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Background

There are three parts of the class, mathematical statistics, basic tools and application. 45% problem
set, 15% short project and 40% final exam.

1 Limit Theorems and Asymptotic Inference

1.1 Estimator and Finite Sample Properties

An estimator is an inference value of the parameters in the assumed distribution over a sample distri-
bution.

Definition 1. θ̂ is unbiased if E[θ̂] = θ. Bias(θ̂) = E[θ̂]− θ.

Definition 2. Let θ̂1, θ̂2 be two estimators of θ. If E[θ̂1] = E[θ̂2] = θ. If V ar(θ̂1) < V ar(θ̂2), then θ̂1

is more efficient than θ̂2.

Definition 3. MSE(θ̂) = E[(θ̂ − θ)2] = V ar(θ̂) + (Bias(θ̂))2

1.2 Inequalities and Convergence

Chebyshev Inequality: if X > 0, P (X > x) ≤ E[X]
x . Another form is P (|X − µ| > ε) ≤ V [X]

ε2
= σ2

nε2

1.3 LLN, CLT, and Delta Method

Law of Large Number

Suppose Xi are iid random variables with E[Xi] = µ and E[X2
i ] < ∞. Let X̄n = 1

n

∑n
i=1Xi. Then

∀ε > 0, P (|X̄n − µ| > ε)→ 0, as n→∞, i.e., Xn is consistent for µ.
Xn → X or Xn converges in probability to X ∈ R, if ∀ε > 0, P (|Xn −X| > ε)→ 0, as n→∞.

Properties of
p→

• Additive

• Scalar multiplicative

• Xn
p→ X, g is continuous =⇒ g(Xn)

p→ g(X)

1.3.1 op and Op notation

• Xn = op(bn) if Xn
bn

p→ 0, as n→∞.

• Xn = Op(bn) if ∀ε > 0,∃M , s.t. P (|Xnbn | > M) < ε,∀n.

• Xn = op(an), Yn = op(bn) =⇒ XnYn = op(anbn).

Xn converges to a random variable X in distribution, i.e. Xn
d→ X, if Fn(x) → F (x) at all

continuous points of F (x).

1.3.2 Moment Generating Function

If gn(t) = E[etXn ], ∀t ∈ R is the moment generating function of Xn; X is a random variable with mgf

g(t) = E[etX ], ∀t ∈ R; gn(t)→ g(t), ∀t ∈ R as n→∞, Then Xn
d→ X.

1.3.3 Central Limit Theorem

If Xi ∼ iid, E[Xi] = µ, V ar(Xi) = σ2, then
√
n(X̄−µ)
σ

d→ N(0, 1).
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1.3.4 Slutsky’s Theorem

If Xn
d→ X,Yn

p→ c ∈ R, then

• Xn + Yn
d→ X + c

• Xn · Yn
d→ cX

• Xn/Yn
d→ X/c

• g(Xn, Yn)
d→ g(X, c), g is continuous function (Continuous Mapping Theorem)

1.3.5 Delta Method

If
√
n(Xn − µ)

d→ N(0, σ2), then
√
n(g(Xn)− g(µ))

d→ N(0, [g′(µ)]2σ2).

Lemma 1. o(Op(1)) = op(1)

Proof. an = o(bn), anbn → 0, n→∞
zn = op(1), yn = o(zn). ∀γ > 0, P (|Zn| > Mγ) < γ. ∀ε, P (|Xn| > ε) = P (|Xnzn ||zn| > ε)→ .0.

Check the slides for matrix extension.

• Unbiased does not implies consistency.

• Convergences in distribution implies asymptotic in boundedness.

• CLT implies LLN.

Proof. If CLT, then Xn = Op(
1√
n

). Hence ∀δ > 0,∃M , such that P (|Xn| < M√
n

) < δ. ∀ε > 0,

choose n such that M√
n
< ε, P (|Xn| > ε)→ 0.

• d→ does not imply
p→.

1.4 Confidence Interval

A confidence interval C(X) for a parameter θ is a set of possible values which contains θ with some
specified probability.

Example

Suppose Xi
iid∼ N(µ, σ2), then

X̄n ∼ N(µ, σ2/n) =⇒
√
n
X̄n − µ
σ

d→ N(0, 1)

Pr(|X̄n − µ| ≤ cn) = Pr(X̄n − cn ≤ µ ≤ X̄n + cn)

= Pr(|
√
n(X̄n − µ)/σ| ≤

√
ncn/σ) = 1− α

1.
√
n(X̄ − µ)/σ ∼ N(0, 1)

2. S2 = 1
n

∑
(Xi − X̄)2 =⇒ S2/σ2 ∼ χ2(n− 1)

3. X̄n and S2 are independent.
√
n(X̄n − mu)

S
∼
√
N(0, 1)

√
χ2(n− 1) ∼ student-t distribution with degree of freedom of n− 1

=⇒ cn = tα
2
(n− 1)

S√
n

Note that the confidence interval is the finite sample properties.
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1.4.1 Large Sampling

√
n(X̄n − µ)

d→ N(0, σ2)

S2 p→ σ2

By Slutsky’s Theorem, √
n(X̄n − µ)

S

d→ N(0, 1)

Thus

cn = zα
2

S√
n

2 Linear Models

2.1 Normal Linear Models

Suppose N realizations are sampled from a large population and Scalar output is Yi. Then we can
write Xi = (Xi0, · · · , XiK)′ and ∀i,Xi0 = 1. We need to explain the distribution of Yi using Xi.

Let’s use a normal linear model where

Yi = X ′iβ + εi

or
Y = Xβ + ε

Note ε is anything that cannot be captured by the model (or Xi).

Assumption

1. (Xi, Yi) are i.i.d. with the first four moments finite and E[XiX
′
i] full rank.

• Empirically, econometrist uses growth rate instead of GDP to model countries’ growth
prospect.

• When modelling the impact of tax credit on firms’ R&D decision, we may get correlated
relationships between different firms because they may in the same industry.

2. εi|Xi ∼ N(0, σ2)

3. εi ⊥ Xi with normalization E[εi] = 0

4. E[εi|Xi] = 0 is a weaker version of the 3

5. E[εi ·Xi] = 0

The ordinary least squares estimator solves

min
β

N∑
i=1

(Yi − β′Xi)
2

The solution is
β̂ols = (X ′X)−1(X ′Y )

Now based on assumption 2, then we will get

β̂ols|X ∼ N(β2, σ2 · (X ′X)−1)

We know the following properties about β̂.

1. β̂ is unbiased
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2. As n→∞, V ar(β̂1)→ 0.

3. β̂1 is consistent.

4. The variance of β̂1 decreases as the variance of the errors, σ2 decreases.

5. The variance of β̂1 decreases as the variance of the X’s,
∑n

i=1(Xi − X̄)2 increases

2.1.1 Estimate of σ2

We estimate the error εi by the residual ε̂i.

σ̂2 =

∑
i ε̂

2
i

n− 2

where in general, the degrees of freedom associated with a set of residuals is equal to the number of
observations minus the number of parameters estimated. To understand the rule’s application to simple
linear regression, it is helpful to think about the case when n = 2: the least squares estimated line
connects the two points, and both residuals are zero. There are no degrees of freedom for estimating
the variance; only by adding a third or more observations there is any information about variability.

2.1.2 Asymptotic Distribution of β̂ols

If we assume assumption 3, √
N(β̂ols − β)

d→ N(0, σ2 · E[XiX
′
i]
−1)

Proof.

β̂ − β = (
∑
i

XiX
′
i)
−1(
∑
i

XiYi)− β

= (
∑
i

XiX
′
i)
−1(
∑
i

XiYi)− (
∑
i

XiX
′
i)
−1(
∑
i

XiXi)β

= (
∑
i

XiX
′
i)
−1[
∑
i

Xi(X
′
iβ + εi)]− (

∑
i

XiX
′
i)
−1(
∑
i

XiXi)β

= (
∑
i

XiX
′
i)
−1
∑
i

Xiεi

= (
1

n

∑
i

XiX
′
i)
−1(

1

n

∑
i

Xiεi)

p→ (
1

n
E[XiX

′
i])
−1N(E[Xiεi], V ar(Xiεi))

= (
1

n
E[XiX

′
i])
−1√nN(0, E[XiX

′
i]σ

2)

√
n(β̂ − β)

d→ N(0, E[XiX
′
i]
−1σ2)

We will find that σ̂2 = 1
N−K−1

∑
i(Yi −X ′iβ̂ols)2 is unbiased

2.1.3 Construct Confidence Interval

Hence the confidence interval for the β̂ols is the following

Cl0.95 = (β̂k − 1.96

√
V̂kk, β̂k + 1.96

√
V̂kk)

Testing whether βk = 0.1. Then compare t = βk−.1√
V̂kk

against 1.645 assuming 10% significant value.
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2.1.4 Conditional Expectation and the Best Linear Predictor

What is the difference between assumption 4 and assumption 5? Let’s start with assumption 4, then
if Yi = E[Yi|Xi] + εi, E[Yi|Xi] is an unknown function of Xi, then E[εi|Xi] = 0 or E[εih(Xi)] = 0,∀h.
Then under assumption 4, we know the correct functional form of the conditional expectation E[Yi|Xi].

Regarding assumption 5, β̂ols is the best linear predictor. “Best” in the sense that it minimizes
the mean squared error. Assumption 5 does not require that we know the correct functional form of
E[Yi|Xi]. If E[Yi|Xi] is non-linear, β̂ols provides the best linear approximation of E[Yi|Xi].

2.2 Robust Variances

Under assumption 5, E[εi ·Xi] = 0, then

√
N(β̂ols − β)

d→ N(0, Vrobust)

where
Vrobust = E[XiX

′
i]
−1E[ε2

iXiX
′
i]E[XiX

′
i]
−1

Note robust variance allows εi can be dependent on Xi.

2.3 Bootstrap

Alternative way to estimate the variance of β̂ols through bootstrapping. In other words, resample from
the population distribution which can be approximated by the sample distribution. Suppose we have
a random sample of size N from a distribution with cdf of FX(x). Suppose we know the cdf, then we
can replace all expectations with integrals

µ =

∫
xdF (x), σ2 =

∫
(x− µ)2dF (x)

Therefore,

V̂ (X̄) =
1

N

∫
(z −

∫
xdF (x))2dF (z)

We can estimate F (x) using the empirical distribution function. F̂ (x) =
∑

i 1xi<x/N where 1A is the
indicator function for the event A. Hence we can get

µ̃ =
1

N

∑
i

Xi

and
σ̃2 =

∑
i

(Xi − X̄)2/N

or
Ṽ (X̄) = S2(N − 1)/N2

which is close to the standard estimate S2/N .
We can do this in much more complex settings. Best linear predictor: β = E[XiX

′
i]
−1E[XiYi]. Given

sample N, {(Yi, Xi)}Ni=1, β̂ols = (
∑

iXiX
′
i)
−1(
∑

iXiYi). We can resample at random with replacement
(Yi, Xi), to get new sample {(Xbj , Ybj)}Nj=1. Then we can compute our mean and variance.

2.3.1 Parametric Bootstrap

Instead of bootstrapping pairs (Yi, Xi), we can bootstrap the residuals ε̂i = Yi −X ′iβ̂ols.
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2.3.2 Jackknife

For each i, calculate the estimator leaving out the ith observation X̄(i) = 1
N−1

∑
j 6=iXj . With those N

new estimates µ, construct the variance estimate V̂ (X̄) = N−1
N

∑
i(X̄(i) − X̄)2

V (X̄(i) − X̄) = σ2(
1

N2(N − 1)
+

1

N2
) ≈ σ2/N2

E(V̂ (X̄)) = NE(X̄(i) − X̄)2 ≈ σ2/N

To use Jackknife is to reduce potential computation complexity arising from using bootstrap since
the B would be potentially way larger than N .

Example: NLSY

Using log transformation on earnings is to make sure prediction on earnings is positive. Using second
order polynomial on work experience is because that the marginal returns of work experience should
be diminishing.

2.3.3 Delta Method

Often we are interested in the average predicted value of the dependent variable given the independent
variables. They can be complicated functions of the parameters. We use the delta method to compute
the standard error for the predicted values.

What is the interpretation of β̂ols? This can be explained by the residual regression.

Y = β0 + β1X1 + · · ·+ βkXk + ε

Xk = α0 + α1X1 + · · ·+ αk−1Xk−1 + u

=⇒ βk =
Cov(u, Y )

V ar(u)

The residual variation of Xk is the βk capturing.
What happens when we fail to include every explanatory variable? This might lead to biased

estimation of the parametric estimation. When we are looking at non-linear cases, we can use delta
method as well to estimate.

3 Clustering

Independence is a strong assumption and often may not hold so we need to relax this condition by
clustered pairs of (Yi, Xi). Inference: number of clusters → ∞, number of observations within each
cluster is fixed. Often the number of observations per group might be large compared to the number
of clusters but increasing the number of observations does not give us consistent estimate. We will see
the dependence structure greatly affects the standard errors.

Let Z be the N × S cluster indicator with element Zis = 1Si=s.
Let LN be the N dimensional vector with all elements equal to 1. Z ′LN gives a S vector with the

sth element equal to Ns, the size of cluster s. Z ′Z be the S×S diagonal matrix with the sth on diagonal
element equal to the size of cluster s.

3.1 Homoskedastic Case

Consider the linear model Yi = Xiβ + εi.

E[εε′|X,Z) = Ω = σ2
ε((1− ρ) · IN + ρ · ZZ ′)

where IN is the N ×N identify matrix.
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In this model,

E[εiεj ] =


σ2
ε i = j

ρ · σ2
ε Si = Sj , i 6= j

0 Si 6= Sj

An alternative way to think about the error component structure is a “random effect” model:

E[εiεj ] =


σ2
η + σ2

ν i = j

σ2
ν Si = Sj , i 6= j

0 Si 6= Sj

In general, the variance of the OLS estimator is

V (β̂ols) = (X ′X)a−1 · (X ′ΩX) · (X ′X)−1

In the first model, we have

V (β̂ols) = Vols · [IK+1 + ρ · (X ′ZZ ′X(X ′X)−1 − IK+1]

In the random effect model, we have

V (β̂ols) = σ2
η(X

′X)−1 + σ2
ν(X ′X)−1(X ′ZZ ′X)(X ′X)−1

Define ε̃ = (IN − Z(Z ′Z)−1Z ′)ε̂ where ε̂ is the residual of regressing ε̂ on Z. Hence the variance
estimator of ε̃ is σ̃2

ε = ε̃′ε̃/(N − S −K − 1)

E[ε̃′ε̃/(N − S −K − 1)] = tr(E[ε̃ε̃′])/(N − S −K − 1)

= tr(E[IN − Z(Z ′Z)−1Z ′ε̂ε̂′(IN − Z(Z ′Z)−1Z ′)])/(N −K − S − 1)

≈ tr(E[IN − Z(Z ′Z)−1Z ′εε′(IN − Z(Z ′Z)−1Z ′)])/(N −K − S − 1)

= tr(IN − Z(Z ′Z)−1Z ′)σ2[(1− ρ)IN + ρZZ ′](IN − Z(Z ′Z)−1Z ′)/(N −K − S − 1)

= σ2(1− ρ)tr(IN − Z(Z ′Z)−1Z ′)/(N −K − S − 1)

= σ2(1− ρ)(N − S)/(N − S −K − 1)

Therefore, σ̃2
ε estimates σ2

ε(1− ρ). and ρ̂ = σ̂2
ε−σ̃2

ε
σ̂2
ε

.

4 Maximum Likelihood

The estimator of the maximum likelihood for σ2 is slightly different

σ̂2
mle =

1

N

N∑
i=1

(Yi −Xiβ)2

What is a maximum likelihood estimator? Consider an i.i.d. random sample X1, · · · , Xn from
f(x|θ). We observe data Xi = xi, i = 1, · · ·n. The likelihood function is the joint density of the data
as a function of the parameters, here θ

L(θ|X1 = x1, · · · , Xn = xn) = Pr(X1 = x1, · · · , Xn = xn|θ) =

n∏
i=1

f(xi|θ)

The Maximum Likelihood Estimator for θ is defined by θ̂ = arg maxθ L(θ|X = x)
In general, it is easier to solve the log of likelihood function since it generally converts the likelihood

functions into a sum instead of multiplication. Computationally, it is much more straightforward to
solve.

Is the MLE consistent? Let Qn(θ) = 1
n

∑
i ln f(Xi|θ) and Q0(θ) = E[ln f(Xi|θ)]. Then we can show

that Qn(θ) converges uniformly in probability to Q0(θ) and it is maximized at θ̂mle. In addition, we

know that Q0(θ) is maximized at the true parameter value θ0. Then θ̂mle
p→ Q0(θ).

In addition, we should expect an information inequality meaning E[ln f(X|θ0)] ≥ E[ln f(X|θ)].
9



Proof. We can show the following

E[ln f(X|θ0)]− E[ln f(X|θ)] = E[ln
f(X|θ0)

f(X|θ)
] = E[− ln

f(X|θ)
f(X|θ0)

] ≥ ln (E[
f(X|θ)
f(X|θ0)

])

≥ − ln

∫
f(X|θ)
f(X|θ0)

f(X|θ0)dx

≥ − ln

∫
f(X|θ)dx ≥ 0

Jensen’s Inequality: if g(z) is convex, E[g(z)] ≥ g(E[z]). Then

g(z) = g(E[z]) + g′(E[z])(z − E[z]) + g′′(z̃)(z − E[z])2

≥ g(E[z]) + g′(E[z])(z − E[z])

E[g(z)] ≥ g(E[z]) + g′(E[z])(z − E[z]) ≥ g(E[z])

The inequality is strict if Pr{f(X|θ) 6= f(X|θ0)} > 0 for all θ 6= θ0, which means that there is no
other θ giving the same distribution as θ0 (identifiability).

4.1 Asymptotic Distribution of MLE

The score function is defined as

S(θ) =
∂

∂θ
ln f(Xi|θ)

Define H(θ) as the derivative of score function and information matrix

I(θ) = E

[
∂

∂θ
ln f(Xi|θ) ·

∂

∂θ
ln f(Xi|θ)′

]
4.1.1 Properties of the Score Function

• E[S(Xi, θ0)] = 0.

E[S(Xi, θ0)] =

∫
∂

∂θ
ln f(X, θ)|θ=θ0f(X, θ0)dx

=

∫
1

f(X, θ0)

∂f(X, θ)

∂θ
|θ=θ0f(X, θ0)dx

=
∂

∂θ

∫
f(X, θ)dx|θ=θ0 = 0

• I(θ0) = −H(θ0).

• ∂
∂θ

∑n
i=1 ln f(Xi|θ) =⇒ 1

n

∑
i
∂ ln f(Xi|θ)

∂θ = 0

0 =
1√
n

∑
Si(θ0) +

1

n

∑ ∂Si(θ̃)

∂θ

√
n(θ̂mle − θ0)

•
√
n(θ̂mle − θ0)

d→ N(0, H−1IH−1)

V ar(Si(θ))|θ=θ0 = E[Si(θ)S
′
i(θ)]− [E[Si(θ)]]

2|θ=θ0 = E[Si(θ)S
′
i(θ)]

1

n

∑ ∂S(θ̃)

∂θ

p→ E[
∂S(θ̃)

∂θ
] = H(θ̃)→ H(θ0)

10



4.1.2 Variance Estimation

The asymptotic variance V̂ = −H−1 depends on the hessian of the likelihood function at θ0, which is
a measure of the curvature of the likelihood at its maximum.

4.1.3 Cramer Rao

If θ̂ = g(X1, · · · , Xn) is an unbiased estimator of θ, then

V ar(θ̂) ≥ 1

nI(θ)

where I(θ) is the Fisher information defined by

I(θ) = −E[
∂2

∂θ2
ln f(Xi|θ)]

Proof. Let θ̂ = g(x) be unbiased. Then ∫
g(x)f(x, θ)dx = θ∫
g(x)

∂f(x, θ)

∂θ
dx = 1

S(x, θ) =⇒
∫
g(x)[

∑
S(xi, θ)]f(x, θ)dx = 1

E[g(x)S(x, θ)] = 1

Cov(g(x), S(x, θ)) = E[g(x)S(x, θ)]− E[g(x)]E[S(x, θ)] = 1

We know

V ar(g(x)) ≥ 1

V ar(S(x, θ))
≥
[
E[S(x, θ)S′(x, θ)− E[S(x, θ)2]

]−1 ≥ E[SS′]−1 = [nI(θ)]−1

4.2 Duration Method

The duration model is initiated to model the unemployment by Lancaster (1979). The economic theory
underlying Lancaster’s analysis is job search theory. An unemployed individual is assumed to receive
job offers, arriving according to some rate λ(t), such that the expected number of job offers arriving in
a short interval of length dt is λ(t)dt. Each offer consists of some wage rate w, drawn independently of
previous wages, from some distribution with distribution function F (w). The offer is compared to some
reservation wage w̄(t), and if the offer is better than the reservation wage, that is with the probability
1− F (w̄(t)), the offer is accepted. The reservation wage is set to maximize utility. Suppose the arrival
rate is constant over time. In that case, the optimal reservation wage is also constant over time, and the
probability of receiving an acceptable offer in a short period tof time dt is θdt, with θ = λ(1−F (w̄(t))).

The constant acceptance rate implies that the distribution for the unemployment duration is expo-
nential with mean 1/θ and probability density function f(y) = θ exp(−yθ). This distribution widely
used for durations fo various types. The mean and variance for the exponential distribution are 1/θ
and 1/θ2 respectively. The expected value of the remaining duration conditional on survival up to c is
E[Y −c|Y > c] = 1

θ ; this does not depend on the elapsed duration .This is known as the lack of memory
property.

Let Yi be the ith man’s unemployment spell and Xi be ith characteristics. Assume the conditional
density of Yi given Xi is exponential with arrival or hazard rate θ = exp(β0 + β1X). The conditional
density f(y|x, β0, β1) = h(y) · S(y) = exp(β0 + β1x) exp(−y exp(β0 + β1x)). This is an extension of the
exponential distribution allowing the arrival rate to depend on covariates. The log likelihood function
is

L(β0, β1) =

N∑
i=1

log f(yi|xi, β0, β1) =

N∑
i=1

β0 + β1xi − yi exp(β0 + β1x)

. The maximum likelihood estimator chooses the θ = (β0, β1) that maximizes the log likelihood function.
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5 Sampling

For a random sample of people entering unemployment, we observe the exact unemployment duration
yi. However, this may not always the case. Suppose we observe a number of people all becoming
unemployed at the same time but we only observe if they exited unemployment, di, be fixed point in
time c. Hence our likelihood function has to incorporate the survival.

L(θ) =
∏
i

F (c|θ)di · (1− F (c|θ)(1−di) =
∏
i

S(c|θ)(1−di)(1− S(c|θ))di

Suppose we know the exact exit time if occurs before c but only an indicator if after c, then the
likelihood function is as following

L(θ) =
∏
i

f(yi|θ)di · S(c|θ)(1−di) =
∏
i

h(yi|θ)di · S(yi|θ)di · S(c|θ)(1−di)

or
L(θ) =

∏
i

h(ti|θ)di · S(ti|θ)

where ti = min(yi, c).
By solving the MLE, we get θ̂MLE = d̄/t̄. If we ignore the censoring and assume the ones censored

at c exited at c, this leads to an over-estimate of θ, θ̃ = 1/t̄. If we discard the observations that did not
exit before c, this also leads to an over-estimate of θ, θ̄ = (

∑
i di)/(

∑
i di · ti).

5.1 Stock Sampling

So far we have assumed that we start observing the individuals at the time of entering the unemploy-
ment, which is called flow sampling. If we sample from the stock of unemployed, i has been unemployed
for si = 4 and finds a job after 6 weeks, i.e., yi = 10. In this case, let si be the incomplete duration of
unemployment spell for i before he or she was first observed in the sample

L(θ) =
∏
i

f(yi|θ/S(si|θ) =
∏
i

h(yi|θ) ·
S(yi|θ)
S(si|θ)

However we will need to use numerical methods to find the maximum likelihood estimator.
One can do a regression on this instead of the maximum likelihood estimation. It is easy to show that

the MLE estimator has lower variance than the one of OLS. Using least squares instead of maximum
likelihood in this case is equivalent to throwing away 40% of the observations.

6 Hypothesis Testing

So far we have assumed that the hazard function is constant over time, h(y|x, θ) = exp(x′β). This
means that for individual i, the chance of finding a job on the first day of unemployment is the same
as that of the 50th day conditional on that i has been unsuccessful finding a job in the first 49 days.
We let the hazard function vary with y by using the Weibull distribution

f(y|x, β, α) = (α+ 1) · yα exp(x′β) exp(−yα+1 exp(x′β))

We can test if constant hazard rate over time is a reasonable assumption.

H0 : α = 0 vs H1 : α 6= 0

Consider three classical tests: likelihood ratio, the Wald, and the Rao’s score test. Next we introduce
general notation and specific formula for testing the scale parameter in the Weibull model.

Suppose we have a model for random variable Z with the density function f(z|θ0, θ1) where we split
the parameter θ into two parts. The dimension of the full parameter vector θ is K while the dimension
of θ0 and θ1 is L0 and K1. Note here we only model the conditional distribution of Yi|Xi, but we can
think of the marginal distribution of Xi as known.

12



6.1 Likelihood Ratio Test

Now, Let θ̂u denote the unrestricted MLE and θ̂r denote the estimator based on the restricted model
such that θ̂1r = arg maxθ1 L(0, θ1). The likelihood ratio test statistic is

LR = 2(L(θ̂u0, θ̂u1)− L(0, θ̂r1))

where LR ∼ χ2(K0) under H0.
Why is it reasonable test statistics?

L(θ) ≈ L(θ̂) +
∂L

∂θ
(θ̂)(θ − θ̂) + 0.5

∂2L

∂θ2
(θ̂)(θ − θ̂)2

LR = 2(L(θ̂)− L(θ)) ≈ −∂
2L

∂θ2
(θ̂)(θ − θ̂)2 ≈ NI(θ̂)(θ − θ̂)2 ∼ χ2(K0)

√
N(θ − θ̂) d→ N(0, I−1(θ))

Here K0 is the dimension of the θ0.

6.2 Lagrange Multiplier Test

If the limiting log likelihood function is maximized at θ0 = 0. The Lagrange multiplier test statistic is
defined as

LM =
1

N

∑
S(z0, 0, θ1r)

′ · Î−1
∑

S(zi, 0, θ1r) ∼ χ2(K0)

under H0.

∂L

∂θ
(θ̂) ≈ ∂L

∂θ
(θ) +

∂2L

∂θ2
(θ)(θ̂ − θ) = 0

(θ̂ − θ) = −∂
2L

∂θ2
(θ)−1∂L

∂θ
(θ)

√
n(θ̂ − θ) = I−1(θ)

1√
n

∑
S(zi, θ)→ N(0, I−1(θ))

1

n

∑
(S(zi, θ))

′I−1(θ)
∑

S(zi, θ) ∼ χ2(K0)

There is a small advantage of LM test because it avoids calculating the unrestricted estimator which
can be complicated.

6.3 Wald Test

If the null hypothesis is correct, θ̂u0 should be close to 0. Let the inverse of the information matrix be

I−1 =

(
l00 l01

l10 l11

)
The Wald test is defined as

W = Nθ̂u0(l̂00)−1θ̂u0 ∼ χ2(K0)

√
n(θ̂ − θ) d→ N(0, I−1)

√
n

(
θ̂0u − θ̂0r

θ̂1u − θ̂1r

)
d→ N(0,

(
l00 l01

l10 l11

)
)

√
n(θ̂0u − 0)

d→ N(0, I00)

Nθ̂u0(l̂00)−1θ̂u0 ∼ χ2(K0)
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7 Bayesian Inference

We have a random variable X which has probably density or probability mass function f(x, θ). θ is an
unknown parameter and we would like to know what the plausible values are. In other words, we believe
there are some prior and our experience influencing the outcome of our belief, posterior distribution.
Suppose θ is the prior and the we can write the posterior distribution using Bayes’ theorem

fθ|X(θ|x) =
fX|θ(x|θ) · fθ(θ)∫
fX|θ(x|θ) · fθ(θ)dθ

When assuming observations are independent, then the posterior distribution can be written as
proportional of likelihood function such as

p(θ|X1, X2, · · · , XN ) ∝ L(θ|X1, · · · , XN ) · p(θ)

7.1 Berstein-Von Mises theorem

Suppose we have N observations. In general, the posterior distribution of θ is approximately
√
N(θ − θmle)|X1, · · · , XN ∼ N(0, I−1)

when N is large.

7.2 Discrete Choice Models

We are interested in models where the dependent variable is discrete.
Let’s consider the decision to go to college. Linear model is Yi = X ′iβ + εi. Model has to have

heteroskedasticity. Fit using a sigmoid function.

8 Generalized Methods of Moment

In GMM estimation we are going to look at estimation problems of the following type. We are given
a function ψ(·), such E[ψ(Z, θ)] = 0 at some unknown true value θ0, and this expectation differs from
zero for all other values θ. The vector ψ(Z, θ) is a known function of the observed random variable Z
and the unknown parameter θ. ψ is the moment function and has dimension M . θ is the K dimensional
parameter of interest. We are interested in two cases: M = K the just identified case, and M > K the
over identified case. If M < K, typically we can’t point identify the parameters but can derive bounds
on them.

8.1 Examples

8.1.1 Maximum Likelihood

max
θ

∑
i

log f(Yi|Xi,θ) = θ̂MLE

Thus

E[S(y, x, θ) = E

[
∂ log f

∂θ
(y|x, θ)

]
= 0|θ=θ0

ψ(y, x, θ) = S(y, x, θ)

8.1.2 Instrumental Variables

Consider
Yi = X ′iβ + ε

such that E[Xiε] 6= 0
Here

E[Zi(Yi −X ′iβ)] = 0

where Zi satisfies E[Ziεi] = 0 and E[XiZi] 6= 0 then ψ(X,Y, Z, β) = Z(Y −X ′β)

14



8.1.3 Panel Data with fixed effects

Yit = X ′itβ + αi + εit, t = 1, 2

E[Xi(αi + εit)] 6= 0

since E[Xiαi] 6= 0

Yi2 − Yi1 = (Xi2 −Xi1)′β + (εi2 − εi1)

where Xit ⊥ εis

E[h(Xi1, Xi2)(Yi2 − Yi1 − (Xi2 −Xi1)′β)] = 0

8.1.4 Regression with estimated regressors

Yi = X ′iβ + γ(wi − E[wi|Zi]) + εi

where wi = Ziδ + ηi

• δ̂ = (
∑

i ZiZ
′
i)(
∑

i Ziw
′
i)

• η̂ = wi − Z ′iδ̂

• Yi = X ′iβ + γη̂i + εi

Then we can consider the following ψ

ψ1(y, x, w, z, δ, β, γ) = z(w − z′δ)

ψ2(y, x, w, z, δ, β, γ) =

(
x

w − z′δ

)
(y − x′β − (w − z′δ)x)

8.2 GMM: Example I

•
E[Yi1 −X ′iβ]2 = E[wi + εi1 + ηi1]2 = σ2

w + σ2
ησν/(1− α2)

ψ1 = (yi1 −X ′iβ)− σ2
w − σ2

ν/(1− α2)− σ2
η

•
E[(Yit −X ′iβ)(Yit+s −X ′iβ)] = σ2

w + σ2
η + αsσ2

ν/(1− α2)

Hence
ψ2 = (yit − x′iβ)(yit+s − x′iβ)− (σ2

w + σ2
η + αsσ2

ν/(1− α2))

8.3 GMM Example II

Et

[
β ∂U∂c (ct+1, γ)
∂U
∂c (ct, γ)

pt+1 + dt+1

pt
− 1

]
= 0

15



8.4 GMM: consistency

Consider the identified case and the estimator

1

N

N∑
i=1

ψ(Zi, θ̂) = 0

Under a set of regularity conditions, θ̂ is a consistent estimator of θ0. That is
√
N(θ̂ − θ0)

d→ N(0, (Γ′)−1∆Γ−1)

where

Γ = E

[
∂ψ′

∂θ
(Zi, θ0)

]
and

∆ = E[ψ(Z, θ0) · ψ(Z, θ0)′]

Consider the following

0 =
1

N

N∑
i=1

ψ(Zi, θ̂)

=
N∑
i=1

ψ(Zi, θ) +
1

N

N∑
i=1

∂ψ′

∂θ
(Zi, θ̂)(θ̂ − θ0)

√
N(θ̂ − θ) ≈ −(Γ′)−1

N∑
i=1

ψ(Zi, θ)

MLE We know that ∂ ln f
∂θ (Z, θ) = ψ(Z, θ). Then we know that

(Γ′∆−1Γ)−1 =

{
E

[
∂ψ

∂θ
(Z, θ0)′

]′
E[ψ(Z, θ0)ψ(Z, θ0)′]−1E

[
∂ψ

∂θ
(Z, θ0)′

]}−1

=

{
E

[
∂2 ln f

∂θ∂θ′
(Z, θ0)′

]′
E

[
ln f

∂θ
(Z, θ0)

ln f

∂θ
(Z, θ0)′

]−1

E

[
∂2 ln f

∂θ∂θ′
(Z, θ0)′

]}−1

= I(θ0)−1

OLS ψ(y, x, β) = x(y − x′β)

βblp = E[xix
′
i]
−1E[xiyi]

Γ = E[xix
′
i]

∆ = E[xiε
2
ix
′
i]

εi = yi − x′iβblp

Regression with estimated regressor ψ(y, x, w, z, δ, β, γ) =

 z(w − z′δ)
x(y − x′β − (w − z′δ)γ)

(w − z′δ)(y − x′β − (w − z′δ)γ)


Γ =

 −ziz′i 0 0
xiziγ0 −xix′i −xiηi

−zi(yi − x′iβ0 − (wi − ziδ0)γ0) + ηiz
′
ix0 −ηix′i −η2

i


where εi = yi − x′iβ0 − (wi − ziδ0)γ0.

∆ = E

 η2
i ziz

′
i ziηix

′
iεi ziηiεi

xiz
′
iηiεi ε2

ixix
2
i xiηiεi

ziηiεi x′iηiε
2
i η2

i ε
2
i


Suppose E[εi|xi, zi] = E[ηi|xi, zi], or εi ⊥ ηi. Then Γ(3, 1) = Γ(3, 2) = Γ(2, 3) = 0.
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8.5 GMM: over-identified case

We have a function ψ : RK → RM such that E[ψ(Zi, θ)] = 0 ⇐⇒ θ = θ0. How do we construct our
estimator when M > K. The idea is to minimize the quadratic form

QC(θ) =

(
1

N

∑
i

ψ(Zi, θ)

)′
C

(
1

N

∑
i

ψ(Zi, θ)

)

where C is a M ×M positive semi-definite matrix.
Alternatively, we can use the method called empirical likelihood to get an estimator for θ. The idea

is the following

• Consider the joint distribution of Z

• Compute the empirical probability distribution using discrete approximation and the restrictions
given by the moment conditions

• Compute the parameter estimate θ̂ as the solution to the moment conditions at the estimated
probabilities.

8.5.1 Two step estimator

We want to choose the weight matrix C to minimize the asymptotic variance of the estimator.

θ̂ = arg min
θ
QC(θ)

Consider a 2× 2 matrix C, then θ̂λ = λX̄ + (1− λ)Ȳ where

λ =
2C11 + C12 + C21

2(C11 + C12 + C21 + C22)

The asymptotic variance of θ̂λ is

λ2σ2
x + (1− λ)2σ2

Y + 2λ(1− λ)σXY

Choose λ by minimizing the asymptotic variance

λ =
σ2
Y − σXY

σ2
X + σ2

Y − 2σXY

Therefore,

C =

(
σ2
X σXY

σXY σ2
Y

)−1

= ∆−1

This result is true in general, thus we look for θ̂ that minimizes Q∆−1(θ).

8.5.2 Large Sample Properties

g(θ̂) = 2

[
1

N

∑
i

∂ψ′

∂θ
(Zi, θ̂)

]
CN

[
1√
N

∑
i

ψ(Zi, θ̂)

]
= 0

0 = Γ′C0

[
1√
N

∑
i

ψ(Zi, θ0)

]
+ Γ′C0

[
1

N

∑ ∂ψ

∂θ′
(Zi, θ̂)

]√
N(θ̂ − θ0)

√
N(θ̂ − θ0) ≈ −(Γ′C0Γ)−1

(
Γ′C0

1√
N

∑
ψ(Zi, θ)

)
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8.5.3 Optimal Weight Matrix

C0 = ∆−1 is the optimal choice within the class of estimators minimizing a quadratic form of the type
QC(θ).

C0 = ∆−1 + aA

V = (Γ′C0Γ)−1(Γ′C ′0∆C0Γ)(Γ′C0Γ)−1

=
Γ′C0∆C0Γ

(Γ′C0Γ)2
=

Γ′(∆−1 + aA)∆(∆−1 + aA)Γ

(Γ′(∆−1 + aA)Γ)2

=
Γ′(I + aA∆)(∆−1 + aA)T

(Γ′∆−1Γ + aΓ′AΓ)2
=

Γ′∆−1Γ + 2aΓ′AΓ + a2ΓA∆AΓ

(Γ′∆−1Γ + aΓAΓ)2

∂V

∂a
= 0, when a = 0,

∂2V

∂a2
> 0

∂V

∂a
=

1

()3
[2(Γ′AΓ)(Γ′∆−1Γ)− 2(Γ′∆−1Γ)(Γ′AΓ)] = 0

8.5.4 Empirical Likelihood

We use a very similar idea to demonstrate semi-parametric efficiency, due to Chamberlain.

FOC
∑
i δik
πk
− λγYk − µ = 0, ∀k. Therefore,

xπk,
∑
k

:
∑
i

∑
k

δk − λ
∑
k

γYkπk − µ
∑
k

πk = 0 = N − µ =⇒ µ = N

Hence

λγYk +N =

∑
δik
πk

=⇒ πk =

∑
i δik

λγYk +N
=

p̂k
1 + λγYk/N

Since λ
∑

k γYkπk = 0, then

=
∑
k

p̂kγYk
1 + γYkλ/N

=
∑
k

1

N

∑
i

δik · γYk
1 + γYkλ/N

=
1

N

∑
i

∑
k

δik · γYk
1 + γYkλ/N

=
1

N

∑
i

Yi
1 + Yiλ/N

= 0

θ =
∑
k

πkγXk∑
k

πkγxk =
∑
k

p̂kγXk
1 + γYkλ/N

=
∑
k

p̂kγXk
1 + γYkλ/N

=
∑
k

1

N

∑
i

δik · γXk
1 + γYkλ/N

=
1

N

∑
i

∑
k

δik · γXk
1 + γYkλ/N

=
1

N

∑
i

Xi

1 + Yiλ/N
= 0

0 =
∑
i

ψ(Yi, Xi, t, θ)

ψ(y, x, t, θ) =

(
(θ − x)/(1 + ty)
y/(1 + ty)

)
t = λ/N

θ = θ0, t = t0, E[ψ] = 0
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V = (Γ′∆−1Γ)−1

Γ =

(
1 σXY
0 −σ2

Y

)∣∣∣∣
θ=θ0,t=0

∆ = E[ψψ′]
∣∣
θ=θ0,t=0

=

(
σ2
X −σXY

−σXY σ2
Y

)
∆−1 =

1

σ2
Xσ

2
Y − σ2

XY

(
σ2
Y σXY

σXY σ2
X

)
V =

(
σ2
X − σXY /σ2

Y 0
0 1/σ2

Y

)
2-step estimate ψ̃ =

(
θ − x
y

)
V (θ̂) = σ2

X − σ2
XY /σ

2
Y = (

(
0 1

)
∆−1

(
0
1

)
)−1

9 Causal Inference

9.1 Estimating Treatment Effects: potential outcomes

Action/treatment and potential outcomes. Causal effect: comparison of potential outcomes on a single
unit Y (1)−Y (0) where Y (1) is the potential outcomes of the treatment and Y (0) is the outcome without
the treatment. fundamental problem of causal inference for a single unit: only one of the potential
outcomes can be revealed. Rely on before and after observations or comparisons across multiple units.

9.2 Neyman’s Idea

Neyman’s two questions: average outcome if all units were exposed to treatment/control? Idea: con-
struct estimator for the average treatment effects and derive its distribution by sampling repeatedly
from the known distribution of W , the assignment vector. Suppose we have a population consisting
N units. There exist two potential outcomes for each unit, Yi(0) and Yi(1), both are fixed instead of
random. He was interested in the population average treatment effect

1

N

∑
i

(Yi(1)− Yi(0)) = τ

Suppose that we observed data from a completely randomized experiment in which M units were
assigned to treatment and N−M assigned to control. The intuition estimator for the average treatment
effect is

τ̂ =
1

M

∑
Wi=1

Y obs
i − 1

N −M
∑
Wi=0

Y obs
i = Ȳ obs

1 − Ȳ obs
0

Hence τ̂ is unbiased estimator. To see this, consider the statistic Ti =
Wi·Y obsi
M/N − (1−Wi)·Y obsi

(N−M)/N

E[Ti|Yi(1), Yi(0)] =
E[WiYi(1)]

M/N
− (1− E(Wi))Yi(0)

(N −M)/N
= Yi(1)− Yi(0)

E[
1

N

∑
i

Ti|Y (0), Y (1)] =
1

N

∑
i

E[Ti|Yi(1), Yi(1)] =
1

N
(Yi(1)− Yi(0)) = τ

Given the assumption of a completely randomized experiment with the number of treated units
fixed at M, the observations are not independent.

E[Wi ·Wj ] = Pr(Wi = 1)Pr(Wj = 1|Wi = 1) = M/N · (M − 1)/(N − 1)
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E[W 2
i ] = M/N

We can show that

V (τ̂) =
S2

0

N −M
+
S2

1

M
− S2

01

N

where

S2
W =

N − 1∑
i

(Yi(W )− Ȳ (W ))2

S2
01 =

1

N − 1

∑
i

(Yi(1)− Yi(0)− (Ȳ (1)− Ȳ (0)))2

Estimating Average Treatment Effects We have a random sample of size N drawn from a large
population/ Each unit is characterized by a pair of potential outcomes, Yi(0) under the control treatment
and Yi(1) under the active treatment. Each unit has a vector of characteristics, referred to as covariates,
pretreatment variables or exogenous variables, and denoted by Xi. Each unit is exposed to a single
treatment Wi, Wi = 0 if control treatment and Wi = 1 is active treatment. For each unit, we observe
the tuple (Yi,Wi, Xi). Distributions of (Wi, Yi, Xi) refer to the distribution induced by the random
sampling from the super population. The propensity score is the conditional probability of receiving
the treatment

e(Xi) = Pr(Wi = 1|Xi = x) = E[Wi|Xi = x]

Define the conditional expectation and variance functions µW (Xi) = E[Yi(W )|Xi = x] and σ2
W (Xi) =

V (Yi(W )|Xi = x), where W ∈ {0, 1}.
Population average treatment effect E[Yi(1) − Yi(0)]. Population average treatment effect for the

treated E[Yi(1) − Yi(0)|Wi = 1]. Alternatively, we might be interested in the sample version of these
estimands. Sample average treatment effect 1

N

∑N
i=1(Yi(1) − Yi(0)). Sample average treatment effect

for the treated
1

N

∑
i:Wi=1

(Yi(1)− Yi(0))

where Nt =
∑N

i=1Wi

In the sample, we still don’t observe both Yi(0) and Yi(1) for each i. Even if we do, we can’t
estimate E[Yi(1)− Yi(0)] without error. We can estimate 1

N

∑N
i=1(Yi(1)− Yi(0)) at least as accurately

as E[Yi(1) − Yi(0)] and typically more so. The difference between the two variance is the variance of
the treatment effect. We can’t learn more about the population than what we can learn about the
observed sample.

9.2.1 Identification assumption

• Assumption 1 (Unconfoundedness)

(Yi(0), Yi(1)) ⊥Wi|Xi

Suppose τ = Yi(1)− Yi(0) is constant.

Yi(0) = α+ x′iβ + εi, εi ⊥ xi

Yi = α+ τWi + x′iβ + εi

Given constant τ , unconfoundedness ⇐⇒ Wi ⊥ εi|Xi.

• Assumption 2 (Overlap)
0 < Pr(Wi = 1|Xi) < 1

The distribution of Xi between the treatment and the control group should overlap. For many
of the formal results one will also need smoothness assumptions on the conditional regression
functions and the propensity score (µW (Xi) and e(Xi)), and moment conditions on Yi(W ).
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• Assumption 3 (Mean Independence)

E[Yi(W )|Wi, Xi] = E[Yi(W )|Xi]

• Assumption 4 (Unconfoundedness for controls):

Yi(0) ⊥Wi|Xi

• Assumption 5 (Weak overlap):
Pr(Wi = 1|Xi) < 1

In reality, adjusting for the observables may not be sufficient: Wi is typically an outcome of agent’s
optimization behaviour. Using these assumptions can provide guidance to a first attempt to understand
the evidence regarding treatment effect. Given the real difficulty in the analysis the unconfoundedness
assumption merely asserts that all variables that need to be adjusted for are observed by the researcher
(empirical question). Even when agents optimally choose their treatment, two agents with the same
values for observed characteristics may differ in their treatment choices without invalidating the un-
confoundedness assumption if the difference in their choices is driven by differences in unobserved
characteristics that are themselves unrelated to the outcomes of interest.

9.2.2 Example

Adoption of new technology and firm output, evaluation of job training programs.

Yi = g(Wi, εi)

πi = Yi − ciWi

Wi = arg max
W

E[π(W )|ci] = arg max
W

E[g(W, εi)− ciW |ci] = 1E[g(1,ε)−g(0,ε)≥ci|ci] = h(ci)

If ci ⊥ εi, Wi ⊥ [g(0, εi), g(1, εi)]
Given the two key assumptions, unconfoundedness and overlap, one can identify the average treat-

ment effects

µW (Xi) = E[Yi(W )|Xi = x] = E[Yi(W )|WI = W,Xi = x] = E[Yi|Wi = w,Xi = x]

τ(Xi) = E[Yi(1)− Yi(0)|Xi = x] = E[Yi(1)|Xi = x]− E[Yi(0)|Xi = x]

= E[Yi(1)|Xi = x,Wi = 1]− E[Yi(0)|Xi = x,Wi = 0]

= E[Yi|Xi,Wi = 1]− E[Yi|Xi,Wi = 0]

9.2.3 Identification Assumptions: Unconfondedness

An important result building on the unconfoudnedness assumption shows that one need not condition
simultaneously on all covariates.

Pr(Wi = 1|Yi(0), Yi(1), e(Xi)) = e(Xi)

Pr(Wi = 1|e(Xi)) = e ∗Xi)

Pr(Wi = 1|Yi(1)Yi(0)e(Xi)) = E[Wi|Yi(1)Yi(0)e(Xi)]

= E[E[Wi|Yi(0), Yi(1), e(Xi), Xi]|Yi(0), Yi(1), e(Xi)]

= E[E[Wi|Yi(0), Yi(1), Xi]|Yi(0), Yi(1), e(Xi)]

= E[E[Wi|Xi]|Yi(0), Yi(1), e(Xi)] = E[e(Xi)|Yi(0), Yi(1), e(Xi)] = e(Xi)

Pr(Wi = 1|e(Xi)) = E[Wi|e(Xi)] = E[E[Wi|Xi]|e(Xi)] = E[e(Xi)|e(Xi)] = e(Xi)

21



Suppose
Yi = β0 + β1W1 + β2Xi + εi

Yi = α0 + α1Wi + ei

α1 = β1 + β2δ,Wi = δ0 + δXi + νi

By conditioning on e(Xi) = E[Wi|Xi], therefore

Wi ⊥ Xi|e(Xi)

9.2.4 Identification assumption:f distributional and quantile treatment effects

In may cases one may wish to estimate other features of joint distribution of outcomes. Assumption 1
and 2 also allow for identification of the full marginal distribution of Yi(0) and Yi(1).

9.3 Estimate ATE: regression

µ̂0(x) used to predict x̄t
Ȳc + β̂′(x̄t − x̄c)

X̄t and X̄c are different.

9.4 Estimate ATE: propensity score

τ̂ =

∑
wiYi∑
wi
−
∑

(1− wi)Yi∑
(1− wi)

Weight each i by 1
e(Xi)

E

[
wiYi
e(Xi)

]
= E

[
wiYi(1)

e(xi)

]
= E

[
E

[
wiYi(1)

e(Xi)
|Xi

]]
= E

[
E[wi|xi)Yi(1)

e(Xi)

]
= E[Yi(1)]

It is similar for the other side. Therefore,

τ̂ =
1

N

∑[
wiYi
e(Xi)

− (1− wi)Yi
1− e(Xi)

]
9.5 Linear LV with constant coefficients

Let Yi be the outcome of interest for unit i, Wi the endogenous regressor and Zi the instrument. We
are interested in the causal relationship between Yi and Wi : Yi = β0 + β1Wi + εi. The concern here
is Wi is endogenous. The solution for this is to use Zi as an instrument. Instrumental variable Zi is
correlated with Wi and uncorrelated with the unobserved component εi.

9.5.1 Local Average Treatment Effects

Here let

Yi = Yi(Wi) =

{
Yi(1) Wi = 1

Yi(0) Wi = 1

Here Wi is the endogenous regressor. Here is a few assumption for the instrumental variable.

• Independence Zi ⊥ (Yi(0), Yi(1),Wi(0),Wi(1))

• Random Assignment

• Exclusion Restriction: Yi(z, w) = Yi(z
′, w)
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9.5.2 Local Average Treatment Effects

Ŵi = π̂0 + π̂1Zi

β̂i = β̂0 + β̂1Ŵi

β̂i =
1
N

∑
(Yi − Ȳ )(Zi − Z̄)

1
N

∑
(Wi − W̄ )(Zi − Z̄)

Ŷi = α̂0 + α̂1Zi

β̂IV1 =
α̂1

π̂i

First we know that α1 = E[Yi|Zi = 1]− E[Yi|Zi = 0] and

E[Yi|Zi = 1] = E[Yi|Zi = 1, complier]Pr(complier|Zi = 1)

+ E[Yi|Zi = 1, never]Pr(never|Zi = 1)

+ E[Yi|Zi = 1, always]Pr(always|Zi = 1)

= E[Yi(1)|compiler]πc + E[Yi(0)|never]πn + E[Yi(1)|always]πa

E[Yi|Zi = 0] = E[Yi(0)|compiler]πc + E[Yi(0)|never]πn + E[Yi(1)|always]πa

Therefore,

α1 = (E[Yi(1)|]complier]− E[Yi(0)|complier])πc = E[Yi(1)− Yi(0)|complier]πc

π1 = E[Wi|Zi = 1]− E[Wi|Zi = 0]

E[Wi|Zi = 1] = E[Wi|Zi = 1, complier]Pr(complier|Zi = 1)

+ E[Wi|Zi = 1,never]Pr(never|Zi = 1)

+ E[Wi|Zi = 1, always]Pr(always|Zi = 1)

= 1 · πc + 0 + 1 · πa

Similarly
E[Wi|Zi = 0] = πa

π1 = πc

Lastly, we can get
βIV1 = E[Yi(1)− Yi(0)|complier]

10 Non-Parametric Estimation

10.1 Nonparametric Density Estimation

Nonparametric methods to estimate distributions of random variables. Let X1, · · · , XN be a random
sample from a distribution with density function fX(x). We are interested in estimating the density at
a point c.
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10.2 Histograms

Let [a, b] be the support of X (in practice we may take the min and max of the data, although for the
formal properties we need to have bounded support). Divide the range into K equal sized intervals,

(a+ (k − 1)(b− a)/K, a+ k(b− a)/K]

Let Nk be the number of observations in interval k. The expectation of the proportion of observations
in the kth interval.

E[Nk|N ] = Pr(a+ (k − 1)(b− a)/K < Xi < a+ k(b− a)/K)

=

∫ a+k(b−a)/K

a+(k−1)(b−a)/K
fX(x)dx

≈ fX(a+ (k − 1/2)(b− a)/K)
b− a
K

Suppose the intervals are narrow, i.e., (b−a)/K is small. Therefore, the density function is approx-
imately constant in the interval. We can write the expectations as

fX(a+ (k − 1/2)(b− a)/K) · (b− a)/K

so we can get an estimate of the density function at a point c in interval k: f̂X(c) = Nk
N(b−a)K

Before considering modification to the basic method, let’s think about the precision and bias of the
histogram based estimate. For the bias, we know

E[f̂X(c)] =

∫ a+k(b−a)/K

a+(k−1)(b−a)/K
fX(x)dx ·K/(b− a) = fX(ã)

Therefore, the bias is
fX(c)− E[f̂X(c)] = fX(c)− fX(ã)

, where ã is in the interval.
The prevision is

V ar(p̂) = p(1− p)/N = f(ã)
K

b− a
(1− f(ã)

K

b− a
)

1

N

V ar(f̂(a)) = V ar((b− a)K/p̂) = f(ã)
b− a
K

(1− f(ã)
K

b− a
)

1

N

10.3 Centered Histograms

One problem is that the estimates at adjacent points can be very different if they fall on either side of
an interval boundary. For example, if the density function is linear within an interval, the estimate in
the middle is unbiased while the estimate at the boundaries have the largest bias.

10.4 Nearest Neighbor Estimators

10.5 Kernel Estimation

10.6 Bandwidth Selection

E[f̂(x)− f(x)] = E

[
1

Nh

∑
K

(
Xi −K

h

)
− f(x)

]
=

1

h

∫
k

(
y −K
h

)
f(y)dy − f(x)

=

∫
k(u)f(x+ h+ hu)du− f(x) u =

y − x
h

=

∫
k(u)f(x)dx+

∫
k(u) · u · hf ′(x)du+

1

2

∫
k(u)u2h2f ′′(x)du− f(x)

=
1

2
f ′′(x)h2k2 k2 =

∫
z2 ·K(z)
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V (f̂(x)) = V

(
1

Nh

∑
K

(
Xi −K

h

))
=

1

Nh2
V

(
K

(
Xi −K

h

))
=

1

Nh2
E

[
K

((
Xi −K

h

)2
)
− E

[
K

(
Xi −K

h

)]2
]

=

∫
K

(
y −K
h

)
f(y)dy

= h

∫
K(u)2f(K + hu)du

= h

∫
K(u)2f(x)du+ o(h)∫

V (f̂(x)) =

∫
1

Nh2
h

∫
K(u)2du

Solve the FOC, we get h∗ = 1.06σN−1/5
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