Vector Properties

January-05-11 11:31 AM

Vector in the plane

An entity with direction and magnitude. It is viewed as an arrow having a starting position and a terminating position.

Equality

Two arrows are equal if they have the same magnitude and direction

Positions vs. Vectors in \mathbb{R}^2

Every vector is identified with a point P so that the arrow pointing from O to P is equal to it.

Chapter 1

1.1 Introduction to Vector Spaces (Linear Spaces)

The Plane \mathbb{R}^2

Coordinates:

We draw a horizontal line and a vertical line intersecting a point 0 at right angles. We then give the lines directions. (Arrow on the line indicates positive direction) Further, we introduce scales. The two lines should use the same scale.

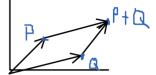
A position P on the plane (or a point) can be identified by two real quantities: its scale numbers when we draw perpendicular lines from P to the horizontal and vertical lines (coordinate axis). The numbers are represented as a tuple P = (x, y) with $x, y \in \mathbb{R}$

The plane is the set of all positions on the plane, and can be identified with the set of all pairs of real numbers.

$$\mathbb{R}^2 \coloneqq \{ (x_1, x_2) \mid x_1, x_2 \in \mathbb{R} \}$$

On \mathbb{R}^2 we define **addition**:

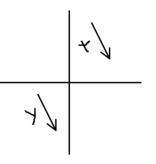
Algebraically: $(x_1, x_2) + (y_1, y_2) = (x_1 + y_1) + (x_2 + y_2)$ Geometrically: Form a parallelogram between the two points and the origin. The 4th point is the sum.



In the diagram: x = y

Vector addition using arrows:

To add the arrows x and y, start with the arrow x from point A to point B. Then place y on the tip of x so it goes from point B to C. Then x+y is the arrow going from A to C



Scalar multiplication for the plane \mathbb{R}^2

Let $x = (x_1, x_2)$. Let $\lambda \in \mathbb{R}$ (a scalar)

Then $\lambda x = (\lambda x_1, \lambda x_2)$

The product λx is called the scalar multiplication of the vector x by the scalar λ Vector addition and scalar multiplication on \mathbb{R}^2 satisfy 10 properties.

Properties of Vector Addition and Multiplication

- (-1) $\forall x, y \in \mathbb{R}^2, x + y \in \mathbb{R}^2$ Closed under addition
- (0) $\forall \lambda \in \mathbb{R}, x \in \mathbb{R}^2, \lambda x \in \mathbb{R}^2$
- (1) $x + y = y + x \forall x, y \in \mathbb{R}^2$ Commutativity of addition
- (2) $(x + y) + z = x + (y + z) \forall x, y \in \mathbb{R}^2$ Associativity of addition
- (3) $\exists 0 = (0,0)$ so that $0 + x = x \ \forall x \in \mathbb{R}^2$ Additive identity
- (4) $\forall x \in \mathbb{R}^2, \exists y \in \mathbb{R}^2 \text{ such that } x + y = 0 \text{ Additive inverse}$
- $(5) 1x = x \ \forall x \in \mathbb{R}^2$
- (6) $(\lambda \mu) x = \lambda(\mu x) \,\forall \lambda, \mu \in \mathbb{R}, x \in \mathbb{R}^2$
- (7) $\lambda(x+y) = \lambda x + \lambda y \ \forall \lambda \in \mathbb{R}, x, y \in \mathbb{R}^2$
- (8) $(\lambda + \mu)x = \lambda x + \mu x \,\forall \lambda, \mu \in \mathbb{R}, x \in \mathbb{R}^2$

Vector Spaces

January-07-11 11:32 AM

Vector Space

The abstract definition of a vector space over a field.

Let V be a set (of objects) and F a field Let there be two operations +, scalar multiplication, satisfying the ten properties of vector addition and scalar multiplication.

Uniqueness of Zero Vector

Let V be a vector space over F Then \exists one and only one $0 \in V$ such that x + 0 = xWe call the unique 0 the zero vector of V.

Uniqueness of Additive Inverses

Let V be a vector space over F Then for every $x \in V$, \exists one and only one $y \in V$ such that x + y = 0. This y is denoted -x, it is the additive inverse of x

Cancellation Law

If x + y = x + z then y = z

Properties of a Vector Space

- $\forall x, y \in V, x + y \in V$ Closed under addition (-1)
- (0) $\forall \lambda \in F, x \in V, \lambda x \in V$
- (1) $x + y = y + x \forall x, y \in V$ - Commutativity of addition
- $(x + y) + z = x + (y + z) \forall x, y \in V$ Associativity of addition (2)
- $\exists 0 \in V$ so that $0 + x = x \ \forall x \in V$ Additive identity (3)
- (4) $\forall x \in V, \exists y \in V \text{ such that } x + y = 0 \text{ - Additive inverse}$
- (5) $1x=x\ \forall x\in V$
- $(\lambda \mu)x = \lambda(\mu x) \, \forall \lambda, \mu \in F, x \in V$ (6)
- $\lambda(x+y) = \lambda x + \lambda y \ \forall \lambda \in F, x,y \in V$ (7)
- (8) $(\lambda + \mu)x = \lambda x + \mu x \, \forall \lambda, \mu \in F, x \in V$

Once V (and F) are given two operations satisfying the ten properties, we call it a vector space over F

```
Let S be any non-empty set. Let V = \{f: S \rightarrow F\}
Define + and scalar multiplication on V by
for f, g \in V,
        f + g: S \to F
(f+g)(s) = f(s) + g(s) \ \forall \ s \in S for all f \in V, \lambda \in F
        \lambda f: S \to F
        (\lambda f)(s) = \lambda f(s) \, \forall s \in S
Then V is a vector space over F
```

Proof of Uniqueness of 0

One of the ten axioms calls for the existence of a special element $0 \in V$ satisfying $x + 0 = x \forall x \in V$ Let $0_1, 0_2 \in V$ be two such elements. By the properties of 0_1 : $0_2 + 0_1 = 0_2$

By the properties of 0_2 : $0_1 + 0_2 = 0_1$

Since addition is commutative, $0_1 + 0_2 = 0_2 + 0_1 = 0_2 = 0_1$

Proof of Uniqueness of Additive Inverse

```
Let y_1 and y_2 be two y such that x + y = 0
x + y_1 = 0 \Rightarrow x + y_1 + y_2 = y_2 \Rightarrow y_1 = y_2
```

$$0x + 0x = (0 + 0)x = 0x \Rightarrow 0x + 0x - 0x = 0x - 0x \Rightarrow 0x = 0$$

Proof -x = (-1)x

$$x + (-1)x = (1)x + (-1)x = (1-1)x = 0x = 0$$

 $x + (-1)x = 0 \Rightarrow x + (-1)x - x = 0 - x \Rightarrow (-1)x = -x$

Observations

For \mathbb{R}^2 , let $P = (x_1, x_2), Q = (y_1, y_2) \in \mathbb{R}^2$ The arrow (vector), x, starting from P, pointing and ending at Q, is equal to: x = 0 - PProof: By the parallelogram law, $P + x = Q \Rightarrow x = Q - P$

The midpoint between P and Q is $\frac{1}{2}(P+Q)$

The point along the line P, Q 1 unit away from P and 2 units away from Q is $\frac{2}{3}P + \frac{1}{3}Q$

Proof of cancellation law

```
x + y = x + z \Rightarrow -x + x + y = -x + x + z \Rightarrow 0 + y = 0 + z \Rightarrow y = z
```

* Set Theory

January-10-11 3:32 PM

Union

Then their union $A \cup B$ is defined by

 $A \cup B := \{x : x \in A \text{ or } x \in B\}$

Let $\{A_i: i \in I\}$ be a family of sets where the index set $I \neq \emptyset$ Then the union

$$\bigcup_{i \in I} A_i = \{x : \exists i \in I, x \in A_i\}$$

Intersection

Similarly, we can define $A \cap B$ and $\bigcap_{i \in I} A_i$ $A \cap B := \{x : x \in A \text{ and } x \in B\}$

$$\bigcap_{i=1}^n A_i \coloneqq \{x: x \in A_i \ \forall i \in I\}$$

Mapping

Let A and B be sets. A mapping $f: A \rightarrow B$ (A is called the domain & B is the co-domain of f) is a relation of $A \times B$

- i) If (a, b_i) and (a, b_2) are in the relation, then $b_1 = b_2$
- ii) \forall a \in A, \exists b \in B so that (a, b) is in the relation.

The unique b for the given a is marked f(a)

Let A and B be sets.

Union

Example: Let

$$\left\{ \left(\frac{1}{n}, \infty\right) : n \in \mathbb{N} \right\}$$

Then
$$\bigcup_{n\in\mathbb{N}} \left(\frac{1}{n},\infty\right) = (0,\infty)$$

Need to show

$$\bigcup_{n\in\mathbb{N}}\Bigl(\frac{1}{n},\infty\Bigr)\subseteq(0,\infty)\;and\;(0,\infty)\subseteq\bigcup_{n\in\mathbb{N}}\Bigl(\frac{1}{n},\infty\Bigr)$$

As for the first inclusion, we see that for each $n \in \mathbb{N}$, $\left(\frac{1}{n}, \infty\right) \subseteq (0, \infty)$, therefore their union, $\bigcup_{n\in\mathbb{N}} \left(\frac{1}{n},\infty\right)$ is contained in $(0,\infty)$

For the second inclusion: Let $x \in (0, \infty)$ be given. x > 0 and $x \in \mathbb{R}$. Then $\exists n \in \mathbb{N}$ so that $\frac{1}{n} < x$. In which case $x \in (\frac{1}{n}, \infty)$ so $x \in \bigcup_{n \in \mathbb{N}} (\frac{1}{n}, \infty)$

$$\bigcup_{n\in\mathbb{N}} \left(\frac{1}{n}, \infty\right) = (0, \infty)$$

The Axiom of Choice

Let I be a non-empty (index) set. Let $\{X_i : i \in I\}$ be a family of non-empty sets. Consider the set

$$\bigcup X_i$$

 $i \in I$ The there exists a mapping

$$f: I \to \bigcup_{i \in I} X_i$$

satisfying $f(i) \in X_i$

Accepting the axiom of choice leads to: Every vector space has a basis

Subspaces

January-12-11 11.30 AM

Subspace

Let V be a vector space over F. A subset $W \subseteq V$ is called a subspace of V if when the operations (addition, scalar multiplication) on V are restricted to W, W is again a vector space (over F).

Proposition

A subset $W \subseteq V$ is a subspace iff

- i. 0 of V is in W
- ii. $w_1, w_2 \in W \Rightarrow w_1 + w_2 \in W$ iii. $\lambda w \in W \ \forall \lambda \in F, w \in W$

Note: *i* is sometimes replaced by $W \neq \emptyset$

Theorem

Let V be a vector space.

Let $\{W_i : i \in I\}$ be a family of subspaces of V, when $I \neq \emptyset$. Then

$$\bigcup W_i$$

is again a subspace (of V)

Example

Let $V = \mathbb{R}^2$ and let $W = \{(x, 0) | x \in \mathbb{R}\}$

Then all 10 axioms are satisfied by W, so W is a subspace of \mathbb{R}^2

The subset

$$S = \{(x, y) | x > 0, y > 0\}$$

is not a vector space under the operations of \mathbb{R}^2 because there is no 0 and no additive inverse for any

Example

Let the space be $\mathcal{F}((-2,3),\mathbb{R})$

The set of all functions $f: (-2,3) \to \mathbb{R}$

Let W bet the subset of all the continuous functions.

- i. 0: f(x) = 0
- ii. If f and g are continuous, then f+g is continuous.
- iii. If f is continuous, then λf is continuous for $\lambda \in \mathbb{R}$

Let S be the set of all functions of $\mathcal{F}((-2,3),\mathbb{R})$ which vanish at -1 and 1

i.e.
$$f \in \mathcal{F}((-2,3), \mathbb{R})$$
 and $f(-1) = 0$, $f(1) = 0$

Then S is a subspace

0:
$$f(x) = 0$$
, if $f, g(-1) = f, g(1) = 0$ then $f + g(-1) = f + g(1) = 0$ and $\lambda f(-1) = \lambda f(1) = 0$

Proof of Theorem

- i. \forall i \in I, because W_i is a subspace, $0 \in W_i$. So $0 \in \Pi_{i \in I} W_i$
- ii. Suppose $w_1, w_2 \in \prod_{i \in I} W_i$ are given. Consider $w_1 + w_2$. $\forall i \in I, w_1 \in W_i$ and $w_2 \in W_i$ so $w_1 + w_2 \in W_i$ So $w_1 + w_2 \in W_i \ \forall i, so \ w_1 + w_2 \in \prod_{i \in I} W_i$
- iii. Suppose $w \in \prod_{i \in I} W_i$ and $\lambda \in F$ Consider $\lambda w. \forall i \in I, w \in W_i \text{ so } \lambda w \in W_i$

$$So~\lambda w \in W_i ~\forall ~i, so~\lambda w \in \bigcap_{i \in I} W_i$$

Linear Combinations

January-14-11 11:28 AM

Linear Combination

Let $S \subseteq V$. Suppose $S \neq \emptyset$.

A vector $v \in V$ is said to be a linear combination of S if there exist finitely many vectors of S, say $s_1, s_2, s_3 \dots s_n \in$ and scalars $\lambda_1, \lambda_2, ..., \lambda_n \in F$ so that: $v = \lambda_1 s_1 + \lambda_2 s_2 + \dots + \lambda_n s_n$

 $Span(S) = \{v \in V \mid v \text{ is a lin. comb. of vectors of } S\}$ $Span(\emptyset) = \{0\}$ by convention

Notation: Matrices

 $M_{n\times m}(F)$ means an n by m matrix with elements in F

Proposition

Let V be a vector space, $S \subseteq V$ and $S \neq \emptyset$ Let $Span(S) = \{v \in V \mid v \text{ is a lin. comb. of vectors of } S\}$ $= \left\{ \sum_{i=1}^{n} \lambda_{i} s_{i} \mid s_{i} \in S, \lambda_{i} \in F, n \in \mathbb{N} \right\}$ Then Span(S) is the subspace of V generated by S

If V is a vector space and $S \subseteq V$, then there exists a unique smallest subspace of V containing S, say

$$W = \bigcap_{i \in I} W_i$$

Where $\{W_i | i \in I\}$ is the set of all subspaces of V containing S. We call W the subspace **generated** by S.

(Unique smallest because intersection of all subspaces containing S)

For
$$M_{2\times 2}(\mathbb{R})$$
 and $S = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$
Then $\begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix} \in M$. (\mathbb{R}) is not a linear combination of V

Then $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \in M_{2\times 2}(\mathbb{R})$ is not a linear combination of vectors in S because

$$\lambda_1 \begin{vmatrix} 1 & 0 \\ 0 & 0 \end{vmatrix} + \lambda_2 \begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix} + \lambda_3 \begin{vmatrix} 0 & 0 \\ 0 & 1 \end{vmatrix} = \begin{vmatrix} \lambda_1 & \lambda_2 \\ \lambda_2 & \lambda_3 \end{vmatrix} \neq \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix}$$
as that would require $\lambda_2 = 2$ and $\lambda_2 = 3$

Whereas $\begin{bmatrix} 1 & 10 \\ 10 & 7 \end{bmatrix}$ is a linear combination of vectors of S

Proof of Proposition (outline)

1. Show that Span(S) is truly a subspace of V

e.g. to show that it is closed under addition:

Let $v_1, v_2 \in Span(S)$ be given.

Consider $v_1 + v_2$

$$v_1 = \lambda_1 s_1 + \lambda_2 s_2 + \dots + \lambda_n s_n$$

For some
$$s_1, \dots, s_{n+m} \in S$$
 and $\lambda_1, \dots, \lambda_{n+m} \in F$

$$v_1 = \lambda_1 s_1 + \lambda_2 s_2 + \dots + \lambda_n s_n$$

$$v_2 = \lambda_{n+1} s_1 + \dots + \lambda_{n+m-1} s_{n+m-1} + \lambda_{n+m} s_{n+m}$$
For some $s_1, \dots, s_{n+m} \in S$ and $\lambda_1, \dots, \lambda_{n+m} \in F$

$$v_1 + v_2 = \sum_{i=1}^{n+m} \lambda_i s_i \in Span(S)$$

$$v_1 + v_2 = \sum_{i=1}^{n+m} \lambda_i s_i \in Span(S)$$

$$v_1 + v_2 = \sum_{i=1}^{n+m} \lambda_i s_i \in Span(S)$$

2. Observe that $Span(S) \supseteq S$

Proof: Let $s \in S$ be given. Then s = 1s

3. Let W_0 be any given subspace of V which contains S. We shall show $W_0 \supseteq Span(S)$

Proof:

For that purpose, let $v \in Span(S)$ be given.

Then by definition, there exists vectors $S_i \in S$, $\lambda_i \in F$ so that

 $v = \lambda_1 s_1 + \dots + \lambda_n s_n$. Now because $S \subseteq W_0, s_1, \dots s_n \in W_0$

Since W_0 is closed under scalar multiplication and vector addition,

$$v = \lambda_1 s_1 + \dots + \lambda_n s_n \in W_0$$

Example

Let the space be $\mathcal{P}(\mathbb{C})$ - polynomials with complex coefficients, and let $S = \{1, x^2, x^4, x^6, \dots, x^{2k}, \dots\}$

Then Span(S) = the space of all polynomials with even terms. $Span(1, x, x^2, x^3) = \mathcal{P}_3(\mathbb{C})$

Let V be a vector space. If S is a subspace of V, then Span(S) = S

Linear Dependence/Span

January-17-11 11:32 AM

Linear Dependence

Let V be a vector space.

Let $v_1, v_2, ..., v_n$ be a finite list of vectors of V We say the list is linearly dependent if one of the following two equivalent statements is satisfied:

- 1. There is a v_{i_0} which is in the span $\{v_i|i\neq i_0\}$
- 2. $a_1v_1 + a_2v_2 + \cdots + a_nv_n = 0$ for some list of scalars $a_1, a_2, ..., a_n$ not all 0

Linear Dependence on Subsets

A subset S of a vector space V is linearly dependent if for some distinct finite list of vectors extracted from S, the list is linearly dependent.

Corollary to Span({}) = {0}

In a vector space, any subset S which has 0 in it is linearly dependent.

Example

Is $(1, 2, 3) \in \text{Span}\{(1, 0, 0), (0, 1, 1), (0, 1, 2)\}$ in \mathbb{R}^3 ? Yes

$$(1,2,3) = x_1(1,0,0) + x_2(0,1,1) + x_3(0,1,2)$$

System of equations:

$$x_1 = 1$$

$$x_2 + x_3 = 2$$

$$x_2^2 + 2x_3 = 3$$

Solving the above, we first bring it to the reduced system

$$x_1 = 1$$

$$x_2 + x_3 = 2$$

$$x_3 = 1$$

From that we read the solutions in reverse order

$$x_3 = 1$$

$$x_2 = 2 - x_3 = 2 - 1 = 1$$

$$x_1 = 1$$

So there is a solution, $x_1 = x_2 = x_3 = 1$

Is it true that Span $\{(1, 0, 0), (2, 1, 0), (3, 1, 0)\} = \mathbb{Z}^3$?

Ans: Equivalently we are asking: Is every given $(a, b, c) \in \mathbb{R}^3$ in $Span\{(1,0,0), (2,1,0), (3,1,0)\}$?

$$(a, b, c) = x_1(1, 0, 0) + x_2(2, 1, 0) + x_3(3, 1, 0)$$
 for all possible $x_1, x_2, x_3 \in \mathbb{Z}_5$

$$x_1 + 2x_2 + 3x_3 = a$$

$$x_2 + x_3 = b$$

0 = c

Clearly, when $c \neq 0$, there is no solution

Example

Consider the space of differentiable functions from \mathbb{R} to \mathbb{R} . Those satisfying the differentiable equation f'' = 0 are given by f(x) = ax + b where a, b, are constants. Using the language of span, the set of all solutions is $Span\{x, 1\}$

The solutions to f'' = -f is $span\{\sin x, \cos x\}$

Proof of Equivalence of Linear Dependence definition

Suppose that 2 holds true.

Then there are scalars $a_1, ..., a_n$ not all zero so that

$$\sum a_i v_i = 0$$

Say that $a_{i_0} \neq 0$ Now have

$$a_{i_0}v_{i_0} + \sum_{\substack{i=1\\i\neq i_0}}^{n} a_iv_i = 0 \Rightarrow v_{i_0} = a_{i_0}^{-1} \left(-\sum_{\substack{i=1\\i\neq i_0}}^{n} a_iv_i \right) = \sum_{\substack{i=1\\i\neq i_0}}^{n} \left(-\frac{a_i}{a_{i_0}} \right)v_i$$

So $v_{i_0} \in span\{v_i|i \neq i_0\}$

Suppose statement 1 holds true. Show 2 as an exercise.

The list of vectors $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$, $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ in $M_{2\times 2}(\mathbb{R})$ is linearly dependent.

Because (using statement 1 with
$$i_0 = 5$$
)
$$\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = 1 \begin{vmatrix} 1 & 0 \\ 0 & 0 \end{vmatrix} + 2 \begin{vmatrix} 0 & 1 \\ 0 & 0 \end{vmatrix} + 3 \begin{vmatrix} 0 & 0 \\ 1 & 0 \end{vmatrix} + 4 \begin{vmatrix} 0 & 0 \\ 0 & 1 \end{vmatrix}$$

or
$$1 \begin{vmatrix} 1 & 0 \\ 0 & 0 \end{vmatrix} + 2 \begin{vmatrix} 0 & 1 \\ 0 & 0 \end{vmatrix} + 3 \begin{vmatrix} 0 & 0 \\ 1 & 0 \end{vmatrix} + 4 \begin{vmatrix} 0 & 0 \\ 0 & 1 \end{vmatrix} + (-1) \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = \begin{vmatrix} 0 & 0 \\ 0 & 0 \end{vmatrix} = 0$$
 Where $a_5 \neq 0b$

Example

Let the space be $\mathcal{P}(\mathbb{R})$ and let S be the set of all even polynomials. (even means p(-x)=p(x)) It is linearly dependent because $v_1 = x^2$, $v_2 = 2x^2$

Example

Let V be a vector space.

Let
$$S = \{0\}$$

We see that 2 holds for $v_1 = 0$ (e.g. $1v_1 = 0$)

So S is linearly dependent.

$$v_1 = \sum_{i \neq 1} v_i = \sum_{i \in \emptyset} \square = 0$$

by convention, so $Span(\emptyset) = \{0\}$

Linear Independence

January-21-11 11:29 AM

Linear Independence

A subset S of a vector space V is linearly independent if it is not linearly dependent.

Example

In \mathbb{R}^3 , $S = \{(1,0,0), (0,1,0), (0,0,1)\}$ is linearly independent

Proof:

We need to show that the list $v_1 = (1, 0, 0), v_2 = (0, 1, 0), v_3 = (0, 0, 1)$ is not linearly dependent. Suppose $a_1, a_2, a_3 \in \mathbb{R}$ and let $a_1v_1 + a_2v_2 + a_3v_3 = 0$ $a_1(1,0,0) + a_2(0,1,0) + a_3(0,0,1) = (a_1,a_2,a_3) = (0,0,0) = 0 iff a_1 = a_2 = a_3 = 0.$ So S is linearly independent.

Example

Example In
$$\mathbb{Z}_5^3$$
, is $S = \{v_1 = (1,2,3), v_2 = (2,3,4), v_3 = (3,4,0)\}$ linearly dependent? Ans: Let $a_1, a_2, a_3 \in \mathbb{Z}_5$ and that $a_1(1,2,3) + a_2(2,3,4) + a_3(3,4,0) = (0,0,0)$
$$a_1 + 2a_2 + 3a_3 = 0 \ (mod \ 5)$$

$$2a_1 + 3a_2 + 4a_3 = 0 \ (mod \ 5)$$

$$3a_1 + 4a_2 = 0 \ (mod \ 5)$$

$$\begin{vmatrix} 1 & 2 & 3 & 0 \\ 2 & 3 & 4 & 0 \\ 3 & 4 & 0 & 0 \end{vmatrix}$$
 subtract multiples of 1st line from 2nd and 3rd lines
$$\begin{vmatrix} 1 & 2 & 3 & 0 \\ 0 & 4 & 3 & 0 \\ 0 & 3 & 1 & 0 \end{vmatrix}$$
 multiply 2nd line by $4^{-1} = 4$ and 3rd line by $3^{-1} = 2$
$$\begin{vmatrix} 1 & 2 & 3 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 \end{vmatrix}$$
 subtract 2nd line from 3rd line, and twice 2nd line from first
$$\begin{vmatrix} 1 & 2 & 3 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 \end{vmatrix}$$
 Solution:
$$a_3 \in \mathbb{Z}_3$$
 is arbitrary (a free parameter)
$$a_2 = -2a_3 = 3a_3$$

$$a_1 = -4a_3 = a_3$$

So there is a solution with $a_3 \neq 0$, so yes, S is linearly dependent.

Example

Let v be a vector space over \mathbb{R} Suppose that $\{v_1, v_2\}$ is linearly independent. Show that the set $\{2v_1 + 3v_2, 4v_1 - 5v_2\}$ is linearly independent.

Proof:

Let
$$a_1, a_2 \in \mathbb{R}$$
 and that $a_1(2v_1+3v_2)+a_2(4v_1-5v_2)=0$ $(2a_1+4a_2)v_1+(3a_1-5a_2)v_2=0$ Because v_1, v_2 are linearly independent, $2a_1+4a_2=0$ $3a_1-5a_2=0$

$$2a_1 + 4a_2 = 0 (retained)$$

 $\left(-\frac{3}{2}4 - 5\right)a_2 = 0$

So $\overline{a_2} = 0$, and therefore $a_1 = 0$. So $\{2v_1 + 3v_2, 4v_1 - 5v_2\}$ is linearly independent.

Gaussian and Jordan Eliminations

January-24-11 11:31 AM

Example: Gaussian Elimination

Solve
$$\begin{cases} 2a_1 + 2a_2 + 4a_3 = 2 \\ a_1 - a_2 + 7a_3 = 5 \\ a_1 + 8a_3 = 0 \end{cases}$$

$$\begin{cases} 2a_1 + 3a_2 + 4a_3 = 2 \\ -\frac{5}{2}a_2 + 5a_3 = 4 \\ -\frac{3}{2}a_2 + 6a_3 = -1 \end{cases}$$

$$\begin{cases} 2a_1 + 3a_2 + 4a_3 = 2 \\ -\frac{5}{2}a_2 + 5a_3 = 4 \\ 3a_3 = -\frac{17}{5} \end{cases}$$
 End of Gaussian Elimination, write out the general solution:

$$a_3 = -\frac{17}{15}$$

$$a_2 = \frac{4 - 5a_3}{-\frac{5}{2}} = \frac{8 - 10\left(-\frac{17}{15}\right)}{-5} = -\frac{58}{15}$$

$$a_3 = \frac{2 - 3a_2 + 4a_3}{2} = \frac{2 - 3\left(-\frac{58}{15}\right) - 4\left(-\frac{17}{15}\right)}{2}$$

Jordan Elimination Steps

Used to reduce the system further

- 1. Multiply the lines to set the 1st non-zero coefficients equal to 1
- 2. Eliminate the variables from the lines above each 1

Continuing from the system above:

Continuing from the sy
$$\begin{cases} a_1 + \frac{3}{2}a_2 + 2a_3 = 1 \\ a_2 - 2a_3 = -\frac{8}{5} \\ a_3 = -\frac{17}{15} \end{cases}$$

$$\begin{cases} a_1 + 5a_3 = \frac{17}{5} \\ a_2 - 3a_3 = -\frac{8}{5} \\ a_3 = -\frac{17}{15} \end{cases}$$

$$\begin{cases} a_1 = \frac{136}{15} \\ a_2 = -5 \\ a_3 = -\frac{17}{15} \end{cases}$$
Why no work? : (

Augmented Matrix

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_m = b_n \end{cases}$$
Represented by
$$\begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{vmatrix} \begin{vmatrix} b_1 \\ b_2 \\ \dots \\ b_m \end{vmatrix}$$

Set Theory Cont.*

January-24-11 3:34 PM

Let X and Y be sets.

Injective

A function $f: X \to Y$ is injective (one-to-one) if $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$ or alternatively $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$

Smaller Cardinality

A set X is said to be of smaller cardinality than set Y if there is an injective map $f: X \to Y$

Surjective

A function $f: X \to Y$ is surjective (or onto) if for all $y \in Y$ there exists $x \in X$ so that f(x) = y

Proposition

These statements are equivalent:

For two sets X, Y

- 1. There is an injective function $f: X \to Y$
- 2. There is a surjective function $g: Y \to X$

Equal Cardinality

Two set X, Y are of equal cardinality if there exists $f: X \to Y$ which is injective and surjective (bijective)

Theorem (Bernstein)

Let X and Y be sets. If there exists an injective $f: X \to Y$ and an injective $g: X \to Y$ there exists a bijective $h: X \to Y$ Rephrase: If $|X| \le |Y|$, $|Y| \le |X|$, then |X| = |Y|

Immediate clear is that if X is finite with n distinct and Y has fewer elements than X then no $f: X \to Y$ can be injective.

Example of cardinality differences:

[0, 4] has a smaller cardinality than [0, 1]

$$f: |0,4| \to |0,1|, x \to \frac{1}{4}x$$

Similarly, [0, 1] has smaller cardinality than [0, 4]

Proof of Proposition

Suppose we have a surjective $g: Y \to X$

For each $x \in X$, consider $S_x = \{y \in Y : g(y) = x\} \subseteq Y$ As g is surjective, each S_x is non-empty. Moreover, $x_1 \neq x_2$ implies S_{x_1} and S_{x_2} are disjoint. The family $\{S_x : x \in X\}$ form a partition of Y

By the axiom of choice, there is a function (choice)

$$f: X \to \bigcup_{x \in X} S_x = Y \text{ so that } f(x) \in S_x$$

Obviously, f is injective

Basis

January-26-11 11.33 AM

Basis

Let V be a vector space over F. A subset $B \subseteq V$ is called a basis for V if it satisfies:

1. B is linearly independent

Intuitively, B is "small", that no element of B is a linear combination of the others.

2. B spans V, i.e. span(B) = V

Finite Dimensional

If V has a finite set B which forms a basis, then we say V is finite dimensional.

Theorem

Suppose that V has a finite basis B with n elements. Then all other bases must have n elements. We call n the dimension of V.

Example

Consider \mathbb{R}^3 . Subsets satisfying the 1st properties are, e.g. \emptyset , {(1, 0, 0)}, {(1, 0, 0), (1, 1, 0)}, {(1, 0, 0), (1, 1, 0), (0, 0, 2)}

Of these examples $span(\emptyset) = \{(0,0,0)\}$ $span\{(1,0,0)\} = (x,0,0) = the \ x - axis$ $span\{(1,0,0),(1,1,0)\}=(x+y,y,0)=the\ xy\ plane$ $span\{(1,0,0),(1,1,0),(0,0,2)\}=(x+y,y,2z)=\mathbb{R}^3$ So the last is a basis.

Example

In $P(\mathbb{R})$

 $B = \{1, x, x^2, x^3, ..., x^n, ...\} = \{x_n : x \in \mathbb{N}, or n = 0\} x^0 = 1$ by convention

Proof:

To check for linear independence:

Let a finite number of terms be extracted from *B* (all terms are distinct) WLOT that the list is $1, x, x^2, \dots x^n$ Will show that the list is not linearly dependent. Let $a_0, a_1, ..., a_n$ be scalars and that $a_0 1 + a_1 x + a_2 x^2 + \dots + a_n x^n = 0$ By definition of equality between polynomials, $a_0 = a_1 = \cdots = a_n = 0$

Hence, every finite list of distinct terms from B is linearly independent. So B is linearly independent.

Next check if $span(B) \supseteq \mathcal{P}(\mathbb{R})$ Let $p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$ for some $a_i \in \mathbb{R}, n \in \mathbb{N}$ Therefore, clearly $p(x) \in Span\{1, x, x^2, ..., x^n\} \supseteq Span(B)$ Hence $\mathcal{P}(\mathbb{R}) \subseteq span(B)$. Equality follows. So B is a basis.

 $V = \{A \in M_{3\times 4}(\mathbb{R}): column \ sums \ of \ A \ are \ zero\}$ $e. g. \begin{vmatrix} 1 & 4 & \pi & 0 \\ 2 & 5 & e & 0 \\ -3 & -1 & -\pi - e & 0 \end{vmatrix}$ The dimensionality is the number of free scalars. In this case dim V = S

Replacement

February-05-11 10.14 PM

Theorem 1.8

Let S be a linearly independent subset of a vector space V and let x be an element of V that is not in S. Then $S \cup \{x\}$ is linearly dependent iff $x \in span(S)$

Theorem 1.9

If a vector space V is generated by a finite set S_0 then a subset of S_0 is a basis for V. Hence V has a finite basis.

Replacement Theorem 1.10

Let V be a vector space having a basis $\boldsymbol{\beta}$ containing exactly n elements. Let $S = \{y_1, ..., y_m\}$ be a linearly independent subset of V containing exactly m elements, where $m \le n$. Then there exists a subset S_1 of β containing exactly n-m elements such that $S \cup S_1$ generates V.

Corollary 1

Let V be a vector space having a basis β containing exactly n elements. Then any linearly independent subset of V containing exactly n elements is a basis for V.

Corollary 2

Let V be a vector space having a basis β containing exactly n elements. Then any subset of V containing more than n elements is linearly dependent. Consequently, any linearly independent subset of V contains at most n elements.

Corollary 3

Let V be a vector space having a basis β containing exactly n elements. Then every basis for V contains exactly n elements.

Definition

A vector space V is called finite-dimensional if it has a basis consisting of a finite number of elements; the unique number of elements in each basis for V is called the dimension of V and is denoted $\dim(V)$. If a vector space is not finite dimensional, then it is called infinite-dimensional.

Corollary 4

Let V be a vector space having dimension n and let S be a subset of V that generates V and contains at most n elements. Then S is a basis for V and hence contains exactly contains exactly n elements.

Corollary 5

Let β be a basis for a finite-dimensional vector space V and let S be a linearly independent subset of V. There exists a subset S_1 of β such that $S \cup S_1$ is a basis for V. Thus every linearly independent subset of V can be extended to a basis for V.

Proof of Theorem 1.8

Suppose $S \cup \{x\}$ is linearly dependent.

$$0 = a_0 x + \sum_{i=1}^n a_i x_i$$

With not all $a_i=0$ and since S is linearly independent, $a_0\neq 0$ so

$$x = \sum_{i=1}^{n} -\frac{a_i}{a_0} x_i$$
So $x \in span(S)$

Suppose $x \in span(S)$, then

$$x = \sum_{i=1}^{n} a_i x_i$$
so $S \cup \{x\}$ is linearly dependent.

Proof of Theorem 1.9

If $S_0 = \emptyset$ or $S_0 = \{0\}$ then $V = \emptyset$ and \emptyset is a basis for V.

Otherwise pick $x_1 \in S_0$. $\{x_1\}$ is linearly independent.

Now with a linearly independent set of n-1 vectors $x_i \in S_0$ if $S_0 \subseteq span(\{x_1, ..., x_{n-1}\})$ then done since the set is linearly independent and generates V so it is a basis. Otherwise find $x_n \in S_0, x_n \notin span(\{x_1, ..., x_{n-1}\})$ By theorem 1.8 $\{x_1, ..., x_n\}$ is linearly independent. Continue until terminating after finitely many x_i since S_0 is finite.

Proof of Theorem 1.10

Proof by induction on m.

If m = 0, then $S = \emptyset$ and n - m = n so take $S_0 = \beta$, $S \cup S_1 = \emptyset \cup \beta = \beta$ is a basis for V

Now suppose the statement holds true for m-1. Let $S_0 = \{y_1, \dots, y_{m-1}\}$. $\exists \beta_0 \subset \beta$ with $|\beta_0| = n - (m-1)$ such that $span(S_0 \cup \beta_0) = V$ by induction supposition.

$$y_m = \sum_{x_i \in S_0} a_i x_i + \sum_{z_j \in \beta_0} b_j z_j$$

But S is linearly independent so at least one $b_j \neq 0$, say b_1

$$\begin{split} z_1 &= \frac{y_m}{b_1} + \sum_{x_i \in S_0} -\frac{a_i}{b_1} x_i + \sum_{\substack{z_j \in B_0 \\ j \neq 1}} -\frac{b_j}{b_1} z_j \\ \text{So } z_1 &\in span(\{y_1, \dots, y_m, z_2, \dots z_{n-m+1}\}) \\ \text{Clearly } y_1, \dots, y_{m-1}, z_2, \dots, z_{n-m+1} \in span(\{y_1, \dots, y_m, z_2, \dots, z_{n-m+1}\}) \end{split}$$

 $S_1 = \beta_0 \backslash \{z_1\}$ So $S_0 \cup \beta_0 \subseteq span(S \cup S_1)$

 $span(S_0 \cup \beta_0) = V \text{ so } span(S \cup S_1) = V$

So there is a subset of β such that $span(S \cup S_1) = V \forall m$, by the induction principle.

Corollary 1

Let S be a linearly independent subset of V with exactly n elements. Then $\exists S_1$ such that $span(S \cup S_1) = V$ and $|S_1| = n - n = 0 \Rightarrow S_1 = \emptyset$ so $span(S \cup S_1) = span(S) = V$ so S is a basis for V.

Corollary 2

Let S be a subset of V with more than n elements. Suppose that S is linearly independent, then there is an $S_0 \subset S$ with n elements. By Corollary 1, S_0 is a basis so $span(S_0) = V$. Let $x \in S, x \in S_0$, then $S_0 \cup \{x\}$ is linearly dependent, contradicting the supposition that S is linearly independent. Therefore, S is linearly dependent. ■

Corollary 3

Let *S* be a basis for V. We know $|S| \le n$ since $|\beta| = n$. Suppose |S| < n, then by Corollary 2 β would not be linearly independent, a contradiction, so |S| = n.

Corollary 4

By Theorem 1.9, $\exists S_1 \subseteq S$ such that S_1 is a basis for V. $|S_1| = n$, $|S_1| \le |S| \le n$ so |S| = n so $S_0 = S$ and S is a basis for V. ■

Corollary 5

 $|S| = m \le n$, $|\beta| = n$ so by Theorem 1.10, $\exists S_1 \subseteq \beta$, $|S_1| = n - m$ such that $S \cup S_1$ generates V. Since $|S \cup S_1| = n$, by Corollary $4 S \cup S_1$ generates V.

General Bases

January-31-11 11:31 AM

Proposition

Let V be a vector space. Let $L \subset V$ be linearly independent. Then the following two statements are equivalent.

- 1. $v \in V, v \notin L$ and $L \cup \{v\}$ is linearly independent.
- 2. $v \notin span(L)$

Proposition

Let *V* be a vector space. Let $L \subset V$ be linearly independent, $G \subset V$ be generating, $L \subset G$. Suppose that v is such that $v \notin L, L \cup \{v\}$ is still linearly independent.

Then there exists a $u \in G$ so that $u \notin L$ and $L \cup \{u\}$ is (still) independent.

Remark

If V is a finite vector space. If F is infinite, like \mathbb{C} , then $V = \{0\}$ If F is finite, then $|V| = |F|^n$ for some $n \in \mathbb{N}^0$

Proof of Proposition 1

Suppose v satisfied 1. To argue for 2, assume to the contrary that $v \in Span(L)$. Then

$$v = \sum_{i=1}^{n} \lambda_i v_i$$

for some distinct v_i 's in L and $\lambda_i \in F$

As $v \notin L, v_1, ..., v_n, v$ are all distinct, we have a set of distinct vectors such that one is a linear combination of the rest, so the set $L \cup \{v\}$ is linearly dependent, a contradiction.

Conversely, suppose that 2 holds, we need to show 1

As $Span(L) \supset L$, it is clear that $v \notin L$. To show that $L \cup \{v\}$ is linearly independent, suppose

$$\sum_{i=0}^{n} \lambda_i v_i = 0$$

where $v_i, ..., v_n$ are distinct elements from $L \cup \{v\}$

Case 1:

Suppose that none of the v_i are v. Then by linear independence of L, all $\lambda_i=0$

Case 2:

One of $v_1, ..., v_n$ is equal to v. WLOG say that $v_n = v$

Suppose that
$$\lambda_n = 0$$
 Then $n-1$

$$\sum_{i=1}^{n} \lambda_i v_i = 0$$

By the linear independence of L, we set $\lambda_1 = \lambda_2 = \cdots = \lambda_{n-1} = 0$

Thus $\lambda_1, ... \lambda_n$ are 0

Suppose that $\lambda_n \neq 0$ Then from

$$\sum_{i=1}^{n} \lambda_i v_i = 0$$

$$v = v_n = \sum_{i=1}^{n-1} -\frac{\lambda_i}{\lambda_n} v$$
So $v \in Span(L)$

Proof of Proposition 2

 $v \notin Span(L)$

It is a linear combination of things in G

So, (WLOG, n is the least number which satisfies the linear combination)

$$v = \sum_{i=1}^{n} \lambda_i u_i = \sum_{i=1}^{k} \lambda_i u_i + \sum_{i=k+1}^{n} \lambda_i u_i$$

where u_1, \dots, u_n are distinct vectors in G

 $\mathsf{WLOG}, u_1, \dots u_k \in L, u_{k+1}, \dots, u_n \not\in L$

At least one u_i $(k+1 \le i \le n)$ is present with $\lambda \ne 0$. Take $u=u_{k+1}$

This means $u \neq span(L)$ since the above is the smallest representation and if $u \in span(L)$ then u could be written as part of $\sum_{i=1}^{k} \lambda_i u_i$

Suppose $L \cup \{u\}$ were linearly dependent. Then

$$0 = \lambda u + \sum_{i=1}^{n} \lambda_i v_i \text{ for } v_i \in L, \lambda_i \text{not all } 0$$

L is linearly independent so $\lambda \neq 0$ so

$$u = \sum_{i=1}^{m} -\frac{\lambda_i}{\lambda} v$$

So $u \in span(L)$, a contradiction. So $L \cup \{u\}$ is linearly independent.

Example

Basis of any size.

Let S be any set $(\neq \emptyset)$. We now construct a vector space V over F having a basis B with

Consider the subspace \mathcal{F}_0 of $\mathcal{F}(S,F)$ consisting of functions $f\colon S\to F$ with f(s)=0 for all but finitely many s. For each fixed element $s \in S$, let $\chi_s: S \to F$ be $\chi_s(t) = \begin{cases} 1 \text{ for } t = s \\ 0 \text{ for } t \neq s \end{cases}$

 χ is the characteristic function.

Clearly $\chi_s \in \mathcal{F}_0$

Let $B = \{\chi_s \colon s \in S\} \subset \mathcal{F}_0$

Be is a basis for \mathcal{F}_0 because

1. Let $f \in \mathcal{F}_0$ be given. Then \exists finitely many $s_1, s_2, ..., s_n \in S$ with f(s) = 0 if $s \notin \{s_1, ..., s_n\}$ Let $\lambda_i = f(s_i)$ for $i \in \{1, ..., n\}$ Then $f = \lambda_1 \chi_{s_1} + \lambda_2 \chi_{s_2} + \dots + \lambda_n \chi_{s_n}$

- Therefore $f \in Span(B)$
- 2. Let $\chi_{S_1}, \chi_{S_2}, ..., \chi_{S_n}$ be a finite list of distinct vectors in B and that $\lambda_1, \lambda_2, ..., \lambda_n$ are scalars from F with

$$\sum_{i=1}^{n} \lambda_i \chi_{s_i} = 0$$

Since χ_{s_i} are distinct, clearly s_i are distinct. Fix any $i_0 \in \{1, ..., n\}$

$$\left(\sum_{i=1}^{n} \lambda_{i} \chi_{s_{i}}\right) (s_{i_{0}}) = 0 \ (s_{i_{0}}) = 0$$

$$= \sum_{i=1}^{n} \lambda_{i} \chi_{s_{i}} (s_{i_{0}}) = \lambda_{i_{0}} 1 = 0$$
So $\lambda_{i} = 0 \ \forall i$
So B is linearly independent.
$$\chi: S \to B$$

$$\chi(s) = \chi_{s}$$
is clearly bijective. So B is of the same cardinality as S. \blacksquare

$$\chi: S \to B$$
 $\chi(s) = \gamma_s$

* Maximal Principle

February-04-11 11:31 AM

Maximal Principle

Let X be a set. Let $\mathcal C$ be a collection of subsets of X. A subcollection of $\mathcal C$, say $\mathcal T\subseteq \mathcal C$ is called a tower (or chain) if for any two elements $T_1,T_2\in \mathcal T$, either $T_1\subseteq T_2$ or $T_2\subseteq T_1$.

Suppose that $\mathcal C$ has the property that every tower $\mathcal T$, there exists $C\in\mathcal C$ such that $C\supseteq T$ for all $T\in\mathcal T$. (C is called an upper bound for $\mathcal T$)

Then $\mathcal C$ has a maximal element $M\in\mathcal C$ i.e. no $\mathcal C\in\mathcal C$ contains M strictly.

Application

Let V be any vector space over F. Let $\mathcal C$ be the set of all linearly independent subsets of V.

If \mathcal{T} is a tower in \mathcal{C} it is not difficult to check that

is also linearly independent. So it is in $\mathcal C$ and it is an upper bound for $\mathcal T$. So by the maximal principle, there is a maximal $M \in \mathcal C$. M will be a basis for V.

Example

Let $\mathcal C$ be the set of all finite open intervals of $\mathbb R$ $\mathcal T=\{(0,n):n\in\mathbb N\}$ is a tower/chain This tower has no upper bound in $\mathcal C$

No member of \mathcal{C} is maximal because for every $\mathcal{C} \in \mathcal{C}$, c = (a, b) finite a, b the element (a, b + 1) is strictly larger.

Example

Let X be any non-empty set. Let $C = \{C : C \subset X\}$ Then $M = X \setminus \{x\}$ for some $x \in X$ is a maximal element for C

Example

 $X=\mathbb{R}, M=\mathbb{R}\setminus\{1\}$ is M maximal, yes. $N=\mathbb{R}\setminus\{2\}$ is also maximal $C=\mathbb{R}\setminus\{1,2\}$ is not maximal Look at $T=\{1-n,n\}$: $n\in\mathbb{N}\}$ is a tower with no upper bound

So every tower having an upper bound \Rightarrow there is a maximal element There being a maximal element \Rightarrow every tower has an upper bound

Linear Mappings

February-07-11 11:32 AM

Linear Mapping

Let U and V be vector spaces over F. A mapping (function) $L: U \rightarrow V$ is linear if:

- 1. L preserves summation $L(u_1 + u_2) = L(u_1) + L(u_2)$
- 2. L preserves scalar multiplication $L(\lambda u) = \lambda L(u)$ for $\lambda \in F$

Proposition

For any linear $L: U \rightarrow V$

- 1. L(0) = 0
- $2. \ L(-u) = -L(u)$

3.
$$L\left(\sum_{i=1}^{n} \lambda_i u_i\right) = \sum_{i=1}^{n} \lambda_i L(u_i)$$

L preserves linear combinations

Kernel (Nullspace)

Let $L: U \to V$ be linear $Ker(L) = Nullspace(L) := \{u \in U | L(u) = 0\}$

Range (Image)

Let $L: U \to V$ be linear $Range(L) = Im(L) := \{L(u) | u \in U\}$

Proposition

Ker(L) is a subspace of U Range(L) is a subspace of V

Example

 $L: \mathbb{R}^3 \to \mathbb{R}^3, L(x, y, z) = (x, 0, z) \ \forall (x, y, z) \in \mathbb{R}^3.$ Then L is linear.

Proof:

- 1. Let $(x_1, y_1, z_1), (x_2, y_2, z_2) \in \mathbb{R}^3$ Then $L((x_1, y_1, z_1) + (x_2, y_2, z_2)) = L(x_1 + x_2, y_1 + y_2, z_1 + z_2) = (x_1 + x_2, 0, z_1 + z_2)$ $L(x_1, y_1, z_1) + L(x_2, y_2, z_2) = (x_1, 0, z_1) + (x_2, 0, z_2) = (x_1 + x_2, 0, z_1 + z_2)$
- 2. Let $\lambda \in \mathbb{R}$, $(x, y, z) \in \mathbb{R}^3$ $L(\lambda(x, y, z)) = L(\lambda x, \lambda y, \lambda z) = (\lambda x, 0, \lambda z) = \lambda(x, 0, z) = \lambda L(x, y, z)$

Example

$$L: \mathbb{R}^3 \to M_{3\times 3}(\mathbb{R}), L(x, y, z) = \begin{bmatrix} x & y & z \\ z & y & 2x \\ 0 & x + y & z \end{bmatrix}$$

This is a linear mapping

Example

$$L: P_2(\mathbb{R}) \to P_3(\mathbb{R}), L(p(x)) = xp(x)$$
 L is linear

Example of a non-linear map

$$f: \mathbb{R}^2 \to \mathbb{R}^2, f(x, y) = (x + 1, y)$$

Then f is not linear

$$f(x_1,y_1)+f(x_2,y_2)=(x_1+1,y_1)+(x_2+1,y_2)=(x_1+x_2+2,y_1+y_2)\\f\big((x_1,y_1)+(x_2,y_2)\big)=f(x_1+x_2,y_1+y_2)=(x_1+x_2+1,y_1+y_2)\\$$
 So f does not preserve summation. Similarly, it does not preserve multiplication.

Proof of Proposition

- 1. Because L preserves addition, $L(0+0)=L(0)+L(0)\Rightarrow L(0)=L(0)+L(0)$ so $L(0)=0\in V$
- 2. L(-u) = L((-1)u) = (-1)L(u) = -L(u)
- 3. Follows directly from preservation of addition and scalar multiplication

Dimension Theorem

February-09-11 11:32 AM

Nullity and Rank

Let $L: U \to V$ be linear. Suppose that U is finite dimensional. The nullspace (kernel) of L, $N(L) = \{u \in U \mid L(u) = 0\}$, is a subspace of U.

Then N(L) is finite dimensional. *Nullity* $(L) = \dim N(L)$

The dimension of the range space, $R(L) = \{L(u) | u \in U\}$ is called the Rank of L, denoted rank(L)

Dimension Theorem (Rank and Nullity Theorem)

For linear $L: U \rightarrow V$, finite dimensional U, dim(U) = rank(L) + nullity(L)

Example

 $L: \mathbb{R}^3 \to \mathbb{R}^4$ is given by L(x, y, z) = (x + y, y + z, 0, 0) has range $R(L) = \{(a, b, 0, 0) | a, b \in \mathbb{R}\} \text{ and } rank(L) = 2$ It has $N(L) = \{(x, y, z) \in \mathbb{R}^3 \mid (x + y, y + z, 0, 0) = (0, 0, 0, 0)\}$ $= \left\{ (x, y, z) \in \mathbb{R}^3 \mid \begin{array}{l} x + y = 0 \\ y + z = 0 \end{array} \right\}$ Nullity (L) = $\dim N(L) = 1$

Proof of Rank and Nullity Theorem

Pick a basis for N(L), say $\{u_1, u_2, \dots, u_k\}$ Now, nullity(L) = kExtend the linearly independent set $\{u_1, u_2, ..., u_k\}$ to a basis for U say that $\{u_1,u_2,\dots,u_k,u_{k+1},\dots,u_n\}$ is a basis for U So dim(U) = n

Claim: $\beta = \{L(u_{k+1}), L(u_{k+2}), ..., L(u_n)\}\$ is a basis for Range(L). Thus rank(L) = n - k

1. Show that β spans Range(L)

Let $v \in Range(L)$ be given. Then $\exists u \in U \ s. \ t. \ L(u) = v$ Since $\{u_1, ..., u_n\}$ spans U, there exist scalars $\lambda_1, ..., \lambda_n$ so that

$$u = \sum_{i=1}^{n} \lambda_i u_i$$

Now,
$$v = L(u) = L\left(\sum_{i=1}^{n} \lambda_i u_i\right) = \sum_{i=1}^{n} \lambda_i L(u_i), \text{ since L is linear}$$

$$But \ L(u_i) = 0 \ \forall i \in \{1, \dots, k\} \ so$$

$$v = \sum_{i=k+1}^{n} \lambda_i L(u_i)$$
So $v \in span \beta$

So $span \beta = Range(L)$

2. Show that β is linearly independent.

Suppose
$$\lambda_{k+1}L(u_{k+1})+\cdots+\lambda_nL(u_n)=0\Rightarrow L(\lambda_{k+1}u_{k+1}+\cdots+\lambda_nu_n)=0$$

So $\lambda_{k+1}u_{k+1}+\cdots+\lambda_nu_n\in N(L)$
As u_1,\dots,u_n spans $N(L)$
 $\lambda_{k+1}u_{k+1}+\cdots+\lambda_nu_n=\lambda_1u_1+\cdots+\lambda_ku_k$ for some scalars λ_i
So $\lambda_1u_1+\cdots+\lambda_ku_k-\lambda_{k+1}u_{k+1}-\cdots-\lambda_nu_n=0$
So $\lambda_1=\cdots=\lambda_k=\lambda_{k+1}=\cdots=\lambda_n=0$

Rank/Nullity

February-11-11

Proposition

Every Linear $L\colon U\to V$ is completely determined by the restriction, $L|_B$, to a basis B for U

Simple consequences of the dimension (rank/nullity) theorem.

Observations.

1. If $L: U \to V$ is linear, then L is injective iff $Ker(L) = \{0\}$ Proof: Suppose that $L(u_1) = L(u_2)$ for given $u_1, u_2 \in U$

Now $L(u_1)-L(u_2)=0$. As L is linear, $L(u_1-u_2)=0$ so $u_1-u_2\in Ker(L)$. Since Ker(L) = $\{0\}$, we set $u_1-u_2=0\Rightarrow u_1=u_2$

For the converse: Suppose L is injective Because L is linear, L(0) = 0, so 0 in Ker(L)

To get Ker(L) = $\{0\}$, we need to show that for any given u in Ker(L), we have u = 0 Let u in Ker(L) be given. Then L(u) =0. Since L is linear, L(0) = 0. So L(u) = L(0) As L in injective, u = 0 follows.

Restate: Linear L is injective iff dim Ker(L) = 0 iff nullity(L) = 0

Linear L: U → V is surjective iff L(U) = V. If V is finite dimensional, then L is surjective iff dim L(U) = dim V, iff rank(L) = dim V

By the dimensional theorem, we get the Corollary:

If $L\colon U\to V$ is linear and both U and V are of the same dimension, then the following two statements are equivalent:

- 1. L is injective
- 2. Lis surjective

Basic idea: dim U = rank(L) + nullity(L) = dim V Injective <=> nullity(L) = 0 <=> rank(L) = dim V <=> surjective

In particular, if U is finite dimensional and L is a linear operator on U, then L is injective iff it is surjective.

Example of Proposition:

Suppose that $L: \mathbb{R}^2 \to P_2(\mathbb{R})$ is linear, and that $B = \{(1, 0), (0, 1)\}$

If we know L(1, 0) and L(0, 1) (that is, we know $L|_B$), we should be able to tell L(x, y) for general $(x, y) \in \mathbb{R}^2$

Reason: (x, y) = x(1, 0) + y(0, 1), so L(x, y) = L(x(1, 0) + y(0, 1) = xL(1, 0) + yL(0, 1)

Proof of Proposition:

Let $B = \{b_i | i \in I\}$ be a basis for U.

Given any vector $\mathbf{u} \in \mathsf{U}$, we can write $u = \sum_{i=1}^n \lambda_i b_i$ for finitely many $b_i \in B$

$$L(u) = \sum_{i=1}^{n} \lambda_i L(b_i)$$

Example

WE could define a linear map $L: \mathbb{R}^2 \to \mathbb{R}^2$ by specifying L(1, 0) and L(0, 1), say L(1, 0) = (1, 1) and L(0, 1) = (-1, -1), Implicitly, we know L fully

Explicitly: L(x, y) = x L(1, 0) + y L(0, 1) = x(1, 1) + y(-1, -1) = (x - y, x - y)

Rank(L) = 1, Nullity(L) = 1

 $Range(L) = span(L(1, 0), L(0, 1)) = span\{(1, 1), (-1, -1)\} = span\{(1, 1)\}, a basis is (1, 1)$

N(L) is $\{(x, y) \in \mathbb{R}^2 \mid x - y = 0\}$, a basis is (1, 1)

$$\begin{array}{ll} D\colon P_{10}(\mathbb{R})\to P_{10}(\mathbb{R}).D(p(x)) = p'(x)\\ D(1) = 0, D(x) = 1, D(x^2) = 2x, ..., D(x^{10}) = 10x^9\\ \text{Note } \{1, x, x^2, ..., x^{10}\} \text{ is a basis for } P_{10}\\ R(D) = P_9(\mathbb{R})\\ N(D) = P_0(\mathbb{R}) = span\{1\}\\ Rank(D) = 10, nullity(D) = 1, dim \, P_{10}(\mathbb{R}) = 11 \end{array}$$

Coordinatization

February-14-11 11:33 AM

Coordinatizing a Space

Let U be a finite dimensional space. Fix a basis $\beta = \{u_1, u_2, ..., u_n\}$ and order it as presented. Every vector $u \in U$ can be uniquely written:

$$u = \sum_{i=1}^{n} a_i u_i , a_i \in F$$

$$(a_1, ..., a_n) \neq (b_1, ..., b_n) \Rightarrow \sum_{i=1}^n a_i u_i \neq \sum_{i=1}^n b_i u_i$$

Coordinates

We call $(a_1, a_2, ..., a_n)$ the coordinates of u with respect to (relative to)

$$|u|_{\beta} = \begin{vmatrix} a_1 \\ a_2 \\ \dots \\ a_n \end{vmatrix}, or (a_1, \dots, a_n)$$

Proposition

Let U be a space with ordered basis β .

The correspondence

$$u\in U\to \lfloor u\rfloor_{\beta}\in F^n$$

is a bijective linear map. Thus U is isomorphic to F^n

It is easy to check that $\lfloor u_1 + u_2 \rfloor_{\beta} = \lfloor u_1 \rfloor_{\beta} + \lfloor u_2 \rfloor_{\beta}$ $|\lambda u|_{\beta} = \lambda |u|_{\beta}$

Representation of Linear Maps

A linear map $L: U \to V$ can by represented by a matrix.

Let U, V be finite dimensional. Let α, β be ordered bases for U and V, respectively.

$$\alpha = \{u_1, \dots, u_n\}, \beta = \{v_1, \dots, v_m\}$$

Now $L: U \to V$, linear, is determined by knowing

 $L(u_1), L(u_2), \dots, L(u_n)$. Each $L(u_i)$ is determined by knowing $|L(u_i)|_{\mathcal{B}}$ -(column formation)

The matrix

$$||L(u_1)|_{\beta}$$
 $|L(u_2)|_{\beta}$... $|L(u_n)|_{\beta}|$

Size $m \times n$ is called the matrix representation of L with respect to α, β

Proposition

Let $L_1, L_2: U \to V$ be linear. $x \in F$

Let α for U and β for V be fixed finite ordered bases.

Then
$$L_1 + L_2: U \to V$$
, $(L_1 + L_2)(u) = L_1(u) + L_2(u)$

 $\lambda L_1: U \to V$, $(\lambda L_1)(u) = \lambda(L_1(u))$ are linear (exercise)

$$\begin{split} |L_1 + L_2|_\alpha^\beta &= |L_1|_\alpha^\beta + |L_2|_\alpha^\beta, \qquad |\lambda L_1|_\alpha^\beta = \lambda |L_1|_\alpha^\beta \\ \text{Thus } |\square|_\alpha^\beta \text{: all linear maps from U to V} \to M_{m \times n}(F) \end{split}$$

is linear.

Let
$$U = P_2(\mathbb{R})$$
. Let $\beta = \{x^2, x, 1\}$ (ordered)
Let $u = 4 + 2x + 5x^2 = 5(x^2) + 2(x) + 4(1)$

$$u = \begin{vmatrix} 5 \\ 2 \\ 4 \end{vmatrix} \text{ or } (5, 3, 4)$$

 P_2 is isomorphic to \mathbb{R}^3

Example

Let
$$D: P_2 \to P_2$$
 over $\mathbb{R}, D(f) = f'$

Let $\alpha = \{1, x, x^2\}$ for the domain and $\beta = \{x, 1, x^2\}$ for the codomain

$$|D|_{\alpha}^{\beta} = |[D(1)]_{\beta}, |D(x)]_{\beta}, |D_{x^{2}}|_{\beta}| = |[0]_{\beta}, [1]_{\beta}, [2x]_{\beta}| = \begin{vmatrix} 0 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{vmatrix}$$

* Cardinality

February-14-11 3:30 PM

Countable

A set X is countable iff $|X| = |\mathbb{N}|$ A set X is at most countable if $|X| \le |\mathbb{N}|$

Facts

- 1. $|X| = |X|, |X| \le |X|, |X| \ge |X|$
- 2. If $|X| \le |Y|$ and $|Y| \le |Z| \Rightarrow |X| \le |Z|$
- 3. $|X| \le |Y|$ iff $|Y| \ge |X|$
- 4. $|X| \le |Y|$ and $|Y| \le |X| \Rightarrow |X| = |Y|$
- 5. $|\mathbb{N} \times \mathbb{N}| = |\mathbb{N}|$
- 6. $|A| = |X|, |B| = |Y| \Rightarrow |A \times B| = |X \times Y|$
- 7. $A \subset B \subset C$ and $|A| = |C| \Rightarrow |A| = |B| = |C|$
- 8. $|0,1| = |(0,1) \times (0,1)|$
- 9. For any infinite set X, removing a finite subset will not change the cardinality
- 10. |(0,1)| = |[0,1]|
- 11. $|(0,1) \times (0,1)| = ||0,1| \times |0,1||$
- 12. $|\mathbb{R}| = |0, 1|$
- 13. $|\mathbb{R} \times \mathbb{R}| = |\mathbb{R}|$
- 14. $|\mathbb{R}^n| = |\mathbb{R}|$

Proof of Fact 5

```
Define the mapping \varphi: \mathbb{N} \to \mathbb{N} \times \mathbb{N} \varphi(1) = (1,1) \varphi(2) = (1,2) \varphi(3) = (2,1) \varphi(4) = (1,3) \varphi(5) = (2,2)
```

This function is bijective, so $|\mathbb{N}| = |\mathbb{N} \times \mathbb{N}|$

Proof of Fact 6

```
\exists \text{bijection } f\colon A\to X, g\colon B\to Y\\ \text{Consider } \varphi\colon A\times B\to X\times Y \text{ , } (a,b)\to \big(f(a),g(b)\big)\\ \text{Then } \varphi \text{ is bijective}
```

Example

 $|\mathbb{N} \times \mathbb{N} \times \mathbb{N}| = |\mathbb{N}|$

Proof of Fact 7

Consider the map

```
\begin{array}{l} \varphi\colon (0,1) \to |0,1| \times |0,1| \setminus \{(0,0),(1,1)\} \\ \varphi(x=0.a_1a_2a_3\dots) = (0.a_1a_3a_5\dots,0.a_2a_4a_6\dots) \end{array}
```

In the event that x can be written in two ways, use the representation which is not terminated by repeating 9's.

This is injective. And surjective $(0,1)\times 0.5 \subset (0,1)\times (0,1) \subset [0,1]\times [0,1]\setminus \{(0,0),(1,1)\} \\ |0,1|=|(0,1)\times 0.5|=||0,1|\times |0,1|\setminus \{(0,0),(1,1)\} \\ \text{So } |(0,1)|=|(0,1)\times (0,1)|$

Matrices

February-16-11 11:32 AM

Matrix Representation

Let $L: U \to V$ be linear Let $\alpha = \{u_1, \dots, u_n\}$, $\beta = \{v_1, \dots, v_m\}$ be ordered bases for U and V, respectively

$$\begin{split} &|L|_{\alpha}^{\beta} = \left| \left| L(u_1) \right|_{\beta}, \left| L(u_2) \right|_{\beta}, \dots, \left| L(u_n) \right|_{\beta} \right| \\ &= \left| a_{ji} \right|_{(m \times n)} \end{split}$$

Matrix - Tuple Multiplication

Let
$$A = [a_{ji}], X = \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix}$$

$$AX = \begin{bmatrix} \sum_{i=1}^{n} a_{1i}a_i \\ \sum_{i=1}^{n} a_{2i}a_i \\ \vdots \\ \sum_{i=1}^{n} a_{mi}a_i \end{bmatrix}$$

With that, we have the formula: $[L(u)]_{\beta} = [L]_{\alpha}^{\beta} [u]_{\alpha}$

Matrix Representation

Let $L: U \to V$ be linear.

Let $\alpha=\{u_1,\dots,u_n\}$ and $\beta=\{v_1,\dots,v_m\}$ be ordered bases for U and V respectively. Each vector $u \in U$ has the representation

$$[u]_{\alpha} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} i.e.u = \sum_{i=1}^n a_i u_i;$$

$$[L(u)]_{\beta} = \begin{vmatrix} b_1 \\ \vdots \\ b_m \end{vmatrix}, i.e. \sum_{j=1}^m b_j v_j$$

$$[L]_{\alpha}^{\beta} = |[L(u_1)]_{\beta}, [L(u_2)]_{\beta}, ..., [L(u_n)]_{\beta}| = |a_{ji}|$$

Hence

$$L(u_i) = \sum_{j=1}^{m} a_{ji} v_i$$

How should $[L(u)]_{\beta}$, $[u]_{\alpha}$, and $[L]_{\alpha}^{\beta}$ relate?

$$L(u) = L\left(\sum_{i=1}^{n} a_{i}u_{i}\right) = \sum_{i=1}^{n} a_{i}L(u_{i}) = \sum_{i=1}^{n} a_{i}\left(\sum_{j=1}^{m} a_{ji}v_{j}\right)$$

 a_i comes from the vector $[u]_{\alpha}$ a_{ii} comes from the matrix $[L]_a^F$

$$L(u) = \sum_{\substack{i=1\\n}}^{n} \sum_{j=1}^{m} a_{ji} a_{i} v_{j} = \sum_{j=1}^{m} \left(\sum_{i=1}^{n} a_{ji} a_{i} \right) v_{j} = \sum_{j=1}^{m} b_{j} v_{j}$$

$$\therefore b_j = \sum_{i=1}^n a_{ji} a_i, \qquad j = 1, 2, \dots, m$$

 b_i comes from the vector $[L(u)]_{6}$

Get:

$$\begin{vmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{vmatrix} = \begin{bmatrix} a_{ji} \end{bmatrix} \begin{vmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{vmatrix} \Rightarrow [L(u)]_{\beta} = [L]_{\alpha}^{\beta} [u]_{\alpha}$$

Let $L: \mathbb{R}^3 \to \mathbb{R}^2$. Let $\alpha = \{(1,0,0), (0,1,0), (0,0,1)\}$ be the standard ordered basis for \mathbb{R}^3 and $\beta = \{(1,0), (0,1)\}$, the standard ordered basis for \mathbb{R}^2

Let le be having

$$|L|_{\alpha}^{\beta} = \begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{vmatrix}_{2 \times 3}$$

Find L(x, y, z)

Step 1:

$$|L(x,y,z)|_{\beta} = \begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{vmatrix} |(x,y,z)|_{\alpha} = \begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{vmatrix} \begin{vmatrix} x + 2y + 3z \\ 2 & 6 \end{vmatrix}$$

$$\therefore L(x,y,z) = (x+2y+3z)(1,0) + (4x+5y+6z)(0,1) = (x+2y+3z,4x+5y+6z)$$

If $T: \mathbb{R}^2 \to \mathbb{R}^3$ is given by T(x, y) = (x + 2y, 3x + 4y, 5x + 6y)

Using the standard bases
$$\alpha, \beta$$

$$|T|_{\alpha}^{\beta} = \begin{vmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{vmatrix}_{(3\times2)}$$

Let
$$L: P_2 \to P_2$$
 over \mathbb{R}
Let $\alpha = \beta = \{1, x, x^2\}$
If $|L|_{\alpha}^{\beta} = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 2 \end{bmatrix}$
Find $L(a_0 + a_1x + a_2x^2)$

$$If \ |L|_{\alpha}^{\beta} = \begin{vmatrix} 1 & 2 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 2 \end{vmatrix}$$

$$|L(a_0 + a_1x + a_2x^2)|_{\beta} = \begin{vmatrix} 1 & 2 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 2 \end{vmatrix} \begin{vmatrix} a_0 \\ a_1 \\ a_2 \end{vmatrix} = \begin{vmatrix} a_0 + 2a_1 + a_2 \\ a_0 + a_1 + a_2 \\ 2a_2 \end{vmatrix}$$

$$\therefore L(a_0 + a_1x + a_2x^2) = (a_0 + 2a_1 + a_2) + (a_2 + a_1 + a_2)x + 2a_2x^2$$

Composition of Linear Maps

February-18-11 11:37 AM

Linearity of Composition

If $L_1: U \to V$ and $L_2: V \to W$ are linear. Then there are compositions $L_2 \circ L_1: U \to W$ is linear.

$$|L_2|_{\beta}^{\gamma}|L_1|_{\alpha}^{\beta} = |L_2 \circ L_1|_{\alpha}^{\gamma}$$

Matrix Multiplication

Let $A_{(i \times j)}$, $B_{(j \times k)}$ be matrices.

$$AB = \left| \sum_{(j=1)} a_{ij} b_{jk} \right|_{(i,k)}$$

For A times B to make sense, the number of columns in A must equal the number of rows in B.

Proof of Linearity of Composition

$$\begin{aligned} &(L_2 \circ L_1)(\lambda u_1 + u_2) = L_2(L_1(\lambda u_1 + u_2)) = L_2(\lambda L_1(u_1) + L_1(u_1)) \\ &= \lambda L_2(L_1(u_1)) + L_2(L_1(u_2)) = \lambda (L_2 \circ L_1)(u_1) + (L_2 \circ L_1)(u_2) \end{aligned}$$

Finite Bases

Let α , β , γ be ordered bases for U, V, W, respectively, assuming that U, V, W are finite dimensional.

Then as $|L_1|^\beta_\alpha$ determines L_1 , $|L_2|^\gamma_\beta$ determines L_2 . They also determine $L_2 \circ L_1$ and subsequently $[L_2 \circ L_1]_{\alpha}^{\gamma}$

This motivates the definition of matrix multiplication. $[L_2]_{\beta}^{\gamma}[L_1]_{\alpha}^{\beta} = [L_2 \circ L_1]_{\alpha}^{\gamma}$

$$[L_2]^{\gamma}_{\beta}[L_1]^{\beta}_{\alpha} = [L_2 \circ L_1]^{\gamma}_{\alpha}$$

Let
$$L_1: \mathbb{R}^2 \to \mathbb{R}^3$$
, $L_1(x, y) = (x + 2y, 3x, 4y)$ and $L_2: \mathbb{R}^3 \to \mathbb{R}^2$, $L_2(x, y, z) = (x + y - z, x + y + z)$
Let $\alpha = \{(1, 0), (0, 1)\}$ for the domain of L_1
 $\beta = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$ for the domain of L_2
 $\gamma = \{(0, 1), (1, 0)\}$ for the range of L_2

$$\begin{split} |L_1|_{\alpha}^{\beta} &= \begin{vmatrix} 1 & 2 \\ 3 & 0 \\ 0 & 4 \end{vmatrix}, \qquad |L_2|_{\beta}^{\gamma} &= \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & -1 \end{vmatrix} \\ |L_2|_{\beta}^{\gamma}|L_1|_{\alpha}^{\beta} &= \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & -1 \end{vmatrix} \begin{vmatrix} 1 & 2 \\ 3 & 0 \\ 0 & 4 \end{vmatrix} = \begin{vmatrix} 1 \times 1 + 1 \times 3 + 1 \times 0 & 1 \times 2 + 1 \times 0 + 1 \times 4 \\ 1 \times 1 + 1 \times 3 - 1 \times 0 & 1 \times 2 + 1 \times 0 - 1 \times 4 \end{vmatrix} \\ &= \begin{vmatrix} 4 & 6 \\ 4 & -2 \end{vmatrix} \end{split}$$

$$L_2 \circ L_1 = L_2(L_1(x, y)) = L_2(x + 2y, 3x, 4y) = (4x - 2y, 4x + 6y)$$

$$|(4x-2y,4x+6y)|_{\alpha}^{\gamma}=\begin{vmatrix}4&6\\4&-2\end{vmatrix}$$

Which agree. Excellent.

Properties of Matrix Operations

March-02-11 1.38 AM

Under addition and scalar multiplication $M_{n\times n}(F)$ is a vector space. There is a third operation, "matrix multiplication."

The following additional properties hold:

Properties of Matrix Multiplication:

· Multiplicative Identity

The identity matrix served as the identity element

iplicative Identity The identity matrix served as the
$$\begin{matrix} 1 & 0 & \dots & 0 \\ I & 0 & 1 & \vdots \\ I & 0 & \dots & 0 \end{matrix}$$

$$\begin{matrix} I, or \ I_n = \begin{vmatrix} 0 & 1 & \vdots \\ \vdots & \ddots & 0 \\ 0 & \dots & 0 & 1 \\ i. e. AI = A = IA \ \forall A \in M_{n \times n}(F) \end{matrix}$$

Associativity of Multiplication

$$(AB)C = A(BC) \ \forall A, B, C \in M_{n \times n}(F)$$

Note: $AB \neq BA$ in general

Distributivity:

$$A(B+C) = AB + AC$$

$$(A+B)C = AC + BC$$

$$(\lambda A)B = \lambda (AB) = A(\lambda B),$$

$$\forall A, B, C \in M_{n \times n}(F), \lambda \in F$$

Linear Algebra

A vector space (or a linear space) under a binary operation called multiplication which satisfies the listed properties above is called a linear algebra.

 $M_{n\times n}(F)$ is a linear algebra

Support for (AB)C = A(BC)

There is a bijective map from $\mathcal{L}(F^n, F^n)$, or all linear maps from F^n to F^n (a subspace of $\mathcal{F}(F^n,F^n)$)

 $|\Box|_{\alpha}: L \to |L|_{\alpha}$, where α is a fixed, ordered basis for $\mathcal{L}(F^n, F^n)$

It preserves the linear algebra operations:

$$\begin{aligned} |L_1 + L_2|_{\alpha} &= |L_1|_{\alpha} + |L_2|_{\alpha} \\ |\lambda L|_{\alpha} &= \lambda |L|_{\alpha} \\ |L_1 L_2|_{\alpha} &= |L_1 \circ L_2|_{\alpha} = |L_1|_{\alpha} |L_2|_{\alpha} \end{aligned}$$

In short, the matrix representation \prod_{α} from $\mathcal{L}(F^n, F^n)$ to $M_{(n \times n)}(F)$ is a linear algebra

Composition is an associative operation on $\mathcal{L}(F^n, F^n)$:

$$\begin{split} &(L_1\circ L_2)\circ L_3=L_1\circ (L_2\circ L_3) \Leftrightarrow \big((L_1\circ L_2)\circ L_3)(v)=(L_1\circ (L_2\circ L_3))(v)\,\forall v\in F^n\\ &\Leftrightarrow (L_1\circ L_2)(L_3(v))=L_1\big((L_2\circ L_3)(v)\big) \Leftrightarrow L_1(L_2(L_3(v)))=L_1(L_2(L_3(v))) \end{split}$$

The latter is obviously true so due to the isomorphism matrix multiplication must be associative.

Example

Let

$$A = \begin{vmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{vmatrix}$$
Then

$$A^{20} = \begin{vmatrix} \cos 20\theta & -\sin 20\theta \\ \sin 20\theta & \cos 20\theta \end{vmatrix}$$

Example

Let $D: P_2(\mathbb{R}) \to P_2(\mathbb{R})$ be the differentiation operator.

Let the domain and codomain be given the (ordered basis) $\alpha = \{1, x, x^2\}$

Then
$$|D|_{\alpha} = \begin{vmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{vmatrix}$$

$$D(1) = 0, |0|_{\alpha} = \begin{vmatrix} 0 \\ 0 \\ 0 \end{vmatrix}, \qquad D(x) = 1, |1|_{\alpha} = \begin{vmatrix} 1 \\ 0 \\ 0 \end{vmatrix}, \qquad D(x^2) = 2x, |2x|_{\alpha} = \begin{vmatrix} 0 \\ 2 \\ 0 \end{vmatrix}$$

Find $[2I + 4D + 5D^5]_0$

Solution 1:

$$\frac{(2I+4D+5D^5)(a+bx+cx^2) = 2(a+bx+cx^2) + 4(b+2cx) + 5(0)}{(2a+4b) + (2b+8c)x + 2cx^2}
12I+4D+5D^5| = \begin{vmatrix} 2 & 4 & 0 \\ 0 & 2 & 8 \\ 0 & 0 & 2 \end{vmatrix}$$

Solution 2:

 $[]_{\alpha}$ is a linear algebra isomorphism

Give an example of a
$$3\times 3$$
 real matrix satisfying $A^3=0$ but $A^2\neq 0$ is there a linear operator $L\colon\mathbb{R}^3\to\mathbb{R}^2$ so that $L^3=0$, $L^2\neq 0$ $L(x,y,z)=(y,z,0), L^2(x,y,z)=(z,0,0)\neq 0, L^3=(0,0,0)=0$ So
$$\begin{bmatrix} 0&1&0\\0&0&1 \end{bmatrix}$$
 satisfies the statement.

Sum of Vector Spaces *

March-02-11 2:05 AM

Sum of Vector Spaces

Let V be a vector space. Let W_1 and W_2 be two subspaces of V. The sum of W_1 and W_2 is defined by:

$$W_1 + W_2 = \{w_1 + w_2 \mid w_1 \in W_1, w_2 \in W_2\}$$

Fact: $W_1 + W_2$ is a subspace.

Direct Sum

The sum $W_1 + W_2$ is direct if $W_1 \cap W_2 = \{0\}$. In that case, we write $W_1 \oplus W_2$

Theorem

Suppose that $V = W_1 \oplus W_2$

If α is a basis for W_1 and β is a basis for W_2 , then $\alpha \cup \beta$ is a basis

Conversely, if $W_1 \& W_2$ are subspaces of V and $\alpha \cup \beta$ (disjoint union, XOR) is a basis for W_1+W_2 , then $a\cup\beta$ is a basis for V

Example

 $V = \mathbb{R}^3$, $W_1 = x - y$ plane, $W_2 = y - z$ plane Then $W_1 + W_2 = \mathbb{R}^3$

Example

 $V = \mathcal{F}(|-1,1|,\mathbb{R})$

 W_1 = Subspace of all even functions

 W_2 = Subspace of all odd functions

 $W_1 + W_2 = V$

Proof of Theorem

First, α and β are disjoint. Will show that $\alpha \cup \beta$ spans V. Let $v \in V$ be given. Then $v = w_1 + w_2$ for some $w_1 \in W_1, w_2 \in W_2$, because $V = W_1 + W_2$

$$\begin{split} w_1 &= \sum_{i \in I_1 \subset I} \lambda_i \alpha_1 \,, w_2 = \sum_{j \in J_1 \subset J} \mu_j \beta_j \,, \qquad I_1, J_2 \; finite \\ \alpha &= \{\alpha_i \mid i \in I\}, \beta = \{\beta_j \mid j \in J\} \end{split}$$

$$v = \sum_{i \in I_1} \lambda_i \alpha_i + \sum_{i \in I_2} \mu_i \beta_i, \qquad \alpha_i, \beta_i \in \alpha \cup \beta$$

 $v = \sum_{i \in I_1} \lambda_i \alpha_i + \sum_{j \in J_1} \mu_j \beta_j \,, \qquad \alpha_i, \beta_j \in \alpha \cup \beta$ To show that $\alpha \cup \beta$ is linearly independent, let $\gamma_1, \dots, \gamma_n$ be a finite list of distinct vectors from $\alpha \cup \beta$ and that $\eta_1 \gamma_1 + \eta_2 \gamma_2 + \dots + \eta_n \gamma_n = 0$

Each γ_i is in either α or β in exactly one way. Re-label those in α as α_i and those in β as β_i ;

$$\sum_{i} \lambda_{i} \alpha_{i} + \sum_{i} \mu_{j} \beta_{j} = 0 \Rightarrow \sum_{i} \lambda_{i} \alpha_{i} = -\sum_{i} \mu_{j} \beta_{j}$$

And since the left side is in W_1 and the right side is in W_2 , the only element common to both subspaces is 0. And since W_1 and W_2 are linearly independent, $\lambda_i, \mu_i = 0$ so $\eta_i = 0 \ \forall i$

Row Reducing

March-02-11 12:06 PM

Row Reduced Echelon Form

Let A be a $n\times m$ matrix over F. It is in Row Reduced Echelon Form if it has the following features:

- 1. If there are zero rows, these are at the bottom
- For each non-zero row, the first (leading, scanned left to right) non-zero entry is 1. We call such positions the leading 1's positions.
- 3. Leading 1s with higher row numbers should have higher column numbers.
- 4. All entries above and below the leading 1s are zero

Proposition

Every A can be changed to a Row Reduced Echelon Form using three kinds of row operations in a finite number of steps:

- 1. Interchange two rows
- 2. Multiply a row by a non-zero scalar
- 3. Adding a multiple of a row to a different row

Interpretations of RREF

Could consider the matrix, A, short hand for a system of linear equations. Hence the RREF of A records a system of equations equivalent to that of A.

Could be interpreted as a linear equation of column vectors.

Statement

Every $m \times n$ matrix A has a unique RREF.

The Matrix A and its RREF, in general, do not represent the same linear map.

Not in RREF, second 1 has higher row number but lower column number.

$$\begin{bmatrix} 0 & 1 & * & * \\ 0 & 0 & 1 & * \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
Satisfies 1,2,3

$$\begin{bmatrix} 0 & 1 & 0 & * \\ 0 & 0 & 1 & * \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Is in Row-Reduced Echelon Form

Example

Use row operations to reduce

$$A = \begin{vmatrix} 4 & 0 & 8 \\ -9 & 0 & 5 \\ 0 & 0 & 4 \end{vmatrix}$$

to reduced row echelon form:

Example

The matrix

$$A = \begin{vmatrix} 0 & -5 & -15 & 4 & 7 \\ 1 & -2 & -4 & 3 & 6 \\ 2 & 0 & 4 & 2 & 1 \\ 3 & 4 & 18 & 1 & 4 \end{vmatrix}$$

has reduced row echelon form

$$\begin{bmatrix} 1 & 0 & 2 & 0 & -\frac{25}{4} \\ 0 & 1 & 3 & 0 & 4 \\ 0 & 0 & 0 & 1 & \frac{27}{4} \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Maple Command:

[> linalg[rref] (A);

If this is interpreted as a linear system of equations, the general solution of

$$\begin{cases} 0x_1 + (-5)x_2 + (-15)x_3 + 4x_4 + 7x_5 = 0\\ 1x_1 + (-2)x_2 + (-4)x_3 + 3x_4 + 6x_5 = 0\\ 2x_1 + 0x_2 + 4x_3 + 2x_4 + 1x_5 = 0\\ 3x_1 + 4x_2 + 18x_3 + 1x_4 + 4x_5 = 0 \end{cases}$$

Let x_3 and x_5 be free (non-pivot variables)

$$\begin{cases} x_1 = -2x_3 + \frac{23}{4}x_5 \\ x_2 = -3x_3 - 4x_5 \\ x_4 = -\frac{27}{4}x_5 \end{cases}$$

Alternate interpretation:

$$\begin{vmatrix} 0 & -5 & -15 & 4 & 7 & 0 \\ 1 & 2 & +x_2 & -2 & 4 & +x_3 & -4 & +x_4 & 3 & 2 & +x_5 & 6 \\ 3 & 4 & 18 & 1 & 1 & 4 & 0 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{vmatrix}$$

It concerns the linear dependence or independence of the five column vectors of A in \mathbb{R}^4 We wee that the five columns form a dependent set (there are free variables in giving the scalars) In REF, 3rd column = 2*first column + 3* second column

That is, a particular solution $(x_1, x_2, x_3, x_4, x_5)$ is (2, 3, -1, 0, 0) which are not all zero.

A basis for span
$$\begin{cases} 0 & -5 \\ 1 & -2 \\ 2 & 0 \\ 3 & 4 \end{cases}, \dots, \begin{bmatrix} 7 \\ 6 \\ 1 \\ 4 \end{bmatrix}$$
 is
$$\begin{cases} 0 & -5 & 4 \\ 1 & -2 \\ 2 & 0 \\ 3 & 4 \end{cases}$$

Rationale for RREF Uniqueness

Different RREF will lead to different solutions to the system of equations AX = 0Example

Clearly all possible RREF must be the same size.

$$\begin{bmatrix} 1 & 0 & 4 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

So the number of zero rows at the bottom must be the same in all solutions.

$$\begin{vmatrix} 1 & 0 & 4 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{vmatrix}, \begin{vmatrix} 1 & 0 & 2 \\ 0 & 1 & 5 \\ 0 & 0 & 0 \end{vmatrix}, \begin{vmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{vmatrix}$$
$$x_2 = -3x_3, x_2 = -5x_3$$

So the solutions to the first two matrices are not the same.

 x_3 arbitrary in first case, 0 in last case. So different solutions.

The Matrix A and its RREF, in general, do not represent the same linear map.

Example
$$A = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix} \text{ represents } L_A = \begin{pmatrix} x \\ y \end{pmatrix} = A \begin{bmatrix} x \\ y \end{bmatrix} = A \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2x \\ 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = F, L_R \begin{pmatrix} x \\ y \end{bmatrix} = R \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}$$

Elementary Matrices

March-07-11 11:31 AM

Elementary Matrices

There are three types of elementary row operations. When we apply a single elementary row operation to I_n , the resulting matrix is called an elementary matrix.

Proposition

Let A be any $m \times n$ matrix.

When we apply an elementary row operation on A, the outcome is equivalent to multiplying A on the left side by an elementary matrix.

Corollary

Every $m \times n$ matrix A can be changed to its RREF by repeatedly multiplying on the left by a finite sequence of elementary matrices.

Examples of Elementary Matrices

$$\begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix}, \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 10 \end{vmatrix}, \begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -2 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix}$$

Not elementary:

$$\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix}$$

Example

$$\begin{vmatrix} 1 & 2 \\ 0 & 1 \end{vmatrix} \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{vmatrix} = \begin{vmatrix} 2a_{21} + a_{11} & 2a_{22} + a_{12} & 2a_{23} + a_{12} \\ a_{21} & a_{22} & a_{23} \end{vmatrix}$$

Let
$$A = \begin{bmatrix} 0 & 3 & 1 \\ 1 & 2 & 4 \end{bmatrix}$$
 $(F = \mathbb{Z}_5)$
Then $A \to^{R_1 \leftrightarrows R_2} \begin{bmatrix} 1 & 2 & 4 \\ 0 & 3 & 1 \end{bmatrix} \to^{2R_2 \to R_1} \begin{bmatrix} 1 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix} \to^{-2R_2 + R_1} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \end{bmatrix}$

$$\begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & -4 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} A = \begin{bmatrix} -4 & 1 \\ 2 & 2 \end{bmatrix} A$$

Matrices & Maps

March-09-11 11:36 AM

Let $L:U\to V$ be a bijective linear map. If W is a subspace of U, then L(W) is a subspace of V. If α is a basis for W, then $L(\alpha)$ is a basis for L(W) In particular, if $\dim W=\mathsf{k}$, then $\dim L(W)=k$

If L is bijective and linear: $U \to V$ then $L^{-1}: V \to U$ is also linear. $L \circ L^{-1} = identity \ map \ on \ U$ $L^{-1} \circ L = identity \ map \ on \ V$

If α, β are bases for U, V respectively, then $[L]_{\alpha}^{\beta}[L^{-1}]_{\beta}^{\alpha} = [L \circ L^{-1}]_{\alpha} = I_n$ $[L^{-1}]_{\beta}^{\alpha}[L]_{\alpha}^{\beta} = [L^{-1} \circ L]_{\beta} = I_n$

Invertible Map / Matrix

A map which is called bijective is called invertible.

An $n\times n$ matrix is invertible if there exists $n\times n$ B so that $AB=BA=I_n$. If such B exists, it is unique and is denoted by A^{-1} In particular, if $A=[L]_\alpha$ (bijective operator L), then A is invertible and $A^{-1}=[L^{-1}]_\alpha$

Proposition

The three elementary row operations are invertible linear maps.

Statement:

Composition of linear maps is invertible.

Rank of a Matrix

Let $A \in M_{m \times n}(F)$. The rank of A, rank(A), is the rank of $L_A: F^n \to F^m$

Proposition

Range of $L_A = span\{L_A(e_1), L_A(e_2), \dots, L_A(e_n)\}$ where $\{e_1, \dots, e_n\}$ is the standard basis for F^n . $range(L_a) = span\{c_1, c_2, \dots, c_n\}$ where c_i is the i^{th} column of A.

rank(A) = # of linearly independent columns that form a basis= # of leading 1's in RREF of A

Nullity of a Matrix

Nullity of A = $Nullity(L_A) = \dim N(L_A) = \dim \{X \in F^n : AX = 0\}$

Let B = RREF of A $\dim\{X \in F^n : AX = 0\} = \dim\{X \in F^n : BX = 0\} = \#$ of free variables = n - # leading 1s = n - rank(A)

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 0 & 0 \end{bmatrix}$$

$$RREF = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & \frac{3}{2} \end{bmatrix}$$

$$rank(A) = 2, nullity(A) = 1$$

Matrix Multiplication

March-11-11 11:32 AM

Matrix Multiplication in Blocks

$$\begin{split} A|B|C| &= |AB|AC| \\ \begin{vmatrix} C \\ - \\ D \end{vmatrix} B &= \begin{vmatrix} CB \\ - \\ DB \end{vmatrix} \\ \begin{vmatrix} A_1 & | & A_2 \\ - & + & - \\ A_3 & | & A_4 \end{vmatrix} \begin{vmatrix} B_1 & | & B_2 \\ - & + & - \\ B_3 & | & B_4 \end{vmatrix} = \begin{vmatrix} A_1B_1 + A_2B_3 & | & A_1B_2 + A_2B_4 \\ - & + & - & - \\ A_3B_1 + A_4B_3 & | & A_3B_2 + A_4B_4 \end{vmatrix} \end{split}$$

Matrix Inversion

In general, for $n \times n$ A, to find A^{-1} if it exists we row reduce $|A|I_n|$ (Solving $AB = I_n$) to RREF on the A side only.

Case 1

If RREF of A is I_n then we have $|I_n|A^{-1}|$

Case 2

If RREF of A is not I_n , then A is not invertible.

Solving Equations

To solve the equation AX = B where

$$A = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, B = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

we could find the RREF of |A|B|and then determine the solutions,

Suppose we want to solve two parallel equations.

 $AX = B_1$, $AX = B_2$ (separately, parallel means not related, different X)

It can be done by finding RREF of $[A|B_1]$ and of $[A|B_2]$

The job can be done in one round: Find RREF of $|A|B_1|B_2|$ and then read the solutions.

Example

Let
$$A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$$
. Find A^{-1} if A has an inverse.

We seek B (2 × 2) such that AB = I

Let
$$B = [X_1|X_2]$$
. The equation is $A[X_1|X_2] = \begin{bmatrix} 1\\0 \end{bmatrix}_1^0$

$$AX_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
, $AX_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

Consider
$$\begin{vmatrix} 1 & 2 & | & 1 & 0 \\ 0 & 3 & | & 0 & 1 \\ 1 & 2 & | & 1 & 0 \\ 0 & 1 & | & 0 & \frac{1}{3} \end{vmatrix}$$
 and use row ops. to bring it to RREF (on A partition)
$$\begin{vmatrix} 1 & 2 & | & 1 & 0 \\ 0 & 1 & | & 0 & \frac{1}{3} \end{vmatrix} \left(\frac{1}{3} R_2 \rightarrow R_2 \right)$$

$$\begin{bmatrix} 1 & 2 & | & 1 & 0 \\ 1 & 2 & | & 1 & 0 \\ 0 & 1 & | & 0 & \frac{1}{3} \end{bmatrix} \left(\frac{1}{3} R_2 \to R_2 \right)$$

$$\begin{vmatrix} 1 & 0 & | & 1 & -\frac{2}{3} \\ 0 & 1 & | & 0 & \frac{1}{3} \end{vmatrix} (-2R_2 + R_1 \to R_1)$$

$$X_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, X_2 = \begin{bmatrix} -\frac{2}{3} \\ \frac{1}{3} \end{bmatrix}, B = \begin{bmatrix} 1 & -\frac{2}{3} \\ 0 & \frac{1}{3} \end{bmatrix}$$

Solve
$$\begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} X = \begin{bmatrix} 3 & 5 & 7 \\ 4 & 6 & 8 \end{bmatrix}$$

$$\begin{vmatrix} 1 & 2 & 3 & 5 & 7 \\ 0 & 3 & 4 & 6 & 8 \end{vmatrix} \rightarrow \begin{vmatrix} 1 & 2 & 3 & 5 & 7 \\ 0 & 1 & 4 & 2 & 8 \\ 0 & 1 & 4 & 2 & 8 \end{vmatrix} \rightarrow \begin{vmatrix} 1 & 0 & 1 & \frac{1}{3} & 1 & \frac{5}{3} \\ 0 & 1 & 4 & 2 & \frac{8}{3} \end{vmatrix}$$

$$X = \begin{bmatrix} \frac{1}{3} & 1 & \frac{5}{3} \\ \frac{4}{3} & 2 & \frac{8}{3} \end{bmatrix}$$

Express $\begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$ as a product of elementary matrices.

$$\begin{vmatrix} 1 & -2 \\ 0 & 1 \end{vmatrix} \begin{vmatrix} 1 & 0 \\ 0 & \frac{1}{3} \end{vmatrix} \begin{vmatrix} 1 & 2 \\ 0 & 3 \end{vmatrix} = I_2$$

$$E_2 \qquad E_1 \qquad A$$

$$E_{2} E_{1} A A = E_{1}^{-1} E_{2}^{-1} I_{2} = \begin{vmatrix} 1 & 0 \\ 0 & 3 \end{vmatrix} \begin{vmatrix} 1 & 2 \\ 0 & 1 \end{vmatrix}$$

Column Operations

March-14-11 11:32 AM

Proposition

If $T_1: U \to V$ and $T_2: V \to W$ are linear and T_2 is an isomorphism on finite dimensional spaces U, V, and W.

$$Range(T_2T_1) = (T_2T_1)(U)$$
 by definition of range
= $T_2(T_1(U))$
= $T_2(range(T_1))$

When T_2 is an isomorphism, the subspace $range(T_1)$ of V is mapped to a subspace of W of the same dimension.

Therefore, $rank(T_2 \circ T_1) = Rank T_1$

Converting that statement to $n \times n$ matrices A and B, we get rank(AB) = rank(B) when A is invertible (i.e. equivalently rank(A) = n) In parallel, we get rank(AB) = rank(A) if B is invertible.

For any matrix A, an elementary row operation performed on A does not change the rank.

rank(FA) = rank(A)Since E is invertible.

In particular, rank(A) = rank(RREF(A))

Theorem

Elementary column operations does not change the rank of a matrix. rank(AE) = rank(A) since E is invertible.

Theorem

By using both elementary row and column operations, we can reduce a matrix to the form

$$\begin{vmatrix} I_r & | & 0 \\ - & + & - \\ 0 & | & 0 \end{vmatrix}$$

where r is the rank of the original matrix.

Let A be any matrix $(m \times n)$. Then there exist invertible P & Q such that

$$PAQ = \begin{vmatrix} I_r & | & 0 \\ - & + & - \\ 0 & | & 0 \end{vmatrix}$$

Observations

Observe that rows of A are the same as the columns of A^t . Therefore, action on rows of A becomes action on the columns of A^t .

Every theorem on row operations has a corresponding theorem on column operations.

Example

Every matrix can be reduced to a unique RREF using elementary row operations. In parallel, we have:

Every matrix can be reduced to a unique reduced column echelon form using elementary

Notice that transpose has the property

 $(AB)^t = B^t A^t$

The statement: an elementary row operation performed on A has the effect of multiplying A on the left by an elementary matrix translates into multiplying A on the right by an elementary matrix.

Demonstration

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{vmatrix} \rightarrow (C_1 \rightleftharpoons C_2) \rightarrow \begin{vmatrix} a_{12} & a_{11} & a_{13} \\ a_{22} & a_{21} & a_{22} \end{vmatrix}$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{vmatrix} \begin{vmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{vmatrix} = \begin{vmatrix} a_{12} & a_{11} & a_{13} \\ a_{22} & a_{21} & a_{23} \end{vmatrix}$$

Example

Let A be 2×3 and that under the use of row operations we bring it to

Let A be Z A of the C A of C A

* Dot product on \mathbb{R}^n

March-14-11 3:33 PM

Dot Product on \mathbb{R}^n

$$\begin{split} \text{Let } \vec{x} &= (x_1, \dots, x_n), \vec{y} = (y_1, \dots, y_n) \in \mathbb{R}^n \\ \vec{x} \cdot \vec{y} &= (x_1, \dots, x_n) \cdot (y_1, \dots, y_n) \coloneqq \sum_{i=1}^n x_i y_i \end{split}$$

It is seen within matrix multiplication, and also in equations like $a_1x_1+a_2x_2+\cdots+a_nx_n=0$ $(a_1,\ldots,a_n)\cdot(x_1,\ldots,x_n)=0$

Norm of a Vector in \mathbb{R}^n

In
$$\mathbb{R}^n$$
, $||x|| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$

$$\begin{split} &\text{if } x\neq 0, \text{then } \|x\|>0\\ &\text{if } \dot{x}=0 \text{ } then \ \|x\|=0\\ &\|\lambda \dot{x}\|=|\lambda|\|\dot{x}\|\,\forall x\in\mathbb{R}^n\\ &\left\|\frac{x}{\|x\|}\right\|=\left|\frac{1}{\|x\|}\right|\|x\|=\frac{1}{\|x\|}\|x\|=1 \end{split}$$

Normal Vector

A vector whose norm is ${\bf 1}$

Normalisation

We call the division of $\dot{x} \neq 0$ by $||\dot{x}|| > 0$ the normalisation of \dot{x}

Distance

Distance between \vec{x}, \vec{y} : $d(\vec{x}, \vec{y}) = ||\vec{y} - \vec{x}|| = ||\vec{x} - \vec{y}||$

Theorem

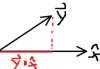
 $Proj_{\chi}: \mathbb{R}^n \to \mathbb{R}^n$ is a linear map

Geometric Interpretation in \mathbb{R}^2

 $(x_1,x_2)\cdot (y_1,y_2)=0$ means the vectors \vec{x},\vec{y} are perpendicular. Same story for x^3

Dot Product

Interpretation of non-zero dot product:



Orthogonal projection of a vector $\dot{y} \in \mathbb{R}^n$ on a normal vector x is $Proj_x(\dot{y}) = (\dot{y} \cdot x)x$

$$\begin{split} &Range(Proj_x) = span\{x\} \\ &Nullspace(Proj_x) = \{\dot{y} \in \mathbb{R}^n : Proj_x(\dot{y}) = 0\} = \{\dot{y} \in \mathbb{R}^n : (\dot{y} \cdot x) = 0\} = \{\dot{y} \in \mathbb{R}^n : \dot{y} \perp x\} \\ &\mathbb{R}^n = Nullspace(Proj_x) \oplus Range(Proj_x) \end{split}$$

Let $Proj_{\chi} = T$, $T^2 = T$

Projection

Let $V=W_1 \oplus W_2$ Then for $v \in V, v=w_1+w_2$ Define $Proj_{W_2}(v)=w_2$ and $Proj_{W_1}(v)=w_1$

Abstract Definition of Projection

A linear operator L such that $L^2 = L$

Determinant

March-16-11 11:31 AM

The Determinant Function

Let A be a 1×1 matrix. The determinant of A, det(A) is equal to the entry of A.

Let A be a
$$2\times 2$$
 matrix $\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$. Then $det(a)=a_{11}a_{22}-a_{12}a_{21}=a_{11}\det[a_{22}]-a_{12}\det[a_{21}]$

Let
$$A = [a_{ij}]$$
 be 3×3 . We define $\det A$

$$= a_{11} \det \begin{vmatrix} a_{22} & a_{23} \\ a_{23} & a_{23} \end{vmatrix} - a_{12} \det \begin{vmatrix} a_{21} & a_{23} \\ a_{23} & a_{23} \end{vmatrix}$$

$$= a_{11} \det \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \det \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \det \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

Recursively, we define for $n \times n$ matrix A

$$\det A = \sum_{j=1}^{n} (-1)^{j+1} a_{1j} \det[A_{1j}]$$

Where A_{1j} is the sub matrix of A obtained when we remove row 1 and column j

Area Magnitude

Area is considered positive when the points are defined in a widdershins fashion about the shape. When the points are described clockwise, the area can be considered

Multiplying the area by -1 means a change in orientation.

Fact

A 2 \times 2 matrix A is invertible iff det $A \neq 0$. In general, for any $n \times n$ A, A is invertible iff det $A \neq 0$

Theorem

For any $n \times n$ A over F, A is invertible iff $\det A \neq 0$.

Proposition

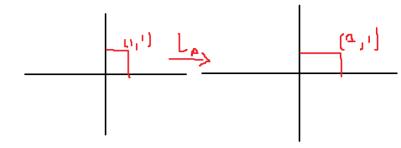
Let A be $n \times n$. Holding all rows but the 1st row fixed, $\det A$ is a linear map of the first row R_1 . It is a function from F^n to F

Interpretation of Determinant

Interpretation for 2×2 matrix A and $\det A$

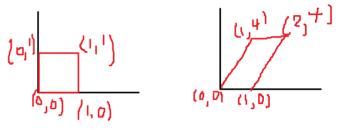
e.g. Let
$$A = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$$
. Then $\det A = (2)(1) - (0)(0) = 2$

e.g. Let
$$A=\begin{bmatrix}2&0\\0&1\end{bmatrix}$$
. Then $\det A=(2)(1)-(0)(0)=2$ Consider $L_A\colon\mathbb{R}^2\to\mathbb{R}^2$. The map is $L_A(x,y)=\begin{bmatrix}2&0\\0&1\end{bmatrix}\begin{bmatrix}x\\y\end{bmatrix}=\begin{bmatrix}2x\\y\end{bmatrix}=(2x,y)$ The figure:



The area under the region is doubled by the transform.

Let
$$A = \begin{bmatrix} 1 & 1 \\ 0 & 4 \end{bmatrix}$$
. Then $\det A = 4$. $L_A(x, y) = (x + y, 4y)$



So the Area was multiplied by a factor of 4.

Determinant Properties

March-18-11 11:32 AM

Properties of Determinants

In the textbook, properties of determinant are built up in this sequence: Theorems

(4.3) det A is linear as a function of each row when other rows are fixed. Corollary: If A has a zero row, then det A = 0

(4.4)
$$\det A = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} \det A_{ij}$$
 for any fixed i

(Co-Factor expansion along row i)

A lead to (4.4) is the Lemma: If B is $n \times n, n \ge 2$ has row I equal to e_k (standard basis for F^k) then

$$\det B = (-1)^{i+k} \det B_{ik}$$

Corollary: If A has two identical rows, then $\det A = 0$

(4.5) IF B is obtained from A by interchanging two rows, then $\det B = -\det A$ (4.6) If B is obtained from A by $\lambda R_i + R_i \rightarrow R_i$ ($i \neq j$) action, then $\det B = \det A$ Corollary: If rank(A), $n \times nA$, is below n, then $\det A = 0$

If a matrix is upper triangular A, $A_{ij} = 0$ for i > j then

$$\det A = \prod_{i=1}^{n} A_{ii} = \text{product of all diagonal entries}$$

Illustration of Theorem 4.3
$$A = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ b_1 + kc_1 & b_2 + kc_2 & b_3 + kc_3 \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

Claim:
$$\det A = \det \begin{vmatrix} a_{11} & a_{12} & a_{12} \\ b_1 & b_2 & b_3 \\ a_{31} & a_{32} & a_{33} \end{vmatrix} + k \det \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ c_1 & c_2 & c_3 \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$LHS = a_{11} \det \begin{vmatrix} b_2 + kc_2 & b_3 + kc_3 \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \det | \dots | + a_{13} \det \begin{vmatrix} b_1 + kc_1 & b_2 + kc_2 \\ a_{31} & a_{32} \end{vmatrix}$$
 By induction

$$\begin{aligned} & = a_{11} \det \left(\left| \begin{array}{ccc} b_2 & b_3 \\ a_{32} & a_{33} \end{array} \right| + k \left| \begin{array}{ccc} c_2 & c_3 \\ a_{32} & a_{33} \end{array} \right| \right) - a_{12} \det \left[\dots \right] \\ & + a_{13} \det \left(\left| \begin{array}{ccc} b_1 & b_2 \\ a_{31} & a_{32} \end{array} \right| + k \left| \begin{array}{ccc} c_1 & c_2 \\ a_{31} & a_{32} \end{array} \right| \right) = RHS \end{aligned}$$

Illustration of Lemma for Theorem 4.4

$$B = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ 0 & 0 & 1 \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$\det B = a_{11} \det \begin{vmatrix} 0 & 1 \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \det \begin{vmatrix} 0 & 1 \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \det \begin{vmatrix} 0 & 0 \\ a_{31} & a_{32} \end{vmatrix}$$
The new determinants are either 0 or same form but smaller so use induction

Proof of Corollary

Use brute force to check it is true for 2×2 matrices.

For larger n, pick a row which is not part of the 2 identical rows. The determinant calculated using that row will be 0 because there are 2 identical rows in every sub-matrix, by induction.

Illustration of Theorem 4.6

Let B be obtained from A using
$$\lambda R_i + R_j \rightarrow R_j$$

$$\begin{pmatrix} R_1 & R_1 & R_1 & R_1 \\ \vdots & \vdots & \vdots & \vdots \\ R_{j-1} & R_j & R_j \\ \lambda R_i + R_j & R_{j-1} \\ \vdots & \vdots & \vdots \\ R_n & R_n & R_n \end{pmatrix} = \det \begin{bmatrix} R_1 & \vdots & R_1 \\ \vdots & \vdots & \vdots \\ R_{j-1} & R_j \\ R_{j+1} & \vdots \\ R_n & R_n \end{bmatrix}$$

Since the first matrix has two identical rows and thus has determinant 0.

Evaluate det
$$\begin{vmatrix} 1 & 2 & 3 \\ 0 & 5 & 0 \\ 6 & 7 & 8 \end{vmatrix}$$
 = 1 det $\begin{vmatrix} 5 & 0 \\ 7 & 8 \end{vmatrix}$ - 2 det $\begin{vmatrix} 0 & 0 \\ 6 & 8 \end{vmatrix}$ + 3 det $\begin{vmatrix} 0 & 5 \\ 6 & 7 \end{vmatrix}$ = 1 × 40 - 2 × 0 + 3 × -20 = -50

or
$$= (-1)^{2+2} \times 5 \times \det \begin{bmatrix} 1 & 3 \\ 6 & 8 \end{bmatrix} = 5 \times -10 = -50$$

Find det
$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
 over \mathbb{Z}_7

Example Find det
$$\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$
 over \mathbb{Z}_7 Lin comb of rows, then multiply a row by $2 = \frac{1}{4}$
$$= \det \begin{vmatrix} 1 & 2 & 3 \\ 0 & 4 & 3 \\ 0 & 6 & 5 \end{vmatrix} = 4 \times \det \begin{vmatrix} 1 & 2 & 3 \\ 0 & 1 & 6 \\ 0 & 6 & 5 \end{vmatrix} = 4 \times \det \begin{vmatrix} 1 & 2 & 3 \\ 0 & 1 & 6 \\ 0 & 0 & 4 \end{vmatrix}$$

$$= 4 \times (-1)^{3+3} \times 4 \times \det \begin{vmatrix} 1 & 2 & 3 \\ 0 & 1 & 6 \\ 0 & 1 \end{vmatrix} = 4 \times 4 \times 1 = 2$$

Evaluate
$$\det \begin{bmatrix} 1 & 1 & 1 \\ 1 & x & x^2 \\ 1 & y & y^2 \end{bmatrix}$$

It is some multinomial involving x and y of degree at most 3.

By inspection, factors should be

$$(x-1)(y-1)(x-y)$$

$$\begin{vmatrix} 1 & 1 & 1 \\ 1 & x & x^2 \\ 1 & y & y^2 \end{vmatrix} = a(x-1)(y-1)(x-y) for some constant a$$
If over \mathbb{R} , pick $x=0,y=2$

$$a(-1)(1)(-2) = 2a = (-1)^{1+2} \det \begin{vmatrix} 1 & 1 \\ 2 & 4 \end{vmatrix} = -1 \times 2 = -2$$

$$a=-1$$

More Det. Properties

March-23-11 11:34 AM

Theorem

det(AB) = det A det B

Similar Matrices

Two $n \times n$ matrices A & B are similar if there exists invertible P so that $A = P^{-1}BP$

Result

If A and B are similar then $\det A = \det B$

Example

Let $T\colon V\to V$ be linear, $\dim V=n$. Let α be a basis, and led β be another. Then $[T]_\alpha$ and $[T]_\beta$ are similar.

Determinant of Operator

Let $T\colon V\to V$ be a linear operation on n-dimensional V. Then $\det T:=\det([T]_\alpha)$ for any ordered basis α

Theorem

 $\det(T_1 \circ T_2) = \det T_1 \det T_2$

Determinant Properties Cont.

 $\det(A) = \det(A^T)$

Proof of Theorem

First see that it is true for elementary matrix $A={\it E}$

Case 1:

```
E is from I_n \lambda R_i \to R_i

\det(E) = \lambda \det(I_n) = \lambda

\det(EB) = \lambda \det(B) = \det(E) \det(B)
```

Case 2:

Suppose E is from I_n by the action $R_i \hookrightarrow R_j$ Then $\det E = -\det(I_n) = -1$ $\det(EB) = -\det(B) = \det(E)\det(B)$

Case 3:

Suppose E is from I_n by the action $\lambda R_i + R_j \rightarrow R_j$ Then $\det(E) = \det(I_n) = 1$ $\det(EB) = \det(B) = \det(E) \det(B)$

Next, if A is equal to $E_1E_2 \dots E_k$, then $\det(AB) = \det(A) + \det(B)$ $\det(AB) = \det(E_1) \det(E_2, \dots, E_k) = \dots = \det(E_1) \det(E_2) \dots \det(E_k) \det(B)$ $= \det(E_1E_2 \dots E_k) \det(B) = \det(A)\det(B)$

Finally, if A is not invertible then AB is not invertible. Since A is not invertible, the RREF has a 0 row at the bottom so $\det A$ is 0, as for AB so $\det AB = 0$ so $\det(A) = \det(A) \det(B) = 0 \times \det(B) = 0$

Proof of Result

 $\exists P, A = P^{-1}BP, \det(A) = \det(P^{-1}BP) = \det(P^{-1})\det(B)\det(P) = \det(P^{-1})\det(P)\det(B)$ = $\det(P^{-1}P)\det(B) = \det(I_n)\det(B) = \det(B)$

Proof of Example

Recall the rule $[L_1 \circ L_2]_{\gamma_1}^{\gamma_3} = [L_1]_{\gamma_2}^{\gamma_3} [L_2]_{\gamma_1}^{\gamma_2}$ $V \xrightarrow{T} V$ $\alpha \xrightarrow{|T|_{\alpha}} \alpha$ $\downarrow \qquad \uparrow$ $V \xrightarrow{T} V$ $\beta \xrightarrow{|T|_{\beta}} \beta$ So: $T = 1 \circ T \circ 1$ $[T]_{\alpha} = [1 \circ T \circ 1]_{\alpha} = [1]_{\beta}^{\alpha} [T]_{\beta} [1]_{\alpha}^{\beta}$ Testing: $[1]_{\beta}^{\alpha} [1]_{\alpha}^{\beta} = [1]_{\alpha} = I_{n}$

Example

Corollary

 $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ and $\begin{bmatrix} d & c \\ b & a \end{bmatrix}$ are similar.

Proof of Theorem

 $\det(T_1 \circ T_2) = \det[T_1 \circ T_2]_{\alpha} = \det[T_1]_{\alpha} \det[T_2]_{\alpha} \blacksquare$

Proof of $det(A) = det(A^T)$

For $\lambda R_i \to R_i$ and $R_1 \leftrightarrows R_j$, $E^T = E$ For $\lambda R_i + R_j \to R_j$ Each E, E^T are upper or lower triangular so $\det(E) = \det(E^T) = 1$

Since this is true for elementary matrices, it should be true for all invertible matrices.

 $\det A^T = \det(E_1 E_2 \dots E_n)^T = \det(E_n^T \dots E_2^T E_1^T) = \det(E_n^T) \dots \det(E_2^T) \det(E_1^T)$ $= \det(E_n) \dots \det(E_2) \det(E_1) = \det(E_1) \det(E_2) \dots \det(E_n) = \det(E_1 E_2 \dots E_n) = \det(A^T)$ And for non-invertible A, A^T is non-invertible so $\det A = \det A^T = 0$

Suppose $A^TB = 1$, then $(A^TB)^T = 1^T \Rightarrow B^TA = 1$ so A^T not invertible $\Leftrightarrow A$ not invertible

Similar Maps

March-28-11 11.30 AM

Proposition

If A and B are similar, then p(A) is similar to p(B). Where p is a polynomial expression

$$p = \sum_{i=0}^{n} a_i x^i$$

Similar Maps

Let L_1 and $L_2: V \to V$ be linear operators. we say that L_1 is similar to L_2 if there exists an isomorphism $P: V \to V$ so that $L_1 = P^{-1} \circ L_2 \circ P$

Proposition

If V is finite dimensional, then operators $L_1, L_2: V \to V$ are similar iff $\lfloor L_1 \rfloor_\alpha$ and $\lfloor L_2 \rfloor_\alpha$ are similar.

Characteristic Polynomial

 $\det[A - \lambda I_n]$ is the characteristic polynomial of $(n \times n)$ A

Characteristic roots (Eigenvalues)

The roots of the characteristic polynomial of A are called the characteristic roots of A.

Proof of Proposition
$$Let \ p(x) = \sum_{i=0}^{n} a_i x^i = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

i) A^2 is similar to B^2 .

Let
$$A = P^{-1}BP$$
. Then $A^2 = P^{-1}BPP^{-1}BP = P^{-1}BIBP = P^{-1}B^2P$

ii) Similarly, A^k is similar to B^k for each $k \ge 3$ iii) $p(A) = P^{-1}p(B)P$

iii)
$$p(A) = P^{-1}p(B)P$$

$$A) = P^{-1}p(B)P$$

$$p(A) = \sum_{i=0}^{n} a_i A^i = \sum_{i=0}^{n} a_i P^{-1} B^i P$$

Example

Let $L_1: \mathbb{R}^2 \to \mathbb{R}^2$ by the rotation $\circlearrowleft by 20^\circ$. Let $P: \mathbb{R}^2 \to \mathbb{R}^2$ be the reflection about the y-axis.

[i.e.
$$P(x, y) = (-x, y)$$
]

Let $L_2 = P^{-1}L_1P$. Then L_1 and L_2 are similar.

 L_2 is the rotation \heartsuit by 20°

Is rotation counter clockwise by 20° similar to rotation counter clockwise by 30° May be on exam

Proof of Proposition

(⇒) Suppose that there is an isomorphism $T: V \to V$ so that

$$L_1 = T^{-1}L_2T$$

Let $\boldsymbol{\alpha}$ be any fixed basis. Then

$$|L_1|_{\alpha} = |T|_{\alpha}^{-1} |L_2|_{\alpha} |T|_{\alpha}$$
. Take $P = |T|_{\alpha}$

(←) Converse left as exercise

Consider the two similar rotations mentioned earlier. Pick
$$\alpha = standard\ basis$$
. We get $|L_1|_{\alpha} = \begin{vmatrix} \cos 20 & -\sin 20 \\ \sin 20 & \cos 20 \end{vmatrix}$ is similar to $|L_2|_{\alpha} = \begin{vmatrix} \cos 20 & \sin 20 \\ -\sin 20 & \cos 20 \end{vmatrix}$ under $P = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

Example of characteristic polynomials
$$A = {1 \choose 3} \ \ \, \frac{2}{4} \Big|$$
 Then its characteristic polynomial is
$$\det[A - \lambda I] = \det\left({1 \choose 3} \ \ \, \frac{2}{4} \Big| - {1 \choose 0} \ \ \, \frac{0}{\lambda} \Big|\right) = \det\left|{1 - \lambda \choose 2} \ \ \, \frac{2}{4 - \lambda} \Big| = (1 - \lambda)(4 - \lambda) - (2)(3) = \lambda^2 - 5\lambda - 2$$

* Axiom of Choice

March-28-11

If X is a finite set with n elements then X can be partitioned into two (disjoint) parts of same cardinality iff n is even.

Proposition

If X is an infinite set, then it can be partitioned into two parts of the same cardinality.

Function Extension

Say
$$G: A_2 \rightarrow B_2$$
 extends $F: A_1 \rightarrow B_1$ if $A_2 \supseteq A_1$ and $A_2 \supseteq B_1$ and $A_2 \supseteq B_1$ and $A_2 \supseteq B_2$

Proof of Proposition

Consider the class $\mathcal C$ of all bijective functions from a set $A \subset X$ onto $B \subset X$, $A \cap B = \emptyset$ $\mathcal C$ is non-empty. Define in $\mathcal C$, $f \leq g$ when g extends f.

 $\mathcal C$ is partially ordered by \leq We seek maximal f. Let C be a chain in $\mathcal C$

Let $A = \bigcup_{f \in C} Jdom \ f \ \text{ and } B = \bigcup_{f \in C} Jrange \ f$ $f: A \to B \ \text{ by if } a \in A \ \text{ then } a \in dom \ f_i \ \text{ for some } f_i \in C \ \text{ let } f(a) = f_i(a).$ If $a \in dom \ f_j \ \text{ for some } f_j \in C \ \text{ then WLOG say that } f_i \leq f_j \ \text{ so } f_i(a) = f_j(a).$ Hence f is well defined

 $dom\ f=A, range\ f=B.$ It is easy to observe that A and B are disjoint and f is a bijection from A to B So $f\in\mathcal{C}$

The maximal principle asserts that maximal f_0 exists. The union of the domain A of f_0 and its range B is either the whole X or is $X \setminus \{x_0\}$ We are done if $A \cup B = X$ Else, $A \cup B \cup \{x_0\} = X$ Select a sequence of distinct elements $(a_n)_{n=1}^\infty$ from A. Adjust f_0 to g: $g\colon A \cup \{x_0\} \to B$ $g(x_0) = f_0(a_1)$ $g(a_n) = f_0(a_{n+1})$ $g(a) = f_0(a), for \ a \notin \{a_n\} \cup \{x_0\}$

Hence $A \cup \{x_0\}$ and B is a partition of X, and the presence of bijective g means $A \cup \{x_0\}$ and B are of the same cardinality.

Eigenvalues/vectors

March-30-11 11:34 AM

Eigenvalues and Eigenvectors

Let V be a vector space over F. Let $L:V\to V$ be a linear operator. A scalar λ is an **eigenvalue** of L if there exists $v\neq 0$ so that $L(v)=\lambda v$.

If $v \neq 0$ and $L(v) = \lambda v$ for some $\lambda \in F$, then v is called an **eigenvector** of L.

Proposition

Eigenvalues of L_A : $F^n \to F^n$ $(n \times n \ A)$ are given by the characteristic roots of A.

Hence, L_A has at most n distinct eigenvalues.

Remark

Let $L\colon V\to V$ be an operator on finite dimensional V. Then λ is an eigenvalue of L iff it is a characteristic root of $\lfloor L \rfloor_{\alpha}$ for any fixed basis α for V.

Example

Let $L: \mathbb{R}^2 \to \mathbb{R}^2$ be $Proj_{\hat{x}}$

Then each non-zero vector on the line spanned by \hat{x} is an eigenvector of L, and $\lambda=1$ is an eigenvalue.

Each $v \neq 0$, perpendicular to \hat{x} is also an eigenvector of L, and $\lambda = 0$ is an eigenvalue of L.

Proof of Proposition

Let λ be an eigenvalue of L_A . Then, by definition, there exists $X \neq 0 \in F^n$ so that $L_A(X) = \lambda X$. That is, $AX = \lambda X$ $AX - \lambda X = 0 \Rightarrow (A - \lambda I_n)X = 0$ This is equivalent to that $A - \lambda_n$ is not invertible. Therefore, $\det(A - \lambda I_n) = 0$ Therefore, λ is a characteristic root.

The converse is also true and can be observed through the proof done backwards.

Example

Let V be the space of all infinitely differentiable functions on the real line into the real line. (A subspace of $\mathcal{F}(\mathbb{R},\mathbb{R})$) Let $D\colon V\to V$ be the differentiation.

Each function $e^{\lambda x}$ is an eigenvector of D. Hence λ is an eigenvalue of D for every $\lambda \in \mathbb{R}$.

Computational comments

April-01-11 11:32 AM Given a finite list of vectors $v_1, \dots v_k$ in F^n , how to extract a subset which is a basis for $span\{v_1, \dots, v_k\}$ and extend that to a basis for the full F^n

Method

Form the matrix

 $|v_1|v_2|\dots|v_k|$ $|e_1|$ $|e_2|$ \dots $|e_n|$ and find its RREF, then read an answer out.

Example

Suppose that k = 4, n = 6 and that RREF of A is

The then answer is $\{v_2,v_3\}$ is a basis for $span\{v_1,v_2,v_3,v_4\}$. An extension to a basis for F^6 is $\{v_2,v_3,e_2,e_3,e_5,e_6\}$

If mission is to find a basis for $span\{v_1, v_2, \dots, v_k\}$ in F^k then we could form

$$A = \begin{bmatrix} v_1 \\ - \\ v_2 \\ - \\ \vdots \\ v_k \end{bmatrix}$$

and find its RREF. At the end we produce a basis. For instance

Then a basis for $span\{v_1,v_2,v_3,v_4\}$ is $\{(1,*_1,*_2,0,*_3,*_4),(0,0,0,1,*_5,*_6)\}$, not $\{v_1,v_2\}$

April-04-11 11:33 AM

Comments

The following are undefined:

 $L: U \to V$ a linear map, $\dim(L)$. $Vectors\ v_1, v_2, \dots, v_n$. $\dim\{v_1, \dots, v_n\}$ Matrix A, $\dim A$

 $v_1, v_2, \dots v_n$. They form a basis for V. Avoid saying v_1, v_2, \dots, v_n is a basis. Correct: $\{v_1, v_2, \dots, v_n\}$ is a basis

 $\dim M_{3\times 4}(F)$ is defined, though $\dim A$ is undefined for $A\in M_{3\times 4}(F)$

 $L:V\to V$ a linear operator, V finite dimensional, $\det L$ is defined by $\det([L]_\alpha)$ When V is infinite dimensional, $\det L$ is undefined.

e.g. If D is the differentiation operator, then det D is defined when the space it acts on is finite dimensional, like $P_n(\mathbb{R})$. It is undefined on $P(\mathbb{R})$

The characteristic polynomial of A is defined by $\det(A - \lambda I_n)$. It cannot be computed using the RREF of A.

*Might be on exam

If A is similar to B, then $\det A = \det B$ $trace\ A = traceB$ $rank\ A = rank\ B$, $nullity\ A = nullity\ B$ Characteristic polynomial of A = B?

$$A \sim B \Rightarrow A^2 \sim B^2$$

 $A \sim B \Rightarrow p(A) \sim p(B)$
 $A \sim B \& C \sim D \Rightarrow AC \sim BD$?

 λ is an eigenvalue of A $(\exists \ X \neq 0 \ so \ that \ AX = \lambda X)$ then λ^2 is an eigenvalue of A^2 $As \ A^2X = A(AX) = A(\lambda X) = \lambda A(x) = \lambda (\lambda x) = \lambda^2 x$ Similarly λ is a root of $\det(A - \lambda I_n) \Rightarrow \lambda^2$ is root of $\det(A^2 - \lambda I_n)$