Vector Properties

January-05-11
11:31 AM
Vector in the plane
An entity with direction and magnitude. It is viewed as an arrow having a starting position and a terminating position.

Equality

Two arrows are equal if they have the same magnitude and direction

Positions vs. Vectors in \mathbb{R}^{2} Every vector is identified with a point P so that the arrow pointing from O to P is equal to it.

Chapter 1

1.1 Introduction to Vector Spaces (Linear Spaces)

The Plane \mathbb{R}^{2}
Coordinates:
We draw a horizontal line and a vertical line intersecting a point 0 at right angles. We then give the lines directions. (Arrow on the line indicates positive direction) Further, we introduce scales. The two lines should use the same scale.
A position P on the plane (or a point) can be identified by two real quantities: its scale numbers when we draw perpendicular lines from P to the horizontal and vertical lines (coordinate axis). The numbers are represented as a tuple $\mathrm{P}=(\mathrm{x}, \mathrm{y})$ with $x, y \in \mathbb{R}$

The plane is the set of all positions on the plane, and can be identified with the set of all pairs of real numbers.
$\mathbb{R}^{2}:=\left\{\left(x_{1}, x_{2}\right) \mid x_{1}, x_{2} \in \mathbb{R}\right\}$
On \mathbb{R}^{2} we define addition:
Algebraically: $\left(x_{1}, x_{2}\right)+\left(y_{1}, y_{2}\right)=\left(x_{1}+y_{1}\right)+\left(x_{2}+y_{2}\right)$ Geometrically: Form a parallelogram between the two points and the origin. The 4th point is the sum.

In the diagram: $\mathrm{x}=\mathrm{y}$
Vector addition using arrows:
To add the arrows x and y, start with the arrow x from point A to point B. Then place y on the tip of x so it goes from point B to C. Then $x+y$ is the arrow going from A to C

Scalar multiplication for the plane \mathbb{R}^{2}
Let $x=\left(x_{1}, x_{2}\right)$. Let $\lambda \in \mathbb{R}$ (a scalar)

Then $\lambda x=\left(\lambda x_{1}, \lambda x_{2}\right)$
The product λx is called the scalar multiplication of the vector x by the scalar λ Vector addition and scalar multiplication on \mathbb{R}^{2} satisfy 10 properties.

Properties of Vector Addition and Multiplication
(-1) $\quad \forall x, y \in \mathbb{R}^{2}, x+y \in \mathbb{R}^{2}$ - Closed under addition
(0) $\quad \forall \lambda \in \mathbb{R}, x \in \mathbb{R}^{2}, \lambda x \in \mathbb{R}^{2}$
(1) $x+y=y+x \forall x, y \in \mathbb{R}^{2}$ - Commutativity of addition
(2) $(x+y)+z=x+(y+z) \forall x, y \in \mathbb{R}^{2}$ - Associativity of addition
(3) $\exists 0=(0,0)$ so that $0+x=x \forall x \in \mathbb{R}^{2}$ - Additive identity
(4) $\quad \forall x \in \mathbb{R}^{2}, \exists y \in \mathbb{R}^{2}$ such that $x+y=0$ - Additive inverse
(5) $1 \mathrm{x}=\mathrm{x} \forall x \in \mathbb{R}^{2}$
(6) $(\lambda \mu) x=\lambda(\mu x) \forall \lambda, \mu \in \mathbb{R}, x \in \mathbb{R}^{2}$
(7) $\quad \lambda(x+y)=\lambda x+\lambda y \forall \lambda \in \mathbb{R}, x, y \in \mathbb{R}^{2}$
(8) $(\lambda+\mu) x=\lambda x+\mu x \forall \lambda, \mu \in \mathbb{R}, x \in \mathbb{R}^{2}$

Vector Spaces

January-07-11
11:32 AM

Vector Space

The abstract definition of a vector space over a field.
Let V be a set (of objects) and F a field
Let there be two operations +, scalar multiplication, satisfying the ten properties of vector addition and scalar multiplication.

Uniqueness of Zero Vector

Let V be a vector space over F
Then \exists one and only one $0 \in V$ such that $x+0=x$ We call the unique 0 the zero vector of V.

Uniqueness of Additive Inverses

Let V be a vector space over F
Then for every $\mathrm{x} \in \mathrm{V}, \exists$ one and only one $\mathrm{y} \in \mathrm{V}$ such that $x+y=0$.
This y is denoted - x , it is the additive inverse of x

Cancellation Law
If $x+y=x+z$ then $y=z$

Properties of a Vector Space
(-1) $\forall x, y \in V, x+y \in V$ - Closed under addition
(0) $\forall \lambda \in F, x \in V, \lambda x \in V$
(1) $x+y=y+x \forall x, y \in V$ - Commutativity of addition
(2) $(x+y)+z=x+(y+z) \forall x, y \in V$ - Associativity of addition
(3) $\exists 0 \in V$ so that $0+x=x \forall x \in V$ - Additive identity
(4) $\forall x \in V, \exists y \in V$ such that $x+y=0$ - Additive inverse
(5) $1 \mathrm{x}=\mathrm{x} \forall x \in V$
(6) $(\lambda \mu) x=\lambda(\mu x) \forall \lambda, \mu \in F, x \in V$
(7) $\lambda(x+y)=\lambda x+\lambda y \forall \lambda \in F, x, y \in V$
(8) $(\lambda+\mu) x=\lambda x+\mu x \forall \lambda, \mu \in F, x \in V$

Once V (and F) are given two operations satisfying the ten properties, we call it a vector space over F

Examples:
Let S be any non-empty set. Let $V=\{f: S \rightarrow F\}$
Define + and scalar multiplication on V by
for $f, g \in V$,

$$
f+g: S \rightarrow F
$$

$(f+g)(s)=f(s)+g(s) \forall s \in S$
for all $f \in V, \lambda \in F$
$\lambda f: S \rightarrow F$
$(\lambda f)(s)=\lambda f(s) \forall s \in S$
Then V is a vector space over F
Proof of Uniqueness of 0
One of the ten axioms calls for the existence of a special element $0 \in \mathrm{~V}$ satisfying $x+0=x \forall \mathrm{x} \in \mathrm{V}$
Let $0_{1}, 0_{2} \in V$ be two such elements.
By the properties of $0_{1}: 0_{2}+0_{1}=0_{2}$
By the properties of $0_{2}: 0_{1}+0_{2}=0_{1}$
Since addition is commutative, $0_{1}+0_{2}=0_{2}+0_{1}=0_{2}=0_{1}$.
Proof of Uniqueness of Additive Inverse
Let y_{1} and y_{2} be two y such that $\mathrm{x}+\mathrm{y}=0$
$x+y_{1}=0 \Rightarrow x+y_{1}+y_{2}=y_{2} \Rightarrow y_{1}=y_{2}$

Proof 0x = 0
$0 x+0 x=(0+0) x=0 x \Rightarrow 0 x+0 x-0 x=0 x-0 x \Rightarrow 0 x=0$
Proof -x = (-1) \mathbf{x}
$x+(-1) x=(1) x+(-1) x=(1-1) x=0 x=0$
$x+(-1) x=0 \Rightarrow x+(-1) x-x=0-x \Rightarrow(-1) x=-x$ ■

Observations

For \mathbb{R}^{2}, let $P=\left(x_{1}, x_{2}\right), Q=\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2}$
The arrow (vector), x , starting from P , pointing and ending at Q , is equal to:
$x=Q-P$
Proof: By the parallelogram law, $P+x=Q \Rightarrow x=Q-P$
The midpoint between P and Q is $\frac{1}{2}(P+Q)$
The point along the line $P, Q 1$ unit away from P and 2 units away from Q is $\frac{2}{3} P+\frac{1}{3} Q$

Proof of cancellation law
$x+y=x+z \Rightarrow-x+x+y=-x+x+z \Rightarrow 0+y=0+z \Rightarrow y=z$

* Set Theory

January-10-11
3:32 PM

Union

Then their union $A \cup B$ is defined by $A \cup B:=\{x: x \in A$ or $x \in B\}$
Let $\left\{A_{i}: i \in I\right\}$ be a family of sets where the index set $I \neq \emptyset$ Then the union
$\bigcup_{i \in I} A_{i}=\left\{x: \exists i \in I, x \in A_{i}\right\}$

Intersection

Similarly, we can define $A \cap B$ and $I_{i \in I} A_{i}$ $A \cap B:=\{x: x \in A$ and $x \in B\}$
$\left.\right|_{i \in I} A_{i}:=\left\{x: x \in A_{i} \forall i \in I\right\}$

Mapping

Let A and B be sets. A mapping $f: A \rightarrow B$ (A is called the domain \& B is the co-domain of f) is a relation of $A \times B$ satisfying:
i) If (a, b_{i}) and (a, b_{2}) are in the relation, then $b_{1}=b_{2}$
ii) $\forall \mathrm{a} \in \mathrm{A}, \exists \mathrm{b} \in \mathrm{B}$ so that (a, b) is in the relation.

The unique b for the given a is marked $f(a)$

Let A and B be sets.
Union
Example: Let
$\left\{\left(\frac{1}{n}, \infty\right): n \in \mathbb{N}\right\}$
Then
$\bigcup_{n \in \mathbb{N}}\left(\frac{1}{n}, \infty\right)=(0, \infty)$
Need to show
$\bigcup_{n \in \mathbb{N}}\left(\frac{1}{n}, \infty\right) \subseteq(0, \infty)$ and $(0, \infty) \subseteq \bigcup_{n \in \mathbb{N}}\left(\frac{1}{n}, \infty\right)$
As for the first inclusion, we see that for each $\mathrm{n} \in \mathbb{N},\left(\frac{1}{n}, \infty\right) \subseteq(0, \infty)$, therefore their union, $\cup_{n \in \mathbb{N}}\left(\frac{1}{n}, \infty\right)$ is contained in $(0, \infty)$
For the second inclusion: Let $x \in(0, \infty)$ be given. $x>0$ and $x \in \mathbb{R}$. Then $\exists \mathrm{n} \in \mathbb{N}$ so that $\frac{1}{n}<x$. In which case $x \in\left(\frac{1}{n}, \infty\right)$ so $x \in \mathrm{U}_{n \in \mathbb{N}}\left(\frac{1}{n}, \infty\right)$
So
$\int_{n \in \mathbb{N}}\left(\frac{1}{n}, \infty\right)=(0, \infty)$

The Axiom of Choice

Let I be a non-empty (index) set.
Let $\left\{X_{i}: i \in I\right\}$ be a family of non-empty sets.
Consider the set
$\bigcup_{i \in I} X_{i}$
The there exists a mapping
$f: I \rightarrow\left(\int_{i \in I} X_{i}\right.$
satisfying $f(i) \in X_{i}$

Accepting the axiom of choice leads to :
Every vector space has a basis

Subspaces

January-12-11
11:30 AM

Subspace

Let V be a vector space over F. A subset $W \subseteq V$ is called a subspace of V if when the operations (addition, scalar multiplication) on V are restricted to W, W is again a vector space (over F).

Proposition

A subset $\mathrm{W} \subseteq \mathrm{V}$ is a subspace iff
i. 0 of V is in W
ii. $w_{1}, w_{2} \in W \Rightarrow w_{1}+w_{2} \in W$
iii. $\lambda w \in W \forall \lambda \in F, w \in W$

Note: i is sometimes replaced by $W \neq \emptyset$
Theorem
Let V be a vector space.
Let $\left\{W_{i}: i \in I\right\}$ be a family of subspaces of V , when $I \neq \emptyset$. Then
$\left.\right|_{i \in I} \mid W_{i}$
is again a subspace (of V)

Example
Let $V=\mathbb{R}^{2}$ and let $W=\{(x, 0) \mid x \in \mathbb{R}\}$
Then all 10 axioms are satisfied by W, so W is a subspace of \mathbb{R}^{2}
The subset
$S=\{(x, y) \mid x>0, y>0\}$
is not a vector space under the operations of \mathbb{R}^{2} because there is no 0 and no additive inverse for any element.

Example
Let the space be $\mathcal{F}((-2,3), \mathbb{R})$
The set of all functions $f:(-2,3) \rightarrow \mathbb{R}$
Let W bet the subset of all the continuous functions.
i. $0: f(x)=0$
ii. If f and g are continuous, then $f+g$ is continuous.
iii. If f is continuous, then λf is continuous for $\lambda \in \mathbb{R}$

Let S be the set of all functions of $\mathcal{F}((-2,3), \mathbb{R})$ which vanish at -1 and 1 i.e. $f \in \mathcal{F}((-2,3), \mathbb{R})$ and $f(-1)=0, f(1)=0$

Then S is a subspace $0: f(x)=0$, if $f, g(-1)=f, g(1)=0$ then $f+g(-1)=f+g(1)=0$ and $\lambda f(-1)=\lambda f(1)=0$

Proof of Theorem

i. $\forall \mathrm{i} \in \mathrm{I}$, because W_{i} is a subspace, $0 \in W_{i}$. So $0 \in \|_{i \in I} W_{i}$
ii. Suppose $w_{1}, w_{2} \in \|_{i \in I} W_{i}$ are given.

Consider $w_{1}+w_{2} . \forall i \in I, w_{1} \in W_{i}$ and $w_{2} \in W_{i}$ so $w_{1}+w_{2} \in W_{i}$ So $w_{1}+w_{2} \in W_{i} \forall i$, so $w_{1}+w_{2} \in \|_{i \in I} W_{i}$
iii. Suppose $w \in \|_{i \in I} W_{i}$ and $\lambda \in F$ Consider $\lambda w . \forall i \in I, w \in W_{i}$ so $\lambda w \in W_{i}$

$$
\text { So } \lambda w \in W_{i} \forall i \text {, so }\left.\lambda w \in\right|_{i \in I} W_{i}
$$

Linear Combinations

January-14-11
11:28 AM

Linear Combination

Let $S \subseteq V$. Suppose $S \neq \emptyset$.
A vector $v \in V$ is said to be a linear combination of S if there exist finitely many vectors of S, say $s_{1}, s_{2}, s_{3} \ldots s_{n} \in$ and scalars $\lambda_{1}, \lambda 2, \ldots, \lambda n \in F$ so that:
$v=\lambda_{1} s_{1}+\lambda_{2} s_{2}+\cdots+\lambda_{n} s_{n}$

Span

$\operatorname{Span}(S)=\{v \in V \mid v$ is a lin.comb.of vectors of $S\}$
$\operatorname{Span}(\varnothing)=\{0\}$ by convention

Notation: Matrices

$M_{n \times m}(F)$ means an n by m matrix with elements in F

Proposition

Let V be a vector space, $\mathrm{S} \subseteq \mathrm{V}$ and $\mathrm{S} \neq \varnothing$
Let $\operatorname{Span}(S)=\{v \in V \mid v$ is a lin.comb.of vectors of $S\}$

$$
=\left\{\sum_{i=1}^{n} \lambda_{i} s_{i} \mid s_{i} \in S, \lambda_{i} \in F, n \in \mathbb{N}\right\}
$$

Then $\operatorname{Span}(S)$ is the subspace of V generated by S

If V is a vector space and $S \subseteq V$, then there exists a unique smallest subspace of V containing S, say
$W=| |_{i \in I} W_{i}$
Where $\left\{W_{i} \mid i \in I\right\}$ is the set of all subspaces of V containing S .
We call W the subspace generated by S .
(Unique smallest because intersection of all subspaces containing S)
Example
For $M_{2 \times 2}(\mathbb{R})$ and $S=\left\{\left|\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right|,\left|\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right|,\left|\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right|\right\}$
Then $\left|\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right| \in M_{2 \times 2}(\mathbb{R})$ is not a linear combination of vectors in S because
$\lambda_{1}\left|\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right|+\lambda_{2}\left|\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right|+\lambda_{3}\left|\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right|=\left|\begin{array}{ll}\lambda_{1} & \lambda_{2} \\ \lambda_{2} & \lambda_{3}\end{array}\right| \neq\left|\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right|$
as that would require $\lambda_{2}=2$ and $\lambda_{2}=3$
Whereas $\left|\begin{array}{cc}1 & 10 \\ 10 & 7\end{array}\right|$ is a linear combination of vectors of S

Proof of Proposition (outline)

1. Show that $\operatorname{Span}(S)$ is truly a subspace of V e.g. to show that it is closed under addition: Let $v_{1}, v_{2} \in \operatorname{Span}(S)$ be given.
Consider $v_{1}+v_{2}$
$v_{1}=\lambda_{1} s_{1}+\lambda_{2} s_{2}+\cdots+\lambda_{n} s_{n}$
$v_{2}=\lambda_{n+1} s_{1}+\cdots+\lambda_{n+m-1} s_{n+m-1}+\lambda_{n+m} s_{n+m}$
For some $s_{1}, \ldots, s_{n+m} \in S$ and $\lambda_{1}, \ldots, \lambda_{n+m} \in F$
$v_{1}+v_{2}=\sum_{i=1}^{n+m} \lambda_{i} s_{i} \in \operatorname{Span}(S)$
2. Observe that $\operatorname{Span}(S) \supseteq \mathrm{S}$

Proof: Let $s \in S$ be given. Then $s=1 \mathrm{~s}$
3. Let W_{0} be any given subspace of V which contains S . We shall show $W_{0} \supseteq \operatorname{Span}(S)$

Proof:
For that purpose, let $v \in \operatorname{Span}(S)$ be given.
Then by definition, there exists vectors $S_{i} \in S, \lambda_{i} \in F$ so that $v=\lambda_{1} s_{1}+\cdots+\lambda_{n} s_{n}$. Now because $S \subseteq W_{0}, s_{1}, \ldots s_{n} \in W_{0}$ Since W_{0} is closed under scalar multiplication and vector addition, $v=\lambda_{1} s_{1}+\cdots+\lambda_{n} s_{n} \in W_{0}$

Example

Let the space be $\mathcal{P}(\mathbb{C})$ - polynomials with complex coefficients, and let
$S=\left\{1, x^{2}, x^{4}, x^{6}, \ldots, x^{2 k}, \ldots\right\}$
Then $\operatorname{Span}(\mathrm{S})=$ the space of all polynomials with even terms.
$\operatorname{Span}\left(1, x, x^{2}, x^{3}\right\}=\mathcal{P}_{3}(\mathbb{C})$
Remark
Let V be a vector space. If S is a subspace of V , then $\mathrm{Span}(\mathrm{S})=\mathrm{S}$

Linear Dependence/Span

January-17-11
11:32 AM

Linear Dependence

Let V be a vector space.
Let $v_{1}, v_{2}, \ldots, v_{n}$ be a finite list of vectors of V
We say the list is linearly dependent if one of the following two equivalent statements is satisfied:

1. There is a $v_{i_{0}}$ which is in the span $\left\{v_{i} \mid i \neq i_{0}\right\}$
2. $a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{n} v_{n}=0$ for some list of scalars $a_{1}, a_{2}, \ldots, a_{n}$ not all 0

Linear Dependence on Subsets

A subset S of a vector space V is linearly dependent if for some distinct finite list of vectors extracted from S, the list is linearly dependent.

Corollary to Span($\}$) $=\{0\}$
In a vector space, any subset S which has 0 in it is linearly dependent.

Example
Is $(1,2,3) \in \operatorname{Span}\{(1,0,0),(0,1,1),(0,1,2)\}$ in \mathbb{R}^{3} ? Yes
$(1,2,3)=x_{1}(1,0,0)+x_{2}(0,1,1)+x_{3}(0,1,2)$
System of equations:
$x_{1}=1$
$x_{2}+x_{3}=2$
$x_{2}+2 x_{3}=3$
Solving the above, we first bring it to the reduced system
$x_{1}=1$
$x_{2}+x_{3}=2$
$x_{3}=1$
From that we read the solutions in reverse order
$x_{3}=1$
$x_{2}=2-x_{3}=2-1=1$
$x_{1}=1$
So there is a solution, $x_{1}=x_{2}=x_{3}=1$

Example

Is it true that $\operatorname{Span}\{(1,0,0),(2,1,0),(3,1,0)\}=\mathbb{Z}^{3}$?
Ans: Equivalently we are asking: Is every given $(a, b, c) \in \mathbb{R}^{3}$ in $\operatorname{Span}\{(1,0,0),(2,1,0),(3,1,0)\}$?
We solve:
$(a, b, c)=x_{1}(1,0,0)+x_{2}(2,1,0)+x_{3}(3,1,0)$ for all possible $x_{1}, x_{2}, x_{3} \in \mathbb{Z}_{5}$
$x_{1}+2 x_{2}+3 x_{3}=a$
$x_{2}+x_{3}=b$
$0=c$
Clearly, when $c \neq 0$, there is no solution

Example

Consider the space of differentiable functions from \mathbb{R} to \mathbb{R}. Those satisfying the differentiable
equation $f^{\prime \prime}=0$ are given by $f(x)=a x+b$ where a, b, are constants.
Using the language of span, the set of all solutions is $\operatorname{Span}\{\mathrm{x}, 1\}$
The solutions to $f^{\prime \prime}=-f$ is $\operatorname{span}\{\sin x, \cos x\}$
Proof of Equivalence of Linear Dependence definition
Suppose that 2 holds true.
Then there are scalars a_{1}, \ldots, a_{n} not all zero so that
n
$\sum_{i=1} a_{i} v_{i}=0$
Say that $a_{i_{0}} \neq 0$ Now have
$a_{i_{0}} v_{i_{0}}+\sum_{\substack{i=1 \\ i \neq i_{0}}}^{n} a_{i} v_{i}=0 \Rightarrow v_{i_{0}}=a_{i_{0}}^{-1}\left(-\sum_{\substack{i=1 \\ i \neq i_{0}}}^{n} a_{i} v_{i}\right)=\sum_{\substack{i=1 \\ i \neq i_{0}}}^{n}\left(-\frac{a_{i}}{a_{i_{0}}}\right) v_{i}$
So $v_{i_{0}} \in \operatorname{span}\left\{v_{i} \mid i \neq i_{0}\right\}$
Suppose statement 1 holds true. Show 2 as an exercise.
Example
The list of vectors $\left|\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right|,\left|\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right|,\left|\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right|,\left|\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right|,\left|\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right|$ in $M_{2 \times 2}(\mathbb{R})$ is linearly dependent.
Because (using statement 1 with $i_{0}=5$)

or

Where $a_{5} \neq 0 b$
Example
Let the space be $\mathcal{P}(\mathbb{R})$ and let S be the set of all even polynomials. (even means $p(-x)=p(x)$)
It is linearly dependent because $v_{1}=x^{2}, v_{2}=2 x^{2}$
Example
Let V be a vector space.
Let $S=\{0\}$
We see that 2 holds for $v_{1}=0$ (e.g. $1 v_{1}=0$)
So S is linearly dependent.
$v_{1}=\sum_{i \neq 1} v_{i}=\sum_{i \in \emptyset}=0$
by convention, so $\operatorname{Span}(\varnothing)=\{0\}$

Linear Independence

January-21-11
11:29 AM
Linear Independence
A subset S of a vector space V is linearly independent if it is not linearly dependent.

Example
In $\mathbb{R}^{3}, S=\{(1,0,0),(0,1,0),(0,0,1)\}$ is linearly independent
Proof:
We need to show that the list $v_{1}=(1,0,0), v_{2}=(0,1,0), v_{3}=(0,0,1)$ is not linearly dependent. Suppose $a_{1}, a_{2}, a_{3} \in \mathbb{R}$ and let $a_{1} v_{1}+a_{2} v_{2}+a_{3} v_{3}=0$
$a_{1}(1,0,0)+a_{2}(0,1,0)+a_{3}(0,0,1)=\left(a_{1}, a_{2}, a_{3}\right)=(0,0,0)=0$ iff $a_{1}=a_{2}=a_{3}=0$.
So S is linearly independent.
Example
In \mathbb{Z}_{5}^{3}, is $S=\left\{v_{1}=(1,2,3), v_{2}=(2,3,4), v_{3}=(3,4,0)\right\}$ linearly dependent?
Ans: Let $a_{1}, a_{2}, a_{3} \in \mathbb{Z}_{5}$ and that
$a_{1}(1,2,3)+a_{2}(2,3,4)+a_{3}(3,4,0)=(0,0,0)$
$a_{1}+2 a_{2}+3 a_{3} \equiv 0(\bmod 5)$
$2 a_{1}+3 a_{2}+4 a_{3} \equiv 0(\bmod 5)$
$3 a_{1}+4 a_{2} \equiv 0(\bmod 5)$
$\left|\begin{array}{llll}1 & 2 & 3 & 0 \\ 2 & 3 & 4 & 0 \\ 3 & 4 & 0 & 0\end{array}\right|$ subtract multiples of 1 st line from 2 nd and 3 rd lines
$\left|\begin{array}{llll}1 & 2 & 3 & 0 \\ 0 & 4 & 3 & 0 \\ 0 & 3 & 1 & 0\end{array}\right|$ multiply 2 nd line by $4^{-1}=4$ and 3 rd line by $3^{-1}=2$
$\left|\begin{array}{llll}1 & 2 & 3 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 1 & 2 & 0\end{array}\right|$ subtract 2 nd line from 3 rd line, and twice 2 nd line from first
$1 \begin{array}{llll}1 & 0 & 4 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0\end{array}$
Solution:
$a_{3} \in \mathbb{Z}_{3}$ is arbitrary (a free parameter)
$a_{2}=-2 a_{3}=3 a_{3}$
$a_{1}=-4 a_{3}=a_{3}$
So there is a solution with $a_{3} \neq 0$, so yes, S is linearly dependent.
Example
Let v be a vector space over \mathbb{R}
Suppose that $\left\{v_{1}, v_{2}\right\}$ is linearly independent.
Show that the set $\left\{2 v_{1}+3 v_{2}, 4 v_{1}-5 v_{2}\right\}$ is linearly independent.
Proof:
Let $a_{1}, a_{2} \in \mathbb{R}$ and that $a_{1}\left(2 v_{1}+3 v_{2}\right)+a_{2}\left(4 v_{1}-5 v_{2}\right)=0$
$\left(2 a_{1}+4 a_{2}\right) v_{1}+\left(3 a_{1}-5 a_{2}\right) v_{2}=0$
Because v_{1}, v_{2} are linearly independent,
$2 a_{1}+4 a_{2}=0$
$3 a_{1}-5 a_{2}=0$
$2 a_{1}+4 a_{2}=0$ (retained)
$\left(-\frac{3}{2} 4-5\right) a_{2}=0$
So $a_{2}=0$, and therefore $a_{1}=0$. So $\left\{2 v_{1}+3 v_{2}, 4 v_{1}-5 v_{2}\right\}$ is linearly independent.

Gaussian and Jordan Eliminations
January-24-11
11:31 AM

Example: Gaussian Elimination

Solve
$2 a_{1}+2 a_{2}+4 a_{3}=2$
$\left\{\begin{array}{c}a_{1}-a_{2}+7 a_{3}=5 \\ a_{1}+8 a_{3}=0\end{array}\right.$
$\left\{\begin{array}{c}2 a_{1}+3 a_{2}+4 a_{3}=2 \\ -\frac{5}{2} a_{2}+5 a_{3}=4 \\ -\frac{3}{2} a_{2}+6 a_{3}=-1\end{array}\right.$
$\left\{\begin{array}{c}2 a_{1}+3 a_{2}+4 a_{3}=2 \\ -\frac{5}{2} a_{2}+5 a_{3}=4 \\ 3 a_{3}=-\frac{17}{5}\end{array}\right.$
End of Gaussian Elimination, write out the general solution:
$a_{3}=-\frac{17}{15}$
$a_{2}=\frac{4-5 a_{3}}{-\frac{5}{2}}=\frac{8-10\left(-\frac{17}{15}\right)}{-5}=-\frac{58}{15}$
$a_{3}=\frac{2-3 a_{2}+4 a_{3}}{2}=\frac{2-3\left(-\frac{58}{15}\right)-4\left(-\frac{17}{15}\right)}{2}$

Jordan Elimination Steps

Used to reduce the system further

1. Multiply the lines to set the 1 st non-zero coefficients equal to 1
2. Eliminate the variables from the lines above each 1

Continuing from the system above:
$\left\{\begin{array}{c}a_{1}+\frac{3}{2} a_{2}+2 a_{3}=1 \\ a_{2}-2 a_{3}=-\frac{8}{5} \\ a_{3}=-\frac{17}{15}\end{array}\right.$
$\left\{\begin{array}{c}a_{1}+5 a_{3}=\frac{17}{5} \\ a_{2}-3 a_{3}=-\frac{8}{5} \\ a_{3}=-\frac{17}{15}\end{array}\right.$
$\left\{\begin{array}{c}a_{1}=\frac{136}{15} \\ a_{2}=-5 \\ a_{3}=-\frac{17}{15}\end{array}\right.$
Why no work? :(

Augmented Matrix

$$
\left\{\begin{array}{c}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\cdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{m}=b_{n}
\end{array}\right.
$$

Represented by

$$
\left|\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\ldots & & & \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right|\left|\begin{array}{c}
b_{1} \\
b_{2} \\
\ldots \\
b_{m}
\end{array}\right|
$$

Set Theory Cont.*

January-24-11
3:34 PM
Let X and Y be sets.
Injective
A function $f: X \rightarrow Y$ is injective (one-to-one) if $x_{1} \neq x_{2} \Rightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)$ or alternatively
$f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}=x_{2}$

Smaller Cardinality

A set X is said to be of smaller cardinality than set Y if there is an injective map $f: X \rightarrow Y$

Surjective

A function $f: X \rightarrow Y$ is surjective (or onto) if for all $y \in Y$ there exists $x \in X$ so that $f(x)=y$

Proposition

These statements are equivalent:
For two sets X, Y

1. There is an injective function $f: X \rightarrow Y$
2. There is a surjective function $g: Y \rightarrow X$

Equal Cardinality

Two set X, Y are of equal cardinality if there exists $f: X \rightarrow Y$ which is injective and surjective (bijective)

Theorem (Bernstein)
Let X and Y be sets. If there exists an injective $f: X \rightarrow Y$ and an injective $g: X \rightarrow Y$ there exists a
bijective $h: X \rightarrow Y$
Rephrase: If $|X| \leq|Y|,|Y| \leq|X|$, then $|X|=|Y|$

Immediate clear is that if X is finite with n distinct and Y has fewer elements than X then no $f: X \rightarrow Y$ can be injective.

Example of cardinality differences:
$[0,4]$ has a smaller cardinality than $[0,1]$
$f:\lfloor 0,4\rfloor \rightarrow\lfloor 0,1\rfloor, x \rightarrow \frac{1}{4} x$
Similarly, $[0,1]$ has smaller cardinality than $[0,4]$
Proof of Proposition
Suppose we have a surjective $g: Y \rightarrow X$
For each $x \in X$, consider $S_{x}=\{y \in Y: g(y)=x\} \subseteq Y$
As g is surjective, each S_{x} is non-empty. Moreover, $x_{1} \neq x_{2}$ implies $S_{x_{1}}$ and $S_{x_{2}}$ are disjoint. The family $\left\{S_{x}: x \in X\right\}$ form a partition of Y
By the axiom of choice, there is a function (choice)
$f: X \rightarrow \int_{x \in X} S_{x}=Y$ so that $f(x) \in S_{x}$
Obviously, f is injective

Basis

January-26-11
11:33 AM

Basis

Let V be a vector space over F. A subset $B \subseteq V$ is called a basis for V if it satisfies:

1. B is linearly independent

Intuitively, B is "small", that no element of B is a linear combination of the others
2. B spans V, i.e. $\operatorname{span}(B)=V$

Finite Dimensional
If V has a finite set B which forms a basis, then we say V is finite dimensional.

Theorem
Suppose that V has a finite basis B with n elements. Then all other bases must have n elements. We call n the dimension of V.

Example
Consider \mathbb{R}^{3}. Subsets satisfying the 1 st properties are, e.g.
$\emptyset,\{(1,0,0)\},\{(1,0,0),(1,1,0)\},\{(1,0,0),(1,1,0),(0,0,2)\}$

Of these examples
$\operatorname{span}(\emptyset)=\{(0,0,0)\}$
$\operatorname{span}\{(1,0,0)\}=(x, 0,0)=$ the $x-$ axis
$\operatorname{span}\{(1,0,0),(1,1,0)\}=(x+y, y, 0)=$ the $x y$ plane
$\operatorname{span}\{(1,0,0),(1,1,0),(0,0,2)\}=(x+y, y, 2 z)=\mathbb{R}^{3}$
So the last is a basis.
Example
$\operatorname{In} P(\mathbb{R})$
$B=\left\{1, x, x^{2}, x^{3}, \ldots, x^{n}, \ldots\right\}=\left\{x_{n}: x \in \mathbb{N}\right.$, or $\left.n=0\right\} x^{0}=1$ by convention is a basis.

Proof:
To check for linear independence:
Let a finite number of terms be extracted from B (all terms are distinct)
WLOT that the list is $1, x, x^{2}, \ldots x^{n}$
Will show that the list is not linearly dependent. Let $a_{0}, a_{1}, \ldots, a_{n}$ be scalars and that
$a_{0} 1+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}=0$
By definition of equality between polynomials, $a_{0}=a_{1}=\cdots=a_{n}=0$

Hence, every finite list of distinct terms from B is linearly independent. So B is linearly independent.
Next check if $\operatorname{span}(B) \supseteq \mathcal{P}(\mathbb{R})$
Let $p(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}$ for some $a_{i} \in \mathbb{R}, n \in \mathbb{N}$
Therefore, clearly $p(x) \in \operatorname{Span}\left\{1, x, x^{2}, \ldots, x^{n}\right\} \supseteq \operatorname{Span}(B)$
Hence $\mathcal{P}(\mathbb{R}) \subseteq \operatorname{span}(B)$. Equality follows. So B is a basis.

Example
$V=\left\{A \in M_{3 \times 4}(\mathbb{R}):\right.$ column sums of A are zero $\}$
$e . g .\left|\begin{array}{cccc}1 & 4 & \pi & 0 \\ 2 & 5 & e & 0 \\ -3 & -1 & -\pi-e & 0\end{array}\right|$
The dimensionality is the number of free scalars. In this case $\operatorname{dim} V=8$

Replacement

February-05-11
10:14 PM

Theorem 1.8

Let S be a linearly independent subset of a vector space V and let x be an element of V that is not in S . Then $S \cup\{x\}$ is linearly dependent iff $x \in \operatorname{span}(S)$

Theorem 1.9

If a vector space V is generated by a finite set S_{0} then a subset of S_{0} is a basis for V . Hence V has a finite basis.

Replacement Theorem 1.10

Let V be a vector space having a basis β containing exactly n elements. Let $S=\left\{y_{1}, \ldots, y_{m}\right\}$ be a linearly independent subset of V containing exactly m elements, where $m \leq n$. Then there exists a subset S_{1} of β containing exactly $\mathrm{n}-\mathrm{m}$ elements such that $S \cup S_{1}$ generates V .

Corollary 1

Let V be a vector space having a basis β containing exactly n elements. Then any linearly independent subset of V containing exactly n elements is a basis for V .

Corollary 2

Let V be a vector space having a basis β containing exactly n elements. Then any subset of V containing more than n elements is linearly dependent. Consequently, any linearly independent subset of V contains at most n elements.

Corollary 3

Let V be a vector space having a basis β containing exactly n elements. Then every basis for V contains exactly n elements.

Definition

A vector space V is called finite-dimensional if it has a basis consisting of a finite number of elements; the unique number of elements in each basis for V is called the dimension of V and is denoted $\operatorname{dim}(V)$. If a vector space is not finite dimensional, then it is called infinite-dimensional

Corollary 4

Let V be a vector space having dimension n and let S be a subset of V that generates V and contains at most n elements. Then S is a basis for V and hence contains exactly contains exactly n elements.

Corollary 5

Let β be a basis for a finite-dimensional vector space V and let S be a linearly independent subset of V. There exists a subset S_{1} of β such that $S \cup S_{1}$ is a basis for V. Thus every linearly independent subset of V can be extended to a basis for V.

Proof of Theorem 1.8
Suppose $S \cup\{x\}$ is linearly dependent
Then
$0=a_{0} x+\sum_{i=1}^{n} a_{i} x_{i}$
With not all $a_{i}=0$ and since S is linearly independent, $a_{0} \neq 0$ so
$x=\rangle_{i=1}^{n}-\frac{a_{i}}{a_{0}} x_{i}$
So $x \in \operatorname{span}(S)$
Suppose $x \in \operatorname{span}(S)$, then
$x=\sum_{i=1}^{n} a_{i} x_{i}$
so $S \cup\{x\}$ is linearly dependent.
Proof of Theorem 1.9
If $S_{0}=\emptyset$ or $S_{0}=\{0\}$ then $V=\emptyset$ and \emptyset is a basis for V.
Otherwise pick $x_{1} \in S_{0} .\left\{x_{1}\right\}$ is linearly independent.
Now with a linearly independent set of $n-1$ vectors $x_{i} \in S_{0}$ if $S_{0} \subseteq \operatorname{span}\left(\left\{x_{1}, \ldots, x_{n-1}\right\}\right)$ then done since the set is linearly independent and generates V so it is a basis. Otherwise find $x_{n} \in S_{0}, x_{n} \notin \operatorname{span}\left(\left\{x_{1}, \ldots, x_{n-1}\right\}\right)$ By theorem $1.8\left\{x_{1}, \ldots, x_{n}\right\}$ is linearly independent. Continue until terminating after finitely many x_{i} since S_{0} is finite.

Proof of Theorem 1.10
Proof by induction on m.
If $\mathrm{m}=0$, then $S=\emptyset$ and $\mathrm{n}-\mathrm{m}=\mathrm{n}$ so take $S_{0}=\beta, S \cup S_{1}=\emptyset \cup \beta=\beta$ is a basis for V
Now suppose the statement holds true for $m-1$.
Let $S_{0}=\left\{y_{1}, \ldots, y_{m-1}\right\} . \exists \beta_{0} \subset \beta$ with $\left|\beta_{0}\right|=n-(m-1)$ such that $\operatorname{span}\left(S_{0} \cup \beta_{0}\right)=V$ by induction supposition.
So
$y_{m}=\sum_{x_{i} \in S_{0}^{\prime}} a_{i} x_{i}+\sum_{z_{j} \in \beta_{0}} b_{j} z_{j}$
But S is linearly independent so at least one $b_{j} \neq 0$, say b_{1}
Then
$\left.z_{1}=\frac{y_{m}}{b_{1}}+\right\rangle_{x_{i} \in S_{0}^{\prime}}-\frac{a_{i}}{b_{1}} x_{i}+\sum_{z_{j} \in B_{0}^{\prime}}-\frac{b_{j}}{b_{1}} z_{j}$
So $z_{1} \in \operatorname{span}\left(\left\{y_{1}, \ldots, y_{m}, z_{2}, \ldots z_{n-m+1}\right\}\right)$
Clearly $y_{1}, \ldots, y_{m-1}, z_{2}, \ldots, z_{n-m+1} \in \operatorname{span}\left(\left\{y_{1}, \ldots, y_{m}, z_{2}, \ldots, z_{n-m+1}\right\}\right)$
$S_{1}=\beta_{0} \backslash\left\{z_{1}\right\}$
So $S_{0} \cup \beta_{0} \subseteq \operatorname{span}\left(S \cup S_{1}\right)$
$\operatorname{span}\left(S_{0} \cup \beta_{0}\right)=V$ so $\operatorname{span}\left(S \cup S_{1}\right)=V$
So there is a subset of β such that $\operatorname{span}\left(S \cup S_{1}\right)=V \forall \mathrm{~m}$, by the induction principle.
Corollary 1
Let S be a linearly independent subset of V with exactly n elements.
Then $\exists S_{1}$ such that $\operatorname{span}\left(S \cup S_{1}\right)=V$ and $\left|S_{1}\right|=n-n=0 \Rightarrow S_{1}=\varnothing$ so $\operatorname{span}\left(S \cup S_{1}\right)=\operatorname{span}(S)=V$ so S is a basis for V.

Corollary 2

Let S be a subset of V with more than n elements. Suppose that S is linearly independent, then there is an $S_{0} \subset S$ with n elements. By Corollary $1, S_{0}$ is a basis so $\operatorname{span}\left(S_{0}\right)=V$. Let $x \in S, x \in S_{0}$, then $S_{0} \cup\{x\}$ is linearly dependent, contradicting the supposition that S is linearly independent. Therefore, S is linearly dependent. I

Corollary 3
Let S be a basis for V . We know $|S| \leq n$ since $|\beta|=n$. Suppose $|S|<n$, then by Corollary 2β
would not be linearly independent, a contradiction, so $|S|=n$.
Corollary 4
By Theorem 1.9, $\exists S_{1} \subseteq S$ such that S_{1} is a basis for V . $\left|S_{1}\right|=n,\left|S_{1}\right| \leq|S| \leq n$ so $|S|=n$ so $S_{0}=S$
and S is a basis for V.

Corollary 5
$|S|=m \leq n,|\beta|=n$ so by Theorem $1.10, \exists S_{1} \subseteq \beta,\left|S_{1}\right|=n-m$ such that $S \cup S_{1}$ generates V . Since $\left|S \cup S_{1}\right|=n$, by Corollary $4 S \cup S_{1}$ generates V .

General Bases

January-31-11
11:31 AM

Proposition

Let V be a vector space. Let $L \subset V$ be linearly independent. Then the following two statements are equivalent.

1. $v \in V, v \notin L$ and $L \cup\{v\}$ is linearly independent.
2. $v \notin \operatorname{span}(L)$

Proposition

Let V be a vector space. Let $L \subset V$ be linearly independent, $G \subset V$ be generating, $L \subset G$. Suppose that v is such that $v \notin L, L \cup\{v\}$ is still linearly independent.

Then there exists a $u \in G$ so that $u \notin L$ and $L \cup\{u\}$ is (still) independent.

Remark
If V is a finite vector space.
If F is infinite, like \mathbb{C}, then $V=\{0\}$
If F is finite, then $|V|=|F|^{n}$ for some $n \in \mathbb{N}^{0}$

Proof of Proposition 1

Suppose v satisfied 1. To argue for 2 , assume to the contrary that $\mathrm{v} \in \operatorname{Span}(\mathrm{L})$. Then
$v=\sum_{i=1}^{n} \lambda_{i} v_{i}$
for some distinct v_{i} 's in L and $\lambda_{i} \in F$
As $v \notin L, v_{1}, \ldots, v_{n}, v$ are all distinct, we have a set of distinct vectors such that one is a linear combination of the rest, so the set $L \cup\{v\}$ is linearly dependent, a contradiction.

Conversely, suppose that 2 holds, we need to show 1
As $\operatorname{Span}(L) \supset L$, it is clear that $v \notin L$. To show that $L \cup\{v\}$ is linearly independent, suppose that
$\sum_{(i=0)}^{n} \lambda_{i} v_{i}=0$
where v_{i}, \ldots, v_{n} are distinct elements from $L \cup\{v\}$
Case 1:
Suppose that none of the v_{i} are v. Then by linear independence of L , all $\lambda_{i}=0$
Case 2:
One of v_{1}, \ldots, v_{n} is equal to v . WLOG say that $v_{n}=v$
Suppose that $\lambda_{n}=0$ Then
$n-1$
$\rangle, \lambda_{i} v_{i}=0$
By the linear independence of L , we set $\lambda_{1}=\lambda_{2}=\cdots=\lambda_{n-1}=0$
Thus $\lambda_{1}, \ldots \lambda_{n}$ are 0
Suppose that $\lambda_{n} \neq 0$ Then from
$\sum_{i=1}^{n} \lambda_{i} v_{i}=0$
$\left.v=v_{n}=\right\rangle_{i=1}^{n-1}-\frac{\lambda_{i}}{\lambda_{n}} v_{i}$
So $v \in \operatorname{Span}(L)$
Proof of Proposition 2
$v \notin \operatorname{Span}(L)$
It is a linear combination of things in G
So , (WLOG, n is the least number which satisfies the linear combination)
$v=\sum_{i=1}^{n} \lambda_{i} u_{i}=\sum_{i=1}^{k} \lambda_{i} u_{i}+\sum_{i=k+1}^{n} \lambda_{i} u_{i}$
where u_{1}, \ldots, u_{n} are distinct vectors in G
WLOG, $u_{1}, \ldots u_{k} \in L, u_{k+1}, \ldots, u_{n} \notin L$
At least one $u_{i}(k+1 \leq i \leq n)$ is present with $\lambda \neq 0$. Take $u=u_{k+1}$
This means $u \neq \operatorname{span}(L)$ since the above is the smallest representation and if $u \in \operatorname{span}(L)$
then u could be written as part of $\sum_{i=1}^{k} \lambda_{i} u_{i}$
Suppose $L \cup\{u\}$ were linearly dependent. Then
$0=\lambda u+\sum_{i=1}^{m} \lambda_{i} v_{i}$ for $v_{i} \in L, \lambda_{i}$ not all 0
L is linearly independent so $\lambda \neq 0$ so
$u=\rangle_{i=1}^{m}-\frac{\lambda_{i}}{\lambda} v_{i}$
So $u \in \operatorname{span}(L)$, a contradiction. So $L \cup\{u\}$ is linearly independent.

Example

Basis of any size.
Let S be any set $(\neq \emptyset$). We now construct a vector space V over F having a basis B with $|B|=|S|$

Consider the subspace \mathcal{F}_{0} of $\mathcal{F}(S, F)$ consisting of functions $f: S \rightarrow F$ with $f(s)=0$ for all but finitely many s. For each fixed element $s \in S$, let $\chi_{s}: S \rightarrow F$ be $\chi_{s}(t)=\left\{\begin{array}{l}1 \text { for } t=s \\ 0 \text { for } t \neq s\end{array}\right.$ χ is the characteristic function.
Clearly $\chi_{s} \in \mathcal{F}_{0}$
Let $B=\left\{\chi_{s}: s \in S\right\} \subset \mathcal{F}_{0}$
Be is a basis for \mathcal{F}_{0} because

1. Let $f \in \mathcal{F}_{0}$ be given. Then \exists finitely many $s_{1}, s_{2}, \ldots, s_{n} \in S$ with $f(s)=0$ if $s \notin\left\{s_{1}, \ldots, s_{n}\right\}$ Let $\lambda_{i}=f\left(s_{i}\right)$ for $i \in\{1, \ldots, n\}$
Then $f=\lambda_{1} \chi_{s_{1}}+\lambda_{2} \chi_{s_{2}}+\cdots+\lambda_{n} \chi_{s_{n}}$
Therefore $f \in \operatorname{Span}(B)$
2. Let $\chi_{s_{1}}, \chi_{s_{2}}, \ldots, \chi_{s_{n}}$ be a finite list of distinct vectors in B and that $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are scalars from F with

$$
\sum_{i=1}^{n} \lambda_{i} \chi_{s_{i}}=0
$$

Since $\chi_{s_{i}}$ are distinct, clearly s_{i} are distinct. Fix any $i_{0} \in\{1, \ldots, n\}$

$$
\begin{aligned}
& \qquad\left(\sum_{i=1}^{n} \lambda_{i} \chi_{s_{i}}\right)\left(s_{i_{0}}\right)=0\left(s_{i_{0}}\right)=0 \\
& =\sum_{i=1}^{n} \lambda_{i} \chi_{s_{i}}\left(s_{i_{0}}\right)=\lambda_{i_{0}} 1=0 \\
& \quad \text { So } \lambda_{i}=0 \forall i \\
& \text { So } B \text { is linearly independent. } \\
& \chi: S \rightarrow B \\
& \chi(s)=\chi_{S} \\
& \text { is clearly bijective. So B is of the same cardinality as } S \text {. }
\end{aligned}
$$

* Maximal Principle

February-04-11

11:31 AM

Maximal Principle

Let X be a set. Let \mathcal{C} be a collection of subsets of X . A subcollection of \mathcal{C}, say $\mathcal{T} \subseteq \mathcal{C}$ is called a tower (or chain) if for any two elements $T_{1}, T_{2} \in \mathcal{T}$, either $T_{1} \subseteq T_{2}$ or $T_{2} \subseteq T_{1}$.

Suppose that \mathcal{C} has the property that every tower \mathcal{T}, there exists $C \in \mathcal{C}$ such that $C \supseteq T$ for all $T \in \mathcal{T}$. (C is called an upper bound for \mathcal{T})

Then \mathcal{C} has a maximal element $\mathrm{M} \in \mathcal{C}$ i.e. no $C \in \mathcal{C}$ contains M strictly.

Application

Let V be any vector space over F . Let \mathcal{C} be the set of all linearly independent subsets of V.
If \mathcal{T} is a tower in \mathcal{C} it is not difficult to check that
$\bigcup_{T \in \mathcal{T}} \int^{T} T$
${ }^{T \in \mathcal{T}}$ also linearly independent. So it is in \mathcal{C} and it is an upper bound for \mathcal{T}. So by the maximal principle, there is a maximal $M \in \mathcal{C}$. M will be a basis for V .

Example

Let \mathcal{C} be the set of all finite open intervals of \mathbb{R}
$\mathcal{T}=\{(0, n): n \in \mathbb{N}\}$ is a tower/chain
This tower has no upper bound in \mathcal{C}
No member of \mathcal{C} is maximal because for every $C \in \mathcal{C}, c=(a, b)$ finite a, b the element $(a, b+1)$ is strictly larger.

Example

Let X be any non-empty set.
Let $\mathcal{C}=\{C: C \subset X\}$
Then $M=X \backslash\{x\}$ for some $x \in X$ is a maximal element for \mathcal{C}
Examples
$X=\mathbb{R}, M=\mathbb{R} \backslash\{1\}$ is M maximal, yes.
$N=\mathbb{R} \backslash\{2\}$ is also maximal
$C=\mathbb{R} \backslash\{1,2\}$ is not maximal
Look at $\mathcal{T}=\{|-n, n|: n \in \mathbb{N}\}$ is a tower with no upper bound
So every tower having an upper bound \Rightarrow there is a maximal element There being a maximal element \nRightarrow every tower has an upper bound

Linear Mappings

February-07-11
11:32 AM

Linear Mapping

Let U and V be vector spaces over F. A mapping (function) $L: U \rightarrow V$ is linear if:

1. L preserves summation $L\left(u_{1}+u_{2}\right)=L\left(u_{1}\right)+L\left(u_{2}\right)$
2. L preserves scalar multiplication $L(\lambda u)=\lambda L(u)$ for $\lambda \in F$

Proposition

For any linear $L: U \rightarrow V$

1. $L(0)=0$
2. $L(-u)=-L(u)$
3. $L\left(\sum_{i=1}^{n} \lambda_{i} u_{i}\right)=\sum_{i=1}^{n} \lambda_{i} L\left(u_{i}\right)$

L preserves linear combinations

Kernel (Nullspace)
Let $L: U \rightarrow V$ be linear
$\operatorname{Ker}(L)=\operatorname{Nullspace}(L):=\{u \in U \mid L(u)=0\}$
Range (Image)
Let $L: U \rightarrow V$ be linear
$\operatorname{Range}(L)=\operatorname{Im}(L):=\{L(u) \mid u \in U\}$

Proposition
$\operatorname{Ker}(L)$ is a subspace of U
Range (L) is a subspace of V

Example

$L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, L(x, y, z)=(x, 0, z) \forall(x, y, z) \in \mathbb{R}^{3}$.
Then L is linear.

Proof

1. Let $\left(x_{1}, y_{1}, z_{1}\right),\left(x_{2}, y_{2}, z_{2}\right) \in \mathbb{R}^{3}$

$$
\text { Then } L\left(\left(x_{1}, y_{1}, z_{1}\right)+\left(x_{2}, y_{2}, z_{2}\right)\right)=L\left(x_{1}+x_{2}, y_{1}+y_{2}, z_{1}+z_{2}\right)=\left(x_{1}+x_{2}, 0, z_{1}+z_{2}\right)
$$

$$
L\left(x_{1}, y_{1}, z_{1}\right)+L\left(x_{2}, y_{2}, z_{2}\right)=\left(x_{1}, 0, z_{1}\right)+\left(x_{2}, 0, z_{2}\right)=\left(x_{1}+x_{2}, 0, z_{1}+z_{2}\right)
$$

2. Let $\lambda \in \mathbb{R},(x, y, z) \in \mathbb{R}^{3}$

$$
L(\lambda(x, y, z))=L(\lambda x, \lambda y, \lambda z)=(\lambda x, 0, \lambda z)=\lambda(x, 0, z)=\lambda L(x, y, z)
$$

Example
$L: \mathbb{R}^{3} \rightarrow M_{3 \times 3}(\mathbb{R}), L(x, y, z)=\left|\begin{array}{ccc}x & y & z \\ z & y & 2 x \\ 0 & x+y & z\end{array}\right|$
This is a linear mapping

Example

$L: P_{2}(\mathbb{R}) \rightarrow P_{3}(\mathbb{R}), L(p(x))=x p(x) \mathrm{L}$ is linear
Example of a non-linear map
$f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, f(x, y)=(x+1, y)$
Then f is not linear
$f\left(x_{1}, y_{1}\right)+f\left(x_{2}, y_{2}\right)=\left(x_{1}+1, y_{1}\right)+\left(x_{2}+1, y_{2}\right)=\left(x_{1}+x_{2}+2, y_{1}+y_{2}\right)$
$f\left(\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)\right)=f\left(x_{1}+x_{2}, y_{1}+y_{2}\right)=\left(x_{1}+x_{2}+1, y_{1}+y_{2}\right)$
So f does not preserve summation. Similarly, it does not preserve multiplication.

Proof of Proposition

1. Because L preserves addition, $L(0+0)=L(0)+L(0) \Rightarrow L(0)=L(0)+L(0)$ so $L(0)=0 \in V$
2. $L(-u)=L((-1) u)=(-1) L(u)=-L(u)$
3. Follows directly from preservation of addition and scalar multiplication

Dimension Theorem

February-09-11
11:32 AM
Nullity and Rank
Let $L: U \rightarrow V$ be linear. Suppose that U is finite dimensional. The nullspace (kernel) of $\mathrm{L}, N(L)=\{u \in U \mid L(u)=0\}$, is a subspace of U.
Then $\mathrm{N}(\mathrm{L})$ is finite dimensional. Nullity $(L)=\operatorname{dim} N(L)$
The dimension of the range space, $R(L)=\{L(u) \mid u \in U\}$ is called the Rank of L, denoted $\operatorname{rank}(L)$

Dimension Theorem (Rank and Nullity Theorem)
For linear $L: U \rightarrow V$, finite dimensional U, $\operatorname{dim}(U)=\operatorname{rank}(L)+$ nullity (L)

Example
$L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ is given by $L(x, y, z)=(x+y, y+z, 0,0)$ has range
$R(L)=\{(a, b, 0,0) \mid a, b \in \mathbb{R}\}$ and $\operatorname{rank}(L)=2$
It has $N(L)=\left\{(x, y, z) \in \mathbb{R}^{3} \mid(x+y, y+z, 0,0)=(0,0,0,0)\right\}$

$$
=\left\{(x, y, z) \in \mathbb{R}^{3} \left\lvert\, \begin{array}{l}
x+y=0 \\
y+z=0
\end{array}\right.\right\}
$$

Nullity $(\mathrm{L})=\operatorname{dim} N(L)=1$

Proof of Rank and Nullity Theorem

Pick a basis for $\mathrm{N}(\mathrm{L})$, say $\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$
Now, nullity $(L)=k$
Extend the linearly independent set $\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$ to a basis for U say that $\left\{u_{1}, u_{2}, \ldots, u_{k}, u_{k+1}, \ldots, u_{n}\right\}$ is a basis for U
So $\operatorname{dim}(U)=n$
Claim: $\beta=\left\{L\left(u_{k+1}\right), L\left(u_{k+2}\right), \ldots, L\left(u_{n}\right)\right\}$ is a basis for Range (L). Thus $\operatorname{rank}(L)=n-k$

1. Show that β spans Range (L)

Let $v \in \operatorname{Range}(L)$ be given. Then $\exists u \in U$ s.t. $L(u)=v$
Since $\left\{u_{1}, \ldots, u_{n}\right\}$ spans U, there exist scalars $\lambda_{1}, \ldots, \lambda_{n}$ so that

$$
u=\sum_{i=1} \lambda_{i} u_{i}
$$

Now,
$v=L(u)=L\left(\sum_{i=1}^{n} \lambda_{i} u_{i}\right)=\sum_{i=1}^{n} \lambda_{i} L\left(u_{i}\right)$, since L is linear
But $L\left(u_{i}\right)=0 \forall i \in\{1, \ldots, k\}$ so
$v=\sum_{i=k+1}^{n} \lambda_{i} L\left(u_{i}\right)$
So $v \in \operatorname{span} \beta$
So span $\beta=$ Range (L)
2. Show that β is linearly independent.

Suppose $\lambda_{k+1} L\left(u_{k+1}\right)+\cdots+\lambda_{n} L\left(u_{n}\right)=0 \Rightarrow L\left(\lambda_{k+1} u_{k+1}+\cdots+\lambda_{n} u_{n}\right)=0$
So $\lambda_{k+1} u_{k+1}+\cdots+\lambda_{n} u_{n} \in N(L)$
As u_{1}, \ldots, u_{n} spans $N(L)$
$\lambda_{k+1} u_{k+1}+\cdots+\lambda_{n} u_{n}=\lambda_{1} u_{1}+\cdots+\lambda_{k} u_{k}$ for some scalars λ_{i}
So $\lambda_{1} u_{1}+\cdots+\lambda_{k} u_{k}-\lambda_{k+1} u_{k+1}-\cdots-\lambda_{n} u_{n}=0$
So $\lambda_{1}=\cdots=\lambda_{k}=\lambda_{k+1}=\cdots=\lambda_{n}=0$
So β is linearly independent.
Example
Let $L: \mathbb{R}^{3} \rightarrow M_{6 \times 6}(\mathbb{R})$ be
$L(x, y, z)=\left[\begin{array}{cccccc}x & y & z & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$
$\operatorname{Rank}(\mathrm{L})=3, \mathrm{~N}(\mathrm{~L})=0$

Rank/Nullity

February-11-11
11:28 AM

Proposition

Every Linear $L: U \rightarrow V$ is completely determined by the restriction, $L l_{B}$, to a basis B for U

Simple consequences of the dimension (rank/nullity) theorem.

Observations.

1. If $L: U \rightarrow V$ is linear, then L is injective iff $\operatorname{Ker}(\mathrm{L})=\{0\}$

Proof: Suppose that $L\left(u_{1}\right)=L\left(u_{2}\right)$ for given $u_{1}, u_{2} \in U$
Now $L\left(u_{1}\right)-L\left(u_{2}\right)=0$. As L is linear, $L\left(u_{1}-u_{2}\right)=0$ so $u_{1}-u_{2} \in \operatorname{Ker}(L)$. Since $\operatorname{Ker}(\mathrm{L})=\{0\}$,
we set $u_{1}-u_{2}=0 \Rightarrow u_{1}=u_{2}$
For the converse: Suppose L is injective
Because L is linear, $L(0)=0$, so 0 in $\operatorname{Ker}(\mathrm{L})$
To get $\operatorname{Ker}(L)=\{0\}$, we need to show that for any given u in $\operatorname{Ker}(L)$, we have $u=0$
Let u in $\operatorname{Ker}(\mathrm{L})$ be given. Then $\mathrm{L}(\mathrm{u})=0$. Since L is linear, $\mathrm{L}(0)=0$. So $\mathrm{L}(\mathrm{u})=\mathrm{L}(0)$
As L in injective, $u=0$ follows.

Restate: Linear L is injective iff $\operatorname{dim} \operatorname{Ker}(\mathrm{L})=0$ iff nullity $(\mathrm{L})=0$
2. Linear $L: U \rightarrow V$ is surjective iff $\mathrm{L}(\mathrm{U})=\mathrm{V}$. If V is finite dimensional, then L is surjective iff $\operatorname{dim} \mathrm{L}(\mathrm{U})=\operatorname{dim} \mathrm{V}$, iff $\operatorname{rank}(\mathrm{L})=\operatorname{dim} V$

By the dimensional theorem, we get the Corollary:
If $L: U \rightarrow V$ is linear and both U and V are of the same dimension, then the following two statements are equivalent:

1. L is injective
2. L is surjective

Basic idea: $\operatorname{dim} \mathrm{U}=\operatorname{rank}(\mathrm{L})+\operatorname{nullity}(\mathrm{L})=\operatorname{dim} \mathrm{V}$
Injective $<=>$ nullity $(L)=0<=>\operatorname{rank}(L)=\operatorname{dim} V<=>$ surjective
In particular, if U is finite dimensional and L is a linear operator on U, then L is injective iff it is surjective.
Example of Proposition:
Suppose that $L: \mathbb{R}^{2} \rightarrow P_{2}(\mathbb{R})$ is linear, and that $B=\{(1,0),(0,1)\}$
If we know $L(1,0)$ and $L(0,1)$ (that is, we know $\left.\left.L\right|_{B}\right)$, we should be able to tell $L(x, y)$ for general $(x, y) \in$ \mathbb{R}^{2}
Reason: $(x, y)=x(1,0)+y(0,1)$, so $L(x, y)=L(x(1,0)+y(0,1)=x L(1,0)+y L(0,1)$
Proof of Proposition:
Let $B=\left\{b_{i} \mid i \in I\right\}$ be a basis for U.
Given any vector $u \in U$, we can write $u=\sum_{i=1}^{n} \lambda_{i} b_{i}$ for finitely many $b_{i} \in B$
Now,
$L(u)=\sum_{i=1}^{n} \lambda_{i} L\left(b_{i}\right)$

Example
WE could define a linear map $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by specifying $L(1,0)$ and $L(0,1)$, say $L(1,0)=(1,1)$ and $L(0,1)=$ $(-1,-1)$, Implicitly, we know L fully
Explicitly: $L(x, y)=x L(1,0)+y L(0,1)=x(1,1)+y(-1,-1)=(x-y, x-y)$
$\operatorname{Rank}(\mathrm{L})=1, \operatorname{Nullity}(\mathrm{~L})=1$
Range $(L)=\operatorname{span}(L(1,0), L(0,1))=\operatorname{span}\{(1,1),(-1,-1)\}=\operatorname{span}\{(1,1)\}$, a basis is $(1,1)$
$\mathrm{N}(\mathrm{L})$ is $\left\{(x, y) \in \mathbb{R}^{2} \mid x-y=0\right\}$, a basis is $(1,1)$
Example
$D: P_{10}(\mathbb{R}) \rightarrow P_{10}(\mathbb{R}) \cdot D(p(x))=p^{\prime}(x)$
$D(1)=0, D(x)=1, D\left(x^{2}\right)=2 x, \ldots, D\left(x^{10}\right)=10 x^{9}$
Note $\left\{1, x, x^{\wedge} 2, \ldots, x^{10}\right\}$ is a basis for P_{10}
$R(D)=P_{9}(\mathbb{R})$
$N(D)=P_{0}(\mathbb{R})=\operatorname{span}\{1\}$
$\operatorname{Rank}(D)=10, \operatorname{nullity}(D)=1, \operatorname{dim} P_{10}(\mathbb{R})=11$

Coordinatization

February-14-11
11:33 AM

Coordinatizing a Space

Let U be a finite dimensional space.
Fix a basis $\beta=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ and order it as presented.
Every vector $u \in U$ can be uniquely written:
$u=\sum_{i=1}^{n} a_{i} u_{i}, a_{i} \in F$
$\left(a_{1}, \ldots, a_{n}\right) \neq\left(b_{1}, \ldots, b_{n}\right) \Rightarrow \sum_{i=1}^{n} a_{i} u_{i} \neq \sum_{i=1}^{n} b_{i} u_{i}$
Coordinates
We call $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ the coordinates of u with respect to (relative to)
β. Notation:
$\lfloor u\rfloor_{\beta}=\left|\begin{array}{c}a_{1} \\ a_{2} \\ \ldots \\ a_{n}\end{array}\right|$,or $\left(a_{1}, \ldots, a_{n}\right)$

Proposition

Let U be a space with ordered basis β.
The correspondence
$u \in U \rightarrow\lfloor u]_{\beta} \in F^{n}$
is a bijective linear map. Thus U is isomorphic to F^{n}
It is easy to check that $\left\lfloor u_{1}+u_{2}\right\rfloor_{\beta}=\left\lfloor u_{1}\right\rfloor_{\beta}+\left\lfloor u_{2}\right\rfloor_{\beta}$
$\lfloor\lambda u]_{\beta}=\lambda[u]_{\beta}$

Representation of Linear Maps

A linear map $L: U \rightarrow V$ can by represented by a matrix.
Let U, V be finite dimensional. Let α, β be ordered bases for U and V , respectively.
$\alpha=\left\{u_{1}, \ldots, u_{n}\right\}, \beta=\left\{v_{1}, \ldots, v_{m}\right\}$
Now L : $U \rightarrow V$, linear, is determined by knowing
$L\left(u_{1}\right), L\left(u_{2}\right), \ldots, L\left(u_{n}\right)$. Each $L\left(u_{i}\right)$ is determined by knowing $\left[L\left(u_{i}\right)\right]_{\beta}-$
(column formation)
The matrix
$\left.\left|\left|L\left(u_{1}\right)\right|_{\beta} \quad\right| L\left(u_{2}\right)\right|_{\beta} \quad \ldots \quad\left|L\left(u_{n}\right)\right|_{\beta} \mid$
Size $m \times n$ is called the matrix representation of L with respect to α, β

Proposition

Let $L_{1}, L_{2}: U \rightarrow V$ be linear. $x \in F$
Let α for U and β for V be fixed finite ordered bases.
Then $L_{1}+L_{2}: U \rightarrow V,\left(L_{1}+L_{2}\right)(u)=L_{1}(u)+L_{2}(u)$
$\lambda L_{1}: U \rightarrow V,\left(\lambda L_{1}\right)(u)=\lambda\left(L_{1}(u)\right)$ are linear (exercise)
$\left|L_{1}+L_{2}\right|_{\alpha}^{\beta}=\left|L_{1}\right|_{\alpha}^{\beta}+\left|L_{2}\right|_{\alpha}^{\beta}, \quad\left|\lambda L_{1}\right|_{\alpha}^{\beta}=\lambda\left|L_{1}\right|_{\alpha}^{\beta}$
Thus $\left]_{\alpha}^{\beta}\right.$: all linear maps from U to $\mathrm{V} \rightarrow M_{m \times n}(F)$
is linear.

Example
Let $U=P_{2}(\mathbb{R})$. Let $\beta=\left\{x^{2}, x, 1\right\}$ (ordered)
Let $u=4+2 x+5 x^{2}=5\left(x^{2}\right)+2(x)+4(1)$
So
$u=\left|\begin{array}{l}5 \\ 2 \\ 4\end{array}\right|$ or $(5,3,4)$
P_{2} is isomorphic to \mathbb{R}^{3}

Example
Let $D: P_{2} \rightarrow P_{2}$ over $\mathbb{R}, D(f)=f^{\prime}$
Let $\alpha=\left\{1, x, x^{2}\right\}$ for the domain and $\beta=\left\{x, 1, x^{2}\right\}$
for the codomain
$\left.[D]_{\alpha}^{\beta}=\left|\lfloor D(1)\rfloor_{\beta},\right| D(x)\right\rfloor_{\beta},\left\lfloor D_{x^{2}}\right\rfloor_{\beta}\left|=\left|\lfloor 0\rfloor_{\beta},\lfloor 1\rfloor_{\beta},\right| 2 x\right\rfloor_{\beta}\left|=\left|\begin{array}{lll}0 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right|\right.$

* Cardinality

February-14-11
3:30 PM

Countable

A set X is countable iff $|X|=|\mathbb{N}|$
A set X is at most countable if $|X| \leq|\mathbb{N}|$

Facts

1. $|X|=|X|,|X| \leq|X|,|X| \geq|X|$
2. If $|X| \leq|Y|$ and $|Y| \leq|Z| \Rightarrow|X| \leq|Z|$
3. $|\mathrm{X}| \leq|\mathrm{Y}|$ iff $|\mathrm{Y}| \geq|\mathrm{X}|$
4. $|\mathrm{X}| \leq|\mathrm{Y}|$ and $|\mathrm{Y}| \leq|\mathrm{X}| \Rightarrow|\mathrm{X}|=|\mathrm{Y}|$
5. $|\mathbb{N} \times \mathbb{N}|=|\mathbb{N}|$
6. $|A|=|X|,|B|=|Y| \Rightarrow|A \times B|=|X \times Y|$
7. $A \subset B \subset C$ and $|A|=|C| \Rightarrow|A|=|B|=|C|$
8. $|0,1|=|(0,1) \times(0,1)|$
9. For any infinite set X, removing a finite subset will not change the cardinality
10. $|(0,1)|=\mid[0,1| |$
11. $|(0,1) \times(0,1)|=\|0,1|\times| 0,1\|$
12. $|\mathbb{R}|=|0,1|$
13. $|\mathbb{R} \times \mathbb{R}|=|\mathbb{R}|$
14. $\left|\mathbb{R}^{n}\right|=|\mathbb{R}|$

Proof of Fact 5
Define the mapping $\varphi: \mathbb{N} \rightarrow \mathbb{N} \times \mathbb{N}$
$\varphi(1)=(1,1)$
$\varphi(2)=(1,2)$
$\varphi(3)=(2,1)$
$\varphi(4)=(1,3)$
$\varphi(5)=(2,2)$
This function is bijective, so $|\mathbb{N}|=|\mathbb{N} \times \mathbb{N}|$

Proof of Fact 6
ヨbijection $f: A \rightarrow X, g: B \rightarrow Y$
Consider $\varphi: A \times B \rightarrow X \times Y,(a, b) \rightarrow(f(a), g(b))$
Then φ is bijective

Example
$|\mathbb{N} \times \mathbb{N} \times \mathbb{N}|=|\mathbb{N}|$
Proof of Fact 7
Consider the map
$\varphi:(0,1) \rightarrow[0,1] \times[0,1] \backslash\{(0,0),(1,1)\}$
$\varphi\left(x=0 . a_{1} a_{2} a_{3} \ldots\right)=\left(0 . a_{1} a_{3} a_{5} \ldots, 0 . a_{2} a_{4} a_{6} \ldots\right)$
In the event that x can be written in two ways, use the representation which is not terminated by repeating 9's.

This is injective. And surjective
$(0,1) \times 0.5 \subset(0,1) \times(0,1) \subset[0,1\rfloor \times[0,1\rfloor \backslash\{(0,0),(1,1)\}$
$|0,1|=|(0,1) \times 0.5|=||0,1| \times|0,1| \backslash\{(0,0),(1,1)\}$
So $|(0,1)|=|(0,1) \times(0,1)|$

Matrices

February-16-11
11:32 AM

Matrix Representation

Let $L: U \rightarrow V$ be linear
Let $\alpha=\left\{u_{1}, \ldots, u_{n}\right\}, \beta=\left\{v_{1}, \ldots, v_{m}\right\}$ be ordered bases for U and V, respectively
$|L|_{\alpha}^{\beta}=\left|\left|L\left(u_{1}\right)\right|_{\beta},\left|L\left(u_{2}\right)\right|_{\beta}, \ldots,\left|L\left(u_{n}\right)\right|_{\beta}\right|$ $=\left|a_{j i}\right|_{(m \times n)}$

Matrix - Tuple Multiplication

Let $A=\left|a_{j i}\right|, \quad X=\left|\begin{array}{c}a_{1} \\ \vdots \\ a_{n}\end{array}\right|$
$A X=\left\{\left.\begin{array}{l}\sum_{i=1}^{n} a_{1 i} a_{i} \\ \sum_{i=1}^{n} a_{2 i} a_{i} \\ \vdots \\ \sum_{i=1}^{n} a_{m i} a_{i}\end{array} \right\rvert\,\right.$
With that, we have the formula:
$[L(u)\rfloor_{\beta}=\lfloor L\rfloor_{\alpha}^{\beta}\lfloor u\rfloor_{\alpha}$

Matrix Representation

Let $L: U \rightarrow V$ be linear.
Let $\alpha=\left\{u_{1}, \ldots, u_{n}\right\}$ and $\beta=\left\{v_{1}, \ldots, v_{m}\right\}$ be ordered bases for U and V respectively.
Each vector $u \in U$ has the representation
$|u|_{\alpha}=\left|\begin{array}{c}a_{1} \\ a_{2} \\ \vdots \\ a_{n}\end{array}\right|$ i.e. $u=\sum_{i=1}^{n} a_{i} u_{i} ;$
and $L(u)$ in the codomain V, has
$[L(u)]_{\beta}=\left|\begin{array}{c}b_{1} \\ \vdots \\ b_{m}\end{array}\right|$,i.e. $\sum_{j=1}^{m} b_{j} v_{j}$
$[L]_{\alpha}^{\beta}=\left|\left\lfloor L\left(u_{1}\right)\right\rfloor_{\beta},\left\lfloor L\left(u_{2}\right)\right\rfloor_{\beta}, \ldots,\left\lfloor L\left(u_{n}\right)\right\rfloor_{\beta}\right|=\left|a_{j i}\right|$
Hence
$L\left(u_{i}\right)=\sum_{j=1}^{m} a_{j i} v_{i}$
How should $[L(u)\rfloor_{\beta},[u\rfloor_{\alpha}$, and $[L]_{\alpha}^{\beta}$ relate?
$L(u)=L\left(\sum_{i=1}^{n} a_{i} u_{i}\right)=\sum_{i=1}^{n} a_{i} L\left(u_{i}\right)=\sum_{i=1}^{n} a_{i}\left(\sum_{j=1}^{m} a_{j i} v_{j}\right)$
Note change of scope:
a_{i} comes from the vector $\lfloor u\rfloor_{\alpha}$
$a_{j i}$ comes from the matrix $|L|_{\alpha}^{\beta}$
$L(u)=\sum_{i=1}^{n} \sum_{j=1}^{m} a_{j i} a_{i} v_{j}=\sum_{j=1}^{m}\left(\sum_{i=1}^{n} a_{j i} a_{i}\right) v_{j}=\sum_{j=1}^{m} b_{j} v_{j}$
$\therefore b_{j}=\sum_{i=1}^{n} a_{j i} a_{i}, \quad j=1,2, \ldots, m$ b_{j} comes from the vector $[L(u)\rfloor_{\beta}$

Get:
$\left|\begin{array}{c}b_{1} \\ b_{2} \\ \vdots \\ b_{m}\end{array}\right|=\left\lfloor\left. a_{j i}| | \begin{array}{c}a_{1} \\ a_{2} \\ \vdots \\ a_{n}\end{array} \right\rvert\, \Rightarrow[L(u)\rfloor_{\beta}=\lfloor L]_{\alpha}^{\beta}\lfloor u\rfloor_{\alpha}\right.$

Example
Let $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$. Let $\alpha=\{(1,0,0),(0,1,0),(0,0,1)\}$ be the standard ordered basis for \mathbb{R}^{3} and $\beta=\{(1,0),(0,1)\}$, the standard ordered basis for \mathbb{R}^{2}
Let le be having
$[L]_{\alpha}^{\beta}=\left|\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right|_{2 \times 3}$
Find $L(x, y, z)$
Step 1:
$|L(x, y, z)|_{\beta}=\left|\begin{array}{ccc}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right||(x, y, z)|_{\alpha}=\left|\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right|\left|\begin{array}{c}x \\ y \\ z\end{array}\right|=\left|\begin{array}{c}x+2 y+3 z \\ 4 x+5 y+6 z\end{array}\right|$
$\therefore L(x, y, z)=(x+2 y+3 z)(1,0)+(4 x+5 y+6 z)(0,1)=(x+2 y+3 z, 4 x+5 y+6 z)$

Example
If $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ is given by $T(x, y)=(x+2 y, 3 x+4 y, 5 x+6 y)$
Using the standard bases α, β
$[T]_{\alpha}^{\beta}=\left\lvert\, \begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array} \underbrace{}_{(3 \times 2)}\right.$

Example

Let $L: P_{2} \rightarrow P_{2}$ over \mathbb{R}
Let $\alpha=\beta=\left\{1, x, x^{2}\right\}$
If $|L|_{\alpha}^{\beta}=\left|\begin{array}{lll}1 & 2 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 2\end{array}\right|$
Find $L\left(a_{0}+a_{1} x+a_{2} x^{2}\right)$
Solution:
$\left[L\left(a_{0}+a_{1} x+a_{2} x^{2}\right)\right\rfloor_{\beta}=\left|\begin{array}{lll}1 & 2 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 2\end{array}\right|\left|\begin{array}{c}a_{0} \\ a_{1} \\ a_{2}\end{array}\right|=\left|\begin{array}{c}a_{0}+2 a_{1}+a_{2} \\ a_{0}+a_{1}+a_{2} \\ 2 a_{2}\end{array}\right|$
$\therefore L\left(a_{0}+a_{1} x+a_{2} x^{2}\right)=\left(a_{0}+2 a_{1}+a_{2}\right)+\left(a_{2}+a_{1}+a_{2}\right) x+2 a_{2} x^{2}$

Composition of Linear Maps

February-18-11
11:37 AM
Linearity of Composition
If $L_{1}: U \rightarrow V$ and $L_{2}: V \rightarrow W$ are linear.
Then there are compositions
$L_{2} \circ L_{1}: U \rightarrow W$ is linear.
$\left\lfloor\left. L_{2}\right|_{\beta} ^{\gamma}\left|L_{1}\right|_{\alpha}^{\beta}=\left\{\left.L_{2} \circ L_{1}\right|_{\alpha} ^{\gamma}\right.\right.$

Matrix Multiplication

Let $A_{(i \times j)}, B_{(j \times k)}$ be matrices.
$A B=\left|\sum_{(j=1)} a_{i j} b_{j k}\right|_{(i, k)}$

Note

For A times B to make sense, the number of columns in A must equal the number of rows in B.

Proof of Linearity of Composition
$\left(L_{2} \circ L_{1}\right)\left(\lambda u_{1}+u_{2}\right)=L_{2}\left(L_{1}\left(\lambda u_{1}+u_{2}\right)\right)=L_{2}\left(\lambda L_{1}\left(u_{1}\right)+L_{1}\left(u_{1}\right)\right)$
$=\lambda L_{2}\left(L_{1}\left(u_{1}\right)\right)+L_{2}\left(L_{1}\left(u_{2}\right)\right)=\lambda\left(L_{2} \circ L_{1}\right)\left(u_{1}\right)+\left(L_{2} \circ L_{1}\right)\left(u_{2}\right)$

Finite Bases

Let α, β, γ be ordered bases for U, V, W, respectively, assuming that U, V, W are finite dimensional.

Then as $\left\{\left.L_{1}\right|_{\alpha} ^{\beta}\right.$ determines $L_{1},\left|L_{2}\right|_{\beta}^{\gamma}$ determines L_{2}. They also determine $L_{2} \circ L_{1}$ and subsequently $\left|L_{2} \circ L_{1}\right|_{\alpha}^{\gamma}$
This motivates the definition of matrix multiplication.
$\left|L_{2}\right|_{\beta}^{\gamma}\left|L_{1}\right|_{\alpha}^{\beta}=\left|L_{2} \circ L_{1}\right|_{\alpha}^{\gamma}$
Example
Let $L_{1}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}, L_{1}(x, y)=(x+2 y, 3 x, 4 y)$ and
$L_{2}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}, L_{2}(x, y, z)=(x+y-z, x+y+z)$
Let $\alpha=\{(1,0),(0,1)\}$ for the domain of L_{1}
$\beta=\{(1,0,0),(0,1,0),(0,0,1)\}$ for the domain of L_{2}
$\gamma=\{(0,1),(1,0)\}$ for the range of L_{2}
$\left|L_{1}\right|_{\alpha}^{\beta}=\left|\begin{array}{ll}1 & 2 \\ 3 & 0 \\ 0 & 4\end{array}\right|, \quad\left|L_{2}\right|_{\beta}^{\gamma}=\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & 1 & -1\end{array}\right|$
$\left|L_{2}\right|_{\beta}^{\gamma}\left|L_{1}\right|_{\alpha}^{\beta}=\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & 1 & -1\end{array}\right|\left|\begin{array}{cc}1 & 2 \\ 3 & 0 \\ 0 & 4\end{array}\right|=\left|\begin{array}{cl}1 \times 1+1 \times 3+1 \times 0 & 1 \times 2+1 \times 0+1 \times 4 \\ 1 \times 1+1 \times 3-1 \times 0 & 1 \times 2+1 \times 0-1 \times 4\end{array}\right|$
$=\left|\begin{array}{cc}4 & 6 \\ 4 & -2\end{array}\right|$
$L_{2} \circ L_{1}=L_{2}\left(L_{1}(x, y)\right)=L_{2}(x+2 y, 3 x, 4 y)=(4 x-2 y, 4 x+6 y)$
$\lfloor(4 x-2 y, 4 x+6 y)\rfloor_{\alpha}^{\gamma}=\left|\begin{array}{cc}4 & 6 \\ 4 & -2\end{array}\right|$
Which agree. Excellent.

Properties of Matrix Operations

March-02-11

1:38 AM
Under addition and scalar multiplication $M_{n \times n}(F)$ is a vector space. There is a third operation, "matrix multiplication."

The following additional properties hold:
Properties of Matrix Multiplication:

- Multiplicative Identity

The identity matrix served as the identity element

$$
I, \text { or } I_{n}=\left|\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & 1 & & \vdots \\
\vdots & & \ddots & 0 \\
0 & \ldots & 0 & 1
\end{array}\right|
$$

$$
\text { i.e. } A I=A=\dddot{I} A \forall A \in M_{n \times n}(F)
$$

- Associativity of Multiplication

$$
(A B) C=A(B C) \forall A, B, C \in M_{n \times n}(F)
$$

$$
\text { Note: } A B \neq B A \text { in general }
$$

- Distributivity:

$$
\begin{aligned}
& A(B+C)=A B+A C \\
& (A+B) C=A C+B C \\
& (\lambda A) B=\lambda(A B)=A(\lambda B) \\
& \forall A, B, C \in M_{n \times n}(F), \lambda \in F
\end{aligned}
$$

Linear Algebra

A vector space (or a linear space) under a binary operation called multiplication which satisfies the listed properties above is called a linear algebra.

$M_{n \times n}(F)$ is a linear algebra

Support for $(A B) C=A(B C)$
There is a bijective map from $\mathcal{L}\left(F^{n}, F^{n}\right)$, or all linear maps from F^{n} to F^{n} (a subspace of $\mathcal{F}\left(F^{n}, F^{n}\right)$)
| $\left.\right|_{\alpha}: L \rightarrow|L|_{\alpha}$, where α is a fixed, ordered basis for $\mathcal{L}\left(F^{n}, F^{n}\right)$
It preserves the linear algebra operations:

$$
\begin{aligned}
& \left|L_{1}+L_{2}\right|_{\alpha}=\left|L_{1}\right|_{\alpha}+\left|L_{2}\right|_{\alpha} \\
& |\lambda L|_{\alpha}=\lambda|L|_{\alpha} \\
& \left|L_{1} L_{2}\right|_{\alpha}=\left|L_{1} \circ L_{2}\right|_{\alpha}=\left|L_{1}\right|_{\alpha}\left|L_{2}\right|_{\alpha}
\end{aligned}
$$

In short, the matrix representation $]_{\alpha}$ from $\mathcal{L}\left(F^{n}, F^{n}\right)$ to $M_{(n \times n)}(F)$ is a linear algebra isomorphism.

Composition is an associative operation on $\mathcal{L}\left(F^{n}, F^{n}\right)$:
$\left(L_{1} \circ L_{2}\right) \circ L_{3}=L_{1} \circ\left(L_{2} \circ L_{3}\right) \Leftrightarrow\left(\left(L_{1} \circ L_{2}\right) \circ L_{3}\right)(v)=\left(L_{1} \circ\left(L_{2} \circ L_{3}\right)\right)(v) \forall v \in F^{n}$
$\Leftrightarrow\left(L_{1} \circ L_{2}\right)\left(L_{3}(v)\right)=L_{1}\left(\left(L_{2} \circ L_{3}\right)(v)\right) \Leftrightarrow L_{1}\left(L_{2}\left(L_{3}(v)\right)\right)=L_{1}\left(L_{2}\left(L_{3}(v)\right)\right)$
The latter is obviously true so due to the isomorphism matrix multiplication must be associative.
Example
Let
$A=\left|\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right|$
Then
$A^{20}=\left|\begin{array}{cc}\cos 20 \theta & -\sin 20 \theta \\ \sin 20 \theta & \cos 20 \theta\end{array}\right|$
Example
Let $D: P_{2}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R})$ be the differentiation operator.
Let the domain and codomain be given the (ordered basis) $\alpha=\left\{1, x, x^{2}\right\}$
Then $|D|_{\alpha}=\left|\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0\end{array}\right|$
because:

$$
D(1)=0,|0|_{\alpha}=\left|\begin{array}{l}
0 \\
0
\end{array}\right|, \quad D(x)=1,|1|_{\alpha}=\left|\begin{array}{c}
1 \\
0
\end{array}\right|, \quad D\left(x^{2}\right)=2 x,|2 x|_{\alpha}=\left|\begin{array}{l}
0 \\
2
\end{array}\right|
$$

Find $\left|2 I+4 D+5 D^{5}\right|_{\alpha}$
Solution 1:
$\left(2 I+4 D+5 D^{5}\right)\left(a+b x+c x^{2}\right)=2\left(a+b x+c x^{2}\right)+4(b+2 c x)+5(0)$
$=(2 a+4 b)+(2 b+8 c) x+2 c x^{2}$
$I 2 I+4 D+5 D^{5} I=\left|\begin{array}{lll}2 & 4 & 0 \\ 0 & 2 & 8 \\ 0 & 0 & 2\end{array}\right|$
Solution 2:
[]$_{\alpha}$ is a linear algebra isomorphism
$\left|2 I+4 D+5 D^{5}\right|_{\alpha}=2|I|_{\alpha}+4|D|_{\alpha}+5|D|_{\alpha}^{5}=2\left|\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right|+4\left|\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0\end{array}\right|+5\left|\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0\end{array}\right|$
$=\left|\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right|+\left|\begin{array}{lll}0 & 4 & 0 \\ 0 & 0 & 8 \\ 0 & 0 & 0\end{array}\right|+\left|\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right|=\left|\begin{array}{lll}2 & 4 & 0 \\ 0 & 2 & 8 \\ 0 & 0 & 2\end{array}\right|$
Example
Give an example of a 3×3 real matrix satisfying $A^{3}=0$ but $A^{2} \neq 0$
Is there a linear operator $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ so that $L^{3}=0, L^{2} \neq 0$
$L(x, y, z)=(y, z, 0), L^{2}(x, y, z)=(z, 0,0) \neq 0, L^{3}=(0,0,0)=0$
So
$\left|\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right|$ satisfies the statement.

Sum of Vector Spaces *

March-02-11
2:05 AM
Sum of Vector Spaces
Let V be a vector space. Let W_{1} and W_{2} be two subspaces of V . The sum of W_{1} and W_{2} is defined by:

$$
W_{1}+W_{2}=\left\{w_{1}+w_{2} \mid w_{1} \in W_{1}, w_{2} \in W_{2}\right\}
$$

Fact: $W_{1}+W_{2}$ is a subspace.

Direct Sum

The sum $W_{1}+W_{2}$ is direct if $W_{1} \cap W_{2}=\{0\}$. In that case, we write $W_{1} \oplus W_{2}$

Theorem

Suppose that $V=W_{1} \oplus W_{2}$
If α is a basis for W_{1} and β is a basis for W_{2}, then $\alpha \cup \beta$ is a basis for V.
Conversely, if $W_{1} \& W_{2}$ are subspaces of V and $\alpha \cup \beta$ (disjoint union, XOR) is a basis for $W_{1}+W_{2}$, then $a \cup \beta$ is a basis for V

Example
$V=\mathbb{R}^{3}, W_{1}=x-y$ plane, $W_{2}=y-z$ plane
Then $W_{1}+W_{2}=\mathbb{R}^{3}$
Example
$V=\mathcal{F}(I-1,1 \mid, \mathbb{R})$
$W_{1}=$ Subspace of all even functions
$W_{2}=$ Subspace of all odd functions
$W_{1}+W_{2}=V$
Proof of Theorem
First, α and β are disjoint. Will show that $\alpha \cup \beta$ spans V.
Let $v \in V$ be given. Then $v=w_{1}+w_{2}$ for some $w_{1} \in W_{1}, w_{2} \in W_{2}$, because $V=W_{1}+W_{2}$
Now,
$\left.w_{1}=\right\rangle_{i \in I_{1}} \lambda_{i} \alpha_{1}, w_{2}=\sum_{j \in J_{1} \subset} \mu_{j} \beta_{j}, \quad I_{1}, J_{2}$ finite
$j \in J_{1} \subset J$
$v=\geqslant \lambda_{i} \alpha_{i}+\geqslant \mu_{j} \beta_{j}, \quad \alpha_{i}, \beta_{j} \in \alpha \cup \beta$
$i \in I_{1} \quad j \in J_{1}$
To show that $\alpha \cup \beta$ is linearly independent, let $\gamma_{1}, \ldots, \gamma_{n}$ be a finite list of distinct vectors from $\alpha \cup \beta$ and that $\eta_{1} \gamma_{1}+\eta_{2} \gamma_{2}+\cdots+\eta_{n} \gamma_{n}=0$
Each γ_{i} is in either α or β in exactly one way. Re-label those in α as α_{i} and those in β as β_{j};
We set
>, $\left.\left.\left.\lambda_{i} \alpha_{i}+\right\rangle, \mu_{j} \beta_{j}=0 \Rightarrow\right\rangle, \lambda_{i} \alpha_{i}=-\right\rangle, \mu_{j} \beta_{j}$
And since the left side is in W_{1} and the right side is in W_{2}, the only element common to both subspaces is 0 . And since W_{1} and W_{2} are linearly independent, $\lambda_{i}, \mu_{j}=0$ so $\eta_{i}=0 \forall i$

Row Reducing

March-02-11

12:06 PM

Row Reduced Echelon Form

Let A be a $n \times m$ matrix over F . It is in Row Reduced Echelon Form if it has the following features:

1. If there are zero rows, these are at the bottom
2. For each non-zero row, the first (leading, scanned left to right) non-zero entry is 1 . We call such positions the leading 1's positions.
3. Leading 1 s with higher row numbers should have higher column numbers.
4. All entries above and below the leading 1 s are zero

Proposition

Every A can be changed to a Row Reduced Echelon Form using three kinds of row operations in a finite number of steps:

1. Interchange two rows
2. Multiply a row by a non-zero scalar
3. Adding a multiple of a row to a different row

Interpretations of RREF

Could consider the matrix, A, short hand for a system of linear equations. Hence the RREF of A records a system of equations equivalent to that of A.

Could be interpreted as a linear equation of column vectors.

Statement

Every $m \times n$ matrix A has a unique RREF.
The Matrix A and its RREF, in general, do not represent the same linear map.
E.g.
$\left|\begin{array}{llll}0 & 1 & * & * \\ 1 & * & * & * \\ 0 & 0 & 0 & 0\end{array}\right|$
Not in RREF, second 1 has higher row number but lower column number.
$\left|\begin{array}{llll}0 & 1 & * & * \\ 0 & 0 & 1 & * \\ 0 & 0 & 0 & 0\end{array}\right|$
Satisfies 1,2,3
$\left|\begin{array}{llll}0 & 1 & 0 & * \\ 0 & 0 & 1 & * \\ 0 & 0 & 0 & 0\end{array}\right|$
Is in Row-Reduced Echelon Form

Example
Use row operations to reduce
$A=\left|\begin{array}{ccc}4 & 0 & 8 \\ -9 & 0 & 5 \\ 0 & 0 & 4\end{array}\right|$
to reduced row echelon form:
Step $1: \frac{1}{4} \times R_{1} \rightarrow R_{1}$ we get $\left\lvert\, \begin{array}{ccc}1 & 0 & 2 \\ -9 & 0 & 5 \\ 0 & 0 & 4\end{array}\right.$
Step $2: 9 \times R_{1}+R_{2} \rightarrow R_{2}$, we get $\left|\begin{array}{ccc}1 & 0 & 2 \\ 0 & 0 & 23 \\ 0 & 0 & 4\end{array}\right|$
Step 3: $\frac{1}{23} \times R_{2} \rightarrow R_{2}$ we get $\left|\begin{array}{lll}1 & 0 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 4\end{array}\right|$
Step 4: $\begin{aligned} & -2 \times R_{2}+R_{1} \rightarrow R_{1} \\ & -4 \times R_{2}+R_{3} \rightarrow R_{3}\end{aligned}$ we get $\left|\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right|$
Example
The matrix
$A=\left|\begin{array}{ccccc}0 & -5 & -15 & 4 & 7 \\ 1 & -2 & -4 & 3 & 6 \\ 2 & 0 & 4 & 2 & 1 \\ 3 & 4 & 18 & 1 & 4\end{array}\right|$
has reduced row echelon form
$\left|\begin{array}{llllc}1 & 0 & 2 & 0 & -\frac{25}{4} \\ 0 & 1 & 3 & 0 & 4 \\ 0 & 0 & 0 & 1 & \frac{27}{4} \\ 0 & 0 & 0 & 0 & 0\end{array}\right|$
Maple Command:
[> linalg[rref] (A);
If this is interpreted as a linear system of equations, the general solution of
$0 x_{1}+(-5) x_{2}+(-15) x_{3}+4 x_{4}+7 x_{5}=0$
$\left\{\begin{array}{c}1 x_{1}+(-2) x_{2}+(-4) x_{3}+3 x_{4}+6 x_{5}=0 \\ 2 x_{1}+0 x_{2}+4 x_{3}+2 x_{4}+1 x_{5}=0\end{array}\right.$

$$
3 x_{1}+4 x_{2}+18 x_{3}+1 x_{4}+4 x_{5}=0
$$

is:
Let x_{3} and x_{5} be free (non-pivot variables)
$\left\{\begin{array}{c}x_{1}=-2 x_{3}+\frac{23}{4} x_{5} \\ x_{2}=-3 x_{3}-4 x_{5} \\ x_{4}=-\frac{27}{4} x_{5}\end{array}\right.$
Alternate interpretation:
$x_{1}\left|\begin{array}{l}0 \\ 1 \\ 2 \\ 2\end{array}\right|+x_{2}\left|\begin{array}{c}-5 \\ -2 \\ 0 \\ 4\end{array}\right|+x_{3}\left|\begin{array}{c}-15 \\ -4 \\ 4 \\ 18\end{array}\right|+x_{4}\left|\begin{array}{l}4 \\ 3 \\ 2\end{array}\right|+x_{5}\left|\begin{array}{l}7 \\ 6 \\ 1 \\ 4\end{array}\right|=\left|\begin{array}{c}0 \\ 0 \\ 0\end{array}\right|$
It concerns the linear dependence or independence of the five column vectors of A in \mathbb{R}^{4}
We wee that the five columns form a dependent set (there are free variables in giving the scalars)
In REF, 3rd column $=2^{*}$ first column +3 * second column
That is, a particular solution ($x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$) is $(2,3,-1,0,0)$ which are not all zero.
A basis for span
$\left\{\left|\begin{array}{c}0 \\ 1 \\ 2 \\ 3\end{array}\right|,\left|\begin{array}{c}-5 \\ 0\end{array}\right|, \ldots,\left|\begin{array}{l}7 \\ 6 \\ 1\end{array}\right|\right\}$
$\left\{\left|\begin{array}{c}0 \\ 1 \\ 2 \\ 3\end{array}\right|,\left|\begin{array}{c}-5 \\ 0\end{array}\right|,\left|\begin{array}{c}4 \\ 3\end{array}\right|\right\}$

Rationale for RREF Uniqueness
Different RREF will lead to different solutions to the system of equations $A X=0$
Example
Clearly all possible RREF must be the same size.
$\left|\begin{array}{lll}1 & 0 & 4 \\ 0 & 1 & 3 \\ 0 & 0 & 0\end{array}\right|,\left|\begin{array}{lll}1 & 0 & 4 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right|$
In first case, dimension of solution space is 1 , in second space dimension of solution space is 2 So the number of zero rows at the bottom must be the same in all solutions.
$\left|\begin{array}{lll}1 & 0 & 4 \\ 0 & 1 & 3 \\ 0 & 0 & 0\end{array}\right|,\left|\begin{array}{lll}1 & 0 & 2 \\ 0 & 1 & 5 \\ 0 & 0 & 0\end{array}\right|,\left|\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right|$
$x_{2}=-3 x_{3}, x_{2}=-5 x_{3}$
So the solutions to the first two matrices are not the same.
x_{3} arbitrary in first case, 0 in last case. So different solutions.
The Matrix A and its RREF, in general, do not represent the same linear map. Example

$$
\begin{aligned}
& A=\left\lvert\, \begin{array}{ll}
2 & 0 \\
0 & { }_{0}
\end{array}\right. \text { represents } L_{A}=\left(\left|\begin{array}{l}
x \\
y
\end{array}\right|\right)=A\left|\begin{array}{c}
x \\
y
\end{array}\right|=\left|\begin{array}{c}
2 x \\
0
\end{array}\right| \\
& \text { its RREF is }\left|\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right|=F, L_{R}\left(\left|\begin{array}{l}
x \\
y
\end{array}\right|\right)=R\left|\begin{array}{l}
x \\
y
\end{array}\right|=\left|\begin{array}{l}
x \\
0
\end{array}\right|
\end{aligned}
$$

Elementary Matrices

March-07-11
11:31 AM

Elementary Matrices

There are three types of elementary row operations. When we apply a single elementary row operation to I_{n}, the resulting matrix is called an elementary matrix.

Proposition

Let A be any $m \times n$ matrix.
When we apply an elementary row operation on A, the outcome is equivalent to multiplying A on the left side by an elementary matrix.

Corollary

Every $m \times n$ matrix A can be changed to its RREF by repeatedly multiplying on the left by a finite sequence of elementary matrices.

Examples of Elementary Matrices
$\left|\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right|,\left|\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 10\end{array}\right|,\left|\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -2 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right|$
Not elementary:
$\left|\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right|$

Example
Let $A=\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23}\end{array}\right|$
$I_{2}=\left|\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right|$
and that the operation is $2 R_{2}+R_{1} \rightarrow R_{1}$
$A \rightarrow\left|\begin{array}{ccc}2 a_{21}+a_{11} & 2 a_{22}+a_{12} & 2 a_{23}+a_{12} \\ a_{21} & a_{22} & a_{23}\end{array}\right|$
$I_{2} \rightarrow\left|\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right|$
$\left|\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right| \begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23}\end{array}\left|=\left|\begin{array}{ccc}2 a_{21}+a_{11} & 2 a_{22}+a_{12} & 2 a_{23}+a_{12} \\ a_{21} & a_{22} & a_{23}\end{array}\right|\right.$
Example
Let $A=\left|\begin{array}{lll}0 & 3 & 1 \\ 1 & 2 & 4\end{array}\right|\left(F=\mathbb{Z}_{5}\right)$
Then $A \rightarrow R_{1} \leftrightarrows R_{2}\left|\begin{array}{lll}1 & 2 & 4 \\ 0 & 3 & 1\end{array}\right| \rightarrow{ }^{2 R_{2} \rightarrow R_{1}}\left|\begin{array}{lll}1 & 2 & 4 \\ 0 & 1 & 2\end{array}\right| \rightarrow{ }^{-2 R_{2}+R_{1}}\left|\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 2\end{array}\right|$
$\left|\begin{array}{cc}1 & -2 \\ 0 & 1\end{array}\right|\left(\left|\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right|\left(\left.\right|_{1} ^{0} \quad 1 \mid A\right)\right)=\left|\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 2\end{array}\right|$
$=\left|\begin{array}{cc}1 & -4 \\ 0 & 2\end{array}\right| \begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\left|A=\left|\begin{array}{cc}-4 & 1 \\ 2 & 2\end{array}\right| A\right.$

Matrices \& Maps

March-09-11
11:36 AM
Let $L: U \rightarrow V$ be a bijective linear map. If W is a subspace of U, then $L(W)$ is a subspace of V . If α is a basis for W , then $L(\alpha)$ is a basis for $L(W)$
In particular, if $\operatorname{dim} W=\mathrm{k}$, then $\operatorname{dim} L(W)=k$
If L is bijective and linear: $U \rightarrow V$
then $L^{-1}: V \rightarrow U$ is also linear.
$L \circ L^{-1}=$ identity map on U
$L^{-1} \circ L=$ identity map on V
If α, β are bases for U, V respectively, then
$[L]_{\alpha}^{\beta}\left[L^{-1}\right]_{\beta}^{\alpha}=\left[L \circ L^{-1}\right]_{\alpha}=I_{n}$
$\left[L^{-1}\right]_{\beta}^{\alpha}[L]_{\alpha}^{\beta}=\left[L^{-1} \circ L\right]_{\beta}=I_{n}$

Invertible Map / Matrix

A map which is called bijective is called invertible.
An $n \times n$ matrix is invertible if there exists $n \times n \mathrm{~B}$ so that $A B=B A=I_{n}$. If such B exists, it is unique and is denoted by A^{-1}
In particular, if $A=[L]_{\alpha}$ (bijective operator L), then A is invertible and $A^{-1}=\left[L^{-1}\right]_{\alpha}$

Proposition

The three elementary row operations are invertible linear maps.

Statement:

Composition of linear maps is invertible.

Rank of a Matrix

Let $A \in M_{m \times n}(F)$. The rank of $\mathrm{A}, \operatorname{rank}(A)$, is the rank of $L_{A}: F^{n} \rightarrow F^{m}$

Proposition

Range of $L_{A}=\operatorname{span}\left\{L_{A}\left(e_{1}\right), L_{A}\left(e_{2}\right), \ldots, L_{A}\left(e_{n}\right)\right\}$ where $\left\{e_{1}, \ldots, e_{n}\right\}$ is the standard basis for F^{n}. $\operatorname{range}\left(L_{a}\right)=\operatorname{span}\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$ where c_{i} is the $i^{\text {th }}$ column of A.
$\operatorname{rank}(A)=\#$ of linearly independent columns that form a basis $=\#$ of leading 1's in RREF of A

Nullity of a Matrix

Nullity of $\mathrm{A}=\operatorname{Nullity}\left(L_{A}\right)=\operatorname{dim} N\left(L_{A}\right)=\operatorname{dim}\left\{X \in F^{n}: A X=0\right\}$
Let $B=R R E F$ of A
$\operatorname{dim}\left\{X \in F^{n}: A X=0\right\}=\operatorname{dim}\left\{X \in F^{n}: B X=0\right\}=\#$ of free variables
$=n-\# \operatorname{leading} 1 s=n-\operatorname{rank}(A)$

Example
$A=\left[\begin{array}{lll}1 & 2 & 3 \\ 1 & 0 & 0\end{array}\right]$
$R R E F=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & \frac{3}{2}\end{array}\right]$
$\operatorname{rank}(A)=2, \operatorname{nullity}(A)=1$

Matrix Multiplication

March-11-11
11:32 AM
Matrix Multiplication in Blocks
$A[B \mid C]=\lfloor A B \mid A C]$
$\left|\begin{array}{l}C \\ D \\ D\end{array}\right| B=\left|\begin{array}{c}C B \\ D B\end{array}\right|$
$\left|\begin{array}{ccc}A_{1} & \mid & A_{2} \\ - & + & - \\ A_{3} & \mid & A_{4}\end{array}\right| \begin{array}{ccc}B_{1} & \mid & B_{2} \\ - & + & - \\ B_{3} & \mid & B_{4}\end{array}\left|=\left|\begin{array}{ccc}A_{1} B_{1}+A_{2} B_{3} & \mid & A_{1} B_{2}+A_{2} B_{4} \\ A_{3} B_{1}+A_{4} B_{3} & + & A_{3} B_{2}+A_{4} B_{4}\end{array}\right|\right.$

Matrix Inversion

In general, for $n \times n \mathrm{~A}$, to find A^{-1} if it exists we row reduce $|A| I_{n} \mid$ (Solving $A B=I_{n}$) to RREF on the A side only.
Case 1
If RREF of A is I_{n} then we have $\left\lfloor I_{n}\left|A^{-1}\right|\right.$
Case 2
If RREF of A is not I_{n}, then A is not invertible.

Solving Equations

To solve the equation $A X=B$ where
$A=\left|\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right|, B=\left|\begin{array}{c}b_{1} \\ b_{2} \\ \vdots \\ b_{m}\end{array}\right|$
we could find the RREF of $|A| B \mid$
and then determine the solutions,
Suppose we want to solve two parallel equations.
$A X=B_{1}, A X=B_{2}$ (separately, parallel means not related, different X)
It can be done by finding $R R E F$ of $|A| B_{1} \mid$ and of $\left[A \mid B_{2}\right]$
The job can be done in one round: Find RREF of $\left\lfloor A\left|B_{1}\right| B_{2} \mid\right.$ and then read the solutions.

Example
Let $A=\left|\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right|$. Find A^{-1} if A has an inverse.
Solution:
We seek $B(2 \times 2)$ such that $A B=I$
Let $B=\left\lfloor X_{1} \mid X_{2}\right\rfloor$. The equation is $A\left\lfloor X_{1} \mid X_{2}\right\rfloor=\left|\begin{array}{l}1 \\ 0\end{array}\right|$
$A X_{1}=\left|\begin{array}{l}1 \\ 0\end{array}\right|, A X_{2}=\left|\begin{array}{l}0 \\ 1\end{array}\right|$

Consider
$\left|\begin{array}{ll|ll}1 & 2 & 1 & 0 \\ 0 & 3 & \mid & 0 \\ 1\end{array}\right|$ and use row ops. to bring it to RREF (on A partition)
$\left|\begin{array}{lllll}1 & 2 & \mid & 1 & 0 \\ 0 & 1 & \mid & 0 & \frac{1}{3}\end{array}\right|\left(\frac{1}{3} R_{2} \rightarrow R_{2}\right)$
$\left|\begin{array}{ccccc}1 & 0 & \mid & 1 & -\frac{2}{3} \\ 0 & 1 & \mid & 0 & \frac{1}{3}\end{array}\right|\left(-2 R_{2}+R_{1} \rightarrow R_{1}\right)$
$X_{1}=\left|\begin{array}{l}1 \\ 0\end{array}\right|, X_{2}=\left|\begin{array}{c}-\frac{2}{3} \\ \frac{1}{3}\end{array}\right|, B=\left|\begin{array}{cc}1 & -\frac{2}{3} \\ 0 & \frac{1}{3}\end{array}\right|$
Example
Solve $\left|\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right| X=\left|\begin{array}{lll}3 & 5 & 7 \\ 4 & 6 & 8\end{array}\right|$
$\left|\begin{array}{llll}1 & 2 \\ 0 & 3 & 3 & 5 \\ 4 & 6 & 7 \\ 8\end{array}\right| \rightarrow\left|\begin{array}{llllll}1 & 2 & \mid & 3 & 5 & 7 \\ 0 & 1 & \mid & \frac{4}{3} & 2 & \frac{8}{3}\end{array}\right| \rightarrow\left|\begin{array}{llllll}1 & 0 & \mid & \frac{1}{3} & 1 & \frac{5}{3} \\ 0 & 1 & & \frac{4}{3} & 2 & \frac{8}{3}\end{array}\right|$
$X=\left|\begin{array}{lll}\frac{1}{3} & 1 & \frac{5}{3} \\ \frac{4}{3} & 2 & \frac{8}{3}\end{array}\right|$

Example
Express $\left|\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right|$ as a product of elementary matrices.
Solution:
$\begin{aligned} & \left|\begin{array}{cc}1 & -2 \\ 0 & 1\end{array}\right|\left|\begin{array}{ll}1 & 0 \\ 0 & \frac{1}{3}\end{array}\right|\left|\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right|=I_{2} \\ & E_{2}\end{aligned} E_{1} \quad A, 1 \begin{array}{ll}E_{1} & 0 \\ A=E_{1}^{-1} E_{2}^{-1} I_{2}=\left|\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right|\end{array}$

Column Operations

March-14-11
11:32 AM

Proposition

If $T_{1}: U \rightarrow V$ and $T_{2}: V \rightarrow W$ are linear and T_{2} is an isomorphism on finite dimensional spaces U, V, and W .
Range $\left(T_{2} T_{1}\right)=\left(T_{2} T_{1}\right)(U)$ by definition of range

$$
\begin{aligned}
& =T_{2}\left(T_{1}(U)\right) \\
& =T_{2}\left(\operatorname{range}\left(T_{1}\right)\right)
\end{aligned}
$$

When T_{2} is an isomorphism, the subspace $\operatorname{range}\left(T_{1}\right)$ of V is mapped to a subspace of W of the same dimension.

Therefore, $\operatorname{rank}\left(T_{2} \circ T_{1}\right)=\operatorname{Rank} T_{1}$
Converting that statement to $n \times n$ matrices A and B, we get
$\operatorname{rank}(A B)=\operatorname{rank}(B)$ when A is invertible (i.e. equivalently $\operatorname{rank}(\mathrm{A})=\mathrm{n}$)
In parallel, we get $\operatorname{rank}(A B)=\operatorname{rank}(A)$ if B is invertible.
Corollary
For any matrix A, an elementary row operation performed on A does not change the rank.
$\operatorname{rank}(E A)=\operatorname{rank}(A)$
Since E is invertible.

In particular, $\operatorname{rank}(A)=\operatorname{rank}(\operatorname{RREF}(A))$

Theorem
Elementary column operations does not change the rank of a matrix. $\operatorname{rank}(A E)=\operatorname{rank}(A)$ since E is invertible.

Theorem

By using both elementary row and column operations, we can reduce a matrix to the form
$\left|\begin{array}{lll}I_{r} & \mid & 0 \\ - & + & - \\ 0 & \mid & 0\end{array}\right|$
where r is the rank of the original matrix.
Corollary
Let A be any matrix $(m \times n$). Then there exist invertible P \& Q such that
$P A Q=\left|\begin{array}{ccc}I_{r} & \mid & 0 \\ - & + & - \\ 0 & \mid & 0\end{array}\right|$

Observations
Observe that rows of A are the same as the columns of A^{t}. Therefore, action on rows of A becomes action on the columns of A^{t}.
Every theorem on row operations has a corresponding theorem on column operations.
Example
Every matrix can be reduced to a unique RREF using elementary row operations.
In parallel, we have:
Every matrix can be reduced to a unique reduced column echelon form using elementary column operations.

Notice that transpose has the property
$(A B)^{t}=B^{t} A^{t}$
The statement : an elementary row operation performed on A has the effect of multiplying A on the left by an elementary matrix translates into multiplying A on the right by an elementary matrix.

Demonstration
$\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23}\end{array}\right| \rightarrow\left(C_{1} \rightleftarrows C_{2}\right) \rightarrow\left|\begin{array}{lll}a_{12} & a_{11} & a_{13} \\ a_{22} & a_{21} & a_{23}\end{array}\right|$
$\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23}\end{array}\right| \begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\left|=\left|\begin{array}{lll}a_{12} & a_{11} & a_{13} \\ a_{22} & a_{21} & a_{23}\end{array}\right|\right.$

Example

Let A be 2×3 and that under the use of row operations we bring it to
$\left|\begin{array}{ccc}0 & 1 & 3 \\ 0 & 0 & 0\end{array}\right|$ (RREF)
Using further column operations, we can bring it down to CREF
$\left.\left.\rightarrow\left(C_{2} \leftrightarrows C_{1}\right) \rightarrow\left|\begin{array}{lll}1 & 0 & 3 \\ 0 & 0 & 0\end{array}\right| \rightarrow\left(-3 C_{1} \rightarrow C_{3}\right) \rightarrow\right|_{0} ^{1} \quad 0 \quad 0 \quad 0 \quad 0 \right\rvert\,$

* Dot product on R^{n}

March-14-11
3:33 PM

Dot Product on R^{n}
Let $\dot{x}=\left(x_{1}, \ldots, x_{n}\right), \dot{y}=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$
$\dot{x} \cdot \dot{y}=\left(x_{1}, \ldots, x_{n}\right) \cdot\left(y_{1}, \ldots, y_{n}\right):=\sum_{i=1}^{n} x_{i} y_{i}$
It is seen within matrix multiplication, and also in equations like $a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=0$
$\left(a_{1}, \ldots, a_{n}\right) \cdot\left(x_{1}, \ldots, x_{n}\right)=0$
Norm of a Vector in \mathbb{R}^{n}
$\ln \mathbb{R}^{n},\|x\|=\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}}$
If $x \neq 0$, then $\|\mathrm{x}\|>0$
If $x=0$ then $\|x\|=0$
$\|\lambda x\|=|\lambda|\|x\| \forall x \in \mathbb{R}^{n}$
$\left\|\frac{x}{\|x\|}\right\|=\left|\frac{1}{\|x\|}\right|\|x\|=\frac{1}{\|x\|}\|x\|=1$
Normal Vector
A vector whose norm is 1

Normalisation
We call the division of $x \neq 0$ by $\|x\|>0$ the normalisation of x

Distance
Distance between x, y :
$d(\dot{x}, \dot{y})=\|\dot{y}-x\|=\|\dot{x}-\dot{y}\|$

Theorem
Proj $_{x}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a linear map

Geometric Interpretation in \mathbb{R}^{2}
$\left(x_{1}, x_{2}\right) \cdot\left(y_{1}, y_{2}\right)=0$ means the vectors x, y are perpendicular.
Same story for x^{3}
Dot Product
Interpretation of non-zero dot product:

Orthogonal projection of a vector $y \in \mathbb{R}^{\mathrm{n}}$ on a normal vector x is
$\operatorname{Proj}_{x}(\dot{y})=(\dot{y} \cdot x) x$
$\operatorname{Range}\left(\operatorname{Proj}_{x}\right)=\operatorname{span}\{x\}$
Nullspace $\left(\operatorname{Proj}_{x}\right)=\left\{\dot{y} \in \mathbb{R}^{n}: \operatorname{Proj}_{x}(\dot{y})=0\right\}=\left\{\dot{y} \in \mathbb{R}^{n}:(\dot{y} \cdot x)=0\right\}=\left\{\dot{y} \in \mathbb{R}^{n}: \dot{y} \perp x\right\}$ $\mathbb{R}^{n}=\operatorname{Nullspace}\left(\operatorname{Proj}_{x}\right) \oplus \operatorname{Range}\left(\operatorname{Proj}_{x}\right)$

Let Proj $_{x}=T, T^{2}=T$
Projection
Let $V=W_{1} \oplus W_{2}$
Then for $v \in V, v=w_{1}+w_{2}$
Define $\operatorname{Proj}_{W_{2}}(v)=w_{2}$ and $\operatorname{Proj}_{W_{1}}(v)=w_{1}$

Abstract Definition of Projection
A linear operator L such that $L^{2}=L$

Determinant

March-16-11
11:31 AM

The Determinant Function

Let A be a 1×1 matrix. The determinant of $\mathrm{A}, \operatorname{det}(A)$ is equal to the entry of A.

Let A be a 2×2 matrix $\left|\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right|$. Then
$\operatorname{det}(a)=a_{11} a_{22}-a_{12} a_{21}=a_{11} \operatorname{det}\left|a_{22}\right|-a_{12} \operatorname{det}\left|a_{21}\right|$

Let $A=\left\lfloor a_{i j}\right\rfloor$ be 3×3. We define
$\operatorname{det} A$
$=a_{11} \operatorname{det}\left|\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right|-a_{12} \operatorname{det}\left|\begin{array}{ll}a_{21} & a_{23} \\ a_{31} & a_{33}\end{array}\right|$
$+a_{13} \operatorname{det}\left|\begin{array}{ll}a_{21} & a_{22} \\ a_{31} & a_{32}\end{array}\right|$

Recursively, we define for $n \times n$ matrix A
$\operatorname{det} A=\sum_{j=1}^{n}(-1)^{j+1} a_{1 j} \operatorname{det}\left\lfloor A_{1 j}\right\rfloor$
Where $A_{1 j}$ is the sub matrix of A obtained when we remove row 1 and column j

Area Magnitude

Area is considered positive when the points are defined in a widdershins fashion about the shape. When the points are described clockwise, the area can be considered negative.

Multiplying the area by -1 means a change in orientation.

Fact

A 2×2 matrix A is invertible iff $\operatorname{det} A \neq 0$. In general, for any $n \times n \mathrm{~A}$, A is invertible iff $\operatorname{det} A \neq 0$

Theorem

For any $n \times n$ A over F, A is invertible iff $\operatorname{det} A \neq 0$.

Proposition

Let A be $n \times n$. Holding all rows but the 1 st row fixed, $\operatorname{det} A$ is a linear map of the first row R_{1}. It is a function from F^{n} to F

Interpretation of Determinant

Interpretation for 2×2 matrix A and $\operatorname{det} A$
e.g. Let $A=\left|\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right|$. Then $\operatorname{det} A=(2)(1)-(0)(0)=2$

Consider $L_{A}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$. The map is $L_{A}(x, y)=\left|\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right|\left|\begin{array}{l}x \\ y\end{array}\right|=\left|\begin{array}{c}2 x \\ y\end{array}\right|=(2 x, y)$
The figure:

The area under the region is doubled by the transform.

Let $A=\left|\begin{array}{ll}1 & 1 \\ 0 & 4\end{array}\right|$. Then $\operatorname{det} A=4 . L_{A}(x, y)=(x+y, 4 y)$

So the Area was multiplied by a factor of 4.

Determinant Properties

March-18-11
11:32 AM
Properties of Determinants
In the textbook, properties of determinant are built up in this sequence:
Theorems
(4.3) $\operatorname{det} A$ is linear as a function of each row when other rows are fixed. Corollary: If A has a zero row, then $\operatorname{det} \mathrm{A}=0$
(4.4) $\operatorname{det} A=\sum_{j=1}^{n}(-1)^{i+j} a_{i j} \operatorname{det} A_{i j}$ for any fixed i
(Co-Factor expansion along row i)
A lead to (4.4) is the Lemma: If B is $n \times n, n \geq 2$ has row I equal to e_{k} (standard basis for F^{k}) then $\operatorname{det} B=(-1)^{i+k} \operatorname{det} B_{i k}$

Corollary: If A has two identical rows, then $\operatorname{det} A=0$
(4.5) IF B is obtained from A by interchanging two rows, then $\operatorname{det} B=-\operatorname{det} A$
(4.6) If B is obtained from A by $\lambda R_{i}+R_{j} \rightarrow R_{j}(i \neq j)$ action, then $\operatorname{det} B=\operatorname{det} A$

Corollary: If $\operatorname{rank}(A), n \times n A$, is below n , then $\operatorname{det} A=0$
Corollary
If a matrix is upper triangular $\mathrm{A}, A_{i j}=0$ for $i>j$ then
$\operatorname{det} A=\left.\right|_{i=1} ^{n} A_{i i}=$ product of all diagonal entries

Illustration of Theorem 4.3
$A=\left|\begin{array}{ccc}a_{11} & a_{12} & a_{13} \\ b_{1}+k c_{1} & b_{2}+k c_{2} & b_{3}+k c_{3} \\ a_{31} & a_{32} & a_{33}\end{array}\right|$
Claim:
$\operatorname{det} A=\operatorname{det}\left|\begin{array}{ccc}a_{11} & a_{12} & a_{12} \\ b_{1} & b_{2} & b_{3} \\ a_{31} & a_{32} & a_{33}\end{array}\right|+k \operatorname{det}\left|\begin{array}{ccc}a_{11} & a_{12} & a_{13} \\ c_{1} & c_{2} & c_{3} \\ a_{31} & a_{32} & a_{33}\end{array}\right|$
$L H S=a_{11} \operatorname{det}\left|\begin{array}{cc}b_{2}+k c_{2} & b_{3}+k c_{3} \\ a_{32} & a_{33}\end{array}\right|-a_{12} \operatorname{det}|\ldots|+a_{13} \operatorname{det}\left|\begin{array}{cc}b_{1}+k c_{1} & b_{2}+k c_{2} \\ a_{31} & a_{32}\end{array}\right|$
By induction
LHS
$=a_{11} \operatorname{det}\left(\left|\begin{array}{cc}b_{2} & b_{3} \\ a_{32} & a_{33}\end{array}\right|+k\left|\begin{array}{cc}c_{2} & c_{3} \\ a_{32} & a_{33}\end{array}\right|\right)-a_{12} \operatorname{det}|\ldots|$
$+a_{13} \operatorname{det}\left(\left|\begin{array}{cc}b_{1} & b_{2} \\ a_{31} & a_{32}\end{array}\right|+k\left|\begin{array}{cc}c_{1} & c_{2} \\ a_{31} & a_{32}\end{array}\right|\right)=R H S$

Illustration of Lemma for Theorem 4.4
$B=\left|\begin{array}{ccc}a_{11} & a_{12} & a_{13} \\ 0 & 0 & 1 \\ a_{31} & a_{32} & a_{33}\end{array}\right|$
$\operatorname{det} B=a_{11} \operatorname{det}\left|\begin{array}{cc}0 & 1 \\ a_{32} & a_{33}\end{array}\right|-a_{12} \operatorname{det}\left|\begin{array}{cc}0 & 1 \\ a_{31} & a_{33}\end{array}\right|+a_{13} \operatorname{det}\left|\begin{array}{cc}0 & 0 \\ a_{31} & a_{32}\end{array}\right|$
The new determinants are either 0 or same form but smaller so use induction.
Proof of Corollary
Use brute force to check it is true for 2×2 matrices.
For larger n, pick a row which is not part of the 2 identical rows. The determinant calculated using that row will be 0 because there are 2 identical rows in every sub-matrix, by induction.

Illustration of Theorem 4.6
Let B be obtained from A using $\lambda R_{i}+R_{j} \rightarrow R_{j}$

Since the first matrix has two identical rows and thus has determinant 0.

Example
Evaluate $\operatorname{det}\left|\begin{array}{lll}1 & 2 & 3 \\ 0 & 5 & 0 \\ 6 & 7 & 8\end{array}\right|$
$=1 \operatorname{det}\left|\begin{array}{ll}5 & 0 \\ 7 & 8\end{array}\right|-2 \operatorname{det}\left|\begin{array}{ll}0 & 0 \\ 6 & 8\end{array}\right|+3 \operatorname{det}\left|\begin{array}{ll}0 & 5 \\ 6 & 7\end{array}\right|=1 \times 40-2 \times 0+3 \times-20=-50$
or
$=(-1)^{2+2} \times 5 \times \operatorname{det}\left|\begin{array}{ll}1 & 3 \\ 6 & 8\end{array}\right|=5 \times-10=-50$

Example
Find det $\left|\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 1 \\ 1 & 1 & 1\end{array}\right|$ over \mathbb{Z}_{7}
Lin comb of rows, then multiply a row by $2=\frac{1}{4}$
$=\operatorname{det}\left|\begin{array}{lll}1 & 2 & 3 \\ 0 & 4 & 3 \\ 0 & 6 & 5\end{array}\right|=4 \times \operatorname{det}\left|\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 6 \\ 0 & 6 & 5\end{array}\right|=4 \times \operatorname{det}\left|\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 6 \\ 0 & 0 & 4\end{array}\right|$
$=4 \times(-1)^{3+3} \times 4 \times \operatorname{det}\left|\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right|=4 \times 4 \times 1=2$
Example
Evaluate $\operatorname{det}\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & x & x^{2} \\ 1 & y & y^{2}\end{array}\right|$
It is some multinomial involving x and y of degree at most 3 .
By inspection, factors should be
$(x-1)(y-1)(x-y)$
$\operatorname{det}\left|\begin{array}{lll}1 & 1 & 1 \\ 1 & x & x^{2} \\ 1 & y & y^{2}\end{array}\right|=a(x-1)(y-1)(x-y)$ for some constant a
If over \mathbb{R}, pick $x=0, y=2$
$a(-1)(1)(-2)=2 a=(-1)^{1+2} \operatorname{det}\left|\begin{array}{ll}1 & 1 \\ 2 & 4\end{array}\right|=-1 \times 2=-2$
$a=-1$

More Det. Properties

March-23-11
11:34 AM

Theorem
$\operatorname{det}(A B)=\operatorname{det} A \operatorname{det} B$

Similar Matrices

Two $n \times n$ matrices $A \& B$ are similar if there exists invertible P so that
$A=P^{-1} B P$

Result
If A and B are similar then $\operatorname{det} A=\operatorname{det} B$

Example
Let $T: V \rightarrow V$ be linear, $\operatorname{dim} V=n$. Let α be a basis, and led β be another. Then $[T]_{\alpha}$ and $[T]_{\beta}$ are similar.

Determinant of Operator

Let $T: V \rightarrow V$ be a linear operation on n dimensional V . Then $\operatorname{det} T:=\operatorname{det}\left(\lfloor T\rfloor_{\alpha}\right)$ for any ordered basis α

Theorem

$\operatorname{det}\left(T_{1} \circ T_{2}\right)=\operatorname{det} T_{1} \operatorname{det} T_{2}$

Determinant Properties Cont.
$\operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$

Proof of Theorem

First see that it is true for elementary matrix $A=E$
Case 1:

```
E is from \(I_{n} \lambda R_{i} \rightarrow R_{i}\)
\(\operatorname{det}(E)=\lambda \operatorname{det}\left(I_{n}\right)=\lambda\)
\(\operatorname{det}(E B)=\lambda \operatorname{det}(B)=\operatorname{det}(E) \operatorname{det}(B)\)
```

Case 2:
Suppose E is from I_{n} by the action $R_{i} \leftrightarrows R_{j}$
Then $\operatorname{det} E=-\operatorname{det}\left(I_{n}\right)=-1$
$\operatorname{det}(E B)=-\operatorname{det}(B)=\operatorname{det}(E) \operatorname{det}(B)$
Case 3:
Suppose E is from I_{n} by the action $\lambda R_{i}+R_{j} \rightarrow R_{j}$
Then $\operatorname{det}(E)=\operatorname{det}\left(I_{n}\right)=1$
$\operatorname{det}(E B)=\operatorname{det}(B)=\operatorname{det}(E) \operatorname{det}(B)$
Next, if A is equal to $E_{1} E_{2} \ldots E_{k}$, then $\operatorname{det}(A B)=\operatorname{det}(A)+\operatorname{det}(B)$
$\operatorname{det}(A B)=\operatorname{det}\left(E_{1}\right) \operatorname{det}\left(E_{2}, \ldots, E_{k}\right)=\cdots=\operatorname{det}\left(E_{1}\right) \operatorname{det}\left(E_{2}\right) \ldots \operatorname{det}\left(E_{k}\right) \operatorname{det}(B)$
$=\operatorname{det}\left(E_{1} E_{2} \ldots E_{k}\right) \operatorname{det}(B)=\operatorname{det}(\mathrm{A}) \operatorname{det}(\mathrm{B})$

Finally, if A is not invertible then $A B$ is not invertible. Since A is not invertible, the RREF has a 0 row at the bottom so $\operatorname{det} A$ is 0 , as for $A B$ so $\operatorname{det} A B=0$ so $\operatorname{det}(A)=\operatorname{det}(A) \operatorname{det}(B)=0 \times \operatorname{det}(B)=0$

Proof of Result

$\exists P, A=P^{-1} B P, \operatorname{det}(A)=\operatorname{det}\left(P^{-1} B P\right)=\operatorname{det}\left(P^{-1}\right) \operatorname{det}(B) \operatorname{det}(P)=\operatorname{det}\left(P^{-1}\right) \operatorname{det}(P) \operatorname{det}(B)$
$=\operatorname{det}\left(P^{-1} P\right) \operatorname{det}(B)=\operatorname{det}\left(I_{n}\right) \operatorname{det}(B)=\operatorname{det}(B)$
Proof of Example
Recall the rule $\left|L_{1} \circ L_{2}\right|_{\gamma_{1}}^{\gamma_{3}}=\left|L_{1}\right|_{\gamma_{2}}^{\gamma_{3}}\left|L_{2}\right|_{\gamma_{1}}^{\gamma_{2}}$
$V \xrightarrow{T} V$
$\alpha \xrightarrow{\lfloor T\rfloor_{\alpha}} \alpha$
$\downarrow \quad \uparrow$
$V \xrightarrow{T} V$
$\beta \xrightarrow{[T]_{\beta}} \beta$
So:
$T=1 \circ T \circ 1$
$\lfloor T\rfloor_{\alpha}=\lfloor 1 \circ T \circ 1\rfloor_{\alpha}=\lfloor 1\rfloor_{\beta}^{\alpha}\lfloor T\rfloor_{\beta}\lfloor 1\rfloor_{\alpha}^{\beta}$
Testing: $\lfloor 1\rfloor_{\beta}^{\alpha}\lfloor 1\rfloor_{\alpha}^{\beta}=\lfloor 1\rfloor_{\alpha}=I_{n}$
Example
Let T: $V \rightarrow V$
$\alpha=\left\{v_{1}, v_{2}\right\}, \beta=\left\{v_{2}, v_{1}\right\}$ be bases
Let $[T]_{\alpha}=\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|$
What is $\lfloor T\rfloor_{\beta}$?
Ans: Given $\left\{\begin{array}{l}T\left(v_{1}\right)=a v_{1}+c v_{2} \\ T\left(v_{2}\right)=b v_{1}+d v_{2}\end{array}\right.$
Hence $T\left(v_{2}\right)=b v_{1}+d v_{2}=d v_{2}+b v_{1}$
$T\left(v_{1}\right)=a v_{1}+c v_{2}=c v_{2}+a v_{1}$
So
$\lfloor T]_{\beta}=\left|\begin{array}{ll}d & c \\ b & a\end{array}\right|$
Corollary
$\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|$ and $\left|\begin{array}{ll}d & c \\ b & a\end{array}\right|$ are similar.

Proof of Theorem

$\left.\operatorname{det}\left(T_{1} \circ T_{2}\right)=\operatorname{det}\left|T_{1} \circ T_{2}\right|_{\alpha}=\operatorname{det}\left|T_{1}\right|_{\alpha} \operatorname{det} \mid T_{2}\right\rfloor_{\alpha}$
Proof of $\operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$
For $\lambda R_{i} \rightarrow R_{i}$ and $R_{1} \leftrightarrows R_{j}, E^{T}=E$
For $\lambda R_{i}+R_{j} \rightarrow R_{j}$
Each E, E^{T} are upper or lower triangular so $\operatorname{det}(E)=\operatorname{det}\left(E^{T}\right)=1$
Since this is true for elementary matrices, it should be true for all invertible matrices.
$\operatorname{det} A^{T}=\operatorname{det}\left(E_{1} E_{2} \ldots E_{n}\right)^{T}=\operatorname{det}\left(E_{n}^{T} \ldots E_{2}^{T} E_{1}^{T}\right)=\operatorname{det}\left(E_{n}^{T}\right) \ldots \operatorname{det}\left(\mathrm{E}_{2}^{\mathrm{T}}\right) \operatorname{det}\left(\mathrm{E}_{1}^{\mathrm{T}}\right)$
$=\operatorname{det}\left(E_{n}\right) \ldots \operatorname{det}\left(E_{2}\right) \operatorname{det}\left(E_{1}\right)=\operatorname{det}\left(E_{1}\right) \operatorname{det}\left(E_{2}\right) \ldots \operatorname{det}\left(E_{n}\right)=\operatorname{det}\left(E_{1} E_{2} \ldots E_{n}\right)=\operatorname{det}\left(A^{T}\right)$
And for non-invertible A, A^{T} is non-invertible so $\operatorname{det} A=\operatorname{det} A^{T}=0$ Suppose $A^{T} B=1$, then $\left(A^{T} B\right)^{T}=1^{T} \Rightarrow B^{T} A=1$ so A^{T} not invertible $\Leftrightarrow A$ not invertible

Similar Maps

March-28-11
11:30 AM
Proposition
If A and B are similar, then $p(A)$ is similar to $p(B)$.
Where p is a polynomial expression
$p=\sum_{i=0}^{n} a_{i} x^{i}$
Similar Maps
Let L_{1} and $L_{2}: V \rightarrow V$ be linear operators. we say that L_{1} is similar to L_{2} if there exists an isomorphism $P: V \rightarrow V$ so that $L_{1}=P^{-1} \circ L_{2} \circ P$

Proposition

If V is finite dimensional, then operators $L_{1}, L_{2}: V \rightarrow V$ are similar iff $\left|L_{1}\right|_{\alpha}$ and $\left|L_{2}\right|_{\alpha}$ are similar.

Characteristic Polynomial
$\operatorname{det}\left|A-\lambda I_{n}\right|$ is the characteristic polynomial of $(n \times n) \mathrm{A}$
Characteristic roots (Eigenvalues)
The roots of the characteristic polynomial of A are called the characteristic roots of A.

Proof of Proposition

Let $p(x)=\sum_{i=0}^{n} a_{i} x^{i}=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}$
i) A^{2} is similar to B^{2}.

Let $A=P^{-1} B P$. Then $A^{2}=P^{-1} B P P^{-1} B P=P^{-1} B I B P=P^{-1} B^{2} P$
ii) Similarly, A^{k} is similar to B^{k} for each $k \geq 3$
iii) $p(A)=P^{-1} p(B) P$

$$
p(A)=\sum_{i=0}^{n} a_{i} A^{i}=\sum_{i=0}^{n} a_{i} P^{-1} B^{i} P
$$

Example
Let $L_{1}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by the rotation \cup by 20°. Let $P: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the reflection about the y -axis.
[i.e. $P(x, y)=(-x, y)$]
Let $L_{2}=P^{-1} L_{1} P$. Then L_{1} and L_{2} are similar.
L_{2} is the rotation \circlearrowright by 20°
Try
Is rotation counter clockwise by 20° similar to rotation counter clockwise by 30°
May be on exam
Proof of Proposition
(\Rightarrow) Suppose that there is an isomorphism $T: V \rightarrow V$ so that
$L_{1}=T^{-1} L_{2} T$
Let α be any fixed basis. Then
$\left|L_{1}\right|_{\alpha}=|T|_{\alpha}^{-1}\left|L_{2}\right|_{\alpha}|T|_{\alpha}$. Take $P=|T|_{\alpha}$
(\Leftarrow) Converse left as exercise
Example
Consider the two similar rotations mentioned earlier. Pick $\alpha=$ standard basis. We get
$\left|L_{1}\right|_{\alpha}=\left|\begin{array}{cc}\cos 20 & -\sin 20 \\ \sin 20 & \cos 20\end{array}\right|$ is similar to
$\left|L_{2}\right|_{\alpha}=\left|\begin{array}{cc}\cos 20 & \sin 20 \\ -\sin 20 & \cos 20\end{array}\right|$ under $P=\left|\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right|$
Example of characteristic polynomials
$A=\left|\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right|$
Then its characteristic polynomial is
$\operatorname{det}|A-\lambda I|=\operatorname{det}\left(\left|\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right|-\left|\begin{array}{cc}\lambda & 0 \\ 0 & \lambda\end{array}\right|\right)=\operatorname{det}\left|\begin{array}{cc}1-\lambda & 2 \\ 2 & 4-\lambda\end{array}\right|=(1-\lambda)(4-\lambda)-(2)(3)=\lambda^{2}-5 \lambda-2$

* Axiom of Choice

March-28-11

3:38 PM
If X is a finite set with n elements then X can be partitioned into two (disjoint) parts of same cardinality iff n is even.

Proposition

If X is an infinite set, then it can be partitioned into two parts of the same cardinality.

Function Extension
Say $G: A_{2} \rightarrow B_{2}$ extends $F: A_{1} \rightarrow B_{1}$
if $A_{2} \supseteq A_{1}$ and $B_{2} \supseteq B_{1}$ and $G\left(A_{1}\right)=B_{1}$

Proof of Proposition

Consider the class \mathcal{C} of all bijective functions from a set $A \subset X$ onto $B \subset X, A \cap B=\varnothing$
\mathcal{C} is non-empty.
Define in \mathcal{C}, $f \leq g$ when g extends f .
\mathcal{C} is partially ordered by \leq
We seek maximal f .
Let \mathcal{C} be a chain in \mathcal{C}
Let $A=\bigcup_{f \in C}$ dom f and $B=\bigcup_{f \in C}$ range f
$f: A \rightarrow B$ by if $a \in A$ then $a \in \operatorname{dom} f_{i}$ for some $f_{i} \in C$ let $f(a)=f_{i}(a)$.
If $a \in \operatorname{dom} f_{j}$ for some $f_{j} \in C$ then WLOG say that $f_{i} \leq f_{j}$ so $f_{i}(a)=f_{j}(a)$.
Hence f is well defined
$\operatorname{dom} f=A$, range $f=B$. It is easy to observe that A and B are disjoint and f is a bijection from A to B So $f \in \mathcal{C}$

The maximal principle asserts that maximal f_{0} exists.
The union of the domain A of f_{0} and its range B is either the whole X or is $X \backslash\left\{x_{0}\right\}$
We are done if $A \cup B=X$
Else, $A \cup B \cup\left\{x_{0}\right\}=X$
Select a sequence of distinct elements $\left(a_{n}\right)_{n=1}^{\infty}$ from A .
Adjust f_{0} to g :
$g: A \cup\left\{x_{0}\right\} \rightarrow B$
$g\left(x_{0}\right)=f_{0}\left(a_{1}\right)$
$g\left(a_{n}\right)=f_{0}\left(a_{n+1}\right)$
$g(a)=f_{0}(a)$, for $a \notin\left\{a_{n}\right\} \cup\left\{x_{0}\right\}$
Hence $A \cup\left\{x_{0}\right\}$ and B is a partition of X , and the presence of bijective g means $A \cup\left\{x_{0}\right\}$ and B are of the same cardinality.

Eigenvalues/vectors

March-30-11
11:34 AM

Eigenvalues and Eigenvectors

Let V be a vector space over F . Let $L: V \rightarrow V$ be a linear operator. A scalar λ is an eigenvalue of L if there exists $v \neq 0$ so that $L(v)=\lambda v$.

If $v \neq 0$ and $L(v)=\lambda v$ for some $\lambda \in F$, then v is called an eigenvector of L.

Proposition

Eigenvalues of $L_{A}: F^{n} \rightarrow F^{n}(n \times n A)$ are given by the characteristic roots of A.

Hence, L_{A} has at most n distinct eigenvalues.

Remark
Let $L: V \rightarrow V$ be an operator on finite dimensional V . Then λ is an eigenvalue of L iff it is a characteristic root of $[L]_{\alpha}$ for any fixed basis α for V.

Example
Let $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be Proj_{x}
Then each non-zero vector on the line spanned by \widehat{x} is an eigenvector of L, and $\lambda=1$ is an eigenvalue.
Each $v \neq 0$, perpendicular to \dddot{x} is also an eigenvector of L , and $\lambda=0$ is an eigenvalue of L .

Proof of Proposition
Let λ be an eigenvalue of L_{A}. Then, by definition, there exists
$X \neq 0 \in F^{n}$ so that $L_{A}(X)=\lambda X$. That is, $A X=\lambda X$
$A X-\lambda X=0 \Rightarrow\left(A-\lambda I_{n}\right) X=0$
This is equivalent to that $A-\lambda_{n}$ is not invertible.
Therefore, $\operatorname{det}\left(A-\lambda I_{n}\right)=0$
Therefore, λ is a characteristic root.
The converse is also true and can be observed through the proof done backwards.

Example
Let V be the space of all infinitely differentiable functions on the real line into the real line. (A subspace of $\mathcal{F}(\mathbb{R}, \mathbb{R})$)
Let $D: V \rightarrow V$ be the differentiation.
Each function $e^{\lambda x}$ is an eigenvector of D. Hence λ is an eigenvalue of D for every $\lambda \in \mathbb{R}$.

Computational comments

April-01-11
11:32 AM

Given a finite list of vectors $v_{1}, \ldots v_{k}$ in F^{n}, how to extract a subset which is a basis for $\operatorname{span}\left\{v_{1}, \ldots, v_{k}\right\}$ and extend that to a basis for the full F^{n}

Method
Form the matrix
$\left\lfloor v_{1}\left|v_{2}\right| \ldots\left|v_{k}\right| e_{1}\left|e_{2}\right| \ldots \mid e_{n}\right\rfloor$ and find its RREF, then read an answer out.
Example
Suppose that $k=4, n=6$ and that RREF of A is
$\begin{array}{llllllllll}0 & 1 & 0 & * & * & 0 & 0 & * & 0 & 0\end{array}$
$\left[\begin{array}{llllllllll}0 & 1 & 0 & * & * & 0 & 0 & * & 0 & 0 \\ 0 & 0 & 1 & * & * & 0 & 0 & * & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & * & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & * & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0\end{array}\right]$
The then answer is $\left\{v_{2}, v_{3}\right\}$ is a basis for $\operatorname{span}\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$. An extension to a basis for F^{6} is
$\left\{v_{2}, v_{3}, e_{2}, e_{3}, e_{5}, e_{6}\right\}$
If mission is to find a basis for $\operatorname{span}\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ in F^{k} then we could form
$A=\left[\begin{array}{c}v_{1} \\ - \\ v_{2} \\ - \\ \vdots \\ - \\ v_{k}\end{array}\right]$
and find its RREF. At the end we produce a basis. For instance
$k=4, n=6$, RREF of A is $\left|\begin{array}{cccccc}1 & *_{1} & *_{2} & 0 & *_{3} & *_{4} \\ 0 & 0 & 0 & 1 & *_{5} & *_{6} \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right|$
Then a basis for $\operatorname{span}\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is $\left\{\left(1, *_{1}, *_{2}, 0, *_{3}, *_{4}\right),\left(0,0,0,1, *_{5}, *_{6}\right)\right\}$, not $\left\{v_{1}, v_{2}\right\}$

Comments

The following are undefined:
$L: U \rightarrow V$ a linear map, $\operatorname{dim}(L)$.
Vectors $v_{1}, v_{2}, \ldots, v_{n} . \operatorname{dim}\left\{v_{1}, \ldots, v_{n}\right\}$
Matrix $A, \operatorname{dim} A$
$v_{1}, v_{2}, \ldots v_{n}$. They form a basis for V. Avoid saying $v_{1}, v_{2}, \ldots, v_{n}$ is a basis. Correct: $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a basis
$\operatorname{dim} M_{3 \times 4}(F)$ is defined, though $\operatorname{dim} A$ is undefined for $A \in M_{3 \times 4}(F)$
$L: V \rightarrow V$ a linear operator, V finite dimensional, $\operatorname{det} L$ is defined by $\operatorname{det}\left([L\rfloor_{\alpha}\right)$ When V is infinite dimensional, $\operatorname{det} L$ is undefined.
e.g. If D is the differentiation operator, then $\operatorname{det} D$ is defined when the space it acts on is finite dimensional, like $P_{n}(\mathbb{R})$. It is undefined on $P(\mathbb{R})$

The characteristic polynomial of A is defined by $\operatorname{det}\left(A-\lambda I_{n}\right)$.
It cannot be computed using the RREF of A.
*Might be on exam
If A is similar to B , then $\operatorname{det} A=\operatorname{det} B$
trace $A=$ trace B
$\operatorname{rank} A=\operatorname{rank} B$, nullity $A=$ nullity B
Characteristic polynomial of $\mathrm{A}=\mathrm{B}$?
$A \sim B \Rightarrow A^{2} \sim B^{2}$
$A \sim B \Rightarrow p(A) \sim p(B)$
$A \sim B \& C \sim D \Rightarrow A C \sim B D$?
λ is an eigenvalue of A
($\exists X \neq 0$ so that $A X=\lambda X)$
then λ^{2} is an eigenvalue of A^{2}
As $A^{2} X=A(A X)=A(\lambda X)=\lambda A(x)=\lambda(\lambda x)=\lambda^{2} x$
Similarly λ is a root of $\operatorname{det}\left(A-\lambda I_{n}\right) \Rightarrow \lambda^{2}$ is root of $\operatorname{det}\left(A^{2}-\lambda I_{n}\right)$

