Vector Properties

January-05-11
11:31 AM

Vector in the plane

An entity with direction and
magnitude. It is viewed as an arrow
having a starting position and a
terminating position.

Equality
Two arrows are equal if they have
the same magnitude and direction

Positions vs. Vectors in R?
Every vector is identified with a
point P so that the arrow pointing
from O to P is equal to it.

Chapter 1

1.1 Introduction to Vector Spaces (Linear Spaces)

The Plane R?

Coordinates:

We draw a horizontal line and a vertical line intersecting a point O at right angles.

We then give the lines directions. (Arrow on the line indicates positive direction)
Further, we introduce scales. The two lines should use the same scale.

A position P on the plane (or a point) can be identified by two real quantities: its scale
numbers when we draw perpendicular lines from P to the horizontal and vertical lines
(coordinate axis). The numbers are represented as a tuple P = (x, y) with x,y € R

The plane is the set of all positions on the plane, and can be identified with the set of all pairs

of real numbers.
F1Q,

R? := 1 (xq,%5) | x1,x, € R}

On R? we define addition: P
Algebraically: (x1,x;) + (y1,¥2) = (x1 + y1) + (x5 + y,)
Geometrically: Form a parallelogram between the two points

and the origin. The 4th point is the sum.

In the diagram:x =y

Vector addition using arrows:

To add the arrows x and y, start with the arrow x
from point A to point B. Then place y on the tip of

x so it goes from point B to C. Then x+y is the arrow
going fromAto C

<\

Scalar multiplication for the plane R?
Letx = (xq,x;). Let A € R (a scalar)

Then Ax = (Ax4, Ax;)

The product Ax is called the scalar multiplication of the vector x by the scalar 1
Vector addition and scalar multiplication on R? satisfy 10 properties.

Properties of Vector Addition and Multiplication

(-1) Vxvy€R?%x+y€ R?-Closed under addition

0) V1ER,x € R? Ax € R?

(@Y) X+y=y+xVxy€ R?-Commutativity of addition
2 (x +y)+2z=x+(y+z)Vx,y € R? - Associativity of addition
3) 30 = (0,0) so that 0 + x = x Vx € R? - Additive identity
@) Vx € R?,3y € R? such that x + y = 0 - Additive inverse
5) 1x=xVx € R?

(6) (Au)x = Apx) VA, u € R, x € R?

N Mx+y)=2Ax+ 1y VAER,x,y € R?

(8) A+ wx=Ax+puxViu € R x € R?
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Vector Spaces Properties of a Vector Space

January-07-11 (-1)  Vx,y€V,x+y €V -Closed under addition

11:32 AM 0) VAEF,xeEV,AxeV
) (€Y) x+y=y+xVx,y €V -Commutativity of addition
Vector Space 2) (x+y)+z=x+y+z)Vx,y €V - Associativity of addition
The abstract definition of a vector space over a field. 3) 30 € Vsothat 0 + x = x Vx € V - Additive identity
4) Vx € V,3y € V such that x + y = 0 - Additive inverse
Let V be a set (of objects) and F a field ©) Ix=xVx eV
Let there be two operations +, scalar multiplication, (6) QAu)x = Apx) YA u € F,x €V
satisfying the ten properties of vector addition and scalar ™) AMx+y)=x+1Ay VAEF,x,y eV
multiplication. 8 A+ux =Ax +ux VAL, ueF,xevV
Uniqueness of Zero Vector Once V (and F) are given two operations satisfying the ten properties, we call it a vector space
Let V be a vector space over F over F
Then 3 one and only one 0 € V such thatx + 0 = x
Examples:

We call the unique 0 the zero vector of V.
Let S be any non-empty set. LetV = {f:§ — Ft

Uniqueness of Additive Inverses Define + and scalar multiplication on V by

forf,g€ev,
Let V be a vector space over F f+g:SoF
Then for every x € V, 3 one and only one y € V such that U + é)(s) =fls)+gls)VsES
x+y=0. - o forallf EV,A€F
This y is denoted -x, it is the additive inverse of x Af:S > F
. (Af)s) =Af(s)Vs €S
Cancellation Law Then V is a vector space over F

Ifx+y=x+z theny =1z
Proof of Uniqueness of 0
One of the ten axioms calls for the existence of a special element 0 € V satisfying x + 0 = x Vx €V
Let 04,0, € V be two such elements.
By the properties of 0;: 0, + 0, = 0,
By the properties of 0,: 04 + 0, = 04
Since addition is commutative, 0; + 0, =0, +0; =0, =0, m

Proof of Uniqueness of Additive Inverse
Lety, and y, betwoy suchthatx+y =0
¥+ =0=2x+y1+y=y2=2y1 =y,

Proof Ox =0
0x+0x=004+0)x=0x=2>0x+0x—-0x=0x—0x=>0x=0

Proof -x = (-1)x
x+(=Dx=MU)x+(-1x=1-1)x=0x=0
x+(=1)x=0=2x+(-1)x —x=0—-x=>(-1)x=—xnm

Observations

For R?,let P = (x4,%;),Q = (y,y,) € R?

The arrow (vector), x, starting from P, pointing and ending at Q, is equal to:
x=Q —P

Proof: By the parallelogramlaw, P +x = Q > x =Q — P

The midpoint between P and Q is %(P +Q)

The point along the line P, Q 1 unit away from P and 2 units away from Q is gP + §Q

Proof of cancellation law
x+y=x+z>-—x+x+y=—x+x+z=>0+y=0+z>y=z

MATH 146 Page 2



* Set Theory

January-10-11
3:32 PM

Union

Then their union A U B is defined by
AUB:={x:x € Aorx € B}

Let{A; : i € I} be a family of sets where the index set] # @
Then the union

| Jai=tx:3ienxeay
i€l

Intersection

Similarly, we can define A N B and [1;¢; 4;
ANB :={x:x € Aand x € B}

[ ]Ai:={x:xEAivi€1}
i€l

Mapping
Let A and B be sets. A mapping f : A = B (Ais called the
domain & B is the co-domain of f) is a relation of A X B
satisfying:
i) If (a, b;) and (a, b,) are in the relation, then b; = b,
ii) Va€A,3beBsothat(a, b)isintherelation.

The unique b for the given a is marked f(a)
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Let A and B be sets.
Union
Example: Let

) ne

() = 0.

neN

Need to show

1 1

—,00 ] € (0,00) and (0,00) € —,
Ui Ui
As for the first inclusion, we see that for eachn € N, (% 00) C (0, ), therefore
their union, U ¢y (% 00) is contained in (0, )
For the second inclusion: Let x € (0, 0) be given.x > 0 and x € R. ThenIn€eN
so that% < x.In which case x € (% ©)sox € UnEN(%, )
So

[ )(5) =0

neN

The Axiom of Choice

Let I be a non-empty (index) set.

LetiX; : i € I} be a family of non-empty sets.
Consider the set

| Jx

iel

The there exists a mapping
fr-| )%

i€l

satisfying f (i) € X;

Accepting the axiom of choice leads to :
Every vector space has a basis



Subspaces Example
LetV = R andlet W = {(x,0)Ix € R}

January-12-11 Then all 10 axioms are satisfied by W, so W is a subspace of R?
11:30 AM
The subset
S=1lx,y)lx>0,y >0}
Subspace is not a vector space under the operations of R? because there is no 0 and no additive inverse for any
Let V be a vector space over F. A subset W € V is called element.
a subspace of V if when the operations (addition,
scalar multiplication) on V are restricted to W, W is Example
again a vector space (over F). Let the space be F((—2,3),R)
. The set of all functions f: (-2,3) - R
Proposition Let W bet the subset of all the continuous functions.
A subset W C V is a subspace iff i 0:fx)=0
i 0ofVisinW ii. Iffand gare continuous, then f+g is continuous.
i w,w, EW=w,+w, €W iii. If fis continuous, then Af is continuous for 1 € R
iii. WeWVAeEF,weW
Note: i is sometimes replaced by W + @ Let S be the set of all functions of F((—2, 3), R) which vanish at —1 and 1
ie.f € F((=2,3),R)and f(—-1) =0,f(1) =0
Theorem Then S is a subspace
Let V be a vector space. 0: flx) =0,iff,g(—=1)=f,g(1) =0thenf + g(—1) = f + g(1) = 0 and
LetiW; : i € I't be a family of subspaces of V, when AM(=1)=2f(1) =0
I # @. Then
I IWi Proof of Theorem
el i. Vi€l because W; is a subspace, 0 € W;.So 0 € I1;¢; W;
is again a subspace (of V) il. Supposewy,w, € Il;¢; W; are given.

Considerw; + w,. Vi €I, w; € W;and w, € W; sow; +w, € W;
Sow; +w, EW; Vi, sow; +wy € I, W;

iii. Supposew € Il;c;W;and A € F
Consider Aw.Vi € I,w € W; so Aw € W;

SoAWGWiVi,solWEI ]Wi

i€l
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Linear Combinations

January-14-11
11:28 AM

Linear Combination
Let S € V. Suppose S # @.

Avector v € V is said to be a linear combination of S if
there exist finitely many vectors of S, say s4, S, 53 ... Sy €
and scalars 44,12, ..., An € F so that:

V=215 + A5, + -+ A5y

Span
Span(S) =1{v € V | vis alin.comb.of vectors of S}
Span(@) = {0} by convention

Notation: Matrices
M, «m(F) means an n by m matrix with elementsin F

Proposition
Let V be a vector space,SS VandS # @
Let Span(S) =tv € V | vis alin.comb.of vectors of S}

n
=%>-Ai5i |SiES,AiEF,TlEN

i=1
Then Span(S) is the subspace of V generated by S
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If Vis a vector space and S € V, then there exists a unique smallest subspace
of V containing S, say

w=[ w

i€l
Where {W;li € I} is the set of all subspaces of V containing S.
We call W the subspace generated by S.

(Unique smallest because intersection of all subspaces containing S)

Example
For My (R)ands ={|0 2119 210 Ol

Then |?1) il € M,4,(R) is not a linear combination of vectors in S because

10 0 1 0 0y A
’11|0 0|+’12|1 0|+A3|0 117 ,1;

as that would require 1, = 2and 1, = 3

Aoy 1 2
/1§|¢|3 4

Whereas |110 170| is a linear combination of vectors of S

Proof of Proposition (outline)
1. Show that Span(S) is truly a subspace of V
e.g. to show that it is closed under addition:
Let vy, v, € Span(S) be given.
Consider v; + v,
v = 4481 + A8, + -+ A4Sy
Vy = 4151+ F dnpm—1Snim-1 + AntmSnam
For some sy, ..., Spem € Sand Ay, ..., Ay € F
n+m

v +v, = Z A;s; € Span(S)

i=1
2. Observe that Span(S) 2 S
Proof: Let s € S be given. Then s = 1s
3. Let W, be any given subspace of V which contains S. We shall show
W, 2 Span(S)
Proof:
For that purpose, let v € Span(S) be given.
Then by definition, there exists vectors S; € S, 4; € F so that
v = A48, + -+ A,5,. Nowbecause S € W, s4,...5, € W,
Since W, is closed under scalar multiplication and vector addition,
v=M4S+ -+ A5, EW,
Example
Let the space be P(C) - polynomials with complex coefficients, and let
S =1{1,x%x% x5, ...,x%%, ..}
Then Span(S) = the space of all polynomials with even terms.
Span(1,x,x%,x3} = P;(C)

Remark
Let V be a vector space. If S is a subspace of V, then Span(S) =S



Linear Dependence/Span Example -
J 17-11 Is (1, 2,3) € Span{(1, 0, 0), (0, 1, 1), (0, 1, 2)} in R3? Yes
anuary-17-

11:32 AM (1,2,3) = x;(1,0,0) + x,(0,1,1) + x3(0,1,2)
Linear Dependence System of equations:
Let V be a vector space. xn =1
Let vy, vy, ..., v, be a finite list of vectors of V X+ x3 =2
We say the list is linearly dependent if one of the X2 +. 2x3 =3 . L
following two equivalent statements is satisfied: Solving the above, we first bring it to the reduced system

1. Thereis a v;, which is in the span {v;li # ig} * =1 _

2. avq + azvy + -+ + a,v, = 0 for some list of iz 1);3 =2

scalars ay, @z, ..., an notall 0 Fiom that we read the solutions in reverse order
X3 = 1

Linear Dependence on Subsets Xp=2-x3=2-1=1
A subset S of a vector space V is linearly X =1
dependent if for some distinct finite list of vectors g thereisa solution, x; = x, = x3 = 1
extracted from §, the list is linearly dependent.
Example
Corollary to Span({}) = {0} Is it true that Span{(1, 0, 0), (2, 1, 0), (3, 1, 0)} = Z3?
In a vector space, any subset S whichhas O initis  Ans: Equivalently we are asking: Is every given (a, b, ¢) € R® in Span{(1,0,0),(2,1,0),(3,1,0)}?
linearly dependent. We solve:
(a,b,c) =x.(1,0,0) + x,(2,1,0) + x3(3,1, 0) for all possible x4, x5, X3 € Zsg
x1+2x,+3x3=a
X;+x3=>b
0=c
Clearly, when c # 0, there is no solution

Example

Consider the space of differentiable functions from R to R. Those satisfying the differentiable
equation "' = 0 are given by f(x) = ax + b where a, b, are constants.

Using the language of span, the set of all solutions is Span{x, 1}

The solutions to f" = —f is spanisin x, cos x}

Proof of Equivalence of Linear Dependence definition
Suppose that 2 holds true.

Then there are scalars aq, ..., a, not all zero so that
n

> a;v; = 0
i=1

Say thata;, # 0 Now have
n

n
— — -1 — i
aiovio + _aivi =0= vio = aio — _aivi = —; 14
! ; i
i=1 o

i=1
i#ig i#ig i#ig
So vy, € spantv;li # igt

Suppose statement 1 holds true. Show 2 as an exercise.

Example

Thelistofvectors|(1) 8||8 (1)||(1) 8||8 2”; i|ianxz(R)islinearlydependent.
Because (using statement 1 with iy = 5)

1 2y_,11 0 0 1 0 0 0 0

|3 4|_1|0 O|+2|0 0|+3|1 0|+4|0 1

r

o]

10 0 1 0 0 00 1 2,_10 0f_
1|0 0|+2|0 0|+3|1 0|+4|0 1|+(—1)|3 4|_|0 0|_0
Where as # 0b

Example
Let the space be P(R) and let S be the set of all even polynomials. (even means p(—x) = p(x))
It is linearly dependent because v; = x2,v, = 2x?

Example

Let V be a vector space.

LetS = {0t

We see that 2 holds forv; = 0 (e.g. 1v; = 0)
So S is linearly dependent.

v= Y y= Y =0

i#1 i€eQ
by convention, so Span(@) = {0}
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Linear Independence

January-21-11
11:29 AM

Linear Independence
A subset S of a vector space V is linearly

independent if it is not linearly dependent.

Example
InR3,S = {(1,0,0),(0,1,0),(0,0,1)}is linearly independent

Proof:

We need to show that the list v; = (1,0,0),v, = (0,1,0),v3 = (0,0,1) is not linearly dependent.
Suppose a;,a,, a3 € Rand let a,v, + a,v, + azv; =0

a1(1,0,0) + a,(0,1,0) + a3(0,0,1) = (ay,a,,a3) =(0,0,0) =0iff a; =a, =a3; =0.

So S is linearly independent.

Example

In Zg, isS ={v; =(1,2,3),v, =(2,3,4),v; = (3,4,0)} linearly dependent?
Ans: Letaq, a,, a3 € Zs and that

aq(1,2,3) + a,(2,3,4) + az(3,4,0) = (0,0,0)

a; + 2a; + 3a; = 0 (mod 5)
2a;y + 3a, + 4a; = 0 (mod 5)
3a, +4a, =0 (mod 5)

12 3 0

|2 3 4 0| subtract multiples of 1st line from 2nd and 3rd lines
3400
12 30

|0 4 3 0| multiply 2nd line by 4™* = 4 and 3rd line by 371 = 2
0 310
1 2 30

|0 1 2 0| subtract 2nd line from 3rd line, and twice 2nd line from first
01 20
1 0 4 0

|0 1 2 0|

0 00O

Solution:

az € Z3 is arbitrary (a free parameter)

a, = —2a; = 3a;

a, = —4az = az

So there is a solution with az # 0, so yes, S is linearly dependent.

Example

Let v be a vector space over R

Suppose that{v,, v, is linearly independent.

Show that the set {2v; + 3v,, 4v; — 5v,} is linearly independent.

Proof:

Leta,, a, € Rand thata,(2v; + 3v,) + a,(4v, —5v,) =0
(2a4 + 4ay)vy + (3a; — 5a3)v, =0

Because v;, v, are linearly independent,

2a; +4a, =0

3a; —5a, =0

2aq +4a, = 0 (retained)
3
(—54 -5)a, =0

So a, = 0,and therefore a; = 0. So {2v; + 3v,,4v; — 5v,} is linearly independent.
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Gaussian and Jordan Eliminations

January-24-11
11:31 AM
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Example: Gaussian Elimination
Solve
2a1 +2a;, +4a; =2
a, —a; + 7a3 =5
a, + 8a3 =0
2a; +3a; +4a3 =2

5
—§a2+5a3 =4

3
_Eaz +6a3 = _1
2a1 + 3(12 +4a3 =2

> + 5a3 =4
17
3(13 = —?
End of Gaussian Elimination, write out the general solution:
17
e 15 17
_4-5a, 8-10(-qz) 58
=75 T 5 T
> 58 17
2 —3a, + 4a; 2—3(—3) —4(—3)
az = > =

Jordan Elimination Steps

Used to reduce the system further
1. Multiply the lines to set the 1st non-zero coefficients equal to 1
2. Eliminate the variables from the lines above each 1

Continuing from the system above:
3
a, +Ea2 +2a3 =1
8

a2_2a3:_§

1
136
15
L a;=-5
17

15
Why no work? :(

a, =

as =

Augmented Matrix
aq1X1 + Aq12X7 + -+ AnXn = b1
alel + azzxz + -+ a2nxn = bz

Am1X1 + ApaXe + -+ A Xm = by

Represented by
a1 aqp . QA1n bl
azy Q2 .. Qan||by
Am1 Amz - Omn bm




Set Theory Cont.*

January-24-11
3:34 PM

Let Xand Y be sets.

Injective

A function f: X - Y is injective (one-to-one) if
X1 # X, = f(x;) # f(x,) or alternatively
fle) =flxy) =% =x;

Smaller Cardinality
A set X is said to be of smaller cardinality than set Y if
there is an injective map f: X - Y

Surjective
A function f: X = Y is surjective (or onto) if for all
y € Y thereexists x € X sothat f(x) =y

Proposition

These statements are equivalent:

Fortwo sets X, Y
1. Thereis an injective function f: X - Y
2. Thereis a surjective function g:Y —» X

Equal Cardinality
Two set X, Y are of equal cardinality if there exists
f:X — Y which is injective and surjective (bijective)

Theorem (Bernstein)

Let X and Y be sets. If there exists an injective
f:X - Y and an injective g: X — Y there exists a
bijective h: X - Y

Rephrase: If IX] < Y1, IY] < IX], then IX| = IY]
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Immediate clear is that if X is finite with n distinct and Y has fewer elements than X then no
f:X — Y can be injective.

Example of cardinality differences:
[0, 4] has a smaller cardinality than [0, 1]

1
f:10,41 - 10,11, x —» i
Similarly, [0, 1] has smaller cardinality than [0, 4]

Proof of Proposition
Suppose we have a surjective g: Y - X

Foreach x € X, consider S, ={y €Y:gly) =x}tCY

As g is surjective, each S, is non-empty. Moreover, x; # x, implies S, and S, are disjoint.
The family {S,: x € X form a partition of Y

By the axiom of choice, there is a function (choice)

f:X- l JSX =Y sothat f(x) €S,

x€X
Obviously, f is injective



Basis

January-26-11
11:33 AM

Basis
Let V be a vector space over F. A subset B € V is called
a basis for V if it satisfies:

1. Bislinearly independent
Intuitively, B is "small", that no element of B is a linear
combination of the others.

2. BspansV,ie.span(B) =V

Finite Dimensional
If V has a finite set B which forms a basis, then we say V
is finite dimensional.

Theorem

Suppose that V has a finite basis B with n elements.
Then all other bases must have n elements. We call n
the dimension of V.
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Example
Consider R3. Subsets satisfying the 1st properties are, e.g.
®,1(1,0,0)4,1(1,0,0),(1,1,0)41(1,0,0),(1,1,0),(0,0,2)¢

Of these examples

span(@®) =1(0,0,0)}

span{(1,0,0)} = (x,0,0) = the x — axis
spani(1,0,0),(1,1,0)t = (x + y,y,0) = the xy plane
spant(1,0,0),(1,1,0),(0,0,2)} = (x +y,y,2z) = R3
So the last is a basis.

Example

In P(R)

B=11,xx%x3 .., x" ..t = {x,:x € N,or n = 0} x° = 1by convention
is a basis.

Proof:
To check for linear independence:

Let a finite number of terms be extracted from B (all terms are distinct)
WLOT that the listis 1, x, x2, ... x™
Will show that the list is not linearly dependent. Letay, a4, ..., a,, be scalars and that
apl +ayx +azx? +-+ax =0
By definition of equality between polynomials,ag = a; = - =a, =0

Hence, every finite list of distinct terms from B is linearly independent. So B is linearly independent.

Next check if span(B) 2 P(R)

Letp(x) = ag + a;x + ayx? + -+ a,x™ forsome a; € R,n € N
Therefore, clearly p(x) € Spani1,x,x?,...,x™ 2 Span (B)
Hence P(R) S span(B). Equality follows. So B is a basis.

Example
V =14 € M3yx4(R): column sums of A are zerot
1 4 m 0
e.g.| 2 5 e 0
-3 -1 -m—e 0
The dimensionality is the number of free scalars. In this case
dimV =8



Replacement

February-05-11
10:14 PM

Theorem 1.8

Let S be a linearly independent subset of a vector space V
and let x be an element of V that is notin S. Then S U {x} is
linearly dependent iff x € span(S)

Theorem 1.9
If a vector space V is generated by a finite set S, then a
subset of S is a basis for V. Hence V has a finite basis.

Replacement Theorem 1.10

Let V be a vector space having a basis  containing exactly
n elements. Let S = {y4, ..., ¥} be a linearly independent
subset of V containing exactly m elements, where m < n.
Then there exists a subset S; of § containing exactly n-m
elements such that S U S; generates V.

Corollary 1

Let V be a vector space having a basis  containing exactly
n elements. Then any linearly independent subset of V
containing exactly n elements is a basis for V.

Corollary 2

Let V be a vector space having a basis  containing exactly
n elements. Then any subset of V containing more than n
elements is linearly dependent. Consequently, any linearly
independent subset of V contains at most n elements.

Corollary 3

Let V be a vector space having a basis  containing exactly
n elements. Then every basis for V contains exactly n
elements.

Definition

A vector space V is called finite-dimensional if it has a basis
consisting of a finite number of elements; the unique
number of elements in each basis for V is called the
dimension of V and is denoted dim(V). If a vector space is

not finite dimensional, then it is called infinite-dimensional.

Corollary 4

Let V be a vector space having dimension n and let S be a
subset of V that generates V and contains at most n
elements. Then S is a basis for V and hence contains exactly
contains exactly n elements.

Corollary 5

Let B be a basis for a finite-dimensional vector space V and
let S be a linearly independent subset of V. There exists a
subset S; of § such that S U S; is a basis for V. Thus every
linearly independent subset of V can be extended to a basis
for V.
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Proof of Theorem 1.8
Suppose S U {x} is linearly dependent.
Then
n
0=aqaex + > aix;
i=1
With not all a; = 0 and since S is linearly independent, ay # 0 so
n ai
X = T —Xi
=1 %
So x € spantS)
Suppose x € span(S), then
n

X = > aix;
i=1

s0SU {x} is linearly dependent. m

Proof of Theorem 1.9

If S = @orSy, = {0} thenV = @ and @ is a basis for V.

Otherwise pick x; € Sy.1x; 1t is linearly independent.

Now with a linearly independent set of n — 1 vectors x; € Sy if Sg € span(ixy, ..., x,_1 ) then
done since the set is linearly independent and generates V so it is a basis. Otherwise find

Xn € So, Xn & Span(ixy, ..., x,—1 ) By theorem 1.8 {x, ..., x,, { is linearly independent. Continue
until terminating after finitely many x; since S is finite.

Proof of Theorem 1.10
Proof by induction on m.

Ifm=0,thenS =@andn-m=nsotakeS, =5,SUS; =@ U B = B isabasis forV
Now suppose the statement holds true form — 1.

Let Sy = {¥1, ..., Ym-1}- ABo € B with 15y = n — (m — 1) such that
spanl(Sy U By) =V by induction supposition.

So
Ym= D axi+t ) bz
X{ESo z]-EBO
But S is linearly independent so at least one b; # 0, say by
Then
_Im a; b
a=y 7t >.—b—1xi+ V. b, Y
Xi€So Zj€Bo

j#1
So z; € spaniyy, ..., Ym» Z2, -+ Zn—m+11)
Clearly 1, .., Ym—1,22, «» Zn—m+1 € SPAnQ Y1, .., Ym, 22, - » Zn—m+11)
S1 = Bo\ {z1}
So Sy U By S span(S U S;)
span(Sy U By) =V sospan(SUS;) =V
So there is a subset of § such that span(S U S;) = V Vm, by the induction principle. m

Corollary 1

Let S be a linearly independent subset of V with exactly n elements.
Then 3S; such thatspantSUS;) =V andI1S;l=n—n=0=5,=0
so span(S U ;) = span(S) =V so Sis a basis for V.

Corollary 2

Let S be a subset of V with more than n elements. Suppose that S is linearly independent, then
there is an §; c S with n elements. By Corollary 1, Sy is a basis so span(S,) = V. Let

X € S,x € Sy, then Sy U {x} is linearly dependent, contradicting the supposition that S is linearly
independent. Therefore, S is linearly dependent. m

Corollary 3
Let S be a basis for V. We know IS| < n since |81 = n. Suppose IS| < n, then by Corollary 2
would not be linearly independent, a contradiction, so IS| =n. m

Corollary 4
By Theorem 1.9, 3S; € S such that S; is a basis for V. 1S;1 =n,15;1 < 1SI <nsolSI=nso Sy =S
and S is a basis for V. m

Corollary 5
ISI =m < n,Ifl = nsoby Theorem 1.10,3S; € ,15;1 = n —m such that S U S; generates V.
Since IS U S;1 = n, by Corollary 4 S U S; generates V.



General Bases

January-31-11
11:31 AM

Proposition
Let V be a vector space. Let L < V be linearly independent.
Then the following two statements are equivalent.

1. veV,v & LandL U {v}islinearly independent.

2. v & span(L)

Proposition

Let V be a vector space. Let L © V be linearly independent,
G C V be generating, L C G. Suppose that v is such that

v & L,L U {v} is still linearly independent.

Then there exists au € G so thatu € L and L U {u} is (still)
independent.

Remark

If V is a finite vector space.

If F is infinite, like C, then V =10t}

If F is finite, then IV| = IFI™ for some n € N°
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Proof of Proposition 1
Suppose v satisfied 1. To argue for 2, assume to the contrary that v € Span(L). Then
n

v = > ‘Aivi
i=1
for some distinct v;'sinLand A; € F
Asv & L,vy, ..., v, v are all distinct, we have a set of distinct vectors such that one is a linear
combination of the rest, so the set L U {v} is linearly dependent, a contradiction.

Conversely, suppose that 2 holds, we need to show 1
As Span(L) D L, itis clear that v & L. To show that L U {v} is linearly independent, suppose
that

n
> , Aivi =0
(i=0)
where v;, ..., v, are distinct elements from L U {v}

Case 1:
Suppose that none of the v; are v. Then by linear independence of L, all 4; = 0
Case 2:
One of v, ..., vy, is equal to v. WLOG say that v,, = v
Suppose that 4,, = 0 Then
-1

n

D A =0
i=1
By the linear independence of L, weset 4, =1, =+ =1,_1 =0

Thus 44, ..., are 0

Suppose that A,, # 0 Then from
n

>.Aivi =0
i=1 et
V=v, = >I—£vi

A
=1 "

Sov € Span(L)

Proof of Proposition 2

v & Span(L)

It is a linear combination of things in G

So, (WLOG, n is the least number which satisfies the linear combination)

n k n
v = > .Aiui = >‘Aiui + > X ﬁiui
i=1 i=1 i=k+1
where uy, ..., u, are distinct vectors in G
WLOG, uy, ... ux € L, Upyq, ..., Uy, €L
Atleast one u; (k+ 1 <i < n)is present with A # 0. Take u = Uy,
This means u # span(L) since the above is the smallest representation and if u € span(L)
then u could be written as part of L{Ll Ay

Suppose L U {u} were linearly dependent. Then
m

0=Au+ > Ay forv; €L, Aimot all 0
i=1
L is linearly independent so 1 # 0 so

m
A:
u= > .‘j”i
=1

Sou € span(L), a contradiction. So L U {ut is linearly independent. m

Example

Basis of any size.

Let S be any set (# @). We now construct a vector space V over F having a basis B with
IBI = |S|

Consider the subspace F, of F (S, F) consisting of functions f:S — F with f(s) = 0 for all but
finitely many s. For each fixed element s € S, let y;: S = F be xs(t) = %é ];Z: i " z
x is the characteristic function.
Clearly xs € Fy
LetB =1iys:s € Stc Fy
Be is a basis for F, because
1. Let f € F, be given. Then 3 finitely many sy, sy, ..., s, € S with f(s) = 0if s € 15y, ..., 5,
LetA; = f(s;) fori €11,...,n}
Then f = A1 x5, + AoXs, + -+ + AnXs,
Therefore f € Span(B)
2. Let Xs,, Xsy» 0 Xsp be a finite list of distinct vectors in B and that 14, 4, ..., A,, are scalars

from F with
n

>./1i)(si =0
i=1
Since s, are distinct, clearly s; are distinct. Fix any i, €11, ..., nt



n

( ) AiXs; ) (s15) =0 (s;,) =0

i=1

n
= >ﬁi)(si(5io) =2;,1=0
i=1
SoA; =0Vi
So B is linearly independent.
xS—-B
x(s) = xs

is clearly bijective. So B is of the same cardinality as S. m
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* Maximal Principle

February-04-11
11:31 AM

Maximal Principle

LetX be a set. Let C be a collection of subsets of X. A sub-
collection of G, say T € C is called a tower (or chain) if for any
two elements Ty, T, € T, either Ty € T, or T, € Ty.

Suppose that C has the property that every tower T, there exists
C € CsuchthatC 2 T forallT € 7. (Cis called an upper bound
for T)

Then C has a maximal elementM € C i.e.no C € C contains M
strictly.

Application

Let V be any vector space over F. Let C be the set of all linearly
independent subsets of V.

If 7" is a tower in C it is not difficult to check that

LJr

TET
is also linearly independent. So it is in € and it is an upper bound

for 7. So by the maximal principle, there is a maximal M € C.
M will be a basis for V.
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Example

Let C be the set of all finite open intervals of R
T = {(0,n) : n € N} is a tower/chain

This tower has no upper bound in C

No member of C is maximal because for every C € C,c = (a, b) finite a, b the element
(a, b + 1) is strictly larger.

Example

Let X be any non-empty set.

LetC=1iC:Cc Xt

Then M = X\{x} for some x € X is a maximal element for C

Examples

X = R,M = R\{1} is M maximal, yes.

N = R\{2} is also maximal

C = R\{1, 2} is not maximal

LookatJ =1il—n,nl:n € N} is a tower with no upper bound

So every tower having an upper bound = there is a maximal element
There being a maximal element # every tower has an upper bound



Linear Mappings
February-07-11
11:32 AM

Linear Mapping

Let U and V be vector spaces over F. A mapping

(function) L: U — V is linear if:
1. L preservessummation
L(u1 + uZ) = L(ul) + L(UZ)
2. L preserves scalar multiplication
L(Au) = AL(u) for A€ F

Proposition
Foranylinear L: U - V
1. L(0)=0
2. L(—u) =—L(u)

3. L( > ‘liui) = izl'AiL(ui)

i=1 =
L preserves linear combinations

Kernel (Nullspace)
LetL: U — V belinear

Ker(L) = Nullspace(L) :=={u € U|L(u) = 0}

Range (Image)
LetL: U - V belinear
Range(L) = Im(L) ==1{L(u)|u € Ut

Proposition
Ker(L) is a subspace of U
Range(L) is a subspace of V
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Example
L:R3 > R3, Lix,y,z) = (x,0,2) V(x,y,2) € R3.
Then L is linear.

Proof:
1. Let(xy,¥q,21), (x3,¥5,2,) € R3
Then L((xq, ¥1,21) + (X0, ¥4,22)) = Lxy + X2,y + V2,21 + 25) = (X1 +x5,0,2, + 2,)
L(x1,y1,21) + L(x3,¥2,2) = (x1,0,21) + (x2,0,25) = (x1 + x5,0,21 + 25)
2. LetA€R,(x,y,2) €ER®
L(Alx,y,2)) = L(Ax, Xy, Az) = (Ax,0,Az) = Ax,0,2) = AL(x,y,2)

Example
x y z
L:R3 - M3, 3(R),Lx,y,2) =2 ¥y 2x
0 x+y z

This is a linear mapping

Example
L: P,(R) = P3(R), L(p(x)) = xp(x) Lis linear

Example of a non-linear map
fiRZ > RE flx,y) = (x+ 1Y)
Then fis not linear

flxg,y)) + fl,y) =g + Ly + (e + L y,) = (g + x5, + 2,1 +y3)
flle,y) + x,y2)) = fg + 22,1+ y2) = g +x2+ Ly +2)
So f does not preserve summation. Similarly, it does not preserve multiplication.

Proof of Proposition
1. Because L preserves addition, L(0 + 0) = L(0) + L(0) = L(0) = L(0) + L(0) so
L(0)=0€V
2. L(—uw) = L((-Du) = (-1)L(w) = —L(u)
3. Follows directly from preservation of addition and scalar multiplication



Dimension Theorem

February-09-11 Example

11:32 AM L:R® - R*is given by L(x,y,2) = (x + ¥,y + 2,0, 0) has range
R(L) =1(a,b,0,0)| a,b € Rt and rank(L) = 2

Nullity and Rank Ithas N(L) = {(x,y,z) ER3 | (x +y,y +2,0,0) = (0,0,0,0)}

Let L: U = V be linear. Suppose that U is finite dimensional. _ %(x 2) ER? | x+y= 0%

The nullspace (kernel) of L, N(L) ={u € U | L(u) = O},isa ey y+z=0

subspace of U. Nullity (L) = dimN(L) =1
Then N(L) is finite dimensional. Nullity (L) = dim N(L)

Proof of Rank and Nullity Theorem
The dimension of the range space, R(L) = {L(u)|u € U} is called Pick a basis for N(L), say {uy, uy, ..., ux}

the Rank of L, denoted rank(L) Now, nullity(L) = k

Extend the linearly independent set {u4, u,, ..., u } to a basis for U
Dimension Theorem (Rank and Nullity Theorem) say that {uq, uy, ..., U, U 41, -, Uy} is a basis for U
For linear L: U — V, finite dimensional U, Sodim(U) =n

dim(U) = rank(L) + nullity (L)
Claim: B = {L(ug41), Lugyy), ..., Llu, )t is a basis for Range(L). Thus rank(L) =n —k

1. Show that 8 spans Range(L)
Let v € Range(L) be given. Then3u € Us.t.L(u) = v
Since tuy, ..., u, t spans U, there exist scalars 44, ..., 4,, so that
n

u= > ‘liui
i=1
Now,
n n
v=Lwu)= L( > ‘/liui) = > AiL(u;), since L is linear
i=1 i=1
But L(u;) = 0Vi €il,..,ktso
n
v=) AL(u)
i=k+1
Sov € span B

So span B = Rangel(L)
2. Show that f is linearly independent.
Suppose ApqLlugyq) + -+ ApLluy) = 0 = L(Agqupyq + -+ Apuy) =0
SO AgsqUps1 + o+ Apuy € N(L)
As uy, ..., u, spans N(L)
Ags1Uis1 T -+ Apuy = Aquy + -+ + A, uy for some scalars 4;

So Aquy + o AU — AU — = Apupy =0
Soly == =Agg1 ==, =0
So f is linearly independent.
Example
Let L: R® > Mgye(R) be
x y z 0 0 0
Io 0000 ol
L(x,y,z)=|0 00 00 0I
[0 0 0 0 0 0
[0 0 0 0 0 0f
00 00O

0
Rank(L) = 3, N(L) =0
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Rank/Nullity

February-11-11
11:28 AM

Proposition

Every Linear L: U — V is completely
determined by the restriction, Llg, to a
basis B for U

Simple consequences of the dimension (rank/nullity) theorem.

Observations.

If L: U — V is linear, then Lis injective iff Ker(L) = {0}
Proof: Suppose that L(u;) = L(u,) for given uy,u, € U
Now L(uy) — L(u,) = 0. As Lis linear, L(u; —u,) = 0 sou; —u, € Ker(L). Since Ker(L) = {0},
wesetu; —u, =0=>u; =u,

For the converse: Suppose L is injective

Because Lis linear, L(0) =0, so 0 in Ker(L)

To get Ker(L) = {0}, we need to show that for any given u in Ker(L), we have u =0
Let u in Ker(L) be given. Then L(u) =0. Since L is linear, L(0) = 0. So L(u) = L(0)

As Lin injective, u = 0 follows.

Restate: Linear L is injective iff dim Ker(L) = O iff nullity(L) =0

Linear L: U — V is surjective iff L(U) = V. If V is finite dimensional, then L is surjective iff dim L(U) =dim V,

iff rank(L) = dim V

By the dimensional theorem, we get the Corollary:
If L: U = V is linear and both U and V are of the same dimension, then the following two statements are
equivalent:

1. Lisinjective

2. Lissurjective

Basic idea: dim U = rank(L) + nullity(L) = dim V
Injective <=> nullity(L) = 0 <=> rank(L) = dim V <=> surjective

In particular, if U is finite dimensional and L is a linear operator on U, then L is injective iff it is surjective.

Example of Proposition:

Suppose thatL: R? — P,(R) is linear, and that B = {(1, 0), (0, 1)}

If we know L(1, 0) and L(0, 1) (that is, we know Ll3), we should be able to tell L(x, y) for general (x,y) €
IRZ

Reason: (x,y) = x(1,0) + y(0,1),s0 L(x,y) = L(x(1,0) + y(0,1) = xL(1,0) + yL(0,1)

Proof of Proposition:
Let B = {b;| i € I} be a basis for U.
Given any vector u € U, we can write u = X.7_ ; A;b; for finitely many b; € B

Now,
n

L) = ) AL(by)

i=1

Example

WE could define a linear map L: R> = R? by specifying L(1, 0) and L(0, 1), say L(1, 0) = (1, 1) and L(0, 1) =
(-1, -1), Implicitly, we know L fully

Explicitly : L(x,y) =x L(1,0) +y L(0,1) =x(1, 1) +y(-1,-1) =(x -y, x—Yy)

Rank(L) = 1, Nullity(L) =1

Range(L) = span(L(1, 0), L(0, 1)) = span{(1, 1), (-1, -1)} = span{(1, 1)}, a basisis (1, 1)

N(L)is {(x,y) € R? |x —y = 0}, abasisis (1, 1)

Example

D: Pio(R) = Pyo(R).D(p(x)) = p'(x)

D(1) = 0,D(x) = 1,D(x?) = 2x, ..., D(x1°) = 10x°
Note {1,x,x"2, ..., x%} is a basis for Py,

R(D) = Py(R)

N(D) = Py(R) = span{1}

Rank(D) = 10, nullity(D) = 1,dim P;x(R) = 11
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Coordinatization

February-14-11
11:33 AM

Coordinatizing a Space
Let U be a finite dimensional space.
Fix a basis § = {uy,uy, ..., u, } and order it as presented.
Every vector u € U can be uniquely written:
n

u= >‘aiul~,al~ EF

i=1
n n

(ay,...,an) # (by,..,by) = >‘aiul~ * >;biul~

i=1 i=1

Coordinates
We call (a4, ay, ..., a,) the coordinates of u with respect to (relative to)
B. Notation:
ay
az

lulg = ,or (aq, ..., a,)

an

Proposition

Let U be a space with ordered basis (3.

The correspondence

u€elU-lulgeF"

is a bijective linear map. Thus U is isomorphic to F"

It is easy to check that |uy +uzlp = lwlp + luzlp
[Aulg = Alulg

Representation of Linear Maps
Alinear map L: U — V can by represented by a matrix.

Let U, V be finite dimensional. Let a, 8 be ordered bases for U and V,
respectively.

a=1ug, .., upnh, B =101, oo, Ut

Now L: U — V, linear, is determined by knowing

L(uq), L(uy), ..., L(uy,). Each L(w;) is determined by knowing [L(u;)lg -
(column formation)

The matrix
||L(u1)|g |L(u2)|5 IL(un)I,;I
Size m X n is called the matrix representation of L with respect to a, §

Proposition

LetLi,L,:U — V belinear.x € F

Let a for U and g for V be fixed finite ordered bases.
ThenL; + Lp:U — V,(Ly + Ly)(u) = Li(u) + Ly(u)
AL1:U = V,(ALy)(u) = A(L4(u)) are linear (exercise)

1Ly + Lot = 10,08 10,08, 1ALy 1B = 2L, 0P

is linear.
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Example
Let U = P,(R). Let B = {x?,x,1} (ordered)
Letu = 4 + 2x + 5x? = 5(x?) + 2(x) + 4(1)
So

5
u= |2| or (5,3,4)

4

P, is isomorphic to R3

Example

LetD: P, - P, over R, D(f) = f'

Leta = {1, x, x2} for the domain and 8 = {x,1,x?%}
for the codomain

00 2
IDI§=|ID(1)I5,ID(x)|;;,IszIB|=|I0I,;,I1Ig,|2x|,;|=|0 1 o|
000



* Cardinality

February-14-11
3:30 PM

Countable
A set X is countable iff 1X1 = |N|
A set X is at most countable if |X] < |N|

Facts

=

IX1=1X1,1X1 < 1X1,1X1 = 1X]

IfIXI < |Y]and IY] < |Z]| = 1X] < IZ]

IX|< |Y] iff [Y]= [X|

IX|< [Y] and [Y|<[X] = [X| = Y]

IN X NI = INI|

1Al =1X1,IBIl=1YI = I1AX Bl =1X XYI
AcBcCandlAl =ICl = 14l =Bl = ICI
10,11 =1(0,1) x (0, 1)1

For any infinite set X, removing a finite subset
will not change the cardinality

10. 100, )1 = 1[0, 11|

11. 110,1) x (0,1)1 = 110,11 x 10,11

O XN W

12. IRI =10, 1]
13. IR X RI = [RI
14. IR™ = IRI
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Proof of Fact 5
Define the mapping ¢: N - N x N

Pl1) = (1,1)
P(2) = (1,2)
@3)=(2,1)
Pl4) = (1,3)
@(5) = (2,2)

This function is bijective, so IN| = IN X N]|

Proof of Fact 6

Jbijection f:A - X,g:B > Y

Consider p:A X B > X xY ,(a,b) > (fla),g(b))
Then ¢ is bijective

Example
IN X N x N| = |N|

Proof of Fact 7

Consider the map

@:(0,1) - 10,11 x 10,11\ {(0,0), (1,1)}

¢lx = 0.a,a5a3 ...) = (0.a;,a30as ...,0.a,a405 ...)

In the event that x can be written in two ways, use the representation which is not terminated by
repeating 9's.

This is injective. And surjective

(0,1) x 0.5 c (0,1) x (0,1) € 10,11 x 10,11\ 1(0,0), (1, 1)}
10,11 =1(0,1) x 0.51 = [10,11 x 10,11\ 1(0,0), (1, 1)}

So 1(0,1)1 = 110,1) x (0, 1)1



Matrices

February-16-11
11:32 AM

Matrix Representation

Let L: U — V be linear

Leta ={uy, ..., upt, B =1vq, ..., vy f be
ordered bases for U and V, respectively

L1 = |ILCuy) g, 1LCup) I g, o, 1Ly ) g
= |ail

(mxn)

Matrix - Tuple Multiplication
a;

LetA = |a]-i|, X =

an

n
).
o

AX = ‘Z‘aZLal

n

,>‘amiai,

i=1

With that, we have the formula:
IL@)lg = ILIEul,

Matrix Representation

Let L: U — V be linear.

Leta = {u4, ..., u,} and f = {v4, ..., v, } be ordered bases for U and V respectively.
Each vector u € U has the representation

a, n
az|. :

lul, = i.eu= > a;u;;
a, i=1

and L(u) in the codomain V, has

by m.
l.e. Z‘ijj
m j=1

L5 = |ILuy)1g, ILGu) g, ooy ILGu) I g | = lat]
Hence

m
L(ui) = Lajivi
j=1

How should |L(u) |B* luly, and ILIg relate?

L), =

n n m
L(u) = L(>‘aiui) > a;L(u;) = > ( >‘ajivj)
i=1 =1 j=1
Note change of scope:
a; comes from the vector |ul,
aj; comes from the matrix |L |§

n m m. n ) m
L(u) = > > >‘(>‘aﬂa1)v} = >‘b}v]
n= j=1 j= i=1 j=1
w b= > j=1,2..m

b comes from the vector |L(u)lg

Get:
bl aq
b
2‘|%| = 1L@Wlg = 1L Iul,
b an
Example

Let L: R? - R%. Leta = {(1,0,0), (0,1, 0), (0,0, 1)} be the standard ordered basis for R3
and 8 = {(1,0), (0, 1)}, the standard ordered basis for R?

Let le be having

g_11 2 3
L1 |4 5 6|2><3
Find L(x,y, z)
Step 1:

x
1 2 3 1 2 3 | x+2y+3z

|L(x,y,Z)|;;—|4 5 6|I(x,y,2)|a—|4 5 6 |_ 4x + 5y + 6z

~Lx,y,z) = (x+ 2y +32)(1,0) + (4x + 5y + 62)(0,1) = (x + 2y + 3z,4x + 5y + 62)

Example
If T:R? > R3 is given by T'(x,y) = (x + 2y,3x + 4y,5x + 6y)
Using the standard bases a, §

1
ITIE = (3 4

5 6'3x2)
Example

LetL:P, - P, overR
Leta = B =1{1,x,x2}

1 2 1
1f|L|§=|1 11
0 0 2
Find L(ag + a;x + a,x?)
Solution:
1 2 1,,% ap +2a; + a,
IL(ag + a;x + azx?®)lp =|1 1 1||%|=]|as+a; +a,
00 2'a 2a,

s Llag + aix + ayx?) = (ag + 2a; + ay) + (ay + a; + az)x + 2a,x?
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Composition Of Linear Maps Proof of Linearity of Composition
Feb 18-11 (Ly o Ly)(Auy +up) = Ly(Ly (Aug +up)) = La(ALy (uy) + Ly (1y))
ebruary-18-

= /1L2(L1(ul)) + LZ(Ll(uZ)) = A(LZ o Ll)(ul) + (Lz o Ll)(uz)

11:37 AM

Linearity of Composition Finite Bases

IfL;:U - VandLy:V - W are linear. Let o, B, y be ordered bases for U, V, W, respectively, assuming that U, V, W are finite
Then there are compositions dimensional.

Ly o Li:U - W islinear.
p Thenas |L; |§ determines L4, |L, Pt; determines L,. They also determine L, o L; and
4 - 4
ILalplLylg =1L o Lylg subsequently | L, o L, 1"
This motivates the definition of matrix multiplication.
Matrix Multiplication ”“Zpt/?”“llg =1Lyo Ly,
Let A(ixj)J B(ka) be matrices.

- Example
AB = | Y. aijbik LetL;:R? > R3,L,(x,y) = (x + 2y, 3x, 4y) and
U= (ik) LR35 R%ELy(x,y,2)=(x+y—2zx+y+2)
Let « = 1(1,0),(0, 1)} for the domain of L,
Note £ =1(1,0,0),(0,1,0),(0,0,1)} for the domain of L,
For A times B to make sense, the number of columns in y =1(0,1),(1,0)} for the range of L,
A must equal the number of rows in B.
1 2
|L1|§=|3 0|, |L2|;=|1 } _11
0 4
1L, % 1L . 11 1||é 3|: 1x1+1%x3+1x0 1x2+1x0+1x4
e L B B | 0 4l 'I1X14+1x3-1x0 1x2+1x0-1x4
:|4 6
4 =2

LyoLy =L,(Li(x,y)) = Ly(x + 2y,3x,4y) = (4x — 2y,4x + 6y)

tx -2y, 4x+6p)l = [T 6
Which agree. Excellent.
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Properties of Matrix Operations

March-02-11
1:38 AM

Under addition and scalar multiplication M;,«,,(F) is a vector space.

There is a third operation, "matrix multiplication."

The following additional properties hold:
Properties of Matrix Multiplication:
¢ Multiplicative Identity
The identity matrix served as the identity element

10 ..0
Lorl, = 0 1 . 0|
0 0 1

i.e.Al = A=1AVA € Myx,\F)
e Associativity of Multiplication
(AB)C = A(BC) VA,B,C € Myxn(F)
Note: AB # BA in general
e Distributivity:
AB+C)=AB+ AC
(A+B)C = AC+ BC
(AA)B = AMlAB) = A(AB),
VA,B,C € Mpyyn\F),AEF

Linear Algebra

A vector space (or a linear space) under a binary operation called
multiplication which satisfies the listed properties above is called a
linear algebra.
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My xn\F) is a linear algebra

Support for (AB)C = A(BC)
There is a bijective map from L(F™, F™), or all linear maps from F™ to F™ (a subspace of
F(F™F™))
128 g L = IL1,, where a is a fixed, ordered basis for L(F™, F™)
It preserves the linear algebra operations:
Ly 4 Lalg = 1Lylg + L1,
IALlg = AlLl,
[LiLylg =1Ly o Lylg = 1LylglLy 1,
In short, the matrix representation [, from L(F™, F™) to M(;,xn,(F) is a linear algebra
isomorphism.

Composition is an associative operation on LI(F™, F™):
(LyoLy)oLy =Ljo(Lyolsy) & ((LyoLy)oLz)(v) =(Lyo(LyolL3))v)VveEFm
& (Ly o Ly)(L3w)) = Li((Ly o L3)(v)) & Li(Ly(L3(v))) = Ly(Ly(L3(v)))

The latter is obviously true so due to the isomorphism matrix multiplication must be associative.

Example
Let
_ |c059 —sin9|
sin@ cos@
Then
420 — |cos 200 —sin 209|
sin200  cos 2060
Example

Let D: P,(R) = P,(R) be the differentiation operator.
Let the domain and codomain be given the (ordered basis) & = 11, x, x*}

010
ThenIDIa=|0 0 2|
0 0 0
because:
0 1 0
D(1)=0,IOIa=|0|, D(x)=1,|1|a=|0|, D(x2)=2x.l2xla=|2|
0 0 0

Find 121 + 4D + 5D51,

Solution 1:
(2] + 4D + 5D°%)(a + bx + cx?) = 2(a + bx + cx?) + 4(b + 2cx) + 5(0)
= (2a+4b) + (2b + 8c)x + 2cx?

2 4 0
121+4D+5D%1=0 2 8
00 2
Solution 2:
[]¢ is a linear algebra isomorphism
100 o010 01
121 +4D +5D%1, = 211, + 401, + 51015 =2]0 1 0[+4o 0 2[+5]0 o
001 ‘o000 oo
200 040 000 240
=[o 2 o[+]o o 8|+]o 0 of=]0 2 s
002 000 000 00 2

Example
Give an example of a 3 X 3 real matrix satisfying A3 = 0 but A% # 0
Is there a linear operator L: R® — R? so that L3 = 0, L? # 0
L(x,y,2) = (y,2,0),L%(x,y,z) = (2,0,0) # 0,13 = (0,0,0) =0
So

010

|0 0 1| satisfies the statement.

0 0 0

o N O



Sum of Vector Spaces *

March-02-11
2:05 AM

Sum of Vector Spaces
Let V be a vector space. Let W, and W, be two subspaces of V.
The sum of W; and W, is defined by:

Wi+ W, =3twy +w, |wy € Wy, w, € Wyt

Fact: Wy + W, is a subspace.

Direct Sum
The sum W; + W, is direct if W; N W, = {0}. In that case, we
write W, @ W,

Theorem

Suppose that V = W; @ W,

If a is a basis for W; and S is a basis for W,, then & U f is a basis
for V.

Conversely, if W, &W, are subspaces of V and a U B (disjoint
union, XOR) is a basis for W + W, then a U 8 is a basis for V
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Example
V =R3W, = x — yplane, W, =y — z plane
Then W; + W, = R®

Example

V=Fu-1,1L,R)

W, = Subspace of all even functions
W, = Subspace of all odd functions
Wi+ W, =V

Proof of Theorem
First, @ and [ are disjoint. Will show that a U 8 spans V.

Let v € V be given. Then v = w; + w, for some w; € Wy, w, € W,, because V = W; + W,

Now,

wy = > Ajay ,wy = > uibB;,
i€l cl j€hc]

a=toli€l},B={B|j€}
v= ) hai+ ) w, a,Bi€aup

i€l J€

11, ] finite

To show that @ U f8 is linearly independent, let y4, ..., ¥, be a finite list of distinct vectors from a U fand

thatnyys +may2 + -+ MV =0

Each y; is in either « or § in exactly one way. Re-label those in @ as a; and those in § as f5;;

We set
D i+ ) =02 ) hai=—) wp

And since the left side is in W; and the right side is in W5, the only element common to both subspaces

is 0. And since W, and W, are linearly independent, 4;,u; = 0son; = 0 Vi



Row Reducing

March-02-11
12:06 PM

Row Reduced Echelon Form
Let A be a n X m matrix over F. It is in Row Reduced Echelon
Form if it has the following features:
1. If there are zero rows, these are at the bottom
2. For each non-zero row, the first (leading, scanned left to
right) non-zero entry is 1. We call such positions the
leading 1's positions.
3. Leading 1s with higher row numbers should have higher
column numbers.
4. All entries above and below the leading 1s are zero

Proposition
Every A can be changed to a Row Reduced Echelon Form using
three kinds of row operations in a finite number of steps:

1. Interchange two rows

2. Multiply a row by a non-zero scalar

3. Adding a multiple of a row to a different row

Interpretations of RREF
Could consider the matrix, A, short hand for a system of linear
equations. Hence the RREF of A records a system of equations
equivalent to that of A.

Could be interpreted as a linear equation of column vectors.

Statement
Every m X n matrix A has a unique RREF.

The Matrix A and its RREF, in general, do not represent the
same linear map.
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n O * *

econd 1 has higher row number but lower column number.

S O

in Row-Reduced Echelon Form

Example

Use row operations to reduce
4 0 8

a=|-9 o 5
0 0 4

to reduced row echelon form:

1 1
Step 1: — X Ry = Ry we get |—9
4 0

Step 2:9 X Ry + R, = Ry, we get

0
0
0
1
0
0

SO OoONMUIN
[\
=y N

1
Step 3:§X R, = R, we get |

—2XRy+R - R,
—4 X R, +R; > Ry

(=N

0
0
0

INJEEN)

100
we get |0 0 1|
000

Step 4:

Example

The matrix
0 -5 —-15 4 7
1 -2 -4 3 6
2 0 4 21

3 4 18 1 4
has reduced row echelon form

A=

|102025|
| 4
0130 4,

27
lo o 0 1 =1
L 4 |
0000 O

Maple Command:
[> linalg[rref] (A);

If this is interpreted as a linear system of equations, the general solution of
0x; + (=5)x, + (=15)x3 + 4x, + 7x5 =0
1x; + (=2)x; + (—4)x3 + 3x4 + 6x5 =0
2x1 + 0xy + 4x3 + 2x4 + 1x5 =0
3x; +4x, +18x3 + 1x4 + 4x5 =0
is:
Let x5 and x5 be free (non-pivot variables)

lx1 = —2x3 +Tx5
Xy = —3x3 — 4x5
27
X4 = 2 X5
Alternate interpretation:

- - 7 0
-2 -4 3 6 0
x12+x2 0 + x3 4 +x42+x51=0|
1 4 0

It concerns the linear dependence or independence of the five column vectors of A in R*

We wee that the five columns form a dependent set (there are free variables in giving the scalars)
In REF, 3rd column = 2*first column + 3 * second column

That is, a particular solution (x4, x5, X3, X4, X5) is (2,3, —1,0,0) which are not all zero.

A basis for span

0 7
1 6
2 B it
3 4

is

0 -5 4
1] |-2| |3
3 4 1

-2
0
4

)
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Rationale for RREF Uniqueness
Different RREF will lead to different solutions to the system of equations AX = 0
Example
Clearly all possible RREF must be the same size.
1 0 4 ,1 0 4
|0 1 3| , |0 0 0|
000 0O0O0
In first case, dimension of solution space is 1, in second space dimension of solution space is 2
So the number of zero rows at the bottom must be the same in all solutions.

10 4 1 0 2 1 00

|0 1 3|,|0 1 5|,|0 0 1|

00 0 0 O0O0O OO0OTDO

Xy = —3X3,X; = —5x3

So the solutions to the first two matrices are not the same.
x3 arbitrary in first case, 0 in last case. So different solutions.

The Matrix A and its RREF, in general, do not represent the same linear map.
Example

X x
a=12 Orepresents 1, = (|3 ]) = al}| = %]

. 1o x o
its RREFis | o = F,Lg ([]) = R[}| =[]



Elementary Matrices

March-07-11
11:31 AM

Elementary Matrices

There are three types of elementary row operations. When
we apply a single elementary row operation to I, the
resulting matrix is called an elementary matrix.

Proposition

Let A be any m X n matrix.

When we apply an elementary row operation on A, the
outcome is equivalent to multiplying A on the left side by an
elementary matrix.

Corollary

Every m X n matrix A can be changed to its RREF by
repeatedly multiplying on the left by a finite sequence of
elementary matrices.
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Examples of Elementary Matrices

1
0

-2

0

1 0 0
N (1)|,|0 1 0|,
0 0 10
Not elementary:
|1 2
3 4
Example
_ %11 Q12 Ag3
LetA—|a21 Q2 Q23
I =|1 0
27l 1

0

O O

0 0

(=R ]
= o o

and that the operationis 2R, + R; = R,

A_)|2a21+a11 2055 +aq5 2053+ a4y
az1 az2 azs
12_)|1 2
0 1
|1 2||a11 aiz a13|_|2a21+a11 2az; +ag; 2‘123‘|'¢112|
0 1llazs az ax3l™ azy az2 az3
Example
Leca=] > L(F =1
Then A —Ri5Rz |(1) g ‘11_)2R2—>R1|(1) i ‘21'_)—2R2+R1|é (1) g
1 =2¢(11 0;¢10 1 1 0 O
|0 1|(|0 2(1 oA))=|0 1 2
1 —410 1 -4 1
=|0 2”1 0|A=|2 2|A



Matrices & Maps

March-09-11

11:36 AM

Let L: U —» V be a bijective linear map. If W is a subspace of U, then L(W) is a
subspace of V. If a is a basis for W, then L(«) is a basis for L(W)

In particular, if dim W =k, then dim L(W) = k

If Lis bijective and linear: U —» V
then L™1:V - U is also linear.
Lo L7 = identity map on U
LYo L = identity map onV

If a, B are bases for U, V respectively, then
LA Mg = Lol ™M, =1
[LMEIL1S =Lt o Llg =1,

Invertible Map / Matrix
A map which is called bijective is called invertible.

An n X n matrix is invertible if there exists n X n B so that AB = BA = [,,. If such

B exists, it is unique and is denoted by A~!
In particular, if A = [L], (bijective operator L), then A is invertible and
A"t =1[L71,

Proposition
The three elementary row operations are invertible linear maps.

Statement:
Composition of linear maps is invertible.

Rank of a Matrix
Let A € M, (F). The rank of A, rank(A), is the rank of L4: F* - F™

Proposition
Range of L, = span{L,(e;),L4(e;), ..., Ly(e,)} where {e, ..., e, } is the
standard basis for F™. range(L,) = span {cy, c,, ..., ¢} where c; is the it"
column of A.
rank(A) = # of linearly independent columns that form a basis

= # of leading 1's in RREF of A

Nullity of a Matrix
Nullity of A = Nullity(L,) = dimN(Ly) = dim{X € F" : AX = 0}

Let B = RREF of A

dim{ X € F": AX = 0} = dim{X € F™: BX = 0} = # of free variables
=n — #leading 1s =n —rank(4)
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Example

o2 3
A‘[100]
10 0
_ 3
RREF 015‘

rank(A) = 2, nullity(A) = 1



Matrix Multiplication

March-11-11
11:32 AM

Matrix Multiplication in Blocks
AIB|C| = |AB|AC]|

c CB

|5=]- ]

D DB

Ay | Ay Br | B ABy+A;B; | AiB, + A;B,
-+ |- + —|= - + -

As | A4''B; | By A3By+AuBs | A3B, +A4B,

Matrix Inversion

In general, for n X n A, to find A1 if it exists we row reduce
|AllL,1 (Solving AB = I,,) to RREF on the A side only.

Case 1

If RREF of Ais I, then we have |I,1A71]

Case 2

If RREF of A is not I, then A is not invertible.
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Solving Equations
To solve the equation AX = B where
X1 b1

X3 2

A=|"?B=

Xn by,
we could find the RREF of |A|B|
and then determine the solutions,

Suppose we want to solve two parallel equations.
AX = By, AX = B, (separately, parallel means not related, different X)

It can be done by finding RREF of |AIB; | and of [A4|B,]
The job can be done in one round: Find RREF of |4|B;|B;| and then read
the solutions.

Example

LetA = |é gl Find A~ if A has an inverse.

Solution:
We seek B (2 X 2) suchthat AB =1
Let B = |X,1X, . The equation is Al X, X, | = |é|2|

AXy = |é|'AX2 = |(1)|

Consider
12 ] 10 o N
|0 3 1 0 1|anduserowops.tobrmglttoRREF(onApart|t|on)
12110 4

1l |sR R
|o 110 §|(32* z)

2
1o 1 -3
(—=2R, + Ry — Ry)

0 1 01
! 3

2 2
e | 3l s 3
X1_|0|‘X2_ 1 'B_o 1
3 3
Example
1 2y,_13 5 7
SolvelO 3|X—4 6 8| ) :
1 2 3 5 7 Z e
1 23 5 7 |4 8 10'313
03|468|_)01|—2—_) 4 8
3 3 01|§2§
115
x =13 3
428
3 3
Example

Express |(1) gl as a product of elementary matrices.

Solution:

10
1 -2 1 2y _
|0 1||0 %"0 3|_12

E, E, A
SEL T



Column Operations

March-14-11
11:32 AM

Proposition
IfT1:U = Vand T,:V — W are linear and T, is an isomorphism on finite
dimensional spaces U, V, and W.
Range\T,Ty) = (T,T;)(U) by definition of range

=T,(T;W))

= T,(rangelTy))
When T, is an isomorphism, the subspace range(T;) of V is mapped to a
subspace of W of the same dimension.

Therefore, rank(T, o T;) = Rank T,

Converting that statement to n X n matrices A and B, we get

rank\AB) = rank(B) when 4 is invertible (i.e. equivalently rank(A) = n)
In parallel, we get rank(AB) = rank(A) if B is invertible.

Corollary

For any matrix A, an elementary row operation performed on A does not
change the rank.

rank(EA) = rank(4)

Since E is invertible.

In particular, rank(A) = rank(RREF(A))

Theorem
Elementary column operations does not change the rank of a matrix.
rank(AE) = rank(A) since E is invertible.

Theorem

By using both elementary row and column operations, we can reduce a
matrix to the form

L. | 0

~ 4

0o | 0

where ris the rank of the original matrix.

Corollary

Let A be any matrix (m X n). Then there exist invertible P & Q such that
L. | 0

PAQ =|— + —|
0o | O
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Observations

Observe that rows of A are the same as the columns of A¢. Therefore, action on rows of A
becomes action on the columns of A°.

Every theorem on row operations has a corresponding theorem on column operations.

Example

Every matrix can be reduced to a unique RREF using elementary row operations.

In parallel, we have:
Every matrix can be reduced to a unique reduced column echelon form using elementary
column operations.

Notice that transpose has the property

(AB)t = BtAt

The statement : an elementary row operation performed on A has the effect of multiplying A on
the left by an elementary matrix translates into multiplying A on the right by an elementary matrix.

Demonstration
|a11 A2 Q13

A1z Q11 a13|
QAz1 Gz Q423

|_)(61:C2)_)|a22 Az1 Q23

|a11 a2 a13| |(1) (1J g| _ |a12 a1 a13|
a a a a a a
21 22 23 0 0 1 22 21 23
Example
Let A be 2 X 3 and that under the use of row operations we bring it to
0 1 3
RREF
IO 0 OI ¢ )
Using further column operations, we can bring it down to CREF
1 0 3 1 0 0
AR e PO e e Ve PP



* Dot product on R™

March-14-11
3:33 PM

Dot Product on R™
LetxX = (Xq, .., X3 ), Y = (¥, ., V) ER®
n

XY= X)Wy V) = ) XY

i=1
It is seen within matrix multiplication, and also in
equations like a;x; + axx, + -+ a,x, =0
(@, ., @y) - (Xq, .00, x,) =0

Norm of a Vector in R"
InR™ llxll = Vx? +x% + -+ x2

If x # 0,then IXIl > 0
Ifx =0thenllxll =0
HAXIl = IAlIXI Vx € R™

[ | el = —— 1l = 1
— || = |—| lIXIl = — x| =
il = T x

Normal Vector
A vector whose normis 1

Normalisation
We call the division of X # 0 by lIXIl > 0 the
normalisation of X

Distance
Distance between X, y:
d,y) =lly —xll = lIx =yl

Theorem
Proj:R™ - R" is alinear map
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Geometric Interpretation in R?
(x4, %) - (¥1,¥,) = 0 means the vectors X, y are perpendicular.

3
Same story for x B

Y

Dot Product

Interpretation of non-zero dot product: "
& a
Orthogonal projection of a vector y € R™ on a normal vector x is
Projely) =y - x)x

Range(Proj,) = spanix}
Nullspace(Proj,) =1y € R" : Proj,(y) =0t =1y €R": (y - x) =0t =1y € R" : y L xt}
R™ = Nullspace(Proj,) @ Range(Projy)

Let Proj, =T, T?=T

Projection

LetV=W,®W,

Thenforv eV, v=w; +w,

Define Projy, (v) = w, and Projy, (v) = w,

Abstract Definition of Projection
A linear operator L such that L? = L



Determinant Interpretation of Determinant
Interpretation for 2 X 2 matrix A and det A

March-16-11 2 0
11:31 AM eg letA=|0 | Thendetd = (2)(1) - (0)(0) =2

. . X 2
The Determinant Function Consider Ly: R? — R2. The map is L, (x, y) = |(2) (1)| |y| = | x| = (2x,y)
Let Abe a1 X 1 matrix. The determinant of A, det(4) is . . y

The figure:
equal to the entry of A.
Let Abe a2 X 2 matrix fun Then
az1  azl’ L\||] L [rlll.\

det(a) = a0, — A12021 = aqq detlayy | — aq, detlagy, | -

AN

Let A = |a;;| be 3 x 3. We define
detA

Qz2 0423 dz1 dz3
=a det| | —a detl
1 332 333 12 az1 4ss
21 22
+a detl
13 az1 0azz

The area under the region is doubled by the transform.
Recursively, we define for n X n matrix A

n
. ) 111 _ —
detA = Z(_1)1+1a1j det]Ay;] letA = |0 4|.Then detA =4.Ls(x,y) = (x +y,4y)
j=1
Where A4 is the sub matrix of A obtained when we

remove row 1 and column j L\ I.}‘ ?]‘_,-]
J

I
Area Magnitude lﬂll] U' ]
Area is considered positive when the points are defined in
a widdershins fashion about the shape. When the points |
are described clockwise, the area can be considered [a tl] [01 0 [l,_‘ D]
negative. J (l. U)

Multiplying the area by -1 means a change in orientation. So the Area was multiplied by a factor of 4.

Fact
A 2 X 2 matrix A is invertible iff det A # 0. In general, for
anyn X n A, Aisinvertible iff detA # 0

Theorem
Foranyn X n A over F, Ais invertible iff det A + 0.

Proposition

Let A be n X n. Holding all rows but the 1st row fixed,
det A is a linear map of the first row R;. It is a function
fromF™ toF
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Determinant Properties lllustration of Theorem 4.3

aq1 iz ai3
March-18-11 A=|b;+kc; by+kc, bs+kes
11:32 AM as as; a3
Properties of Determinants Claim:
. . . s 11 Q12 QA2 11 Q12 Qi3
In the textbook, properties of determinant are built up in this sequence: det A = det| b, by by | Tk det| & ¢ cs
Theorems - . . a3z dzz Q433 az; dzz Qazz
(4.3) det Ajis linear as a function of each row when other rows are fixed. b, + kCz b3 + kc3 by + kcl by + ke,
Corollary: If A has a zero row, then det A =0 LHS = ay, detl | —agzdetl...| + a3 detl as;
N . By induction
(4.4)detA = > (=1)"*Ja;; det A;; for any fixed i LHS
j=1 _ b,
(Co-Factor expansion along row i) = ayy det |a32 a33| a32 a33 ” —agzdetl...|
A lead to (4.4) is the Lemma: If Bis n X n,n > 2 has row | equal to by
) + a3 det = RHS
ey(standard basis for F¥) then 13 ( |a31 as; | ‘131 ”

detB = (—1)i*k det By,
lllustration of Lemma for Theorem 4.4

Corollary: If A has two identical rows, then detA = 0 ayp A1z Q413
B=|0 0 1
(4.5) IF B is obtained from A by interchanging two rows, then detB = —det 4 az1 A3z a33 1 0 1 0 0
(4.6) If B is obtained from A by AR; + R; — R; i # j)action, then det B = det A detB = ay; detl | —ay, detl + ay5 det
a3z a3z az1 dzz azi;  az;

Corollary: If rank (4), n X n 4, is below n, then det A = 0 The new determinants are either 0 or same form but smaller so use induction.

leoroIIarY . . larA Ao = 0 P> ith Proof of Corollary
a matr|xn|s upper triangular A, Ay = 0 for i > j then Use brute force to check it is true for 2 X 2 matrices.
. ) For larger n, pick a row which is not part of the 2 identical rows. The determinant
detA = A;; = product of all d 1 ent - : ) ) ) -
€ l 1| it = productotall diagonal entries calculated using that row will be 0 because there are 2 identical rows in every sub -matrix,
i=

by induction.

lllustration of Theorem 4.6
Let B be obtained from A using AR; + R; = R;

Ry R, R Ry
B AT
Ri_ : Ri_ R;
|7 | J-1 A |1
detB detllRi+Rj|=ldetI R; I+det| Ry [=det| R; |
I Riyq I [Riv1) IRj+1I IR]+1I
L 1 L1 L 1 L : 1
R, Rn Ry Ry

Since the first matrix has two identical rows and thus has determinant 0.

Example
1 2 3
Evaluate det | 050 |

0 05
=1det|7 8|—2det|6 8|+3det|6 7|=1><40—2><0+3><—20=—50

or
=(-1)%*? x5 ><det|é Zl =5x—-10 = —50

Example
1 2 3
Find det |4- 5 1| over Z,
1 11
Lin comb of rows, then multiply a row by 2 = %
1 2 3 1 2 3 1 2 3
=det|o 4 3|=4xdet|o 1 6|=4xdetfo 1 ¢
0 6 5 0 6 5 0 0 4

=4xt—1)3+3x4xdet|0 1|=4><4><1=2

Example
11 1
Evaluate det|1 x x2|
1y y?

It is some multinomial involving x and y of degree at most 3.
By inspection, factors should be
(x—Dly—-1)x—y)

det|1 x x?
1y y°

If over R, pickx =0,y = 2

a=DUN-2) = 2a = (—1)"*2det]] = -1x2=-2

a=-1

= alx — 1)y — 1)(x — y) for some constant a
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More Det. Properties

March-23-11
11:34 AM

Theorem
det(AB) = detAdetB

Similar Matrices

Two n X n matrices A & B are similar if
there exists invertible P so that

A =P 'BP

Result
If A and B are similar then det A = detB

Example

LetT:V — V belinear, dimV = n. Let a
be a basis, and led § be another. Then
ITly and IT g are similar.

Determinant of Operator

Let T:V — V be a linear operation on n-
dimensional V. Then det T := det(IT1,)
for any ordered basis a

Theorem
det(Ty o T,) = detT; detT,

Determinant Properties Cont.
det(4) = det(4T)

Proof of Theorem
First see that it is true for elementary matrix A = E
Case 1:
Eisfrom I, AR; = R;
det(E) = Adet(l,) = 4
det(EB) = Adet(B) = det(E) det(B)
Case 2:
Suppose E is from I, by the action R; S R;
Then detE = —det(l,) = —1
det(EB) = —det(B) = det(E) det(B)
Case 3:
Suppose E is from I, by the action AR; + R; — R;
Then det(E) = det(l,) =1
det(EB) = det(B) = det(E) det(B)

Next, if Ais equal to E1E; ... Ey, then det(AB) = det(4) + det(B)
det(AB) = det(E;) det(Ey, ..., Ex) = -+ = det(E;) det(E;) ... det(Ey) det(B)
= det(ELE, ... Ex) det(B) = det(A)det(B)

Finally, if A is not invertible then AB is not invertible. Since A is not invertible, the RREF has a 0 row at
the bottom so det A is 0, as for AB so det AB = 0 so det(4) = det(4) det(B) = 0 X det(B) =0
[

Proof of Result
3P,A = P 1BP,det(A) = det(P~1BP) = det(P~ 1) det(B) det(P) = det(P~1) det(P) det(B)
= det(P~1P) det(B) = det(l,) det(B) = det(B)

Proof of Example

Recall the rule |L; o L, Ilﬁ = |L1|2|L2|2
T

V-V
IT g

a—a

Lot
T

V-V
ITlg

B—B

So:

T=10To1

ITlg=110T o 1l, = ILIITII115

Testing: |1|§|1|§ =1l =1,

Example

LetT:V -V

a =1{vy,v.4, 8 =1{v,, v, } be bases
a

Let ITlq = |

What is IT1g?

T(vy) = avy + cv,

T(v,) = bvy +dv,

Hence T'(v,) = bvy + dv, = dv, + by,

T(vy) =avy +cv, = cv, +av,

dl

Ans: Given

So

d c
g =1, |
Corollary

|? Z| and |Z Z| are similar.

Proof of Theorem
det(T; o T,) = det|T; o Ty |, = detIT; |, det| T, |, B

Proof of det(A) = det(AT)
For AR; » R;andR; SR;,ET =E
For AR; + R; = R;
Each E, ET are upper or lower triangular so det(E) = det(ET) = 1
Since this is true for elementary matrices, it should be true for all invertible matrices.
det AT = det(EE, ...E,)T = det(EY ... ETET) = det(EY) ... det(ET ) det(ET)
= det(E,) ...det(E,) det(E,) = det(E;) det(E,) ...det(E,) = det(EE, ...E,) = det(AT)
And for non-invertible A, AT is non-invertible so det A = det AT = 0
Suppose ATB = 1,then (ATB)T = 1T = BTA = 1 50 AT not invertible & A not invertible
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Similar Maps

March-28-11
11:30 AM

Proposition
If A and B are similar, then p(4) is similar to p(B).
Where p is a polynomial expression

n

p=) ax'
i=0

Similar Maps

Let Ly and L,:V = V be linear operators. we say that L, is
similar to L, if there exists an isomorphism P:V — V so that
Li=P lol,oP

Proposition
If Vis finite dimensional, then operators L1, L,:V — V are
similar iff IL{1, and 1L, 1, are similar.

Characteristic Polynomial
detlA — Al | is the characteristic polynomial of (n X n) A

Characteristic roots (Eigenvalues)

The roots of the characteristic polynomial of A are called the
characteristic roots of A.
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Proof of Proposition
n

Letplx) = ) aix' = ag+ ayx + azx? + - + apx™
i=0

i) A% is similar to B2,
Let A = P~'BP.Then A2 = P~'BPP~'BP = P™'BIBP = P~1B?P
ii) Similarly, A¥ is similar to B for each k > 3
iii)y pl4) = P~1p(B)P
n

n

pla) = ) aiAl= ) a;P'BIP
i=0 i=0
Example
Let L;: R? - R? by the rotation U by 20°. Let P: R? - R? be the reflection about the y-axis.
[i.e. Plx,y) = (=x,y)]
Let L, = P~'L,P. Then L; and L, are similar.
L, is the rotation U by 20°

Try
Is rotation counter clockwise by 20° similar to rotation counter clockwise by 30°
May be on exam

Proof of Proposition

(=) Suppose that there is an isomorphism T:V — V so that
L, =T 1L,T
Let a be any fixed basis. Then
ILilg = IT1Z L, 141T1,. Take P = T,

(&) Converse left as exercise

Example
Consider the two similar rotations mentioned earlier. Pick @ = standard basis. We get
cos20 —sin20

ILilg = |Sin 280 cos 22OO| is similar to -
_ | cos sin _-
2le =1 ZGina0  cos 20l WP =1 4l

Example of characteristic polynomials
1 2
A=
I3 4l
Then its characteristic polynomial is

aer(1L 2 A Oy _gelmA 2
detld — Al =det(|, =17 J)=det]" " % |=

(1-4—-21)—-2)3)=22-51-2



* Axiom of Choice

March-28-11
3:38 PM

If X is a finite set with n elements then X can be
partitioned into two (disjoint) parts of same
cardinality iff nis even.

Proposition
If X is an infinite set, then it can be partitioned into
two parts of the same cardinality.

Function Extension
Say G: A, — B, extends F: A; = By
if A, 2 A; and B, 2 By and G(4;) = B;
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Proof of Proposition

Consider the class C of all bijective functions fromasetAc XontoBC X,ANB =0
C is non-empty.

Definein C, f < g when g extends f.

C is partially ordered by <
We seek maximal f.
Let C be a chainin C

Let A= l Jdomf and B = l Jrangef
fec fec
f:A— Bbyifa € Athena € dom f; for some f; € C let f(a) = f;(a).
If a € dom f; for some f; € C then WLOG say that f; < f; so fila) = fj(a).
Hence f is well defined

dom f = A,range f = B.Itis easy to observe that A and B are disjoint and f is a bijection from A to B
Sofec

The maximal principle asserts that maximal f; exists.
The union of the domain A of f;, and its range B is either the whole X oris X\{x,}
Wearedoneif AUB = X
Else, AUB Uixgt =X
Select a sequence of distinct elements (a, )5~ from A.
Adjust fy to g:
g:AUixyt > B
9xo) = fylay)
glan) = folanyq)
gla) = fyla), for a & 1a,t Uixyt

Hence A U ixyt and B is a partition of X, and the presence of bijective g means A U ix4t and B are of the
same cardinality.



Eigenvalues/vectors Bxample '
Let L: R —» R“ be Projz

March-30-11 Then each non-zero vector on the line spanned by X is an
1134 AM eigenvector of L, and A = 1 is an eigenvalue.
Eigenvalues and Eigenvectors Each v # 0, perpendicular to X is also an eigenvector of L,and 1 = 0
Let V be a vector space over F. Let L: V — V be a linear is an eigenvalue of L.
operator. A scalar A is an eigenvalue of L if there exists v # 0 so
that L(v) = Av. Proof of Proposition

Let A be an eigenvalue of L4. Then, by definition, there exists
If v # 0and L(v) = Av forsome A € F, then v is called an X # 0 € F*sothat Ly(X) = AX. Thatis, AX = AX
eigenvector of L. AX—2X=0=>A-A,)X=0

This is equivalent to that A — A,, is not invertible.
Proposition Therefore, det(A — AI,,) =0
Eigenvalues of Ly: F™ — F™ (n X n A) are given by the Therefore, A4 is a characteristic root.

characteristic roots of A.
The converse is also true and can be observed through the proof

Hence, L4 has at most n distinct eigenvalues. done backwards.

Remark Example

Let L: V - V be an operator on finite dimensional V. Then 1 is Let V be the space of all infinitely differentiable functions on the real
an eigenvalue of L iff it is a characteristic root of |L|, for any line into the real line. (A subspace of F(R,R) )

fixed basis a for V. Let D:V — V be the differentiation.

Ax

Each function e”* is an eigenvector of D. Hence A is an eigenvalue of

D forevery 1 € R.

MATH 146 Page 36



Computational comments

April-01-11
11:32 AM

Given a finite list of vectors vy, ... vy in F™, how to extract a subset which is a basis for span tv;, ..

and extend that to a basis for the full F™

Method
Form the matrix
[v1|vy] .. |k ]| €1] 2] ... |en | and find its RREF, then read an answer out.

Example

Suppose that k = 4,n = 6 and that RREF of A is

01 0  x 0 0 = 0O

lo o1+« 00 « 0 ol

I0000010*00I

|0000001*00|

[0 0000O0O0O0 1 0

00 00 O0OO0OTO0OTU OGO 1

The then answer is {v,, v3} is a basis for spanivy, v,, v3, v, } . An extension to a basis for F¢ is

1v,y, V3,65, 63,65, 66t

If mission is to find a basis for span{vy, v,, ..., v} in F¥ then we could form
V1
[ -1
1”2
=17
[
L]
Vk
and find its RREF. At the end we produce a basis. For instance
O T T A
0 0 0 1 x5 x4
0 0 0 0 0 O

0 0 0 0 0 O
Then a basis for span vy, v,, v3, Vgt is 1 (1,%1,%5,0,%3,%4),(0,0,0, 1,%5,%5) 1, not {vy, vyt

k =4,n=6,RREF of Ais
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Comments

) The following are undefined:
April-04-11

11:33 AM L:U - V alinear map, dim(L).

Vectors vy, vy, ..., V. dim{vy, ..., v, }
Matrix A, dim A

V1, V3, ... V. They form a basis for V. Avoid saying v,, v,, ..., v, is a basis.
Correct: {vy, vy, ..., v, } is a basis

dim M3, (F) is defined, though dim 4 is undefined for A € M5, ,(F)

L:V — V alinear operator, V finite dimensional, det L is defined by det([L],)
When V is infinite dimensional, det L is undefined.
e.g. If D is the differentiation operator, then det D is defined when the
space it acts on is finite dimensional, like P, (R). It is undefined on P(R)

The characteristic polynomial of A is defined by det(A4 — AL,).
It cannot be computed using the RREF of A.

*Might be on exam

If A is similar to B, then det A = detB
trace A = traceB

rank A = rank B,nullity A = nullity B
Characteristic polynomial of A = B?

A~B = A%2~B?
A~B = p(A)~p(B)
A~B & C~D = AC~BD?

Ais aneigenvalue of A

(3 X # 0 so that AX = AX)
then A2 is an eigenvalue of A2

As A%X = A(4X) = A(AX) = 214A(x) = A(Ax) = 1%x
Similarly A is a root of det(4 — Al,,) = A% is root of det(A? — Al,))
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