≤ f n  ≤ 2
True for n = 1, 2
Assume P j  is true for j < k  and k   3 

Then      
 

 
     1      2  

Since f k  is the average of two number between 1 and 2, 1 ≤ f k  ≤ 2
Therefore P(k) is true
So by mathematical induction, P n  is true for all n ∈ ℕ

Proof by Strong Induction
September-17-10
10:39 AM
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Definition 
Define ℝ by stating its properties

ℚ is another field, ℤ is not a fielda.
Field: can +, -, ×, ÷ and "good" properties1.

There is a relation < on ℝ   ℝ so that for every x, y ∈ ℝ either x < y or y < x or x   y and other 
'good' properties

a.
Order property2.

Arithmetic / Geometric mean inequality

If a, b     then    
 

≤
 

 
     

Proof :

 ≤        
 

 
 

    2   
 

  

2   
 

≤    

   
 

≤
1

2
     

Absolute Values
     {        ,        <  }

       

    
    

Eg.

 x  ≤ r means -r ≤ x ≤ r

b - r ≤ a ≤ b-r
a - r ≤ b ≤ a - r

|a-b| < r means -r ≤ a - b ≤ r

Triangle Inequality
 a   b  ≤  a     b 

Proof:
- a  ≤ a ≤  a 
- b  ≤ b ≤  b 
-  a     b   ≤ a   b ≤  a     b 

Corollary: Reverse Triangle Inequality
|a - b      a  - |b||

Proof:
|a| = |(a - b    b  ≤  a-b| + |b| by triangle inequality
|a| -  b  ≤  a - b|
Similarly, |b| = |(b-a    a  ≤  b-a| + |a| = |a-b| + |a|
So |b| -  a  ≤  a - b| Together this implies:
|a - b      a  - |b||

Arithmetic / Geometric 
mean inequality

If a, b     then    
 

≤
 

 
     

Triangle Inequality
 a   b  ≤  a     b 

|a - b      a  - |b||

Inequalities
September-17-10
10:54 AM
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Bounded Above
A non-empty subset A of an ordered set  think of ℝ  is 
said to be bounded above if there is some x ∈ ordered set 
such that a ≤ x for every a ∈ A

Bounded Below 
A non-empty subset A of an ordered set  think of ℝ  is 
said to be bounded above if there is some x ∈ ordered set 
such that a ≤  x for every a ∈ A

Bounded
We say a is bounded if it is both bounded above and 
bounded below. 

Upper/Lower Bound
Any x with a ≤ x / a   x for all a ∈ A is called an upper 
bound / lower bound for A.

Least Upper Bound (LUB) - Supremum or 
Sup

x is an upper bound for A1.
If y is any other upper bound for A, then y   x2.

A number x is called the least upper bound (LUB) of A if:

Greatest Lower Bound (GLB) - Infemum or 
Inf

x is a lower bound for A1.
If y is any other upper bound for A, then y ≤  x2.

A number x is called the greatest lower bound (GLB) of A 
if:

LUB and GLB are unique.

Completeness Axiom ℝ  
(Completeness Property or "No Holes Property")
Every non-empty set of real numbers that is bounded 
above has a LUB.

Formal Definition of ℝ
ℝ is an ordered field containing ℕ, and has the 
completeness axiom.

Example:
Find a number, C, such that  f x  ≤ C  for all 2≤ x ≤ 3 when

     
   2  1

2   1

           2  1  
1

 2  1 
  

≤ 2    1  3 

    2  1 ≤       2   1

 2  2  1  3

 2   1  2   1 on 2 ≤ x ≤ 3

⇒      ≤
  

 
so   

  

 

Bounds
ℤ - not bounded above or below
{q ∈ ℚ: q    } - bounded below but no x which is a lower bound belongs to the set

E.g. ℚ

+

0 is the GLB

E.g     1,
 

 
,

 

 
,

 

 
,

 

 
, …  

Upper bounds: 42, pi, 7
Lower bounds: -4, -100
LUB: 1  Note 1 ∈ A 
GUB:   Note   ∉ A 
The set has a greatest element but no least element

Theorem: 

X is an upper bound for A1.
For every z < x, there is some a ∈ A such that z < a2.

x is the LUB for A ≤ R iff:

Proof

Holds directly from the definition1.
Take z < x. Then z is not an upper bound of A (property 2 of definition) 2.
So there must be some a ∈ A with a > z
(Can also be written: For every ε > 0 there exists some a ∈ A such that x- ε < a)

(⇒) Assume x is the LUB of A

(⇐) Assume the two properties (1) and (2) stated with the theorem hold.

(1) clearly holds as it is property (1) of the theorem.1.
To show part 2 of definition holds, take y any other upper bound for A. Suppose y < x. By 
(2) of the theorem, there exists an a ∈ A such that y < a. This contradicts the fact that y is 
an upper bound for A. Hence we must have that y ≥ x, satisfying property (2) of the 
definition.

2.

Want to prove x is the LUB of A so we must verify the two parts of the definition of LUB

Therefore, x is the LUB

Exercise: State and prove the corresponding characterization for GLB

Bounds
September-20-10
10:31 AM
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Completeness Axiom ℝ  
(Completeness Property or "No Holes Property")
Every non-empty set of real numbers that is bounded above 
has a LUB.

Formal Definition of ℝ
ℝ is an ordered field containing ℕ, and has the completeness 
axiom.

Ordered Field
An ordered field is a field with a total ordering of its elements.

Total Order

Antisymmetry: If a ≤ b and b ≤ a then a b•
Transitivity: If a ≤ b and b ≤ c then a ≤ c•
Totality: a ≤ b or b ≤ a•

A set is totally ordered when it has the following properties:

Archimedean Property
Given any x ∈ ℝ there is some N ∈ ℕ such that x ≤ N

Corollary:

GLB {
 

 
: n ∈ ℕ}    

Density of Rational Numbers
If x, y ∈ ℝ and x < y, then there is some q ∈ ℚ  such that
x < q < y

Proof of Archimedean Property
Suppose the Archimedean property is false.
Then there is some x ∈ ℝ with x   N for every N ∈ ℕ. 
This means ℕ is a set which is bounded above.
By the completeness property, ℕ has a LUB, say z ∈ ℝ. 
Then z-1 is not an upper bound  UB  for ℕ hence there must be some 
N ∈ ℕ which is bigger than z-1.
This means N  1   z and since N   1 ∈ ℕ this contradicts the 
statement that z is an upper bound for ℕ. 

Proof of Corollary to Archimedean Property

S = {
 

 
: n ∈ ℕ }

O is a lower bound since the set consists of positive numbers. 

Let z > 0. Then 
 

 
∈ ℝ 

By the Archimedean property, there exists N ∈ ℕ such that   
 

 

⇒   
 

 
then z is not a lower bound for S

Therefore 0 is GLB(S)

Sketch of why  2
 

 ∈  ℝ
Why is there a real number r with r > 0 and    2
Let S = {y ∈ ℝ :   < 2}
3/2 is an upper bound so S is non-empty and bounded above.
By the completeness axiom, S has a LUB, call it w ∈ ℝ 

Certainly w > 0.
Exercise - Verify    2

Proof of Density of Rational Numbers
Do case x ≥ 0
      so by corollary of the Archimedean principle there is some 

N ∈ ℕ such that     
 

 
⇔    1    

By Arch property, there is an M ∈ ℕ with M ≥ Nx. 
Let M' be the smallest integer with this property. 
(By well ordering principle of ℕ)

Then M' -1 < Nx because M'-1 < M; and is an integer.
  ≤   <    1 <   

 ≤
  

 
<  

Completeness Axiom and ℝ 
September-20-10
11:20 AM
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Sequence
A sequence is an infinite list of real numbers   ,   ,   , …
A sequence has a first element, 2nd element, etc. for each 
natural number.

1, 1, 1, 1, 1, …1.

   
 

 
, n ∈ ℕ2.

-1, 1, -1, 1, …3.

   1,    3      
1

3
         4.

Ex:

Notation:        
         

Convergence
Say the sequence        

 converges to a real number L 
provided for every ε      there is an index N ∈ ℕ such that
      <   for all n   N

In this case we say L is the limit of the sequence and write
lim

     
    

Or     as     

Memorise this Definition

Divergence
If a sequence does not converge, it diverges.

There can only be one L that a sequence converges to

Proof
Suppose      and       

Take   
 

 
       

There is some index   so        <  
For all      and there is some index   

So         <  for all     

If   max   ,    and    then
Both         <  and       <  
(wlog   <    - without loss of generality 

     <   <     
So      <     
⇒      < 2       

Contradiction.

1, 1, 1, 1, …1.
Converges to L= 1 since     1   for all n

   
1

 
,    2.

Prove this: Rough work - Get some ε    . Want to pick N so 
      <   for all n   N

 
1

 
   <  

 

 
<   ∀ n   N

  
1

 
Take   

 

 
(there is such an integer by the Archimedean property)

Work to hand in:

Let ε    . Take an integer   
 

 
.

Then if n   N,  
 

 
≤

 

 
<  

Hence ∀ n   N,        <  
Therefore, lim         

   
  1  

   1
3.

Rough Work - Guess L = 0

Want

 
     

    
   <   ∀ n   N

Want 
 

    
<  Notice 

 

    
<

 

 
so take   

 

 

Answer

Let ε    . Take   
 

 

Then if n   N,  
     

    
    

 

    
≤

 

 
≤

 

 
<  

So lim         

-1, 1, -1, 1, …4.

Take   
 

 

Proof:
Say the sequence converges to L

Take   
 

 
and say       <   ∀ n   N

Then both  1    <
 

 
and   1    <  

This would imply that  1    1  < 2  1
False

Examples

              < 15.
Guess L=0
 

   
 1 so 

 

   
 1     

1

   
  1      1      …      

           <   ∀n   N
1

 
 

1

 
<  

Convergence of a Sequence
September-24-10
10:33 AM
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1

 
 

1

 
<  

  
1

  

Proof:

Let ε     and take   
 

  

Where   
 

   
 1   

Let n   N Thus            ≤     ≤
 

  
< 

  

 
  

Therefore,     
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Squeeze Theorem
Suppose ∀n     

We have   <   <   

If                  
Then       

Proof
Let ε    .

Since       there is some   ∈ ℕ such that     
   <  

Similarly, since       there is some   ∈ ℕ such that     
   <   ∀n     

Put N = max   ,   ,    . Let n   N
   <   ≤   ≤   <    
This is valid because     

Ex.

   
  

  

Guess L = 0

Can we prove 
  

  ≤
  

  

Prove   ≤   by induction
True for n = 1
Assume   ≤   and verify    1  ≤     

⇒    1      
   

 
 

 
≤    

   

 
 
 
By induction hypothesis

Check if  
   

 
 

 
≤  

⇒  
  1

 
 

 

  1  
1

 
 

 

≤ 2   

Therefore    1  ≤          

By induction, 
  

  ≤
  

    
 

 
 

 

Proof
Let     

∀n,     
 

 
 

 

Then  ≤
  

  ≤  
 

 
 

 
∀n 

  ≤   ≤   ∀n ∈ ℕ 

Applying the squeeze theorem, we can conclude 
  

    

Theorem
Every convergent sequence is bounded
Not bounded ⇒ does not converge

Proof
Suppose       
Get N ∈ ℕ such that 
      < 1 ∀n   N
  1 <   <   1 ⇒     ≤     1 ∀n ∈ ℕ 
Take   max     ,     ,     , … ,       ,     1 ∈ ℝ 

C is a bound for     . Clearly             1,… ,  1

Furthermore,       1      ∀n   N
Therefore, (   is bounded.

Bounded
Say the sequence (   is bounded if there is some 
real number C such that     ≤  ∀n ∈ ℕ 
C is called a bound for the sequence.

Ex. 
    - not bounded (and doesn't converge)

   
     

    
- bounded by 1 (does converge)

     1  - bounded by 1 (does not converge)

Bounds and Convergence
September-27-10
10:43 AM
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Suppose        and       

Addition Law
If         , then         

Product Law
If        , then         

Division Law
If     for all n and K    

Then         

  
  

 

 

Proof of Product Law
Take ε     and look at           

                       

≤                    (by triangle inequality)
                     

Pick   so       ≤
 

    
if n     

Recall, convergent sequences are bounded so there is a constant C such that     ≤  ∀n

Pick   so that       <
 

  
∀ n     

Let N = max   ,    

≤  
 

2 
 

    

2   
  

Then if    ,          ≤                     

Monotone Convergence Theorem
Very important, equivalent to the completeness axiom
Every monotonic bounded sequence converges. 
(However, a sequence can converge even if it is not monotonic)

Proof
Assume     is increasing (the decreasing case is similar - exercise)
Look at the set of real numbers S = {  ,   ,   , … }
Since the sequence was bounded, S is a bounded set.

By the completeness property, S has a least upper bound, say L
Claim:   lim   

Let ε    , need to show that there is some N ∈ ℕ such that      <   <    
Since L is an upper bound for S,   ≤  ∀n ∈ ℕ 
Since L is the LUB, then L-ε is not an upper bound for S. So there exists some N ∈ ℕ such that 
      .

>  L - ε 
But     is increasing, so      if n   N

Then ∀ n   N,      <   <    
Thus     converges and   lim   

Note: 
The proof shows that every increasing sequence that is bounded above converges to the LUB of the 
set {  ,   ,   , … }

Example

   1  
1

2 
  … 

1

  

Does     converge?

        
1

   1  

So     is increasing

≤ 1  
2

 
 

 

1 
  ≤ 2

   1   
1

2 
 

1

3 
   

1

  
 

1

  
 

1

  
 

1

  
   

So     is a bounded sequence and by the MCT converges

Example
Recursively defined sequence
Let    1

     
 

 
 2     for n   1

Does     converges and if so find the limit

   
 

 
   

   
11

 
   

Check if     is increasing and if    ≤ 2

Prove   ≤ 2 ∀n
Proceed by induction. True for   

Assume    ≤ 2, need to prove     ≤ 2

     
1

 
2    ≤

1

 
2  2    

 

 
≤ 2

Increasing Sequence
Say     is increasing if          ∀ n ∈ ℕ 

Decreasing Sequence
Say     is decreasing if      ≤    ∀ n ∈ ℕ 

e.g.    
 

 
decreasing

   1 is both decreasing and increasing
     1  is neither increasing nor decreasing

Monotone
Say     is monotone if it is either increasing or 
decreasing. (Not necessarily strictly 
increasing/decreasing)

Monotone Convergence Theorem
Every monotonic bounded sequence converges.

Limit Laws
September-29-10
10:29 AM
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1

 
 2     ≤

1

 
 2  2     

 

 
≤ 2

So by induction,   ≤ 2 ∀n 

Prove        ∀n True for n   1
Assume         and show        

     
 

 
 2      

 

 
 2          

By MCT,     converges, say to L

 

 
 2      

 

 
 2     as       

So    
 

 
 2    ⇒   
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Sequence:   ,   ,   ,   ,   , …
Sub-sequence:   ,   ,   ,   , …

Theorem
If     is any sequence, then there is a subsequence of     which is monotonic.

Let     be  a sequence and suppose 
  <   <   <  is a list of indices

Then the sequence    
,    

,    
, …      

 
   

 

Is called a subsequence of     

Ex. A subsequence of      1  is  1, 1, 1, 1, 1, …  where    
    

Proof
If     is any sequence, then there is a subsequence of     which is monotonic.

Case 1: There are infinitely many peak points
Take    

 first peak point

   
 ith peak point

    
 is a decreasing sequence and it is a subsequence of     

Case 2: There are finitely many peak points (possibly none)
Take    

to be the first term in the sequence after the last peak point. (   
   if no peak points)

Since    
is not a peak point, there is some      such that    

    

   
is not a peak point since it comes after the last peak point, so ∃      such that    

    
etc.

    
 
   

 
is an increasing sequence

Bolzano-Weierstrass Theorem
(most likely on exam)
If     is a bounded sequence then it has a convergent subsequence.

By the previous proposition,     has a monotonic subsequence. It is also bounded.
By the Monotone Convergence Theorem, bounded monotone sequences converge, so this sequence 
converges. 

Cauchy Sequences
Proposition
If     is a convergent sequence then it is a Cauchy sequence. 

Proof
Let ε     , we know       
                   ≤              by triangle inequality

Pick N so       ≤
 

 
∀n   N

             <
 

2
 

 

2
  

So     is Cauchy

Proposition
Cauchy sequences are bounded

Proof
Pick N so        < 1 ∀n, m   N
In particular,        < 1
⇒     ≤ 1      ∀n   N
Take   max     ,     , …       ,      1 

This is a bound for the sequence

Peak Point
Call the term   a peak point of our sequence if 
       ,     , … or       ∀   

Theorem
If     is any sequence, then there is a 
subsequence of     which is monotonic.

Bolzano-Weierstrass Theorem
If     is a bounded sequence then it has a 
convergent subsequence.

Cauchy
A sequence     is called Cauchy if for every ε    , 
there is some N ∈ ℕ such that        <  
∀ ,    

Subsequences  (B-W Theorem)
October-01-10
10:35 AM
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Theorem: Every Cauchy sequence converges
Important - equivalent to completeness property and MCT
Proof
Let     be a Cauchy sequence
Then     is a bounded sequence

By Bolzano-Weierstrass,     has a convergent subsequence     
 
   

 
converges say to L.

We will prove       

Since     is Cauchy, we can choose N so        <
 

 
∀n, m   N2.

Let ε   . Need to fine N so       <  if n   N

Pick k     and     N1.

Pick   so     
   <

 

 
if k   N

Let n   N

Look at       ≤        
      

   

    
   <

 

2
   1.

       
 <

 

2
    2.

⇒       <  
Therefore,       

Example:

Suppose     satisfies          <
 

  ∀n

Prove it converges
We will prove it is Cauchy
Let ε    
Look at        (wlog m < n)
                              

                                  

<
1

2   
 

1

2   
  … 

1

2 
   

1

2 

   

   

≤
1

2 
 

1

1  
1
2

 
2

2 

 

  ≤
 

  if n m   N

Pick N so 
 

  <  

Nice Proof:
Let ε    

Pick N so 
 

  <  

If n   m   N, our work shows:

       ≤
2

2 
≤

2

2 
<  

Hence     is Cauchy and therefore converges

Note:
It is not enough for           for the sequence to be Cauchy

Example: 1  
 

 
 

 

 
 

 

 
 

 

 
  

Convergence of Cauchy
October-01-10
11:19 AM
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Limits of Functions
f∙ A -> B
Domain:
{f x : x ∈ A}   range of f ⊆ B
Mainly A, B ⊆ R

    <     <    
   <  <    

Say 
   
   

      

If this happens:

Limit L at point P
We say that f has a limit L at point p if ∀ε    
there is some δ     such that whenever 
 <      <  then         <  

As ε keeps getting smaller, there will always be some δ 
which has the function inside that rectangle.

Example 1
f(x) = x + 2
Find lim

   
     

Guess L = 3
 Let ε    
Find δ     so if  <     1  <  then       3 <  
      3     2  3     1 <  
Take δ   ε 

Proof:
Let ε     and take δ   ε 
If  <    1 <  then    1 <  ,
So       3     2  3     1 <  

Example 2

        2 Find limit at p = 3
Guess L = 11
⇒       11            3    3 and want < ε when   <  x-3  < δ 
Take δ < 1 then 2 < x <  

Also want  <
 

 

Proof:

Let ε     and take δ < min 1,
 

 
 

If  <    3 <  , then     3 < 1 ⇒ 2 ≤  <  
So    3 ≤  

Thus       11      2  11             3    3  ≤     3 <   
 

 
  

Example

lim
   

 2     

  2
 lim

   

2      

  2
 

2   2    2 

  2
 2   2   

Proof:

Let ε   and take δ  
 

 

 
2    

  2
      2   2      2      2   2 

If  <    2 <  , then  
     

   
    2   2 < 2   

Therefore, lim   
     

   
  

Example

lim
   

1

 
 

1

3

 
1

 
 

1

3
   

3   

3 
  

 3    

 3  
Take δ < 1 as a start
Then |x-3  < δ ⇒ 2 < x <   ⇒  3x     
 3    

 3  
≤

   3 

 
<  

Proof:
Let ε     and take   min   , 1 

If 0 < |x-3  < δ ⇒ 2 < x <   ,  3x     
And
1

 
 

1

3
 

  3

3 
≤

  3

 
<

 

 
≤

  

 
  

Limits of Functions
October-04-10
11:02 AM
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1

 
 

1

3
  

   3 

 3  
≤

   3 

 
<

 

 
≤

  

 
  

Example 
Let

       
1     ∈ ℚ
      ∉ ℚ

Find 
lim
   

    

F has no limit at any point p
Proof:
Suppose lim         

Pick   
 

 
and    

Then then interval (p - δ , p   δ  contains
    ,   ∈ ℚ         ,   ∉ ℚ

                1     1

                   ≤                    <     1
(If delta worked in the definition of limit of f(x))
Thus contradiction showing δ cannot work which proves there is no limit a p
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lim
    

       lim
    

    

 <    <  ⇒  <  <    
     <    <  ⇒    <  <  

Limit Laws
If
lim
   

   , lim
   

   

lim
   

       1.

lim
   

     2.

Since lim        

Then for small δ, g x     
If  <      <  

lim
   

 

 
 

 

 
       3.

Then

Squeeze Theorem
       ≤     ≤     ∀x   p and
lim
   

    lim
     

 

Then,
lim
   

   

Exercise
lim
   

      

If and only if
lim

    
          lim

    
      

Proof of Squeeze Theorem
Given ε    , choose δ     such that         <  and         <  if  <      <  
   <     ≤     ≤     <    
⇒ lim

   
   

Example

lim
   

sin   

 
 1

First, take x > 0, say  <
 

 

sin   <  ≤    ≤     
sin  

 
≤ 1

 ≤ tan   sin  / cos  

cos  ≤
sin  

 

cos  ≤
sin  

 
≤ 1        

Take, instead, x < 0
cos   cos    
sin    sin    
      

sin  

 
  

sin   

    
 

sin   

   
Therefore,

cos  ≤
sin  

 
≤ 1 ∀   

So by squeeze theorem,

lim
   

sin   

 
 1

 ≤ sin  ≤  for x > 0
lim

    
sin    

  < sin  <  if x < 0
lim

    
sin    

Limit Laws
October-06-10
10:31 AM
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Function
f ∙ A ⊆ ℝ  ℝ 

(A is the domain of f)

Continuous at a
Say f is continuous at a ∈ A if ∀ε     there exists 
δ     such that if      <  and x ∈ A then 
           <  

If A = (c, d) = {x : c < x < d} then to say f is 
continuous at a is the same as saying 
lim
   

         

Continuous
Say f is continuous if f is continuous at each a ∈ A

Proposition:
f is continuous at    if and only if whenever 
    is a sequence in A and       a, then 
            

Proposition
If f is continuous at a and f(a) > 0 then there is an 
interval I containing a with f x      ∀ x ∈ I

Theorem
If f, g are continuous at a then so are f± g, f × g, cf 
for a c constant, 
f/g as long as g a     

Examples of continuity or discontinuity

lim
   

           

Jump discontinuity - no limit at x =a 

Look at 

    sin
 
1

 
 ,    

 ,               
1

 
 2  

  
1

2  

This function has no limit at x = 0 so it is 
discontinuous

Proposition:
f is continuous at    if and only if whenever     is a sequence in A and       a, 

then             

Proof
"⇒"
Assume f is continuous at a
Take     a sequence in A with       

RTP             

RTP ∀ε     there exists N such that             <  if n   N
Since f is continuous at a, ∃δ     s.t.            <  if      <  and a ∈ A

Since       , we know there is some index N so ∀n   N        <  

Take this choice of  N. If n   N then       <  and so by the continuity and the choice 
of delta, we have
            <  ⇒             

"⇐"
Suppose f is not continuous at a
There is some ε     so no δ will "work"
This means for each choice δ   , there is a "bad" x, meaning 
     <  but              
Do this for each   1/ , n ∈ ℕ 
For each δ, get "bad" x and call it   

    is a sequence from A and       <
 

 

So       
So we also know that               

Therefore,               

This contradicts the second statement. 

Examples of continuity/discontinuity

      
1     ∈ ℚ
      ∉ ℚ

Not continuous at any point because it has no limit at any point

Ex
If g x    1 at every x ∈ ℚ and g is continuous, then g x    1 for every x ∈ ℝ 

Continuous Functions
October-08-10
10:32 AM
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Proof:
If a is rational then take       with all   ∈ ℚ 
Say g is continuous at a, by proposition
          
But       1 ∀n
So      1 ∀a

Example Continuous on Irrationals and Discontinuous on Rationals

      
1

 
     ∈ ℚ

      ∉ ℚ,    
       

 

 
       ∈ ℕ gcd  ,    1

F is discontinuous at any a ∈ ℚ \ {0}
Why?

Take ε < 1/n. Then       
 

 
     

 

 
   

If  ∉ ℚ then there exists  ∈     ,     for any δ <  
Take   ∉ ℚ,       
Want            <   ∀ ∈     ,     

Take N ∈ ℕ so 
 

 
<  

If   
 

 
        ,       <      

 

 
≤

 

 
<  

So         <  

Temporarily take δ   1 and consider    1,   1 

There are only finitely many rations of the form 
 

 
 with n ≤ N in the interval  a-1, a+1)

Now take δ < 1 so  a - δ , a   δ   misses all of these finitely many points 
 

 
with n ≤ N 

So if x ∈  a - δ, a   δ  either x ∉ ℚ so f x        f a  or   
 

 
with n   N and then 

     
 

 
≤

 

 
<  

Either way            <   ∀ ∈     ,     

Thus if is continuous at a ∉ ℚ 

Comment
Is there a function continuous on rationals and discontinuous on irrationals?
No, but very difficult to show. 

Proposition
If f is continuous at a and f a      then there is an interval I containing a with f x      ∀ 
x ∈ I

Proof
Take         .
Get δ     so  x - a  < δ implies  f x  - f a   < ε ⇔ f a  - ε < f x  < f a    ε 
⇒ f x      ∀ x ∈  a -δ, a   δ 

Theorem
If f, g are continuous at a then so are f± g, f × g, cf for a c constant, 
f/g as long as g a     

Proof
Just use limit laws for sequences in functions

Ex:
Polynomials are continuous functions. 
To see this, note p(x) = x is continuous
Then        is continuous ∀ n ∈ ℕ 
And          is continuous ∀ n ∈ ℕ
Sum of continuous functions are continuous so p(x) =             is cont.

Continuous on its domain, or at all a ∈ ℝ except where q a     

Rational functions  
         

         

Ex. 

       
3   1      
1        ≤  

     1
lim

    
  lim

    
3   1  1

lim
    

  lim
    

1    1

Continuous everywhere.
The case at x = 0 is cont. because 3  , 1    are cont. everywhere
And lim            as shown

Composition of Continuous Functions
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Composition of Continuous Functions
f: A ⊆ ℝ   ℝ  range f   B ⊆ ℝ 
g: B ⊆ ℝ   ℝ 

   :   ℝ

              

Theorem
If f is continuous at a and g is continuous at f a , then g   f is continuous at a.

Proof 

Equivalent to prove if       then             f a 

Since        and f is continuous at a,             

Apply with         •

So (g  f x                        f a •

But g is continuous at a so whenever                              

Alternate Proof
Let ε     and find δ     so  x - a  < δ implies     f x  g  f a  < ε

⇒                  <  

Know g is continuous at f(a) so there exists     such that               <

              <  
Apply this with       
Since f is continuous at a, there will be some     such that            <   when 
      <   

Take     Then      <  ⇒            <   ⇒                  <  

Therefore,   f is continuous at a.

   MATH 147 Page 19    



Intermediate Value Theorem
Suppose f ∙ [a, b]   ℝ is continuous
And f(a) < 0 and f(b) > 0 then there is some 
c ∈ [a, b] with f c   

Corollary
If f ∙[a, b]   ℝ is continuous and f a  < f b  
then for every z with f(a) < z < f(b) then 
there is some c ∈ [a, b] such that z   f c 

Continuity condition is essential:

Proof of Intermediate Value Theorem
Let A   {x ∈ [a, b]: f x  <  }
a ∈ A so A is non-empty
A ⊆ [a,b] so A is bounded
By completeness property, A has a LUB, call it c 
   as c is an UB for A and a ∈ A
 ≤  because b is also an UB for A and c = LUB(A)
So c ∈ [a, b]

   
 

 
<  so it is not an UB for A

So ∃   ∈  with   
 

 
<   <  

Of course,      <  

      <
1

 
          

Hence       
Since f is continuous at c, this implies that 
            

Since      <   ∀ ⇒     ≤  

This shows c   b since f b     

And so   
 

 
<   for large enough N

So   
 

 
∈ [ ,  ] ∀   

  
 

 
   so   

 

 
∉  

Hence     
 

 
    ∀   

   
1

 
 
   

 

  

By continuity of f, 

 ≤     
1

 
      

So       

Since     ≤                         
∎ 

Corollary
If f∙ [a, b]   ℝ is continuous and f a  < f b  then for every z with f a  < z < f b  then there is 
some c ∈ [a, b] such that z   f c 

Proof
Let g(x) = f(x) - z
g is continuous 
g(a) = f(a) - z < 0
g(b) = f(b) - z > 0
By I.V.T there is some c ∈ [a, b] with g c        f c  - z, so f(c) = z

Applications:
Any odd degree polynomial has at least one real root.

Proof

               
            ,               

WE want to prove there is some c such that       
Wlog assume   is 1

        1  
    

 
   

  

     
  

  
 

Pick N so large that  
  

    
 <

 

  
∀ j    , …, n-1

 
    

 
   

  

     
  

  
 ≤  

    

 
     

  

    
   

  

  
 ≤

1

2 
          

        1  
    

 
   

  

     
  

  
     

1

2
  

  

2
  

            1  
    

 
   

  

     
  

  
 ≤  

1

2
  <  

p is continuous on [-N, N]
So by I.V.T p has a root in [-N, N]

Bisection Method of Finding Roots
Take a function on [a, b] where a < 0 and b > 0
Keep splitting the domain and taking the half where the sign of the two bounds are opposite. 

Intermediate Value Theorem
October-15-10
10:32 AM
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Bounded
Say f is bounded above if there exists M such that 
    ≤   ∀  
Say f is bounded if it is both bounded above and 
below

Extreme Value Theorem
Suppose  [ ,  ]  ℝ is continuous
Then there are  ,  ∈ [ ,  ] such that 
    ≤     ≤       ∀ ∈ [ ,  ]

In particular, f is bounded and f achieves 
minimum and maximum values.

Examples
 : ℝ  ℝ

Not bounded either above or below-
      

 :   , 1]  ℝ

Bounded below but not above-
Has a minimum-

     
1

 

 :  1,    ℝ

-Bounded, however no minimum or maximum 

     
1

 

Extreme Value Theorem
Suppose  [ ,  ]  ℝ is continuous
Then there are  ,  ∈ [ ,  ] such that 
    ≤     ≤       ∀ ∈ [ ,  ]

In particular, f is bounded and f achieves minimum and maximum values.

Proof of Extreme Value Theorem
Uses Bolzano-Weierstrass Theorem (any bounded sequence has a convergent subsequence)
Fact - If       then every subsequence of       )

First show that f  is bounded1.
Suppose f is not bounded above. 
Then ∀ n ∈ ℕ , there is some   ∈ [ ,  ] with        . Consider the sequence     . It is bounded. 

By B-W Theorem, there is a convergent subsequence     
   ∈ [ ,  ]

By continuity of f,      
      

By construction sequence,      
             

 is unbounded and therefore cannot be 

converging because every convergent sequence is bounded.
This is a contradiction, so f is bounded above. 
Similarly, we can prove f is bounded below ⇒ f is bounded

Look at S = {f(x) : x ∈ [a, b]}2.
This is a non-empty set, and a bounded set by 1.
So S has a LUB and a GLB. Call LUB(S) = z
Then     ≤   ∀  [ ,  ]

And ∀ ∈ ℕ,  ∈ [ ,  ] with         
 

 

         ≤
1

 
          

So          

Sequence     is a bounded sequence, so by B-W Theorem it has a convergent subsequence. Say 
    

   ∈ [ ,  ]

By continuity of f at d,      
      

Since       
  is a subsequence of        which converges to z ⇒       

    

But limits are unique, therefore       

In other words,           ∀ ∈ [ ,  ]

Showing minimum value is left as an exercise. 

Bounded Functions + EVT
October-18-10
10:29 AM
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One-to-one Functions (Injections)
Say f is 1-1 if whenever      then            

In other words, pass the horizontal line test.

Increasing (or Strictly Increasing)
Say f is (strictly) increasing if whenever      

then                

Theorem
If  : [ ,  ]  ℝ is continuous and invertible, then f is 
either strictly increasing or strictly decrasing. 

Examples
     ,     1  1
  sin  ,     1  1
     1,     1  1

One-to-One Functions have inverses
 ∈        
Define         when       (unique choice of x)

Usually we write          when       
               
          
⇒                               

Ex.      1 ⇒      1
 

                  

                  

Theorem
If  : [ ,  ]  ℝ is continuous and invertible, then f is either strictly increasing or strictly decrasing.

Proof
Notice f a    f b  since f is 1-1
Assume f(a) < f(b) (Leave f(a) > f(b) as exercise) 
And we will show f is strictly increasing. 

Assume f is not strictly increasing.
Then there is some y   x, but f y  ≤ f x 
Case 1:    

f(x) > f(a)1.
Clearly f x    f a  because otherwise the function would not be 1-1 and therefore not be invertible

By I. V. T on [a, x] f takes on every value in [f(a), f(x)]
Similarly on [x, y] f takes on every value in [f(y), f(x)]
These intervals [f(a), f(x)] and [f(y), f(x)] overlap.
So values in overlap are taken on at least twice. Contradicts that f is 1-1

2. f(x) < f(a) same thing

Case 2; x = a
There is some y > x such that     ≤          

y ∈  a, b] since x ∈ [a,b], and clearly y   b since f y ≤ f a <f b 
so y ∈  a, b 
By I.V.T on [a, y] f takes on every value in [f(y), f(a)]
Similarly, on [y, b] f takes on every value in [f(y), f(b)]
These intervals overlap on [f(a), f(b)], contradicts that f is 1-1

Consequence:
If  : [ ,  ]  ℝ is 1-1 and continuous then Range f = [c, d]
Proof:
Either f is strictly increasing or strictly decreasing. Say f is increasing.
Then Range f ⊆ [f a , f b ] and we get the entire interval on the range by the Intermediate Value 
Theorem

Inverse Functions
October-18-10
11:01 AM
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Theorem
If  : [ ,  ]  ℝ is continuous and 1-1
Then Range f= [c,d] for some c, d and    [ ,  ]  [ ,  ] is continuous

Proof
Suppose        where   ∈ [ ,  ]

Want to prove                

              ,           
We know         and         

Also,   ,  ∈ [ ,  ]

We proceed by contradiction and suppose      

This means there exists some    such that for every N there is some     with          

Pick   so     
      

Think of      1. Pick         1 so     
      

Having picked    
, …    

, put      1 And pick       so       
      

Gives a subsequence     
 with the property that     

       ∀ 

All    
∈ [ ,  ] so     

 is a bounded sequence.

By the Bolzano-Weierstrass Theorem this has a convergent subsequence call it      
 with limit t.

     because of the construction of     
 

      
      

    

By continuity of f,       
      

By uniqueness of limits,        

But         ⇒           and since f is 1-1     

This is a contradiction, proving      ⇒                

So    is continuous.

"Inverse" Trig Functions
Sin(x) is not invertible but sin(x) restricted to [ 

 

 
,
 

 
] is invertible.

The inverse of this restriction is    sin   

arcsin     ∈   
 

2
,
 

2
 ,  ∈ [ 1,1]     sin     

arccos   is the inverse of cos restricted to [ ,  ]

tan    
      

      
so tan x  is periodic every π

arctan    is the inverse of tan restricted to ( 
 

 
,
 

 
 

Domain of arctan x  is ℝ and Range of arctan x      
 

 
,
 

 
 

Theorem
If  : [ ,  ]  ℝ is continuous and 1-1
Then Range f= [c,d] for some c, d and 
   [ ,  ]  [ ,  ] is continuous

Continuity of    

October-20-10
10:34 AM
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Logarithm Function

Consider   
 

 
for t    

For x > 0, let                                
 

 
,                                 1,    

Define ln     
       1

       < 1
ln1   
ln    if x   1
ln  <   if x < 1
ln  is strictly increasing and so it is invertible. 

ln  
1

 
   ln  a.

ln      ln      ∈ ℚ1.

∀ M ∈ ℕ there is some N so that if x   N then ln    
ln    as     2.

Properties

Proof of 2. 
Consider ln 2   ln 2
If   2 , then ln   ln 2 , so if ln 2    then ∀  2 , ln   ln 2   

exp   is the inverse function of   ln  

Range of ln     ,    Domain of exp

ln               

Domain ln    ,    Range of exp

exp  1      ln 1   
ln exp     exp  ln   

Fact
exp      exp   for  ∈ ℚ
Proof:
Let y = LHS = exp(xr)
ln   ln exp       

RHS  exp    

ln    ln  exp       ln exp      

So ln LHS = ln RHS
But ln is 1-1 so LHS = RHS

Take   1. Gives exp    exp1     ∀ r ∈ ℚ 
Call e = exp1
For any  ∈ ℝ, 
Define    exp   

This is consistent when  ∈ ℚ
This gives us a definition for an irrational power

Define   for any a    , x ∈ ℝ 

Set          exp  ln  

Consistent with what we know    is when  ∈ ℚ

Proof of Properties
Uses the future

Proof of 1
Let      ln    ln  ln 
Notice   1   

      
1

  
  

1

 
  

So by the corollary to the Mean Value Theorem, f is constant
Hence        1    ∀ 

Proof of 3
Let      ln    ln  
Notice   1   

      
1

  
      

 

 
  

So        ∀ 

2 follows from 3

Inequalities
ln  ≤   1 ∀   

ln ab = ln a + ln b1.

ln
1

 
  ln 2.

ln      ln 3.

Properties of Logarithm Function

Natural Logarithm
November-17-10
10:45 AM
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ln  ≤   1 ∀   
Let      ln      1 

  1   

      
1

 
 1  

1   

 

(0, 1] [1,   

f' > 0 f' < 0

Analysis of f' shows x=1 is the maximum value of f. 
So     ≤         ∀ 

 1    
 
 < 1  

1

 
  ∀   ,   1

Let       1    
 

  1  
 

 
 

     1  1     

      
1

 
 1    

 
 
  

 
1

 
 

1

 
 

1

 1    
  

 
 

 1           ,   1

since  1    
  

 

  1
By the Increasing Function Theorem, f is strictly decreasing on [ ,   
Therefore             ∀   
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Find slope with secant line on f through f(a), f(a+h)

The slope of the secant line is 
           

 
average rate over [a, a+h]

Examples
         

lim
   

           

 
 lim

   

             

 
 lim

   

  

 
        

       

lim
   

           

 
 lim

   

         

 
 lim

   

   3    3         

 
 lim

   
3   3     

 3        

        

   1.

lim
   

     

 
 lim

   

 

 
 1

 <  2.

lim
   

       

 
 lim

   
 

 

 
  1

   3.

lim
   

         

 
 lim

   

   

 

lim
    

   

 
 1, lim

    

   

 
  1

The limit does not exist, so f is not differentiable at 0.

      lim
   

         

 

        is an example of a function that is continuous but not differentiable. 

Theorem
If f is differentiable at a, then f is continuous at a.

Proof
RTP 
   
   

         

Equivalently, prove

lim
   

             

          
         

   
     

Since both lim   
         

   
    lim         exist, by the product rule for limits

lim
   

                   

So f is continuous at a

Only one way, examples even exist of functions that are continuous at every point but differentiable 
at no point.

Examples
Consider

       
 sin  

1

 
 ,        

        
Does      exist?

lim
   

           

 
 lim

   

  sin  
1
 
    

 
 lim

   
sin  

1

 
 

Which has no limit

       
  sin  

1

 
 ,        

        

      lim
   

   sin  
1
 
     

 
 lim

   
 sin

1

 
Cannot apply product law of limits

    ≤   sin  
1

 
  ≤    

lim
   

      

So by the squeeze theorem for functions, lim    sin  
 

 
   

So        

Squeeze of Absolute Values
Say       ≤           
lim
   

      ⇒ lim
   

        

Means given any    
∃    such that for      <  then         <  
  ≤   <  if    <  

Differentiable at a
Say f is differentiable at a (or x=a at (a, f(a)) ) if

lim
   

           

 
exists. 

Alternate definition of differentiability
Sometimes we put      Then     is the 
same as    so we can write

lim
   

         

   
      

Derivative
When 

lim   
           

 
exists we denote this by 

     

     is called the derivative of f at a.

This defines a function   , called the derivative 
of f, which is defined on all the points at which f 
is differentiable.

Differentiable
Say f is differentiable if it is differentiable at 
every point in its domain. 

Tangent Line
This is the line through the point   ,      with 
slope      
Equation:
                  

Theorem
If f is differentiable at a, then f is continuous at 
a.

Differentiation
October-25-10
10:29 AM
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      ≤       <  if      <  
So lim           

Exercise

        
 sin  

1

  
 ,     

  ,    
When is f(x) differentiable? 
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Derive Derivative of Sine Function

      
 

  
sin    

   
 lim

   

sin      sin   

 
 lim

   

sin  cos   sin cos   sin 

 

 lim
   

sin   cos   1 

 
 

sin cos  

 

lim
   

sin 

 
cos   cos  

lim
   

cos   1

 
 

cos   1

cos   1
 lim

   

cos   1

 cos  
 lim

   
 

sin  

   cos   1 

  
sin  

 
 sin   

1

cos   1
 

Pick δ     so  
    

 
 ≤ 2 if  h  < δ 

⇒  sin  ≤ 2   if  h  < δ 

cos         ∈   
 

2
,
 

2
 

So cos   1  1     ∈   
 

 
,
 

 
 

⇒  
1

cos   1
 ≤ 1     ∈   

 

2
,
 

2
 

 ≤  
sin 

 
 sin  

1

cos   1
 ≤ 2  2   

If  h  ≤ δ and 2  2 h      as h    

By squeeze theorem,

 
sin  

 
 

1

cos   1
          

Therefore,
 

  
sin   

   
  lim

   

sin   cos   1 

 
 

sin cos  

 
 cos  

Since both terms have limits, so the addition rule of limits applies

So sin x is differentiable and 
 

  
sin   cos  

Corollary
sin x is a continuous function. 

Derive Derivative of Log Function
Definition of ln: The area   from t=1 to t=x  under y=1/t

ln     
       1

       < 1

Case x > 1

lim
   

ln      ln 

 
wlog, x + h > 1

Case a: h > 0

lim
   

       

 
 

             
1
 
                  

 
1

   
   ≤     ≤

1

 
  

1

   
≤

    

 
≤

1

 
By squeeze theorem, 

    

 
 

 

 
        

lim
    

 ln      ln   

 
 

1

 

Case b: h <0 
Left as exercise but the same thing

Case x < 1 
Left as exercise

Corollary
ln x is a continuous function

sin x
 

  
sin  cos  

sin x is continuous

ln x

 

  
ln   

1

 

ln x is continuous
exp x is continuous

Common Derivatives
October-27-10
10:34 AM
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Corollary
exp is a continuous function

This is also the proof of the fundamental theorem of calculus
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Suppose f and g are differentiable at a

Proof left as exercise
    are differentiable at a and                      1.

Product Rule2.

Proof

         lim
   

  ∙          ∙      

 

 lim
   

                                           

 

 lim
   

       
           

 
      

           

 
                    

g is continuous so  g a h     g a  as  a h    a

 ∙  is differentiable at a and                             

Corollary 

           . Then            

Proof
            1 ∀ 
This f is differentiable since it is the product of differentiable g
Proceed by induction on n. Have result for n = 1

Assume 
 

  
        1     

 

  
   

 

  
       1          1            1    1       

Corollary
If p(x) is a polynomial then p is differentiable. (Since polynomials are just linear combinations 
of   for various n

If g is differentiable at a and g a      then 1/g is differentiable at a and 3.

 
1

 
 

 

     
     

      
 

Corollary
 

  
                 ∈ ℕ

Proof: Write     
 

  

Quotient Rule:4.
 

 
is differentiable at a if f, g are differentiable at a and g(a) = 0

 
 

 
 

 

    
                   

      
 

Proof

  ∙
1

 
 

 

       
1

    
      

1

 
 

 

         
1

    
     

      

      
 

  
                   

      
 

Chain Rule5.
Let  ∙   ℝ and  ∙    ℝ
Suppose f is differentiable at a and g is differentiable at f(g(a)), then     is differentiable at a 

and                      

Proof
To prove this we need to look at 

lim
   

              

   
 lim

   

               

         
 

         

   
however, it is possible for          to be zero where    

Use Coratheodory Theorem

Coratheorory Theorem
If F is differentiable at a, then there is a function  which is continuous at a, satisfies
                   for all x and           

Proof
Define 

      
         

   
,       

     ,       

lim
   

   lim
   

     

   
         

Rules for Differentiation
October-27-10
11:02 AM
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lim
   

     lim
   

         

   
           

So  is continuous

Proof of Chain Rule Cont.
Since f is differentiable at a, there is a function  , continuous at a, satisfying 
                   and           

Similarly, since g is differentiable at f(a), there is a function  , which is continuous at 

f(a), satisfying                           and                 

Take       . This gives                                   

                                

Calculate if possible

        lim
   

               

   
 lim

   

                

   
 lim

   
           

lim            so the limit of  at a exists.

Since f is continuous at a,          
So since  is continuous at f(a)    is continuous at a and therefore 
lim
   

                     

Thus    is differentiable at a and                                    

Example:

  cos  
1

 
 

differentiable everywhere on its domain

    sin  
1

 
   

1

  
  

sin  
1
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If starting from        we need to know apriori that    is differentiable at f(a) and f is 
differentiable at a.

Ex.                   
 

 , which is not differentiable at 0, despite f being differentiable 
everywhere. Problem:        

Whenever        ,    is not differentiable at f(a).

If        then
          
                   1

             
1

     

Theorem
Let f be a continuous one-to-one function defined on an open interval (c, d). Suppose that f is 
differentiable at the point a ∈  c, d  and f' a     . Then f' is differentiable at f a  and 

             
1

     

Proof
Write b = f(a)

lim
   

               

 
        
                         
Write              

lim
   

               

 
 lim

   

     

      
 lim

   

 

           
 lim

   

1

           
 

                            

As    ,                since    is continuous (by continuity of            
         ,    

             

As    , the continuity of f gives that            therefore    

Hence,

lim
   

               

 
 lim

   

1

           
 

 
1

     

by using the differentiability of f at a and the quotient rule for limits, which can be applied since 
       

Thus    is differentiable at b=f(a) and           
 

     

ie.

             
1

     

or

          
1

          

Examples

      
 
 ,  ∈ ℕ

                   ,  ∈ ℕ

           and                
By the theorem, f is differentiable at g(x) except for those x where g'(x) = 0 i.e. x = 0

      
1

        
 

1

       
    

1

   
 
  

    
1

    
 
 

 
 

 
 

  

 

     exp   ,                  ln  

      
1

 
            

      
1

        
 

1

1
    

     

That is 
 

  
exp    exp   

Definition of   

    ,  ∈ ℝ
  exp  ln    exp ln     x 

   exp  ln   
 

 
    

 

 
       

     exp  ln   

   exp  ln    1 ln   
1

 
   exp  ln    ln   1     ln   1 

Inverse Trig Functions

Theorem
Let f be a continuous one-to-one function defined on an 
open interval (c, d). Suppose that f is differentiable at the 
point a ∈  c, d  and f' a     . Then f' is differentiable at f a  
and 

             
1

     

Notation
  means the nth derivative of f

Inverse Trig
 

  
arcsin   

1

 1     

 

  
arccos    

1

 1     

 

  
arctan   

1

   1

Since    is continuous, (by continuity 
of    theorem), 
lim                    

Derivatives of Inverse Functions
October-29-10
11:02 AM
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     exp  ln   

   exp  ln    1 ln   
1

 
   exp  ln    ln   1     ln   1 

Inverse Trig Functions
  arcsin       

    is the inverse of sin restricted to   
 

 
,
 

 
 

      
1

sin       
 

1

cos arcsin   

Except if there is a zero in the denominator 

Suppose arcsin     , means sin θ    x and  ∈   
 

 
,
 

 
 

So except where   1
 

  
arcsin   

1

 1     

Similarly, 
 

  
arccos    

1

 1     

 

  
arctan   

1

sec  arctan   

Find sec  where tan    

tan   1  
 sin   cos   

cos  
 

1

cos  
 sec  

 

  
arctan   

1

   1
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Local Maximum
A point x is a local maximum for the function f if there 
exists a δ     so that for every point  ∈     ,     , 
y ∈ Domain f, we have     ≤     .

Local Minimum
A point x is a local maximum for the function f if there 
exists a δ     so that for every point  ∈     ,     , 
y ∈ Domain f, we have          .

Global Maximum (Maximum)
A point x is a global maximum of f if     ≤     for all 
y ∈ Domain f

Global Maximum ⇒ Local Maximum, but the converse is 
not true.

Critical Points Theorem
If f has a local maximum or minimum at some point x ∈ 
 a, b  ⊆ Domain f, and if f is differentiable at x, then 
f'(x)=0

Critical Point
Call x a critical point of f if        

Critical Points Theorem
If f has a local maximum or minimum at some point x ∈  a, b  ⊆ Domain f, and if f is differentiable 
at x, then f'(x)=0

Proof

Look at 
           

 
for h < δ where δ is as in the definition for local maximum

Hence       ≤     

If h > 0, then 
           

 
≤  

If h < 0 then 
           

 
  

Since the lim   
           

 
exists (since f is differentiable at x), the right and left hand limits exist.

lim
    

           

 
 lim

    

           

 
But 

lim
    

           

 
  

lim
    

           

 
≤  

And since the two sides are equal, 

lim
   

           

 
        

Note
A point can be a critical point but not a local maximum/minimum. Example: x=0 at        

Finding Maximums/Minimums
Suppose  : [ ,  ]  ℝ which is continuous.
By the Extreme Value Theorem f has a global maximum and minimum. 

a, b (Endpoints of [a,b])1.
at a point x where f is not differentiable (singular point)2.
at a critical point3.

The global max & min must also be a local max or min (respectively), and hence the theorem tells 
us the can only occur at:

Generally there are only finitely many points in 1, 2, and 3, allowing you to evaluate f at each of 
them and take the largest as the global maximum and the smallest as the local minimum.

Example

        
 
     [ 1,  ]

      1  
2

3
  

 
 ,                 

f is continuous
E.V.T implies there is a global maximum and minimum

-1, 81.
SP at 02.

CP at 
 

  
3.

Candidates for max+min

   1  2,       ,   
 

2 
   

 

2 
,       

So the global max at    and the global min at    1

Problem
A right angle is moved along the diameter of a circle of radius r as shown.
Maximize the sum of length a+b.
Clearly, b   r

     sin    cos    ,  ∈   ,
 

2
 

(a+b) is differentiable everywhere and is continuous

   ,
 

2
1.

  
 

 
3.

Possible candidates:

(              
 

 
  2 

      
 

 
    

1

 2
  2       2

 
 1 

So our maximum is at   
 

 
and the largest possible value for a+b is    2

 
 1 

Optimization Problems
November-03-10
10:30 AM
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There exists a tangent somewhere on 
the function between a and b which is 
equal to the secant between f(a) and 
f(b)

Mean Value Theorem
If f is continuous on [a, b] and differentiable 
on  a, b  then there is a c ∈  a, b  such that

      
         

   
 

Corollary 
If         at every  ∈  interval then f is 
constant over that interval.

Rolle's Theorem
Suppose f is continuous on [a, b] and 
differentiable on (a, b). In addition, assume 
         . Then there is some  ∈   ,   
such that        . 

Corollary to MVT (Increasing Function 
Theorem)
If f is continuous on [a, b] and        for 
all  ∈   ,   then f is strictly increasing on 
b]

Proof of Corollary to Mean Value Theorem
Let a < b, a, b ∈ I. Then f is continuous and differentiable on [a, b]. By MVT, there is some 
 ∈   ,   ⊆ I with 

      
         

   
⇒          

So f is constant. 

Note the importance of        at every x on an interval.
The function

       
 1       
 1     <  

Is continuous and differentiable on it's domain, and         for all x on its domain, but f is not 
constant.

To prove MVT, we 

Proof of Rolle's Theorem
By E.V.T, f has a maximum and minimum on [a, b].
If either the maximum or minimum occurs at  ∈   ,   then by the critical points theorem, 
       
Otherwise, both the maximum and minimum occur at the endpoints a, b. But          so the 
maximum and minimum must be the same. So f is constant on [a, b]. Hence        at every 
 ∈   ,   . So c could be any point in (a, b) in this case.

Proof of the Mean Value Theorem
Let L(x) = secant line joining (a, f(a)) to (b, f(b)) and g(x) = f(x) -L(x)

           
         

   
           

g is continuous on [a, b] because f is a y=L(x) is continuous everywhere and g is the difference of 
continuous functions. Similarly, g is differentiable on (a, b) since both f and y are and g is the 
difference of differentiable functions. 
Furthermore,            , so Rolle's Theorem applies
So        for some  ∈   ,   

                           
         

   
 

Therefore 
         

   
      

Increasing and Decreasing Functions
Proof of Corollary to MVT (f is increasing on the interval where f' > 0)
Take  ≤  <  ≤  

MVT applies to f, so there is some  ∈   ,   with       
         

   
  , by the assumption

     so            so f is strictly increasing. 

NOTE: The Converse is not true
Can have f strictly increasing and differentiable everywhere but        is not true for all x
         , in which case       

Non-Decreasing
If         on (a, b) and continuous on [a, b] then f is increasing on [a, b]
Converse of Non-Decreasing case is true

Proof:

      lim
   

           

 
      ,                 
    <  ,            ≤     

     lim
   

           

 
  

If f is differentiable on (a, b) and increasing on (a, b), then        for all x ∈  a, b 

Mean Value Theorem
November-05-10
10:28 AM
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Example
        12  1
      3   12  3   2    2 

CP = ± 2
Sign of      

(-  , -2) (-2, 2)  2,   

+ - +

f is strictly increasing on (-  , -2] ∪ [2,    and strictly decreasing on [-2, 2]
-2 is a local max, 2 is a local min

Example
Maximize, if possible,           [ ,   

                1    

               
CP at   1

[0,1] [1,   

- +

1 is a local maximum, but it is also a global maximum since it is greater than every other 
value on the range of f

So the maximum value of y is 
 

 

Example
Analyse the function

     
   2  2

  1
         ℝ    {1}
Continuous and differentiable on its domain

      
    2 

   1  

CP on 0, 2
Can only change signs on 0, 1, 2
Sign of   

(- ,  ] [0, 1) (1, 2] [2,   

+ - - +

Vertical asymptote at x = 1

lim
    

   2  2

  1
 lim

    
  1  

1

  1
   

lim
    

  1  
1

  1
   

Local minimum at 2, local maximum at 0, asymptote at 1

lim
    

         1   lim
    

1

  1
  

This is called an oblique asymptote. 

Example of Inflection Point
    

Has an inflection point at x = 0
   3  

      
   is negative when x < 0 and positive when x > 0 so the concavity changes at x = 0

Proof of Second Derivative Theorem

Assume   increases on    ,   and   decreases on   ,    so c is a local maximum 
of   . Since   is differentiable,         by the critical points theorem.

3.
1 and 2 are exercise, come from increasing function theorem. 

Second Derivative Test
If               
Ex        inflection point at 0
       local min at 0
        local max at 0
Impossible to tell from just                

Proof of other statements:
Case         

       lim
   

             

 
  

          lim
   

       

 
  

             if h >0 and small
and        < 0 if h < 0 and small
By increasing function theorem, f is decreasing to left of c and decreasing to the right of 
c. By the first derivative test c is a local minimum. 

First Derivative Test

Then c is a local maximum
If     on    ,   and   <  on   ,    1.

Then c is a local minimum
If   <  on    ,   and     on   ,    2.

If    has the same sign on both sides of c, then c is 
neither a local minimum or maximum. 

3.

Assume f is continuous on [  ,   ] and  ∈    ,    is either 
a CP or a SP

Vertical Asymptote
A point on a function is an asymptote if either the left or 
right hand limits at that point go to infinity. 

Oblique Asymptote
The function approaches a line of non-zero slope as x     
  

Horizontal Asymptote
         lim

        
      

Asymptotes on Polynomial Functions
deg  deg  we get H.A. y = 0
deg Q   deg P we get H.A. y   b, b    
deg Q + 1= deg P we get O.A       

Concave Up
Say   is concave up on interval I if      increases on I

Concave Down 
Say  is concave down on interval I if      decreases on I

Inflection Point
Call c an inflection point if      exists and the concavity of 
 changes at c

If      on I then f is concave up on I1.
If    <  on I then f is concave down on I2.
If f has an IP(Inflection Point) at c and       exists, 
then         

3.

Second Derivative Theorem

Suppose        . If         then f has a local min 
at c. If       < 0, then f has a local max at c. If 
        then we do not know. 

Second Derivative Test

Derivative Tests
November-08-10
10:40 AM
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c. By the first derivative test c is a local minimum. 
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Limit of Infinity
Write lim         if for every N ∈ ℕ there exists 
δ     such that if      <  then       

L'Hôpital's Rule
Assume f, g are differentiable on   [    ,    ]

except possibly at a. Suppose
lim
   

     lim
   

           

Suppose g x      for any x in I  except possibly a 
If

lim
   

     

            lim
   

    

    
  

Cauchy Mean Value Theorem
If f, g are continuous on [a, b] and differentiable on (a, b). 
Then there is some c ∈  a, b  such that 
                                 

Intuitive Idea of L'Hôpital's Rule
Case:
f(a) = 0 = g(a)

lim
   

    

    
 lim

   

         

         
 lim

   

         

   
 

   

         

expect that to equal 
     

     

lim
   

  

  
 

     

     
True if f', g' are continuous at a and g' a     

By the Mean Value Theorem,                      

If f is continuous on [a, x] and f is differentiable on (a, x)
                     

If g is continuous on [a, x] and g is differentiable on (a, x)
  ,   ∈   ,   

         

         
 

           

           
 

      

      
      ,       ,     
Suppose we get really lucky and      

lim
   

      

      
 lim

   

  

  
    

Recall
lim         if and only if whenever       , then lim           

Then

lim
   

      

      
 lim

   

  

  
     lim

   

  

  

Cauchy Mean Value Theorem
If f, g are continuous on [a, b] and differentiable on  a, b . Then there is some c ∈ 
(a, b) such that 
                                 

So if there arises no division by zero trouble, that means
         

         
 

     

     

Proof of CMVT
Define

                                    

h is continuous on [a, b] and differentiable on (a, b)

                                    

                                                      

                      

         

By the Mean Value Theorem  Rolle's Theorem  there is some c ∈  a, b  such that 
h'(c) = 0
                                   

So

                                 

Examples

lim
   

log  

sin    
Being continuous, lim   log    , lim   sin      
By L'Hopital's rule, study 

lim
   

 log    

 sin    
 lim

   

1
 

 cos  
  

1

 
 lim

   

log  

sin  

lim
   

1

 
 

1

sin  
 lim

   

 sin     

 sin  
lim
   

sin      

lim
   

 sin    

By L'Hopital's Rule

 lim
   

cos   1

sin   cos 
Again 
lim
   

cos  1   

L'Hôpital's Rule and CMVT
November-10-10
10:40 AM

   MATH 147 Page 39    



lim
   

cos  1   

lim
   

sin    cos   

By L'Hopital's Rule again

 lim
   

 
sin  

cos   cos    sin  
 

 

2
  

So

lim
   

1

 
 

1

sin  
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Assumptions

f and g are differentiable on   [   ,    ] but not necessarily a1.
    ,        on I except at a2.
Suppose that lim        lim              3.

lim
   

     

     
  4.

Want to prove:

lim
   

    

    
  

Cauchy Mean Value Theorem
If f, g are continuous on [a, b] and differentiable on (a, b) then there is some  ∈   ,   such that 
                                 

Remember:

lim         if and only if whenever       then          

Proof Of L'Hôpital's Rule
Case 1
lim
   

  lim
   

   

Define (or redefine) f and g at a by setting            

This makes the functions continuous on [   ,    ] since lim           and same for g
f and g are still differentiable on [   ,   ∪   ,    ]

Enough to prove lim    
 

 
   lim    

 

 

To prove lim    
 

 
  , it is enough to prove that whenever       ,     ,       

 

 
       

Take       ,     .       ≤    
f, g are continuous on [ ,    ] and differentiable on   ,     

Therefore continuous on [ ,   ] and differentiable on   ,    

By the CMVT, there is some   ∈   ,    with                                      

By assumption,         
Also,             , because by assumption         but       (or because by MVT 
                                  ∈   ,    .              

Divide to get
          

          
 

      

      
 

  

  
    

But     ,       , so 
 

 
     

  

  
    

As    ,                    . So since lim   
  

    by recalled fact concerning limits and 

sequences, 

lim
   

  

  
      

Therefore,

lim
   

 

 
      

So by the recalled fact again, 

lim
   

 

 
  

Case 2
lim
   

  lim
   

   

Recall Definition:
lim      means that ∀ N ∈ ℕ there is some δ     such that if  <      <  then       

Suffices to prove whenever       , then 
 

 
      

Take such a sequence with   ∈   ,    ]

Consider each pair   ,   ,  <  

f and g are continuous and differentiable on [  ,   ] (or [  ,   ])

Apply CMVT to get    between   and   

                                         

      so

            
                    

       

Look at

     

     
 

     

     
 

           

     

 
            

        

 
     

     
1  

   

   

Cauchy Mean Value Theorem
If f, g are continuous on [a, b] and differentiable on (a, 
b) then there is some  ∈   ,   such that 
                                 

(with all other assumptions)

If lim    
  

    then lim    
 

 
  1.

Of course, if    ≤  then automatically 

lim   
 

 
  if lim         

a.

In cases where lim                 , the 
behaviour of f does not matter, f does not need 
to go to infinity. 

2.

L'Hopital's rule is valid if      3.
L'Hopital's rule is valid if L      4.

Remarks on L'Hôpital's Rule

The non-existence of lim   
  

  does not imply the 

non-existence of lim   
 

 

L'Hôpital's Proof
November-12-10
10:31 AM
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 1  

     

     
 

So 

     

     
 

     

     
 

       

       
 

            

            

Know lim         ⇒ lim          

⇒ lim
   

1

     
  

Want to prove
 

 
      

So 

For every    , ∃ N ∈ ℕ so  
 

 
       <   ∀   

Fix ε    ,  ε < 1 

Since 

lim
   

  

  
  

there exists a δ     so that if      <  then  
  

  
      <

 

 

Pick   so that        <  if     

If  ,     then       <  , and       <  

Since   <    <         <    <   then        <   ∀ ,     

Take     so         <   ∀    

Hence

 
  

  
         <

 

3
 ∀    

In particular,

 
  

  
       ≤     

 

3
≤     1

By assumption

            
1

     
  

Pick     such that for all    
1

       
≤

 

3     1       
  

and 

≤
 

3       
  

         
   

 
 

 
       ≤  

     
 

     
   

     
 

     
 

  

  
         

  

  
         

Let n > N

 
     

 

     
 ≤

      
   

3      
  

 
 

3

 
     

 

     
 

  

  
       ≤

      
  

       
     1 ≤

 

3     1       
  

      
       1  

 

3

 
  

  
         ≤

 

3
Therefore

 
 

 
       ≤

 

3
 

 

3
 

 

3
  

So 
 

 
             

Therefore

lim
    

 

 
  

And the same for the left hand limit, so

lim
   

 

 
   

∎ 

(with all other assumptions)

If lim    
  

    then lim    
 

 
  1.

Of course, if    ≤  then automatically lim   
 

 
  if lim         a.

In cases where lim                 , the behaviour of f does not matter, f does not need 
to go to infinity. 

2.

L'Hopital's rule is valid if      3.
L'Hopital's rule is valid if L      4.

Remarks

Examples
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Examples
Failure:

lim
   

  1

 
  ,    lim

   

1

1
 1

The non-existence of lim   
  

  does not imply the non-existence of lim   
 

 

lim
   

  sin 

 
 1

but lim   
      

 
does not exist

Successful Examples

lim
   

     lim
   

 

  

lim
   

1

  
  ,   lim

   

 

  
   

Exercise: Prove
lim
   

        ∀ ∈ ℕ

lim
    

  log  ,         lim
    

log  

   

lim
    

 
1
 
 

       
 lim

    
 

  

 
  

So 
lim

    
  log    

lim
    

   lim
    

exp ln    

 exp  lim
    

 ln   

Justification: Define

      
 log        

        
lim

    
           

so F is continuous at 0
Asking for 

lim
    

exp F x   exp       exp  1

lim
   

 1  
1

 
 

 

Look at 

lim
   

 1  
1

 
 

 

 lim
   

exp   log  1  
1

 
  

Let   
 

 

                 

lim
    

exp  
1

 
log 1      exp  lim

    

log 1    

 
 

lim
    

1
1   

1
 1

  lim
   

 1  
1

 
 

 

 exp 1   
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lim
   

exp   log  1  
1

 
   exp  lim

   
 log  1  

1

 
  

Justification
Seen before that

lim
   

 1  
1

 
  1

exp is continuous at 1, so this should hold true

Proof of Theorem
RTP that ∀ε     there is a number N so that if x   N then               <  

Know, given any ε'     there is N' so that if x   N' then         <   

Know, given any     there is some δ     so that if      <  then            <  

Fix ε    . Take N so         <  when x   N where δ comes from the definition of continuity of g 

at L. Let x > n, then         <  and               <  

So lim               ∎ 

Theorem
If lim         and g is continuous at L, then 
lim                 lim        

Limits and Continuity
November-17-10
10:26 AM
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Taylor Polynomial
The Taylor Polynomials of degree n at a for the function f 
is the polynomial:
                          ,    

where 

   
       

  

Types of Taylor Polynomials
  ,            

  ,                                           

  ,                     
      

2
      

If f is a polynomial of degree n then        ,    

Exercise: Write                        

Take derivatives to see      

The Taylor Polynomials are often good approximations of the function but not always

Example
     sin         
      cos  
        sin  
         cos  
         sin  

      
      1
        
         1
…

    
   1
    

    
1

3 
    

   
1

  

Taylor polynomial

  ,    
  

3 
 

  

  
 

  

  
           

Taylor Polynomials
November-17-10
11:00 AM
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Taylor Polynomial
f - n times differentiable at a

  ,   
       

  
      

 

   

Theorem
If f is n times differentiable at then

lim
   

       ,    

        

Application of Theorem to Second Derivative Test
Suppose
                        

If n is even and      > 0, then f has a local 
minimum at a

1.

If n is even and      <  , then f has a local 
maximum at a

2.

If n is odd, then f has neither a local minimum nor a 
local maximum at a

3.

       

Comment

Can have          for every n without f being constant 
in which the above theorem does not give any information.

Example:

       
 

 
  ,    

 ,    
Local minimum at x=0 deispite the fact that          
for all n

Proof of Theorem
Look at 

lim
   

             
  

       
   

       lim
   

             
  

         
   

       

       
  

      

      

So RTP

lim
   

          

       
       

  

       
     

  
      

   

   

     ,    

                 
      

2
         

       

   1  
        

          

  is a polynomial, so continuous function, so lim            

Hence 
lim
   

             lim
   

      

Apply L'Hopital's Rule
Look at

lim
   

        
    

         

lim
   

  
       

    

  
           

2     

2
        

   1   
              

   1  
  

          

So
lim
   

        
             

      

Apply L'Hopital's Rule again

lim
   

         
     

    1         

Keep applying L'Hopital's Rule

  
               ∀  1,… ,   1 

lim
   

          

       lim
   

          
      

       
 lim

   

        
    

  

  is a polynomial of degree n-1 so   
   

  

 lim
   

       

  
But don't know that      is continuous

Notice   
   is constant since   is a degree n-1 polynomial

So   
         

              

Hence

lim
   

          
      

       
 lim

   

               

       
 

1

  
     

By the definition of the derivative of     

Therefore 

lim
   

          

       
     

  

Application of Theorem to Second Derivative Test
Suppose
                        

If n is even and      > 0, then f has a local minimum at a1.
If n is even and      <  , then f has a local maximum at a2.
If n is odd, then f has neither a local minimum nor a local maximum at a3.

       

Proof
If       , replace f by          
Subtracting a constant does not change any derivative or local extremum location.
So wlog we can assume     = 0

  ,      
     

  
      

 

   

 
     

  
      

Theorem said

lim
   

       ,    

         lim
   

     
     

  
      

       lim
   

    

       
     

  
Therefore

lim
   

    

       
     

  

     1.
Case n is even

Taylor Polynomials Accuracy
November-19-10
10:28 AM
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       1.

     

  
is positive

      is positive
so            as    
So a is a local min

     <  2.

     

  
is negative

      is positive
so     <              
So a is a local max

      is positive when x > a and negative when x < a
     

  
is either positive or negative, but is constant

So f(x) > 0 = f(a) as x approaches a from one side, and f(x) < 0 = f(a) as x approaches a from 
the other side.
So     is neither a local maximum or minimum. 

Case n is odd
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Taylor's Theorem
Suppose  ,   , … ,        are defined on [a, x]
Then

       ,     
                 

   1  
For some  ∈   ,   

Similar statement for a < x

Example: Tangent Line

       ,     
            

2

≤
       

2

        ,  ≤ sup
 ∈[ , ]

 
            

2
 

If f is a continuous function on [a, x]

Example: Sin x
     sin  
   

      sin  ,  cos  
         ≤ 1 ∀ c, ∀ n

So

        ,     ≤
1        

   1  
         

No loss of generality in assuming  
 

 
≤  ≤

 

 

so 
        

      
≤

    

      
which is accurate to 12 digits when n = 20

Proof of Taylor's Theorem
Think of x as fixed. 
For each  ∈ [ ,  ] write 

           
             

  

 

   

     

Defines a function R(t) on [ ,  ]

                
             

  

 

   

   

                
             

  

 

   

        ,    

   

                
             

  

 

   

  

Define 

     
        

   1  

     
        

   1  
      

Want to show

            ,  
               

   1  
            

or                               

Want to apply Cauchy Mean Value Theorem to R and F

R, F are differentiable on [a, x] (because       exists on [a, x]

      
   1         1 

   1  
  

      

  
 

  

          

  
 

             

  
  

                

  
 

               

  
 

               

   1  

              
               

  
 

               

   1  

 

   

         
               

  
         

               

  

By CMVT
                                 

for some  ∈   ,   

             
      

  
   

               

  
           

                              

Which is what we wanted to prove. ∎ 

So 

Taylor's Theorem
November-22-10
10:31 AM
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So 

       ,     
                 

   1  
        

   1  
         

So        ,      if          does not grow too quickly as    
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        1 ∀ 

  ,        
             

  

 

   

 1    
  

2 
 

  

3 
   

  

  

       ,  
      

   1  
           ∈   ,   

Take x = 1

    1  1  
1

2
 

1

3 
   

1

  
  

  

   1  
≤

3

   1  
 ∈   , 1 

Suppose   
 

 
      ,  ∈  

Then 
 

 
 1  1  

1

2
   

1

  
 

  

   1  
Take   max  , 3 
 

 
         

  

2
 

  

3 
   

  

  
 

    

   1  

      
 

 
               

             ,
  

2
, … ,

  

  
             

 <
  

  1
<

 

  1
<

3

  1
< 1

This is impossible, so e is irrational

e is in fact transcendental

Irrationality of e
November-24-10
10:31 AM
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Finding Roots

Say f is continuous on [a, b] and f(a) < 0 and f (b) > 0, by the intermediate 
value theorem there is a root c ∈ [a, b] with f c     

Bisection Method
Need only a continuous function, keep cutting interval in half and checking 
whether the midpoint is above or below zero.

Newton's Method
Suppose f' > 0 on [a, b]
Then f is strictly increasing so the root c is unique.

Algorithm
Pick   ∈ [ ,  ] (for example, pick     )
Inductively define

        
     

      
This sequence is called the Newton Iterates

Tangent line to f at   

                    
Crosses x axis at
                    

 
     

      
     ⇒      

     

      

Proof of Theorem
Check that  ≤   ≤   ≤  

      
     

      
            
Of course         
Therefore   ≤   

          

    
       

for some   ∈   ,    by MVT
                  
     

      
       ⇒      

     

      
  <   and f' is strictly increasing so 
      <       

1

      
 

1

      

 
     

      
<  

     

      
So 

     
     

      
≤    

     

      
   

Proceed inductive and assume
                 
Check                  

        
     

      
<   

By MVT
          

    
              ∈   ,    

Get 

     
     

      
  <   ⇒       <       

≤    
     

      

Hence   is a decreasing sequence which is bounded by low (by c) By MCT, 
            ≤  ≤  

Theorem
Suppose  : [ ,  ]  ℝ,  ,   ,              ,
     <  <                         [ ,  ]
Suppose             ∈   ,   
Define

        
     

      
        , 1, 2, …

where   ∈ [ ,  ] then     is well defined and   

converges to c.

Accuracy
Let    max{      :  ∈ [ ,  ]}
(  exists because f'' is continuous and use E.V.T)
Let         ( min{     :  ∈ [ ,  ]})

Let   
  

  

Then

      ≤
1

 
         

  

(Can use bisection method to bring   close enough to 
c that        is < 1

Newton's Method
November-24-10
10:45 AM
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            ≤  ≤  

        
     

      
Since f and f' are continuous at p,                             
By passing to the limit we see

    
    

     
⇒       

So p is a root, but c was the only root of f in [a, b]
So       
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Newton's Method
 : [ ,  ]  ℝ,  ,   ,                  
  ,          [ ,  ]

    <  <                      ∈ [ ,  ]

Newton Iterates

               
     

      
,   ∈ [ ,  ]

         

Accuracy
Let    max{f    x  x ∈ [a, b]}

         min{     :  ∈ [ ,  ]}

        /  

           ≤
1

 
           

Proof of Accuracy
Already have seen that 

     
     

      

for some   ∈   ,    

             
     

      
     

     

      
    

     

      
 

     

      
   

                       

            
 

  
     

      
 
               

        
       

                

        

For some   ∈    ,    by MVT

      
                

        
≤        

  

  
         

Write as          ≤           ≤               
 

≤              

∎ 

But things can go wrong if not all the hypothesises  are satisfied. 

These examples need property that     does not converge
         , must        

        
     

      

      
     

so 
     

      
  

Assuming f is continuous at p
                  
Assuming f' is continuous at p
            , a real number
so 
     

      
  ⇒        ⇒       

Example of Failure
    , f continuous and differentiable everywhere
but       

Step 1:

   2     2  1.

   2         2    1 2.

  
  2    2    3.

  
  2        2        4.

Claim for each  ∈ ℕ, there is a polynomial   with

Define  :   ,    ℝ by 

                ∈  
1

2   
,
1

2 
 ,    

2  2      1
 

lim
    

      1      1  lim
    

 

   2         2    1 

     2
         2    1 

lim
         

    2       

as RH and LH limits both equal   2             2
       

This shows g is continuous on   ,   
g is even differentiable on   ,  

Similar argument looking at RH and LH Newton quotients at 2  

Step 2:
Define

       
  sin       1  ,    

1  ,                    

    1,  <  
Clearly f is continuous everywhere and differentiable everywhere except zero. "Where the clearly 
statement does not apply, because it's not clear."

      lim
   

         

 

lim
    

    1  1

 
  

Newton's Method Accuracy
November-26-10
10:35 AM
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lim
    

    1  1

 
  

lim
    

  sin       1  1

 
 lim

   
 sin       

So        

  2     2    sin      1  1 ∀ 
   2     2    2     2   

Take    1

      
     

      
 1  

1

2 
 

1

2

      
     

      
 

1

2
 

1

2 
 

1

 
Could prove by induction

   
1

2 
 ∀ 

Therefore     but       
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Start with
         
y is strictly decreasing so it is invertible
         
To take the derivative:
1             

What about
         

      1
Don’t know if it's differentiable or a function

Can use the implicit differentiation theorem, but don't know it.

* Implicit Differentiation
November-29-10
10:49 AM
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Say E is a finite set of n elements. Then E ↔ {1, 2, … , n}

f : E   {1, 2, …, n}
i.e. there is a bijection (1-1, onto function)

Example of countable sets
ℕ
2ℕ 
ℤ
ℕ  ℕ,       ℚ

Countable sets are those which can be put in an ordered list because if E is countable, then there is a 
bijection  :ℕ   so   {    }   

 

Conversely, if   {  }   
 then there is a bijection 

 :   ℕ
         

Bijection
A function that is 1-1 and onto.

Finite Set
A set E is finite if there is a bijection
 :     {1, 2, … ,  }
for some unique n.

The cardinality of E = n.

Countable
Say a set E is countable if there is a bijection
 :   ℕ        : ℕ    

Any two countable sets have the same cardinality
If E, F are countable, there is a bijection
 :    

Uncountable
Say E is uncountable if E is not countable or finite.

Cardinality 
November-29-10
10:56 AM
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Countable set E: There is a bijection
 : ℕ   

         

 
 were        

Eg.   ℚ

Suppose          

 

           
 

2 
,   

 

  
 

      

 

   

 { :  ∈              }

Notice   ∈              

So ℚ ⊆  

          

 

   

  
2 

2 

 

   

 2 

R \ X has no intervals since every interval has to contain a rational number

Show (0, 1) is uncountable

Cantor Diagonal Argument

Suppose (0, 1) is countable, say   , 1         

 

Write out decimal expansion for each number, pick the expansion terminating with all 9's if there is 
a choice
    .   , ,   , ,   , …
    .   , ,   , ,   , …

    .   , ,   , ,   , …

Now define  ∈   , 1 as follows:
   .       

     
       ,   

       ,   

 ∉        

 

Therefore   , 1         

 

So (0, 1) is not countable

Unaccountability of R

 : ℝ  ℕ
If ℝ is countable there is a bijection

There is a bijection: ℝ    , 1 

     arctan x 

 :ℝ    
 

2
,
 

2
           

     
1

 
arctan  

1

2
 : ℝ    , 1                
        ℕ    , 1               
This contradicts the fact that (0, 1) is uncountable
So ℝ is uncountable. 

Proof of Fact (Union of two countable sets is countable)
If A, B are countable, then

         

 

Look at  ∪    ∪    A 

(just start counting a after counting all the elements of (B\A)
If B\A is finite, then AUB is an exercise

If B\A is not a finite set then say   A         

 

Define bijection:
 :  ∪    A  ℕ
   2  1

   2 

Corollary
The irrationals are uncountable. Since rationals are countable and R is uncountable. 

Proof of Theorem (Countable/Finite iff onto from N)
⇒
Follows directly from the definition of countable/finite
⇐
Proof in textbook (take a function which is the onto function with every term that is a duplicate 
removed)

Fact
A union of two countable sets is countable. 

Theorem
E is either countable or finite iff there is a 
map  :ℕ   that is onto

Corollary
If     ℕ is 1-1 then E is either countable 
or finite

Corollary
If  ⊆  and B is countable then A is either 
countable or finite
If  ⊆  and A is uncountable then B is 
uncountable

Irrationals
December-01-10
10:40 AM
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Corollary
If     ℕ is 1-1 then E is either countable or finite
Proof:
Define  : ℕ    as follows:
    ∈        , there is a unique  ∈  with     = n because h is 1-1
Then define g(n) = e

If  ∉        , then pick   ∈  and define        

So g is an onto map, and therefor E is either countable or finite.

If  ⊆  and B is countable then A is either countable or finite1.
If  ⊆  and A is uncountable then B is uncountable2.

Corollary

Proof
1. B countable there is a bijection   ℕ   
Define   ℕ    by          if     ∈  , and if     ∉  then define        ∈  
 :ℕ    is onto therefore, A is countable or finite

If B is countable, then A is countable or finite but A is not countable or finite, so B is 
uncountable.

2.
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Theorem
E is either countable or finite iff there is a map 
 : ℕ   , which is onto.

Corollary
A countable union of countable or finite sets is 
either countable or finite. 

In other words: If   ,   1, 2, 3, … are either 

countable or finite, then 

      

 

   

   ∈               1, 2, 3, …  

Then A is either countable or finite
or more generally, 
if   ,  ∈  are either countable or finite and I 
is countable then 

   

 

 ∈ 

 { ∈              ∈  }

Proof of Corollary
Each   is either countable or finite, so there is an onto map   : ℕ    

Define 

 : ℕ  ℕ     

 

   

   ,         ∈   ⊆  

h is onto, because if  ∈  , then  ∈   for some j and since   : ℕ    is onto there is some k ∈ ℕ

with        ⇒    ,     

Let  :ℕ  ℕ  ℕ is a bijection
Take      : ℕ   , which is onto
So the union is either countable or finite. 

Example
Algebraic numbers are countable, and therefore Transcendental numbers are uncountable
Proof
Algebraic numbers are numbers which satisfy polynomials with integer coefficients and by the 
minimal polynomial of an algebraic number, we mean the polynomial of minimal degree, with GCD 
of the coefficients equal to 1, and a positive leading coefficient. 
                  ,   ∈ ℤ,     , gcd   , … ,     1

   algebraic numbers whose minimal polynomials has degree n

               

 

   

It's enough to prove each   is countable

  ⊆ {                                            }     

 

 ∈  

Where   = all integer polynomials of degree n and   = roots of polynomial p

Notice each   is a finite set of at most n elements. 

So it's enough to prove each   is countable, because then each   will be contained in a countable 
union of finite sets.

Define a map   :    ℤ   by                    , … ,   ,    ∈ ℤ   

Finally, have to prove ℤ   is countable. By induction on n.
ℤ  ℤ is countable, so ℤ   is countable for n = 1

Assume ℤ is countable and prove ℤ   

ℤ    ℤ  ℤ
Let  : ℤ  ℕ be a bijection
and  : ℤ  ℕ be a bijection

Define   ℤ    ℕ  ℕ by    ,         ,      ,  ∈ ℤ ,  ∈ ℤ

h is a bijection, 
     : ℕ  ℕ  ℕ be a bijection then       ℤ    ℕ is a bijection
This proves ℤ   

So   is countable
So   is countable
So the algebraic numbers are countable. 

ℤ , ℕ are countable
What about "ℤ " 
Now look at ℕℕ      ,   ,   , …  :   ∈ ℕ  { :ℕ  ℕ}

The set of all functions from ℕ to ℕ 

{ , 1}ℕ ⊆ ℕℕ

{ , 1}ℕ      ,   , …     ∈ { , 1} 

   ,   ,   , …  ∈ { , 1}ℕ ↔    2
  

 

   

So { , 1}ℕ ↔ [ , 1]

So { , 1}ℕ is uncountable. 

Furthermore, { , 1}ℕ ↔                ℕ
   ,   ,   , …  ↔          ∈          1

When there are finite elements in a set: {1, 2, … ,  } has 2 elements
So 2ℕ  { , 1}ℕ

So 2ℕ is the next cardinality up, in fact the cardinality of ℝ

Cardinality and Unions
December-03-10
10:30 AM
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Assignments 20
Midterm 30
Final 50

Office Hours
Monday Dec 20 2:30-4:30
Friday Dec 17 1-3
or send an email to make an appointment

Previous Exam
2 proofs out of notes
4 definitions

Do some derivatives
Define BWT and EVT
Define Differentiability
Deal with a function defined differently on min/max
Find global and local extrema
Can you make a function diff at 0
State MVT
Increasing/Decreasing Concavity + Sketch graph
Invertability of Function and derivatives (application)

Suppose
lim
   

      

and       ≤   ∀ 
prove
lim
   

          

             

        

    

 
      

        
and             ,        1 

Exam
December-06-10
10:44 AM
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