Financial Econometrics - Time Series

Johnew Zhang

March 5, 2018

Contents

1 Basic Time Series Concepts 3
1.1 Some Processes 3
1.2 How should we define market efficiency? 6
2 Forecasting 7
2.1 Wold's Decomposition Theorem 7
3 Introduction to the Generalized Method Moments (Hayashi) 8
3.1 Endogeneity Bias 8
3.2 Two-Staged Least Square 8
3.3 Single Equation GMM 9
3.4 Hansen's J-Test 12
3.5 Likelihood-Ratio Test of H_{0} 12
3.6 Newey-West Motivation 12
3.7 Hansen-Hodrick JPE(1980) 13
3.8 Non-linear GMM: Consumption-based Asset Pricing 14
3.9 The Asymptotic Distribution of the Orthogonality Conditions 16
3.10 Hansen-Hodrick (1983) 17
4 Vector Auto-regression 17
4.1 Maximum Likelihood Estimation 17
4.2 Vector Auto-regression 18
4.3 Choice of Lag Length 20
4.4 Cambell (1991) and Hodrick (1992) 20
4.5 Impulse Response Functions 22
4.6 Variance Decompositions 23
4.7 Models of Non-Stationarity Time Series 23
4.7.1 Compare Forecasts 24
4.8 Hodrick-Prescott Filter 25
4.9 Special Cases 25
4.10 Beveridge-Nelson Decomposition 25
4.11 Fractional Integration 26
4.11.1 GARCH 27
4.12 Testing For Unit-Root 27
4.13 Cointegration 28
4.13.1 Purchasing Power Parity 29
4.14 Price-Dividend Ratio and Campbell-Shiller Decomposition 29
4.14.1 Lettau-Ludigson: log Consumption Wealth Ratio 29
4.14.2 Hamilton's Canonical Example 30
4.15 Normalizations 31
4.16 Triangular Representation 32
4.17 Error Correlation VAR 32
4.18 33

1 Basic Time Series Concepts

Suppose stochastic process Y_{t}. We need to do inference on $\left\{y_{t}\right\}_{t=1}^{T}$.
Let $f_{Y_{t}}\left(y_{t}\right)$ unconditional density of Y_{t} and its mean is

$$
E\left(Y_{t}\right)=\int_{-\infty}^{\infty} y_{t} f_{Y}\left(y_{t}\right) d y_{t}
$$

where $Y_{t}=\mu+\varepsilon_{t}, E\left(\varepsilon_{t}\right)=0, V\left(\varepsilon_{t}\right)=\sigma^{2}$. It is easy to see $E\left(Y_{t}\right)=\mu$.
Alternatively, there may be period so we can define $Y_{t}=\beta t+\varepsilon_{t}$. Here $E\left(Y_{t}\right)=\beta t$ and $V\left(Y_{t}\right)=$ $E\left(\left(Y_{t}-\mu_{t}\right)^{2}\right)=\int_{-\infty}^{\infty}\left(y_{t}-\mu_{t}\right)^{2} f_{Y}\left(y_{t}\right) d y_{t}=\gamma_{0 t}=\sigma^{2}$
Definition 1. Auto-covariance: $\left\{Y_{t}\right\}_{t=1}^{T}$. Consider vector $x_{t}=\left(\begin{array}{c}Y_{t} \\ Y_{t-1} \\ \vdots \\ Y_{t-j}\end{array}\right)$. The joint distribution is $\left(Y_{t}, Y_{t-1}, \cdots, Y_{t-j}\right)$. Therefore the j th auto-covariance is

$$
\gamma_{j t}=\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty}\left(y_{t}-\mu_{t}\right)\left(y_{t-j}-\mu_{t-j}\right) f_{Y_{t}, \cdots, Y_{t-j}}\left(y_{t}, \cdots, y_{t-j}\right) d y_{t} \cdots d_{y t-j}
$$

Serial correlation implies non-zero auto-covariances.
Definition 2. Stationarity:

- Covariance Stationarity means $E\left(Y_{t}\right)=\mu$ and $E\left[\left(Y_{t}-\mu\right)\left(Y_{t-j}-\mu\right)\right]=\gamma_{j}$ (it does not dependent on time t. For scalars, $\gamma_{j}=\gamma_{-j}$ and for matrix C_{j}, it will be $C_{j}=C_{j}^{\prime}$.
- Strict Stationarity: The entire joint distribution of $\left(Y_{t}, \cdots, Y_{t-j_{1}}, \cdots Y_{t-j_{2}}, \cdots, Y_{t-j_{n}}\right)$ depends only on the intervals seperating the dates $\left(j_{1}, j_{2}, \cdots, j_{n}\right)$.
- Note that a process is strictly stationary with finite second moments, then it must be covariancestationary. Strict stationarity does not imply weak stationarity (Cauchy distribution). Weak does not imply the strict stationarity. If the processes are Gaussian, then weak is equivalent to the strict.

Definition 3. Ergodicity: Time series averages are going to converge to the unconditional moments as $T \rightarrow \infty$. It means $\bar{y}=\frac{1}{T} \sum_{t=1}^{T} y_{t} \rightarrow \mu$ as $T \rightarrow \infty$.

1.1 Some Processes

- ε_{t} is a white noise if $E\left[\varepsilon_{t}\right]=0$ and $E\left[\varepsilon_{t}^{2}\right]=\sigma^{2}$ and $E\left[\varepsilon_{t} \varepsilon_{t-j}\right]=0, \forall j \neq 0$.
- Moving average process is defined as $y_{t}=\varepsilon_{t}+\theta \varepsilon_{t-1}+\mu$. This is called the first-order MA.

$$
\begin{aligned}
E\left[y_{t}\right] & =E\left[\varepsilon_{t}\right]+\theta E\left[\varepsilon_{t-1}\right]+E[\mu]=\mu \\
V\left(y_{t}\right) & =E\left[\left(y_{t}-\mu\right)^{2}\right]=E\left[\left[\varepsilon_{t}+\theta \varepsilon_{t-1}\right)^{2}\right]=E\left[\varepsilon_{t}^{2} 2 \varepsilon_{t} \varepsilon_{t-1} \theta+\theta^{2} \varepsilon_{t-1}^{2}\right]=\left(1+\theta^{2}\right) \sigma^{2}
\end{aligned}
$$

Let auto-covariance

$$
E\left[\left(y_{t}-\mu\right)\left(y_{t-1}-\mu\right)\right]=E\left[\left(\varepsilon_{t}+\theta \varepsilon_{t-1}\right)\left(\varepsilon_{t-1}+\theta \varepsilon_{t-2}\right)\right]=\theta \sigma^{2}
$$

First-order auto-correlation is

$$
\frac{\gamma_{1}}{\sqrt{\gamma_{0}} \sqrt{\gamma_{1}}}=\frac{\gamma_{1}}{\gamma_{0}}=\frac{\theta \sigma^{2}}{\left(1+\theta^{2}\right) \sigma^{2}}=\frac{\theta}{1+\theta^{2}}
$$

where $\gamma_{j}=0, j>1$

- p th order moving average process

$$
y_{t}=\mu+\varepsilon_{t}+\theta_{1} \varepsilon_{t-1}+\cdots+\theta_{p} \varepsilon_{t-p}
$$

where $E\left[y_{t}\right]=\mu$ and $V\left(y_{t}\right)=E\left[\left(y_{t}-\mu\right)^{2}\right]=E\left[\varepsilon_{t}+\theta_{1} \varepsilon_{t-1}+\cdots+\theta_{p} \varepsilon_{t-p}\right]^{2}=1+\sum_{i=1}^{p} \theta_{p}^{2} \sigma^{2}$ and $E\left[\varepsilon_{t} \varepsilon_{t-j}\right]=0$ and $E\left[\varepsilon_{t-j}^{2}\right]=\sigma^{2}$.
The j th autocovariance is

$$
\begin{array}{rlrl}
\gamma_{j} & =E\left[\left(y_{t}-\mu\right)\left(y_{t-j}-\mu\right)\right]=E\left[\left(\varepsilon_{t}+\theta_{1} \varepsilon_{t-1}+\cdots+\theta_{p} \varepsilon_{t-p}\right)\left(\varepsilon_{t-j}+\theta_{1} \varepsilon_{t-j-1}+\cdots+\theta_{p} \varepsilon_{t-j-p}\right)\right. & \\
& =\theta_{j} \sigma^{2}+\theta_{j+1} \theta_{1} \sigma^{2}+\cdots+\theta_{p} \theta_{p-j} \sigma^{2} & & j=1, \cdots, p \\
& =0 & & j>p
\end{array}
$$

- ∞ order moving average processes

$$
\begin{gathered}
y_{t}=\mu+\sum_{j=1}^{\infty} \psi_{j} \varepsilon_{t-j} \\
V\left(y_{t}\right)=E\left[\left(y_{t}-\mu\right)^{2}\right]=\left(\sum_{j=0}^{\infty} \psi_{j}^{2}\right) \sigma^{2}
\end{gathered}
$$

where ψ_{j} is square summable. If $\sum^{\infty}\left|\psi_{j}\right|<\infty$, then it is ergodic for mean absolute summability.

- Autoregressive Processes: First order AR processes,

$$
y_{t}=c+\phi y_{t-1}+\varepsilon_{t}
$$

where $|\phi|<1$ for covariance stationarity.
Define the lag operator L such that $L y_{t}=y_{t-1}$. Then $y_{t}(1-\phi L)=c+\varepsilon_{t}$ where $|\phi|<1$. Therefore

$$
\begin{gathered}
y_{t}=(1-\phi L)^{-1}\left(c+\varepsilon_{t}\right)=\frac{c}{1-\phi}+\varepsilon_{t}+\phi \varepsilon_{t-1}+\phi^{2} \varepsilon_{t-2}+\cdots \\
E\left[y_{t}\right]=\frac{c}{1-\phi} \\
V\left(y_{t}\right)=\sigma^{2}\left(1+\phi^{2}+\phi^{4}+\phi^{6}+\cdots\right)=\frac{\sigma^{2}}{1-\phi^{2}}
\end{gathered}
$$

The first order autocovariance is

$$
\begin{aligned}
E\left[\left(y_{t}-\mu\right)\left(y_{t-1}-\mu\right)\right] & =E\left[\varepsilon_{t}+\phi \varepsilon_{t-1}+\phi^{2} \varepsilon_{t-2}+\cdots\right)\left(\varepsilon_{t-1}+\phi \varepsilon_{t-2}+\phi^{2} \varepsilon_{t-3}+\cdots\right) \\
& =\phi \sigma^{2}+\phi^{3} \sigma^{2}+\phi^{5} \sigma^{2}+\cdots \\
& =\frac{\phi \sigma^{2}}{1-\phi^{2}}
\end{aligned}
$$

The j th autocovariance is $\frac{\phi^{j} \sigma^{2}}{1-\phi^{2}}$ and the atuocorrelation is just $\frac{\gamma_{j}}{\gamma_{0}}=\phi^{j}$
For $A R(p)=c+\phi_{1} y_{t-1}+\phi_{2} y_{t-2}+\cdots+\phi_{p} y_{t-p}+\varepsilon_{t}$, then

$$
y_{t}\left(1-\phi_{1} L-\phi_{2} L^{2}-\cdots-\phi_{p} L^{p}\right)=c+\varepsilon_{t}
$$

The p-th order polynomial L is

$$
\left(1-\phi_{1} z-\phi_{2} z^{2}-\cdots-\phi_{p} z^{p}\right)=\left(1-\lambda_{1} z\right)\left(1-\lambda_{2} z\right) \cdots\left(1-\lambda_{p} z\right)
$$

The roots $\left(\lambda_{j}^{+}\right)$to be outside the unit circle for covariance stationarity.
Variance of $A R(p)$ is
$E\left[\left(y_{t}-\mu\right)^{2}\right]=\phi_{1}\left[E\left(y_{t-1}-\mu\right)\left(y_{t}-\mu\right)\right] \phi_{2}\left[E\left(y_{t-2}-\mu\right)\left(y_{t}-\mu\right)\right]+\cdots+\phi_{p} E\left[\left(y_{t-p}-\mu\right)\left(y_{t}-\mu\right)\right]+E\left[\varepsilon_{t}\left(y_{t}-\mu\right)\right]$
where $\gamma_{0}=\phi_{1} \gamma_{1}+\phi_{2} \gamma_{2}+\cdots+\phi_{p} \gamma_{p}+\sigma^{2}$
Multiply through $y_{t}-\mu=\phi_{1}\left(y_{t-1}-\mu\right)+\cdots+\phi_{p}\left(y_{t-p}-\mu\right)+\varepsilon_{t}$ with $y_{t-1}-\mu$ and take $E[]$. Then

$$
\begin{aligned}
\gamma_{1} & =\phi_{1} \gamma_{0}+\phi_{2} \gamma_{1}+\cdots+\phi_{p} \gamma_{p-1} \\
\vdots & \\
\gamma_{p} & =\phi_{1} \gamma_{p}+\phi_{2} \gamma_{p-2}+\cdots+\phi_{p} \gamma_{0}
\end{aligned}
$$

divide above by γ_{0} then we can solve the system of equations so

$$
p_{j}=\phi_{1} p_{j}+\phi_{2} p_{j-2}+\cdots+\phi_{p} p_{j-p}, j>p
$$

This processes is called Yule-Walker.

- $A R M A(p, q)$ is defined

$$
y_{t}=c+\phi_{1} y_{t-1}+\cdots+\phi_{p} y_{t-p}+\varepsilon_{t}+\theta_{1} \varepsilon_{t-1}+\cdots+\theta_{q} \varepsilon_{t-q}
$$

$\operatorname{ARMA}(1,1)$ without a constant term. $y_{t}\left(1-\phi_{1} L\right)=\varepsilon_{t}\left(1+\theta_{1} L\right)$. notice if $\theta_{1}=-\phi_{1}$, lag polynomial cancels.

Definition 4. Autocovariance generating function is defined as when γ_{j} is absolutely summable, then

$$
g_{y}(z)=\sum_{j=-\infty}^{\infty} \gamma_{j} z^{j}
$$

for complex scalar z.
The Fourier Transform of a time series $\left\{x_{t}\right\}$ is $x(\omega)=\sum_{t=-\infty}^{\infty} e^{-i w t} x_{t}$ as a complex function of ω. Here ω is the frequency. The inverse Fourier transformation is

$$
x_{t}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i \omega t} x_{t} d \omega
$$

Hence we can define the Fourier transform of the autocovariance as

$$
\begin{array}{rlrl}
S(\omega) & =\sum_{j=-\infty}^{\infty} e^{-i \omega j} \gamma_{j} & \\
& =\gamma_{0}(\cos (\omega)+i \sin (\omega)) & & \gamma_{j}=-\gamma_{j} \\
& +\sum_{j=1}^{\infty} \cos (\omega j) \gamma_{j}+i \sin (\omega j) \gamma_{j} & & \cos (x)=\cos (-x), \sin (x)=-\sin (-x) \\
& =\gamma_{0}+2 \sum_{j=1}^{\infty} \gamma_{j} \cos \left(\omega_{j}\right) &
\end{array}
$$

For auto-correlation,

$$
f(\omega)=\frac{S(\omega)}{\gamma_{0}}=\sum_{j=-\infty}^{\infty} e^{-i \omega j} \rho_{j}
$$

where $\rho_{j}=\frac{\gamma_{i}}{\gamma_{0}}$ The inverse is

$$
\rho_{j}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i \omega j} f(\omega) d \omega
$$

When $j=0$,

$$
1=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(\omega) d \omega
$$

Here $\frac{f(\omega)}{2 \pi}$ looks like a density function. This is called spectrum density function.

For $M A(1)$,

$$
\begin{aligned}
g_{y}(z) & =\theta \sigma^{2} z^{-1}+\left(1+\theta^{2}\right) \sigma^{2} z^{0}+\theta \sigma^{2} z^{1} \\
& =\sigma^{2}\left(\theta z^{-1}+\left(1+\theta^{2}\right)+\theta z\right) \\
& =\sigma^{2}(1+\theta z)\left(1+\theta z^{-1}\right)
\end{aligned}
$$

For $M A(q)$,

$$
g_{y}(z)=\sigma^{2}\left(1+\theta_{1} z+\theta_{2} z^{2}+\cdots+\theta_{q} z^{q}\right)\left(1+\theta_{1} z^{-1}+\theta_{2} z^{-2}+\cdots+\theta_{q} z^{-q}\right)
$$

For $A R(1)$,

$$
g_{y}(z)=\frac{\sigma^{2}}{(1-\phi z)\left(1-\phi z^{-1}\right)}
$$

Definition 5. Invertibility: ε_{t} is recoverable from y_{t} history. Then

$$
y_{t}=\mu+(1+\theta L) \varepsilon_{t}
$$

If $|\theta|<1$ we can multiply by $(1+\theta L)^{-1}$.

$$
\left(1-\theta L+\theta^{2} L^{2}+\cdots\right)\left(y_{t}-\mu\right)=\varepsilon_{t}
$$

MA process is invertible.

$$
g_{y}(z)=\sigma^{2}(1+\theta z)\left(1+\theta z^{-1}\right)
$$

Consider $\tilde{Y}_{t},\left(\tilde{Y}_{t}-\mu\right)=(1+\tilde{\theta} L) \tilde{\varepsilon}_{t}$ then

$$
\begin{aligned}
g_{\tilde{y}}(z) & =\tilde{\sigma}^{2}(1+\tilde{\theta} z)\left(1+\tilde{\theta} z^{-1}\right) \\
& =\tilde{\sigma}^{2}(\tilde{\theta} z)\left(\tilde{\theta}^{-1} z^{-1}+1\right)\left(\tilde{\theta} z^{-1}\right)\left(\tilde{\theta}^{-1} z+1\right)
\end{aligned}
$$

Let $\theta=\tilde{\theta}^{-1}, \sigma^{2}=\tilde{\sigma}^{2} \tilde{\theta}^{2}, y_{t}, \tilde{y}_{t}$ are the same autocovariances and same mean but y_{t} not invertible so cannot inverse $\tilde{\varepsilon}_{t}$.

1.2 How should we define market efficiency?

There should have no predictability of returns. Let $p_{t}=\log S_{t}$ and $p_{t+1}=p_{t}+\varepsilon_{t+1}+\mu$. Stock return will be $r_{t+1}=p_{t+1}-p_{t}=\varepsilon_{t+1}+\mu$ so there is no serial correlation. Early research fail to reject the $\rho=0$. One way to look at it is to check

$$
r_{t+1}=\mu+\rho r_{t}+\varepsilon_{t+1}
$$

run a regression

$$
\hat{\rho}=\sum_{t=1}^{T}\left(r_{t+1}-\bar{r}\right)\left(r_{t}-\bar{t}\right) / \sum_{t=1}^{T}\left(r_{t}-\bar{r}\right)^{2}
$$

Under the null hypothesis, $\rho=0$. Test statistic. $\hat{\rho} / \sqrt{\hat{\sigma}^{2} / T} \sim N(0,1)$ asymptotically. Under the alternative, $\rho>0$.

We will do Monte Carlo under the null or alternative with sample size T. Then a histogram can be generated for the test statistic.
(check paper Poterba, Summers) Suppose $p_{t}=p_{t}^{*}+\mu_{t}$ where u_{t} is serially correlated and p_{t}^{*} is a random walk. Here $r_{t}=p_{t}-p_{t-1}=p_{t}^{*}-p_{t-1}^{*}+\mu_{t}-\mu_{t-1}$ and $u_{t}=e u_{t-1}+v_{t}$ where v_{t} is iid. There will be serial correlation in returns but $r_{t}=p_{t}^{*}-p_{t-1}^{*}+(\rho-1) u_{t-1}+v_{t}$. Suppose $\rho=0.98$. They set a variance ratio as

$$
V\left(\sum_{k=1}^{24} r_{t+k}\right) / 2 V\left(\sum_{k=1}^{12} r_{t+k}\right)
$$

2 Forecasting

Suppose we want to forecast based on Y_{t+1} and $x_{t}=$ data. Let $y_{t+1, t}^{*}$ be forecast. We have quadratic loss function, $E\left[Y_{t+1}-Y_{t+1, t}^{*}\right]^{2}$. On Hamilton, it proves $E\left[Y_{t+1} \mid Y_{t}\right]$ is the minimum mean square error. The linear projection is $Y_{t+1, t}^{*}-x_{t}^{\prime} \alpha$. Forecast error is $y_{t+1}-x_{t}^{\prime} \alpha$. Linear projection makes forecast error orthogonal to x_{t}, that is

$$
\begin{aligned}
E\left[x_{t}\left(Y_{t+1}-x_{t}^{\prime} \alpha\right)\right] & =0 \\
E\left[x_{t} Y_{t+1}\right]-E\left[x_{t} x_{t}^{\prime}\right] \alpha & =0 \\
\alpha & =E\left[x_{t} x_{t}^{\prime}\right]^{-1} E\left[x_{t} Y_{t+1}\right] \quad \text { population statistics }
\end{aligned}
$$

OLS regression of y_{t+1} on x_{t} is

$$
y_{t+1}=x_{t}^{\prime} \beta+u_{t+1}, t=1, \cdots, T
$$

where $b=\left[\sum_{t=1}^{T} x_{t} x_{t}^{\prime}\right]^{-1}\left[\sum_{t=1}^{T} x_{t} y_{t+1}\right]$ as sample estimate.
With covariance stationary, sample moment converges to the population moments as $T \rightarrow \infty$.

$$
\begin{aligned}
& \frac{1}{T} \sum_{t=1}^{T} x_{t} x_{t}^{\prime} \xrightarrow{p} E\left[x_{t} x_{t}^{\prime}\right] \\
& \frac{1}{T} \sum_{t=1}^{T} x_{t} y_{t+1} \xrightarrow{p} E\left[x_{t} Y_{t+1}\right] \\
& b \xrightarrow{p} \alpha
\end{aligned}
$$

Here we are assuming data are ergodic for second moments.

2.1 Wold's Decomposition Theorem

Any covariance stationary

$$
Y_{t}=\sum_{j=0}^{\infty} \psi_{j} \varepsilon_{t-j}+k_{t}
$$

where k_{t} is the linearly deterministic. and $\psi_{0}=1, \sum_{j=0}^{\infty} \psi_{j}^{2}<\infty$ and $\varepsilon_{t}=y_{t}-\hat{E}\left[Y_{t} \mid Y_{t-1}, \cdots\right]$ a linear projection errors.

Suppose we know ε_{t} 's, what is forecast of y_{t+s} ?

$$
\begin{gathered}
Y_{t+s}=\varepsilon_{t+s}+\psi_{1} \varepsilon_{t+s-1}+\psi_{2} \varepsilon_{t+s-2}+\cdots \\
\hat{E}\left[Y_{t+s} \mid \varepsilon_{t} \varepsilon_{t-1} \cdots\right]=\psi_{s} \varepsilon_{t}+\psi_{s+1} \varepsilon_{t-1}+\cdots
\end{gathered}
$$

The MSE of forecast is $\left(1+\psi_{1}^{2}+\psi_{2}^{2}+\cdots+\psi_{s-1}^{2}\right) \sigma^{2}$ where $\sigma^{2}=V(\varepsilon)$.
Define $\frac{\psi(L)}{L^{s}}=L^{-s}+\psi_{1} L^{1-s}+\psi_{2} L^{2-s}+\cdots$.
Define annihilation operator [] $]_{+}$that sets negative powers to 0 .

$$
\hat{E}\left[Y_{t+s} \mid \varepsilon_{t}, \varepsilon_{t-1}, \cdots\right]=\left[\frac{\psi(L)}{L^{s}}\right]_{+} \varepsilon_{t}
$$

Consider forecast of Y_{t+s} based on Y_{t}, Y_{t-1}, \cdots.

$$
\begin{gathered}
\eta(L) Y_{t}=\varepsilon_{t} \\
\eta(L)=\sum_{j=0}^{\infty} \eta_{j} L^{j}, \eta_{0}=1, \sum_{j=0}^{\infty}\left|\eta_{j}\right|<\infty
\end{gathered}
$$

for invertible representation $\eta(L)=\psi(L)^{-1}$

$$
\hat{E}\left[Y_{t+s} \mid Y_{t}, Y_{t-1} \cdots\right]=\left[\frac{\psi(L)}{L^{s}}\right]_{+} \eta(L) Y_{t}=\left[\frac{\psi(L)}{L^{s}}\right]_{+} \frac{1}{\psi(L)} Y_{t}
$$

is called the Weiner-Kolmogorov Prediction Form.

3 Introduction to the Generalized Method Moments (Hayashi)

3.1 Endogeneity Bias

Coffee market with demand $q_{t}^{d}=\alpha_{0}+\alpha_{1} p_{t}+u_{t}$ where u_{t} is the unobservable shifter in demand $\alpha_{1}<0$. Supply is $q_{t}^{s}=\beta_{0}+\beta_{1} p_{t}+v_{t}$ where v_{t} shifts supply. Equilibrium $q_{t}^{d}=q_{t}^{s}=q_{t}$. We observe p_{t} and q_{t}.

Solution is

$$
p_{t}=\frac{\beta_{0}+\alpha_{0}}{\alpha_{1}-\beta_{1}}+\frac{v_{t}-u_{t}}{\alpha_{1}-\beta_{1}}
$$

and

$$
q_{t}=\frac{\alpha_{1} \beta_{0}-d_{0} \beta_{1}}{\alpha_{1}-\beta_{1}}+\frac{\alpha v_{t}-\beta_{1} u_{t}}{\alpha_{1}-\beta_{1}}
$$

p_{t} increases with $r_{t}<0, u_{t}>0$ and $\alpha_{1}<0, \beta_{1}>0$.
OLS of q_{t} on p_{t} gives you $q_{t}=\delta_{0}+\delta_{1} p_{t}+\varepsilon_{t}$. Here

$$
\begin{aligned}
\hat{\delta}_{1}=\frac{\operatorname{cov}\left(q_{t}, p_{t}\right)}{\operatorname{var}\left(p_{t}\right)} & =\frac{\operatorname{cov}\left(\alpha_{0}+\alpha_{1} p_{t}+u_{t}, p_{t}\right)}{\operatorname{var}\left(p_{t}\right)} \\
& =\alpha_{1}+\frac{\operatorname{cov}\left(u_{t}, p_{t}\right)}{\operatorname{var}\left(p_{t}\right)} \neq 0
\end{aligned}
$$

This is called Endogeneity Bias to OLS or simultaneous Equation Bias. The solution for this dilemma is to estimate the demand curve if we have another variable x_{t} that shifts the supply curve.

Here we can have $v_{t}=\beta_{2} x_{t}+\zeta_{t}$ where ζ_{t} is a new shock. The new innovations are

$$
\begin{gathered}
q_{t}^{d}=\alpha_{0}+\alpha_{1} p_{t}+u_{t} \\
q_{t}^{s}=\beta_{0}+\beta_{1} p_{t}+\beta_{2} x_{t}+\zeta_{t}
\end{gathered}
$$

where $E\left[x_{t} \zeta_{t}\right]=0$.
Here

$$
\begin{gathered}
p_{t}=\frac{\beta_{0}-\alpha_{0}}{\alpha_{1}-\beta_{1}}+\frac{\beta_{2}}{\alpha_{1}-\beta_{1}} x_{t}+\frac{\zeta_{t}-u_{t}}{\alpha_{1}-\beta_{1}} \\
q_{t}=\frac{\alpha_{1} \beta_{0}-\alpha_{0} \beta_{1}}{\alpha_{1}-\beta_{1}}+\frac{\alpha_{1} \beta_{2}}{\alpha_{1}-\beta_{1}} x_{t}+\frac{\alpha_{1} \zeta_{t}-\beta_{1} u_{t}}{\alpha_{1}-\beta_{1}}
\end{gathered}
$$

where $E\left[x_{t} \zeta_{t}\right]=0$ and $E\left[x_{t} u_{t}\right]=0$. The above solution is called the reduced form simultaneous equation system.

Express endogenous variables in terms of exogenous variables. OLS of p_{t} on x_{t} with $\hat{\delta}_{1}=\frac{\beta_{2}}{\alpha_{1}-\beta_{1}}$. OLS of q_{t} on x_{t} with $\hat{\delta}_{2}=\frac{\alpha_{1} \beta_{2}}{\alpha_{1}-\beta_{1}}$. Thus

$$
\frac{\hat{\delta}_{2}}{\hat{\delta}_{1}}=\alpha_{1}
$$

This estimator is called the instrumental variables estimator with x_{t} as the instrument.

3.2 Two-Staged Least Square

1. Regress p_{t} on x_{t} with OLS. Then

$$
\hat{p}_{t}=\hat{\pi}_{0}+\hat{\pi}_{1} x_{t}
$$

The fitted value is

$$
p_{t}=\hat{p}_{t}+\text { error }_{\text {at lagged }+\sigma \hat{p}_{t}}
$$

2. Regress q_{t} on \hat{p}_{t}.

$$
q_{t}=\alpha_{0}+\alpha_{1} \hat{p}_{t}+u_{t}+\alpha_{1}\left(p_{t}-\hat{p}_{t}\right)
$$

where the last two terms is the composite error and is orthogonal to \hat{p}_{t} so the OLS of q_{t} on \hat{p}_{t} gives

$$
\hat{\alpha}_{1}=\frac{\operatorname{cov}\left(q_{t}, \hat{p}_{t}\right)}{\operatorname{var}\left(p_{t}\right)}=\alpha_{1}
$$

The fundamental equation of finance tells

$$
E_{t}\left[m_{t+1} R_{t+1}\right]=1
$$

Can we estimate the parameters in this equation?

3.3 Single Equation GMM

Suppose

$$
y_{t}=z_{t}^{\prime} \delta+\varepsilon_{t}, t=1, \cdots, T
$$

where z_{t} is $L \times 1$.
A3.1 : Linearity
A3.2 : Ergodic stationarity such that x_{t} is a $k \times 1$ vector of instruments and w_{t} is unique elements of $\left(y_{t}, z_{t}^{\prime}, x_{t}^{\prime}\right)^{\prime}$. This is stationary and ergodic.

A3.3 $E\left[x_{t} \varepsilon_{t}\right]=0$ is the orthogonality conditions. Let's define $g_{t}=x_{t} \varepsilon_{t}=x_{t}\left(y_{t}-z_{t}^{\prime} \delta\right)$ is the function of data and parameters. Here the variables are $k \times 1$.

A4.4 $k \geq L$ is the rank condition for identification. Here $E\left[x_{t} z_{t}^{\prime}\right]$ is full column rank. Weak instruments satisfy this axiom poorly. If identification, $E\left[g_{t}\left(w_{t}, \delta_{0}\right)\right]=0$ at the true δ_{0}. It is not 0 at $\delta \neq \delta_{0}$.

$$
\begin{gathered}
E\left[x_{t}\left(y_{t}-z_{t}^{\prime} \delta\right)\right]=0 \\
\sigma_{x y}-\Sigma_{t}^{\prime} \delta=0
\end{gathered}
$$

in terms of population parameters. This is a system of k equations in $L \leq k$ unknowns. The necessary and sufficient condition for one solution is $k \geq L$. Over-identification is $k>L$. Just or exact is $k=L$ and under-identification is $k<L$.

A3.5 g_{t} is a Martingale difference sequence with finite second moments. g_{t} is a Martingale difference sequence if

$$
E\left[g_{t} \mid g_{t-1} g_{t-2} \cdots\right]=0
$$

x_{t} is a Martingale such that

$$
E\left[x_{t} \mid \Phi_{t-1}\right]=x_{t-1}
$$

If Φ_{t-1} is x_{t-1}, x_{t-2},

$$
s_{t}=\sum_{j=1}^{t} g_{t-j}=g_{t}+g_{t-1}+g_{t-2}+\cdots=g_{t}+s_{t-1}, E\left[s_{t}\right]=E\left[g_{t}\right]+s_{t-1}=s_{t-1}
$$

s_{t} is a Martingale and $g_{t}=s_{t}-s_{t-1}$ is Martingale difference sequence.
A3.6 Finite 4 th moment of the w_{t} process
If g_{t} is a Martingale difference sequence (MDS), then $E\left[g_{t} g_{t}^{\prime}\right]=$ variance of $g_{t}=S$. Billingsley (1961) used Central Limit Theorem for MDS. if g_{t} is MDS that is stationary and ergodic with $E\left[g_{t} g_{t}^{\prime}\right]=S$ then $\bar{g}=\frac{1}{T} \sum_{t=1}^{T} g_{t}$ is sample mean and $\sqrt{T} \bar{g}=\frac{1}{\sqrt{T}} \sum_{t=1}^{T} g_{t} \xrightarrow{d} N(0, S)$.

Comments

- If instruments include a constant $E\left[\varepsilon_{t}\right]=0$.
- Alternative to A3.5 is $E\left[\varepsilon_{t} \mid x_{t}, x_{t-1}, \cdots\right]=0$.
- $g_{t} g_{t}^{\prime}=\varepsilon_{t}^{2} x_{t} x_{t}^{\prime}$.
- We will relax the linearity and serial correlation of g_{t}.

GMM defined an Economic model that gives a set of theoretical orthogonality condition $E\left[x_{t} \varepsilon_{t}\right]=0$. This is the population moments. GMM chooses parameters to set a weighted average of sample moments as close to zero as possible. (corresponding to the population moments). The model says

$$
g_{T}(\tilde{\delta})=\frac{1}{T} \sum_{t=1}^{T} g_{t}\left(w_{t}, \tilde{\delta}_{t}\right)
$$

where $E\left[g_{t}\left(\delta_{0}\right)\right]=0$. Here

$$
g_{T}(\tilde{\delta})=\frac{1}{T} \sum_{t=1}^{T} x_{t} y_{t}-\left(\frac{1}{T} \sum_{t=1}^{T} x_{t} z_{t}^{\prime}\right) \tilde{\delta}=s_{x y}-S_{x z} \tilde{\delta}
$$

If $k=L$, just-identified, what is $\hat{\delta} ? \hat{\delta}_{x z}=S_{x z}^{-1} s_{x y}$. Sets the sample orthogonality conditions to zero. If $x_{t}=z_{t}$, then this is OLS.

If $k>L$, over-identified, GMM objective function

$$
J(\tilde{\delta}, W)=T g_{T}(\tilde{\delta})^{\prime} W g_{T}(\tilde{\delta})
$$

where g_{T} is the sample mean. Choose $\hat{\delta}$ as argmin of $J(\tilde{\delta}, W)$. That is

$$
J(\tilde{\delta}, W)=T\left(s_{x y}-S_{x z} \tilde{\delta}\right)^{\prime} W\left(s_{x y}-S_{x z} \tilde{\delta}\right)
$$

minimized by choice of \tilde{S}. FOC:

$$
\begin{aligned}
& S_{x z}^{\prime} W s_{x y}-S_{x z}^{\prime} W S_{x z} \hat{\delta}=0 \\
& \hat{\delta}=\left[S_{x z}^{\prime} W S_{x z}\right]^{-1} S_{x z}^{\prime} W s_{x y}
\end{aligned}
$$

Single equations GMM estimator with instrumental variable. Here W must be positive-definite.

$$
\begin{gathered}
s_{x y}=\frac{1}{T} \sum_{t=1}^{T} x_{t} y_{t}=\frac{1}{T} \sum_{t=1} T x_{t}\left(z_{t}^{\prime} \delta_{0}+\varepsilon_{t}\right)=S_{x z} \delta_{0}+\frac{1}{T} \sum_{t=1}^{T} x_{t} \varepsilon_{t}=S_{x z} \delta_{0}+g_{T}\left(\delta_{0}\right) \\
\hat{\delta}=\left(S_{x z}^{\prime} W S_{x z}\right)^{-1} S_{x z}^{\prime} W\left(S_{x z} \delta_{0}+g_{T}\right) \\
\hat{\delta}=\delta_{0}+\left(S_{x z}^{\prime} W S_{x z}\right)^{-1} S_{x z}^{\prime} W g_{T} \\
\sqrt{T}\left(\hat{\delta}-\delta_{0}\right)=\left(S_{x z} W S_{x z}\right)^{-1} S_{x z}^{\prime} W \frac{1}{\sqrt{T}} \sum_{t=1}^{T} g_{t}
\end{gathered}
$$

converges to $N(0, S)$ and $S=E\left[g_{t} g_{t}^{\prime}\right]$, the variance of g_{t}. As $T \rightarrow \infty$, sample moments $S_{x z} \xrightarrow{p} \Sigma_{x z}$.

$$
A \operatorname{var}(\hat{\delta})=\left(\Sigma_{x z}^{\prime} W \Sigma_{x z}\right)^{-1} \Sigma_{x z}^{\prime} W S W \Sigma_{x z}\left(\Sigma_{x z}^{\prime} W \Sigma_{x z}\right)^{-1}
$$

Estimator of Avar use $S_{x z}$ for $\Sigma_{x z}$., we need. to estimate \hat{S} for S. That is

$$
\begin{gathered}
\hat{S}=\frac{1}{T} \sum_{t=1}^{T} \hat{g}_{t} \hat{g}_{t}^{\prime}=\frac{1}{T} \sum_{t=1}^{T}{\hat{\varepsilon_{t}}}^{2} x_{t} x_{t}^{\prime} \\
\hat{\varepsilon_{t}}=y_{t}-z_{t}^{\prime} \hat{\delta}=z_{t}^{\prime} S_{t}+\varepsilon_{t}-z_{t}^{\prime} \hat{\delta} \\
=\varepsilon_{t}+z_{t}^{\prime}\left(\delta_{0}-\delta\right) \\
\frac{1}{T} \sum_{t=1}^{T} \hat{\varepsilon}_{t}^{2} \sum_{t=1}^{T}\left(\varepsilon_{t}^{2}-2\left(\hat{\delta}-\delta_{0}\right)^{\prime} z_{t} \varepsilon_{t}+\left(\hat{\delta}-\delta_{0}\right)^{\prime} z_{t} z_{t}^{\prime}\left(\hat{\delta}-\delta_{0}\right)\right.
\end{gathered}
$$

as $T \rightarrow \infty$, then $\frac{1}{T} \varepsilon_{t}^{2} \rightarrow E\left[\varepsilon_{t}^{2}\right], \hat{\delta}-\delta_{0} \rightarrow 0 \cdot \frac{1}{T} \sum_{t=1}^{T} z_{t} \varepsilon_{t} \rightarrow$ finite middle $\rightarrow 0$ and $\frac{1}{T} \sum_{t=1}^{T} z_{t} z_{t}^{\prime} \rightarrow$ finite.

To test this, we check $\sqrt{T}\left(\hat{\delta}-\delta_{0}\right) \xrightarrow{d} N(0, A \hat{\operatorname{var}}(\hat{\delta}))$. Test $\hat{\delta}_{2}=\delta_{1,0}$. First we will check

$$
\frac{\hat{\delta}_{2}-\delta_{1,0}}{s e\left(\hat{\delta}_{2}\right)}
$$

where

$$
s e\left(\hat{\delta}_{2}\right)=\sqrt{e_{i}^{\prime} \operatorname{Avar}(\hat{\delta}) e_{i} / T}
$$

and $e_{i}=[0,0, \cdots, 1, \cdots]$, the ith element is 1 .
Robust to conditional Heteroskedasticity. Wald Test of a vector of linear restriction is

$$
H_{0}: R \delta_{0}=r
$$

where r is number of restriction. Then

$$
\sqrt{T}\left(R \hat{\delta}-R \delta_{0}\right) \xrightarrow{d} N\left(0, R A \hat{\operatorname{var}}(\hat{\delta}) R^{\prime}\right)
$$

where

$$
W a l d=T(R \hat{\delta}-r)^{\prime}\left[R A \hat{v a r}(\hat{\delta}) R^{\prime}\right]^{-1} g(R \hat{\delta}-r)
$$

Non-linear restriction

$$
\begin{aligned}
& H_{0}: a\left(\delta_{0}\right)=0 \\
& A(\delta)=\Delta_{\delta} a(\delta)
\end{aligned}
$$

The Wald test is

$$
T a(\delta)^{\prime}\left\{A(\hat{\delta}) A \hat{\operatorname{var}}(\hat{\delta}) A(\hat{\delta})^{\prime^{\prime}}\right\}^{-1} a(\hat{\delta})
$$

where

$$
\begin{aligned}
& a(\hat{\delta})=a\left(\delta_{0}\right)+A(\bar{\delta})\left(\hat{\delta}-\delta_{0}\right) \\
& \sqrt{T} a(\hat{\delta}) \rightarrow A(\bar{\delta}) \sqrt{T}\left(\hat{\delta}-\delta_{0}\right)
\end{aligned}
$$

What is W ? Efficient GMM uses $W=S^{-1}$.

$$
\operatorname{Avar}(\hat{\delta})=\Sigma_{x z}^{-1} S^{-1} \Sigma_{x z}^{-1}
$$

Hanson 1982 his theorem (3.2) proves that this is the smallest asymptotic variance of $\hat{\delta}$ for orthogonality conditions. (Hysashi P245 Prob 3).

However, we don't know S. There is a 2 -step efficient GMMs:

1. Use known W where $W=I_{k}$. Hisashi recommends to use $W=S_{x x}^{-1}$. If this is used, then

$$
\begin{gathered}
\hat{\delta}_{1}=\left(S_{x z}^{\prime} S_{x x}^{-1} S_{x z}\right)^{-1} S_{x z}^{\prime} S_{x x}^{-1} s_{x y} \\
\hat{\varepsilon}_{t}=y_{t}-z_{t}^{\prime} \hat{\delta}_{1}
\end{gathered}
$$

2. Use $\hat{\varepsilon}_{t}$ to estimate

$$
\hat{S}_{1}=\frac{1}{T} \sum_{t=1}^{T} \hat{\varepsilon}_{t}^{2} x_{t} x_{t}^{\prime}
$$

3. Use $W=\hat{S}_{1}^{-1}$ to estimate

$$
\hat{\delta}_{2}=\left(S_{x z}^{\prime} \hat{S}_{1}^{-1} S_{x z}\right)^{-1} S_{x z}^{\prime} \hat{S}_{1}^{-1} s_{x y}
$$

4. Either stop or use $\left(S_{x z}^{\prime} \hat{S}_{1}^{-1} S_{x z}\right)^{-1}$ as $A \hat{v a r}$ of $\hat{\delta}_{2}$ and then iterate util convergence. MC process suggests this is suggested but not required.
Limit the number of orthogonality conditions: distinct elements S are $\frac{k(k+1)}{2}$ additional parameters. T observations and k series can implode the equations very quickly.

3.4 Hansen's J-Test

Model may give overidentify restrictions because the number of orthogonality conditions is greater than the number of parameters. The GMM objective function

$$
J\left(\hat{\delta}, \hat{S}^{-1}\right)=T g_{T}(\tilde{\delta})^{\prime} \hat{S}^{-1} g_{T}(\tilde{\delta})
$$

We will take the $\arg \min$ of δ as the above. Suppose this is δ_{0}. Then

$$
J=\sqrt{T} g_{T}\left(\delta_{0}\right)^{\prime} S^{-1} \sqrt{T} g_{T}\left(\delta_{0}\right) \rightarrow \chi^{2}(k)
$$

because $\sqrt{T} g_{T}\left(\delta_{0}\right) \rightarrow N(0, S)$. The estimation of $\hat{\delta}$ sets the L linear combination of $\sqrt{T} g_{T}(\delta)=0$. We know that $J\left(\hat{\delta}, \hat{S}^{-1}\right) \rightarrow \chi^{2}(k-L)$ and this is called the Hansen's J-Test.

$$
\begin{array}{rlr}
\sqrt{T} g_{T}(\hat{\delta}) & =\sqrt{T} \frac{1}{T} \sum_{t=1}^{T} x_{t}\left(y_{t}-z_{t}^{\prime} \hat{\delta}\right) & \\
& =\sqrt{T}\left(s_{x y}-S_{x z} \hat{\delta}\right)=\sqrt{T}\left[s_{x y}-S_{x z}\left(S_{x z}^{\prime} \hat{S}^{-1} S_{x z}\right)^{-1} S_{x z}^{\prime} \hat{S}^{-1} s_{x y}\right] \\
& =\sqrt{T}\left[I-S_{x z}\left(S_{x z}^{\prime} \hat{S}^{-1} S_{x z}\right)^{-1} S_{x z}^{\prime} \hat{S}^{-1}\right] s_{x y} & \\
& =\sqrt{T} \hat{B} s_{x y} & \hat{B} \text { is not full column rank }
\end{array}
$$

$$
\hat{B} S_{x z}=0
$$

3.5 Likelihood-Ratio Test of H_{0}

Here H_{0} has restrictions on the parameters.

1. Estimate without restrictions and get $\hat{S}_{1} . T g_{T}(\hat{\delta})^{\prime} \hat{S}_{1} g_{T}(\hat{\delta})$ where $\hat{\delta}$ is the unrestricted estimators.
2. Estimate with H_{0} restrictions using $\hat{S}_{1} . T g_{T}(\bar{\delta})^{\prime} \hat{S}_{1} g_{T}(\bar{\delta})$ where $\bar{\delta}$ is the restricted estimators.

Since we know the optimization with the constraints will be larger than the one without so we will check the difference

$$
J\left(\bar{\delta}, \hat{S}_{1}\right)-J\left(\hat{\delta}, \hat{S}_{1}\right) \rightarrow \chi^{2}(r)
$$

3.6 Newey-West Motivation

Suppose we have $\left\{y_{t}\right\}_{t=1}^{T} n$ dimensional and covariance stationary. The mean is $E\left[y_{t}\right]=\mu$. Therefore $\hat{\mu}=\frac{1}{T} \sum_{t=1}^{T} y_{t} . E[\hat{\mu}]=\frac{1}{T} \sum_{t=1}^{T} E\left[y_{t}\right]=\frac{T}{T} \mu=\mu$ is unbiased.

The variance is

$$
\begin{aligned}
E\left[(\hat{\mu}-\mu)(\hat{\mu}-\mu)^{\prime}\right] & =E\left[\frac{1}{T} \sum_{t=1}^{T}\left(y_{t}-\mu\right) \frac{1}{T} \sum_{t=1}^{T}\left(y_{t}-\mu\right)^{\prime}\right] \\
& =\frac{1}{T^{2}} E\left[\left(y_{1}-\mu\right) \sum_{t=1}^{T}\left(y_{t}-\mu\right)^{\prime}+\left(y_{2}-\mu\right) \sum_{t=1}^{T}\left(y_{t}-\mu\right)^{\prime}+\cdots+\left(y_{T}-\mu\right) \sum_{t=1}^{T}\left(y_{t}-\mu\right)^{\prime}\right] \\
& =\frac{1}{T^{2}}\left\{T \Gamma_{0}+(T-1)\left[\Gamma_{1}+\Gamma_{1}^{\prime}\right]+\cdots+\left[\Gamma_{T-1}+\Gamma_{T-1}^{\prime}\right]\right\} \\
T V(\hat{\mu}) & =\Gamma_{0}+\frac{T-1}{T}\left[\Gamma_{1}+\Gamma_{1}^{\prime}\right]+\cdots+\frac{1}{T}\left[\Gamma_{T-1}+\Gamma_{T-1}^{\prime}\right] \\
\lim _{T \rightarrow \infty} T V(\hat{\mu}) & =\sum_{j=-\infty}^{\infty} \Gamma_{j}
\end{aligned}
$$

Then we know

$$
T E\left[(\hat{\mu}-\mu)(\hat{\mu}-\mu)^{\prime}\right]=\lim _{T \rightarrow \infty} E\left[\left(\frac{1}{\sqrt{T}} \sum_{t=1}^{T} g_{t}\left(y_{t}, \mu\right)\right)\left(\frac{1}{\sqrt{T}} \sum_{t=1}^{T} g_{t}\left(y_{t}, \mu\right)\right)^{\prime}\right]
$$

Then the variance of $\sqrt{T} g_{T}$ is $S=\sum_{j=-\infty}^{\infty} \Gamma_{j}$.
Recall $S(\omega)=\sum_{j=-\infty}^{\infty} \frac{1}{2 \pi} \Gamma_{j} e^{-i \omega j}$ with the spectrum density at frequency ω. The above condition is just $S(0)$.

3.7 Hansen-Hodrick JPE(1980)

Forward exchange rates as predictors of Future spot rates.

$$
F_{t, k}=E_{t}\left[S_{t+k}\right]
$$

where

$$
S_{t+k}=E_{t}\left[S_{t+k}\right]+\varepsilon_{t, t+k}, \text { with some reaction to news }
$$

However the actual data is not very stationary so the paper propose using the rates of appreciation $s_{t+k}-s_{t}$ (i.e. . 05 means 5% appreciations in dollar) in logs and forward premium $f_{t, k}-s_{t}$ in logs (i.e. .02 means 2% more expensive to purchase ponders with dollars for delivery in k periods).

With rational expectation that

$$
s_{t+k}-s_{t}=E_{t}\left(s_{t+k}-s_{t}\right)+u_{t+k, t}
$$

and $E_{t}\left(u_{t+k, t}\right)=0$, under null hypothesis

$$
E_{t}\left[s_{t+k}-s_{t}\right]=\alpha+\left(f_{t, k}-s_{t}\right)
$$

Alternatively

$$
s_{t+k}-s_{t}=\alpha+\beta\left(f_{t, k}-s_{t}\right)+u_{t+k, t}
$$

where $\beta=1$ as null is in interest. What are legitimate instruments to use? Anything is in the information can be used as the instrument. (e.g., constant, forward premium). The orthogonality condition is

$$
E\left[u_{t+k, t}\binom{1}{f_{t, k}-s_{t}}\right]=0
$$

Then

$$
g_{t}(\delta)=\left\{\left(s_{t+k}-s_{t}\right)-\alpha-\beta\left(f_{t, k}-s_{t}\right)\right\}\binom{1}{f_{t, k}-s_{t}}
$$

where $\delta=(\alpha, \beta)^{\prime}$. Let $y_{t+k}=s_{t+k}-s_{t}, x_{t}=\binom{1}{f_{t, k}-s_{t}}, y=\left(y_{1+k}, \cdots, y_{t+k}\right)^{\prime}, X=\left(\begin{array}{c}x_{1}^{\prime} \\ \vdots \\ x_{T}^{\prime}\end{array}\right)$ and $u=\left(\begin{array}{c}u_{1+k, 1} \\ \vdots \\ u_{T+k, T}\end{array}\right)$. We have $g_{T}(\delta)=\frac{1}{T} X^{\prime} \mu$. Based on GMM, we have

$$
J(\hat{\delta}, W)=T g_{T}(\delta)^{\prime} W g_{T}(\delta)=T\left[\frac{1}{T} X^{\prime}(y-X \delta)\right]^{\prime} W\left[\frac{1}{T} X^{\prime}(y-X \delta)\right]
$$

$\hat{\delta}=\left(X^{\prime} X\right)^{-1} X^{\prime} y$ is OLS.

$$
\begin{gathered}
\hat{\delta}=\left(X^{\prime} X\right)^{-1} X^{\prime}\left(X \delta_{0}+u\right)=\delta_{0}+\left(\frac{\left(X^{\prime} X\right)}{T}\right)^{-1} g_{T}\left(\delta_{0}\right) \\
\sqrt{T}\left(\hat{\delta}-\delta_{0}\right)=\left(\frac{\left(X^{\prime} X\right)}{T}\right)^{-1} \sqrt{T} g_{T}\left(\delta_{0}\right) \\
\sqrt{T} g_{T}\left(\delta_{0}\right) \rightarrow N(0, S) \\
S=\sum_{j=-\infty}^{\infty} \Gamma_{j}, \text { if } \Gamma_{j} \neq 0 \\
13
\end{gathered}
$$

$$
\Gamma_{j}=E\left[u_{t+k, t} x_{t} u_{t+k-j, t-j} x_{t-j}^{\prime}\right]
$$

for $j<k, \Gamma_{j} \neq 0, j \geq k, \Gamma_{j}=0$. The paper was able to sample data more timely than the forecasting. Hansen-Hodrick GMM uses $\hat{S}=\hat{\Gamma}_{0}+\sum_{j=1}^{k-1}\left(\hat{\Gamma}_{j}+\hat{\Gamma}_{j}^{\prime}\right)$. Sometimes this estimator does not turns out to be positive definite so Newey-West comes along.

3.8 Non-linear GMM: Consumption-based Asset Pricing

Let $p_{j t}=$ real price of asset $j, d_{j t}=$ real dividend of asset $j . u^{\prime}\left(c_{t}\right)=$ marginal utility of consumption. The first order condition for equilibrium investment in an asset is the marginal cost is equal to the expected marginal utility in the future

$$
\begin{equation*}
u^{\prime}\left(c_{t}\right) p_{j t}=E_{t}\left[\beta u^{\prime}\left(c_{t+1}\right)\left(p_{j, t+1}+d_{j, t+1}\right)\right], j=1, \cdots, N \tag{1}
\end{equation*}
$$

One utility function people use is $u\left(c_{t}\right)=\frac{c_{t}^{1-\alpha}}{1-\alpha}(\operatorname{CRRA})$. Then

$$
r_{j, t+1}=\text { real return }=\frac{p_{j, t+1}-d_{j, t+1}}{p_{j t}}
$$

We can divide equation (1) by $u^{\prime}\left(c_{t}\right) p_{i t}$ and take unconditional expectation

$$
1=E\left[\beta\left(\frac{c_{t+1}}{c_{t}}\right)^{-\alpha} R_{j, t+1}\right]
$$

must hold for $j=1, \cdots, N$
Orthogonality condition is

$$
E\left[\beta\left(\frac{c_{t+1}}{c_{t}}\right)^{-\alpha} R_{j, t+1}-1\right]=0
$$

where $\theta=(\alpha, \beta)^{\prime}$.

$$
\begin{gathered}
\varepsilon_{t+1}\left(\theta, R_{t+1}, \frac{c_{t+1}}{c_{t}}\right)=\left[\beta\left(\frac{c_{t+1}}{c_{t}}\right)^{-\alpha} R_{j, t+1}-1\right] \\
E_{t}\left[\varepsilon_{t+1}\left(\theta, R_{t+1}, \frac{c_{t+1}}{c_{t}}\right)\right]=0 \\
E_{t}\left[\varepsilon_{t+1}\left(\theta, R_{t+1}, \frac{c_{t+1}}{c_{t}}\right) \otimes x_{t}\right]=0, x_{t} \in \Phi_{t}
\end{gathered}
$$

(M instruments usual 1 of which is a constant.)
Define

$$
g_{t}\left(\theta, w_{t+1}\right)=\varepsilon_{t+1}\left(\theta, R_{t+1}, \frac{c_{t+1}}{c_{t}}\right) \otimes x_{t}
$$

where w_{t+1} unique elements of data
Here $E\left[g_{t}\left(\theta, w_{t+1}\right)\right]=0 . g_{t}\left(\theta, w_{t+1}\right)$ is a $k=M N$ dimensional time series function of data and parameters.

A1 w_{t+1} is stationary and ergodic. Then, when $g_{t}\left(\theta, w_{t+1}\right)$ is continuous in θ for all w_{t+1} and differentiable with respect to θ then

$$
g_{T}(\theta)=\frac{1}{T} \sum_{t=1}^{T} g_{t}\left(\theta, w_{t+1}\right) \xrightarrow{p} E\left(g_{t}\left(\theta, w_{t+1}\right)\right)
$$

this is the sample mean of the orthogonality condition.

$$
G_{T}(\theta)=\nabla g_{T}(\theta) \rightarrow E[G(\theta)]
$$

A2 Identification case: $E\left(g_{t}\left(\theta, w_{t+1}\right)\right) \neq 0, \forall \theta \neq \theta_{0}$. Otherwise, 0 .
A3 $\sqrt{T} g_{T}\left(\theta_{0}\right) \xrightarrow{d} N(0, S) . S=\sum_{j=-\infty}^{\infty} \Gamma_{j}$ but theory will often limit j.
GMM objective function is

$$
J_{T}(\hat{\theta})=\arg \min _{\hat{\theta}} T g_{T}(\theta)^{\prime} W g_{T}(\theta)
$$

for some positive definite symmetric $k \times k$ weighting matrix W . For over-identified $k>p$, the FOC is

$$
G_{T}(\hat{\theta}) W g_{T}(\hat{\theta})=0
$$

p linear combinations of sample average orthogonality conditions are zero.

$$
a_{T} g_{T}(\theta)=0
$$

(Hensen and Cochrarne use this) where $a_{T}=G_{T}(\hat{\theta})^{\prime} W$
Apply the mean-value theorem,

$$
g_{T}(\hat{\theta})=g_{T}\left(\theta_{0}\right)+G_{T}(\bar{\theta})\left(\hat{\theta}-\theta_{0}\right)
$$

We will substitute into the FOC.

$$
\begin{gathered}
G_{T}(\hat{\theta}) W\left[g_{T}\left(\theta_{0}\right)+G_{T}(\bar{\theta})\left(\hat{\theta}-\theta_{0}\right)\right]=0 \\
\sqrt{T}\left(\hat{\theta}-\theta_{0}\right)=-\left[G_{T}(\hat{\theta})^{\prime} W G_{T}(\bar{\theta})\right]^{-1} G_{T}(\hat{\theta})^{\prime} W \sqrt{T} g_{T}\left(\theta_{0}\right)
\end{gathered}
$$

Under the standard regularity conditions,

$$
G_{T}(\hat{\theta}), G_{T}(\bar{\theta})
$$

converges to $E\left[G\left(\theta_{0}\right)\right]$.

$$
\begin{gathered}
\sqrt{T} g_{T}\left(\theta_{0}\right) \xrightarrow{d} N(0, S) \\
\sqrt{T}\left(\hat{\theta}-\theta_{0}\right) \xrightarrow{d} N(0, \operatorname{Avar}(\hat{\theta}))
\end{gathered}
$$

where $\operatorname{Avar}(\hat{\theta})=\left(G^{\prime} W G\right)^{-1} G^{\prime} W S W G\left(G^{\prime} W G\right)^{-1}$ and S is asymptotic variance of $g_{T}\left(\theta, w_{t+1}\right)$
Setting $W=S^{-1}$ is optimal

$$
\operatorname{Avar}(\hat{\theta})=\left(G^{\prime} S^{-1} G\right)^{-1}
$$

1. Calculate $\hat{\theta}_{1}$ with known $W=I$
2. Calculate \hat{S}_{1} using $\hat{\theta}_{1}$ to get the variance of $g_{t}\left(\hat{\theta}, w_{t+1}\right)$. Impose the lag restrictions on $\hat{\Gamma}_{j}=0$.
3. Use $W=\hat{S}^{-1}$ to get $\hat{\theta}_{2}$ either stop or iterate to convergence.
4. Form $G_{T}(\hat{\theta})=\nabla_{\theta} g_{T}(\hat{\theta})$ either analytically or numerically. Define a procedure that calculates $g_{T}(\hat{\theta})$. Taking numerical gradient at $\hat{\theta}$ of procedure.
5. Do tests with

$$
\sqrt{T}\left(\hat{\theta}-\theta_{0}\right) \xrightarrow{d} N\left(0,\left[G_{T}(\hat{\theta})^{\prime} \hat{S}^{-1} G_{T}(\hat{\theta})\right]^{-1}\right)
$$

Suppose we have n assets.

$$
\begin{gathered}
\varepsilon_{t+1}=\beta\left(\frac{c_{t+1}}{c_{t}}\right)^{-\alpha} R_{t+1}-1 \\
g_{t}\left(\theta, w_{t+1}\right)=\varepsilon_{t+1} \\
g_{T}(\theta)=\frac{1}{T} \sum_{t=1}^{T} g_{t}\left(\theta, W_{t+1}\right)
\end{gathered}
$$

where $\theta=(\beta, \alpha)^{\prime}$

$$
G_{T}(\hat{\theta})=\nabla_{\theta} g_{T}(\hat{\theta})=\left[\frac{1}{T} \sum_{t=1}^{T}\left(\frac{c_{t+1}}{c_{t}}\right)^{-\alpha} R_{t+1} ; \frac{1}{T} \sum_{t=1}^{T}-\beta \log \left(\frac{c_{t+1}}{c_{t}}\right)\left(\frac{c_{t+1}}{c_{t}}\right)^{-\alpha} R_{t+1}\right]
$$

$E_{t}\left[\varepsilon_{t+1}\right]=0$, by theory

$$
\begin{gathered}
\hat{S}=\frac{1}{T} \sum_{t=1}^{T} g_{t}\left(\hat{\theta}, w_{t+1}\right) g_{t}\left(\hat{\theta}, w_{t+1}\right)^{\prime} \\
\sqrt{T}\left[\binom{\hat{\beta}}{\hat{\alpha}}-\binom{\hat{\beta}_{0}}{\hat{\alpha}_{0}}\right] \xrightarrow{d} N\left(0,\left(G_{T}(\hat{\theta})^{\prime} \hat{S}^{-1} G_{T}(\hat{\theta})\right)^{-1}\right)
\end{gathered}
$$

3.9 The Asymptotic Distribution of the Orthogonality Conditions

$$
g_{T}(\hat{\theta})=g_{T}\left(\theta_{0}\right)+G_{T}(\bar{\theta})\left(\hat{\theta}-\theta_{0}\right)
$$

The following is true because the first-order condition

$$
G_{T}^{\prime} W g_{T}(\hat{\theta})=0=G_{T}^{\prime} W g_{T}\left(\theta_{0}\right)+G_{T}^{\prime} W G_{T}\left(\hat{\theta}-\theta_{0}\right)
$$

We argue that

$$
\begin{aligned}
\hat{\theta} & -\theta_{0}=-\left(G_{T}^{\prime} W G_{T}\right)^{-1} G_{T}^{\prime} W g_{T}\left(\theta_{0}\right) \\
g_{T}(\hat{\theta}) & =g_{T}\left(\theta_{0}\right)-G_{T}\left(G_{T}^{\prime} W G_{T}\right)^{-1} G_{T}^{\prime} W g_{T}\left(\theta_{0}\right) \\
& =\left[I-G_{T}\left(G_{T}^{\prime} W G_{T}\right)^{-1} G_{T}^{\prime} W\right] g_{T}\left(\theta_{0}\right)
\end{aligned}
$$

We know that

$$
\begin{gathered}
\sqrt{T}\left(g_{T}\left(\theta_{0}\right)\right) \xrightarrow{d} N(0, S) \\
\sqrt{T} g_{T}(\hat{\theta}) \xrightarrow{d} N\left(0,\left[I-G\left(G^{\prime} W G\right)^{-1} G^{\prime} W\right] S\left[I-G\left(G^{\prime} W G\right)^{-1} G^{\prime} W\right]^{\prime}\right)
\end{gathered}
$$

If $W=S^{-1}$, then above is going to be reduced to

$$
\begin{aligned}
& {\left[I G\left(G^{\prime} S^{-1} G\right)^{-1} G^{\prime} S^{-1}\right] S\left[I G\left(G^{\prime} S^{-1} G\right)^{-1} G^{\prime} S^{-1}\right]^{\prime}} \\
& =S-G\left(G^{\prime} S^{-1} G\right)^{-1} G^{\prime} S^{-1} S-G\left(G^{\prime} S^{-1} G\right)^{-1} G^{\prime} S^{-1}+G\left(G^{\prime} S^{-1} G\right)^{-1} G^{\prime} S^{-1} \\
& =\left[S-G\left(G^{\prime} S^{-1} G\right)^{-1} G^{\prime}\right.
\end{aligned}
$$

Asymptotically,

$$
\sqrt{T} g_{T}(\hat{\theta}) \xrightarrow{d} N\left(0, \hat{S}-G_{T}\left(G_{T}^{\prime} \hat{S}^{-1} G\right)^{-1} G_{T}^{\prime}\right)
$$

From Lemma 4.2 (either Hayashi or Hamilton), we know that

$$
T g_{T}^{\prime}(\hat{\theta}) S^{-1} g_{T}(\hat{\theta}) \sim \chi^{2}(r-p)
$$

where r is the number equations and p is number of parameters.
\hat{S} estimates the variance of $g_{t}(\theta)$ where $V\left(g_{t}(\theta)\right)=E\left[g_{t}(\theta) g_{t}(\theta)^{\prime}\right]$. Under null we have $E\left[g_{t}(\theta)\right]=0$. Here we have a few tips as given in the following to improve our test

1. Consider the estimate for S as $\frac{1}{T} \sum_{t=1}^{T} g_{t}(\hat{\theta}) g_{t}(\hat{\theta})^{\prime}$ where $g_{t}(\theta)$ is serially uncorrelated. We can improve the power of the test by setting

$$
\hat{S}=\frac{1}{T} \sum_{t=1}^{T}\left[g_{t}(\hat{\theta})-g_{T}(\hat{\theta})\right]\left[g_{t}(\hat{\theta})-g_{T}(\hat{\theta})\right]^{\prime}
$$

2. Scale data so variances of $g_{t}(\theta)$ are similar.
3. Keep model relatively small. Since $\frac{K(K+1)}{2}$ in S to be unknown, the size of S can be very large.
4. In our asset pricing model

$$
E_{t}\left[m_{t+1}(\theta) R_{t+1}\right]=1
$$

If we have instrument 1 and x_{t}, then the orthogonality conditions of our model becomes

$$
E\left[m_{t+1}(\theta) R_{t+1} \otimes\binom{1}{x_{t}}-1 \otimes\binom{1}{x_{t}}\right]=0
$$

3.10 Hansen-Hodrick (1983)

Consider conditional CAPM with constant β s with excess return

$$
E_{t}\left(R_{i t+1}\right)=\beta_{i} E_{t}\left(R_{m t+1}\right), i=1, \cdots, N
$$

We know from rational expectation

$$
R_{i t+1}=E_{t}\left(R_{i t+1}\right)+\varepsilon_{i t+1}, \varepsilon_{i t+1} \perp \Phi_{t}
$$

where Φ_{t} is the information set of the investors. Consider the linear projection of $E_{t}\left[R_{m t+1}\right]$ on to x_{t} observable. Then

$$
E_{t}\left(R_{m t+1}\right)=\alpha+\delta^{\prime} x_{t}+v_{t}, v_{t} \perp\left(1, x_{t}\right)
$$

where this is a latent variable approach.

$$
R_{i t+1}=\beta_{i}\left(\alpha+\delta^{\prime} x_{t}\right)+\beta_{i} v_{t}+\varepsilon_{i t+1}, i=1, \cdots, N
$$

Let's call

$$
u_{i t+1}=\beta_{i} v_{t}+\varepsilon_{i t+1} \perp\binom{1}{x_{t}}
$$

Normalize $\beta_{1}=1$. Then we can write the following

$$
\left(\begin{array}{c}
R_{i t+1} \\
\vdots \\
R_{N t+1}
\end{array}\right)=\left(\begin{array}{c}
1 \\
\beta_{2} \\
\vdots \\
\beta_{N}
\end{array}\right)\left(\alpha+\delta^{\prime} x_{t}\right)+\left(\begin{array}{c}
u_{1 t+1} \\
u_{2 t+1} \\
\vdots \\
u_{N t+1}
\end{array}\right)
$$

where our orthogonality conditions are

$$
E\left[\left(\begin{array}{c}
u_{1 t+1} \\
u_{2 t+1} \\
\vdots \\
u_{N t+1}
\end{array}\right) \otimes\binom{1}{x_{t}}\right]=0
$$

Here we assume x_{t} has m elements and k from α and δ, ($N 01$) from β 's. Then We have $N k>N-1+k$ over-identified GMM.

4 Vector Auto-regression

4.1 Maximum Likelihood Estimation

Let $f\left(y_{t} \mid x_{t}, y_{t-1} ; \theta\right)$ probability density function of y_{t} given past x_{t} and y_{t-1} (the past history). View $f\left(y_{t} \mid x_{t}, y_{t-1} ; \theta\right)$ as a function of unknown θ and a likelihood function. Here we know

$$
\int_{A} f\left(y_{t} \mid x_{t}, y_{t-1} ; \theta\right) d y_{t}=1
$$

Cremer (1946) says under appropriate regularity conditions, we can differentiate the above with respect to θ

$$
\int_{A} \frac{\partial f\left(y_{t} \mid x_{t}, y_{t-1} ; \theta\right)}{\partial \theta}=0
$$

Multiply by $\frac{f}{f}$ on both side. Then we have

$$
\int_{A} \frac{\partial f\left(y_{t} \mid x_{t}, y_{t-1} ; \theta\right)}{\partial \theta f\left(y_{t} \mid x_{t}, y_{t-1} ; \theta\right)} f\left(y_{t} \mid x_{t}, y_{t-1} ; \theta\right)=0
$$

Thus

$$
E\left[\frac{\partial \log f\left(y_{t} \mid x_{t}, y_{t-1} ; \theta\right)}{\partial \theta}\right]=0
$$

Define $s_{t}(\theta)=\frac{\partial \log f\left(y_{t} \mid x_{t}, y_{t-1} ; \theta\right)}{\partial \theta}$ is the t-th score function. The maximum likelihood function tells us

$$
E_{t-1}\left[s_{t}(\theta)\right]=0
$$

and

$$
E\left[s_{t}(\theta)\right]=0
$$

Hence the maximum likelihood function is GMM on the score function.

$$
L\left(y_{t}\right)=\prod_{t=1}^{T} f\left(y_{t} \mid x_{t}, y_{t-1} ; \theta\right)
$$

since the innovations (the residuals basically) in y_{t} are serially uncorrelated. Then

$$
l\left(y_{t}\right)=\sum_{t=1}^{T} \log f\left(y_{t} \mid x_{t}, y_{t-1} ; \theta\right)
$$

From maximum likelihood, we have

$$
\max l\left(y_{t}\right)
$$

to set

$$
\frac{1}{T} \sum_{t=1}^{T} s_{t}(\theta)=\frac{1}{T} \sum_{t=1}^{T} s_{t}\left(\theta_{0}\right)+\frac{1}{T} \sum_{t=1}^{T}\left(s_{t}(\theta)-s_{t}\left(\theta_{0}\right)=0\right.
$$

We know

$$
\sqrt{T}\left(\frac{1}{T} \sum_{t=1}^{T} s_{t}\left(\theta_{0}\right)\right) \xrightarrow{d} N(0, S)
$$

where $S=E\left[s_{t}\left(\theta_{0}\right) s_{t}\left(\theta_{0}\right)^{\prime}\right]$ because $s_{t}\left(\theta_{0}\right)$ is serially uncorrelated. We know

$$
\begin{gathered}
\frac{1}{T} \sum_{t=1}^{T} \frac{\partial s_{t}(\theta)}{\partial \theta} \xrightarrow{d} E\left[\frac{\partial^{2} \log f}{\partial \theta \partial \theta^{\prime}}\right]=-G \\
\sqrt{T}\left(\theta-\theta_{0}\right) \xrightarrow{d} N\left(0, G^{-1} S G^{-1}\right)
\end{gathered}
$$

where G has same square dimension as S. In MLE, $S=G=I=$ fisher's information matrix

$$
\begin{gathered}
\sqrt{T}\left(\theta-\theta_{0}\right) \xrightarrow{d} N\left(0, I^{-1}\right) \\
S=E\left(\frac{\partial f}{\partial \theta} \frac{\partial f^{\prime}}{\partial \theta}\right)=-E\left[\frac{\partial^{2} f}{\partial \theta \partial \theta^{\prime}}\right]
\end{gathered}
$$

if the model is true.

4.2 Vector Auto-regression

We will be doing first-order vector-autoregression

$$
y_{t}=A y_{t-1}+\varepsilon_{t}
$$

with zero means and

$$
\underset{N \times 1}{y_{t}}=\underset{N \times 1}{C}+\underset{N \times N}{\Phi_{1}} y_{t-1}+\cdots+\Phi_{p} y_{t-p}+\underset{N \times 1}{\varepsilon_{t}}
$$

where ε_{t} is serially uncorrelated and $N(0, \Omega)$ and y_{t} has dimension N. The key is VAR completely characterizes the auto-correlated y_{t}.
$T+p$ observations (conditional on the first p observation) on y_{t}. Goal is estimate

$$
\theta=\left(C, \Phi_{1}, \cdots, \Phi_{p}, \Omega\right)
$$

Conditional distribution of y_{t} given in past data is

$$
y_{t} \sim N\left(C+\Phi_{1} y_{t-1}+\cdots+\Phi_{p} y_{t-p}, \Omega\right)=N\left(\Pi^{\prime} x_{t}, \Omega\right)
$$

Define

$$
\begin{gathered}
x_{t}=\left(\begin{array}{c}
1 \\
y_{t-1} \\
\vdots \\
y_{t-p}
\end{array}\right), \Pi^{\prime}=\left(C, \Phi_{1}, \cdots, \Phi_{p}\right) \\
y_{j t}=C_{j}+\Phi_{1 j}^{\prime} y_{t-1}+\cdots+\Phi_{p j}^{\prime} y_{t-p}+\varepsilon_{j t}
\end{gathered}
$$

The conditional density function of the t-th observation is going to be

$$
f\left(y_{t} \mid x_{t}, \theta\right)=(2 \pi)^{-N / 2}\left|\Omega^{-1}\right|^{1 / 2} \exp \left[-\frac{1}{2}\left(y_{t}-\Pi^{\prime} x_{t}\right)^{\prime} \Omega^{-1}\left(y_{t}-\Pi^{\prime} x_{t}\right)\right]
$$

Then the log-likelihood function is

$$
l(\theta)=\sum_{t=1}^{T} \log f\left(y_{t} \mid x_{t}, \theta\right)=\frac{-T N}{2} \log (2 \pi)+\frac{T}{2} \log \left(\Omega^{-1}\right)-\frac{1}{2} \sum_{t=1}^{T}\left(y_{t}-\Pi^{\prime} x_{t}\right)^{\prime} \Omega^{-1}\left(y_{t}-\Pi^{\prime} x_{t}\right)
$$

Choose $\hat{\Theta}$ to maximize $L(\Theta)$

$$
\hat{\Pi}^{\prime}=\left[\sum_{t=1}^{T} y_{t} x_{t}^{\prime}\right]\left[\sum_{t=1}^{T} x_{t} x_{t}^{\prime}\right]^{-1}
$$

This is the OLS equation by equation.
Useful matrix calculation results:

1. Consider a quadratic form in A non-symmetric

$$
\begin{aligned}
\frac{\partial x^{\prime} A x}{\partial a_{i j}} & =x_{i} x_{j} \\
\frac{\partial x^{\prime} A x}{\partial A} & =x x^{\prime}
\end{aligned}
$$

2.

$$
\frac{\partial \log |A|}{\partial A}=\left(A^{\prime}\right)^{-1}
$$

Then we have

$$
\frac{\partial l(\theta)}{\partial \theta}=\frac{T}{2} \Omega^{\prime}-\frac{1}{2} \sum_{t=1}^{T} \varepsilon_{t} \varepsilon_{t}^{\prime}=0
$$

Then

$$
\hat{\Omega}^{\prime}=\frac{1}{T} \sum_{t=1}^{T} \varepsilon_{t} \varepsilon_{t}^{\prime}
$$

4.3 Choice of Lag Length

Given $\hat{\Omega}$, value of $l(\hat{\theta})$

$$
l(\hat{\Omega}, \hat{\Pi})=-\frac{T N}{2} \log (2 \pi)+\frac{T}{2} \log \left|\hat{\Omega}^{-1}\right|-\frac{1}{2} \sum_{t=1}^{T} \hat{\varepsilon}_{t}^{\prime} \hat{\Omega}^{-1} \hat{\varepsilon}_{t}=-\frac{T N}{2}(12+\log (2 \pi))+\frac{T}{2} \log \left|\hat{\Omega}^{-1}\right|
$$

where

$$
\frac{1}{2} \sum_{t=1}^{T} \hat{\varepsilon}_{t}^{\prime} \hat{\Omega}^{-1} \hat{\varepsilon}_{t}=\frac{1}{2} \operatorname{tr}\left(\sum_{t=1}^{T} \hat{\varepsilon}_{t}^{\prime} \hat{\Omega}^{-1} \hat{\varepsilon}_{t}\right)=\frac{1}{2} \operatorname{tr}\left(\sum_{t=1}^{T} \hat{\Omega}^{-1} \hat{\varepsilon}_{t} \hat{\varepsilon}_{t}^{\prime}\right)=\frac{1}{2} \operatorname{tr}\left(\hat{\Omega}^{-1} T \hat{\Omega}\right)=\frac{T N}{2}
$$

where

$$
\hat{\Omega}=\frac{1}{T} \sum_{t=1}^{T} \hat{\varepsilon}_{t} \hat{\varepsilon}_{t}^{\prime}
$$

Suppose we want to test lag length $p_{0}<p_{1} . p_{0}$ imposes $N^{2}\left(p_{1}-p_{0}\right) 0$ restrictions.

$$
2\left(l_{1}-l_{0}\right)=2\left(\frac{T}{2} \log \left|\hat{\Omega}^{-1}\right|-\frac{T}{2} \log \left|\hat{\Omega}^{-1}\right|\right)=T\left(\log \left|\hat{\Omega}^{-1}\right|-\log \left|\hat{\Omega}^{-1}\right|\right) \sim \chi_{N}^{2}\left(p_{1}-p_{0}\right)
$$

For small sample, Sim (1980) argues that

$$
2\left(l_{1}-l_{0}\right)=(T-k)\left(\log \left|\hat{\Omega}^{-1}\right|-\log \left|\hat{\Omega}^{-1}\right|\right)
$$

where $k=1+N p_{1}$. The other ones are Akaike Information Criterion and Schwarz Information Criterion. They say choose the lag length that minimizes the $\log \left|\hat{\Omega}_{p}\right|+\left(p N^{2}+N\right) \frac{C(T)}{T}$ where $C(T)=2$ for AIC and $\log (T)$ for SIC.

4.4 Cambell (1991) and Hodrick (1992)

Let $z_{t}=\left[\log R_{t}, D_{t} / P_{t}, r b_{t}\right]^{\prime}$ where $r b_{t}=i_{t}-\frac{\sum_{j=1}^{12} i_{t-j}}{12}$ (detrend interest rate, relative build rate), R_{t} is continuous compounded return, D_{t} is dividend rate and P_{t} is price.

Here $z(t)$ is de-meaned.

$$
\begin{gathered}
z_{t+1}=A z_{t}+u_{t+1} \\
(I-A L) z_{t+1}=u_{t+1} \Longrightarrow z_{t+1}=(I-A L)^{-1} u_{t+1}=u_{t+1}+A u_{t}+A^{2} u_{t-1}+\cdots
\end{gathered}
$$

u_{t+1} is serially uncorrelated and let $E\left[u_{t+1} u_{t+1}^{\prime}\right]=V$ is the innovation covariance matrix. The unconditional variance of z_{t+1} is equal to

$$
\begin{aligned}
& C(0)=E\left[z_{t+1} z_{t+1}^{\prime}\right]=E\left[\left(u_{t+1}+A u_{t}+A^{2} u_{t-1}+\cdots\right)\left(u_{t+1}+A u_{t}+A^{2} u_{t-1}+\cdots\right)^{\prime}\right] \\
&=V+A V A^{\prime}+A^{2} V A^{\prime 2}+\cdots \\
& C(0)= \sum_{j=0}^{\infty} A^{j} V A^{\prime j} \\
& E\left[z_{t+1} z_{t+1}^{\prime}\right]=E\left[\left(A z_{t}+u_{t+1}\right)\left(A z_{t}+u_{t+1}\right)^{\prime}\right]=A E\left[z_{t} z_{t}^{\prime}\right] A^{\prime}+E\left[u_{t+1} u_{t+1}^{\prime}\right] \\
& \quad C(0)=A C(0) A^{\prime}+V
\end{aligned}
$$

Hamilton Proposition 10.4 states

$$
\operatorname{vec}(X Y Z)=\left(Z^{\prime} \otimes X\right) \operatorname{vec}(Y)
$$

where vec is a stack operator.
Then

$$
\operatorname{vec}(C(0))=\operatorname{vec}\left(A C(0) A^{\prime}\right)+\operatorname{vec}(V)=(A \otimes A) \operatorname{vec}(C(0))+\operatorname{vec}(V)=\left[I_{N^{2}}-A \otimes A\right]^{-1} \operatorname{vec}(V)
$$

$$
\begin{gathered}
C(1)=E\left[z_{t+1} z_{t}^{\prime}\right]=E\left[\left(A z_{t}+u_{t+1}\right)\left(z_{t}^{\prime}\right)\right]=A E\left[z_{t} z_{z}^{\prime}\right]=A C(0) \\
C(2)=E\left[z_{t+2} z_{t}^{\prime}\right]=E\left[\left(A^{2} z-t+A u_{t+1}+u_{t+2}\right) z_{t}^{\prime}\right]=A^{2} C(0) \\
C(j)=E\left[z_{t+j} z_{t}^{\prime}\right]=A^{j} C(0) \\
C(-j)=C(j)^{\prime}
\end{gathered}
$$

Suppose we are interested in long horizon predictability. Let

$$
\log R_{t+k, k}=\log R_{t+1}+\cdots+\log R_{t+k}
$$

What is the variance of $\log R_{t+k, k}$. First, we will get the variance of $\sum_{j=1}^{k} z_{t+j}$

$$
\begin{gathered}
V_{k}=E\left[\left(z_{t+1}+z_{t+2}+\cdots+z_{t+k}\right)\left(z_{t+1}+z_{t+2}+\cdots+z_{t+k}\right)^{\prime}\right] \\
V_{k}=k C(0)+(k-1)(C(1)+C(-1))+\cdots+\left(C(k-1)+C(-k+1)=k C(0)+\sum_{j=1}^{k-1}(k-j)\left(C(j)+C(j)^{\prime}\right)\right.
\end{gathered}
$$

(Note $V\left(\log R_{t+k, k}\right)=e_{1}^{\prime} V_{k} e_{1}$ where $\left.e_{1}=(1,0,0)^{\prime}\right)$
Fama-French looked at

$$
\log R_{t+k, k}=\alpha_{k, 1}+\beta_{k, 1} \frac{D_{t}}{P_{t}}+u_{t+k, k}
$$

we can use GMM with overlapping data.

$$
\beta_{k, 1}=\operatorname{Cov}\left(\log R_{t+1}+\cdots+\log R_{t+k}, D_{t} / P_{t}\right) / \operatorname{Var}\left(D_{t} / P_{t}\right)
$$

But from VAR, all auto-covariances are determined. In particular, we can get

$$
\beta_{k, 1}=\frac{e_{1}^{\prime}[C(1)+\cdots+C(k)] e_{2}}{e_{2}^{\prime} C(0) e_{2}}=\frac{e_{1}^{\prime}\left(A+A^{2}+\cdots+A^{k}\right) C(0) e_{2}}{e_{2}^{\prime} C(0) e_{2}}
$$

This is implied slope coefficients. We can use delta method to get the variance.
The k-period variance ratio is

$$
V R_{k}=\frac{\operatorname{Var}\left(\log R_{t+1}+\cdots+\log R_{t+k}\right.}{k \operatorname{Var}\left(R_{t+1}\right)}=\frac{e_{1}^{\prime}\left[k C(0)+\sum_{j=1}^{k-1}(k-j)\left(C(j)+C(j)^{\prime}\right)\right] e_{1}}{k e_{1}^{\prime} C(0) e_{1}}
$$

R^{2} from implied regression is the explained variance over the total variance that is

$$
R_{1}^{2}(1)=\frac{\beta_{k, 1}^{2} e_{2}^{\prime} C(0) e_{2}}{e_{1}^{\prime} V_{k} e_{1}}
$$

Explanatory Power of VAR at k horizon is

$$
R_{2}^{2}(k)=1-\frac{\text { Innovation Variance }}{\text { Total Variance }}
$$

requires the k-period innovation variance. $u_{t+1,1}=u_{t+1}$ at $k=1$. This is innovation in z_{t+1}.

$$
\begin{gathered}
u_{t+2,2}=u_{t+2}+A u_{t+1} \text { at } k=2 \\
u_{t+3,3}=u_{t+3}+A u_{t+2}+A^{2} u_{t+1} \text { at } k=3 \\
u_{t+k, k}=\left[I+A L+A^{2} L^{2}+\cdots+A^{k-1} L^{k-1}\right] u_{t+k}=\left[(I-A L)^{-1}\left(I-A^{k} L^{k}\right)\right] u_{t+k}
\end{gathered}
$$

The innovation variance is

$$
\begin{gathered}
\sum_{j=1}^{k}(I-A)^{-1}\left(I-A^{j}\right) V\left(I-A^{j}\right)^{\prime}(I-A)^{\prime-1}=W_{k} \\
R_{2}^{2}(l)=1-\frac{e_{2}^{\prime} W_{k} e_{2}}{e_{1}^{\prime} V_{k} e_{1}}
\end{gathered}
$$

Midterm March 7, 9-12 am, Uris 332, Closed Book and Notes

4.5 Impulse Response Functions

Univariate $y_{t}, E_{t}\left[y_{t+s}\right]-E_{t-1}\left[y_{t+s}\right]$ response to a shock $\varepsilon_{t}=1$.

$$
y_{t}=\alpha+\sum_{j=0}^{\infty} \theta_{j} \varepsilon_{t-j}, \theta_{0}=1
$$

It's impulse response functions are the following

$$
E_{t}\left[y_{t+1}\right]-E_{t-1}\left[y_{t+1}\right]=\theta_{1}
$$

Consider VAR, $y_{t}=\mu+\Phi y_{t-1}+\varepsilon_{t}$. Then

$$
\begin{gathered}
E\left[\varepsilon_{t} \varepsilon_{t}^{\prime}\right]=\Omega, \text { full rank } \\
y_{t}=(I-\Phi L)^{-1}\left(\mu+\varepsilon_{t}\right)=(I-\Phi)^{-1} \mu+\sum_{j=0}^{\infty} \Phi^{j} \varepsilon_{t-j}
\end{gathered}
$$

We are interested in impulse response function of $y_{k, t+j}$ to the shock of $\varepsilon_{k, t}$, that is

$$
e_{k}^{\prime} \Phi^{j} e_{k}
$$

where e_{k} and e_{k} are indicator vectors. In other words, the following is equivalent

$$
e_{k}^{\prime} \Psi_{j} e_{k}
$$

where $y_{t}=\mu+\sum_{j=0}^{\infty} \Psi \varepsilon_{t-j} \varepsilon_{h, t}=1$ with $\varepsilon_{j, t}=0$ if $j \neq h$ makes no sense because it never happens in the world (you cannot really test this).
Ω is real symmetric positive definite so we can write

$$
\Omega=A D A^{\prime}
$$

where A is lower triangular with 1's on the diagonal with positive entries off diagonal and zero elsewhere and D is a diagonal matrix. Now let's consider a process $u_{t}=A^{-1} \varepsilon_{t}$. Hence we have

$$
E\left[u_{t} u_{t}^{\prime}\right]=A^{-1} E\left[\varepsilon_{t} \varepsilon_{t}^{\prime}\right]\left(A^{-1}\right)^{\prime}=A^{-1} \Omega\left(A^{-1}\right)^{\prime}=A^{-1} A D A^{\prime}\left(A^{-1}\right)^{\prime}=D
$$

so u_{t} 's are mutually uncorrelated. How let's consider

$$
\begin{aligned}
& A u_{t}=\varepsilon_{t} \\
& u_{1 t}=\varepsilon_{1 t} \\
& u_{2 t}=\varepsilon_{2 t}-a_{21} u_{1 t} \\
& \vdots=\vdots \\
& u_{j t}=\varepsilon_{j t}-a_{j 1} u_{t 1 t}-a_{j 2} u_{2 t}-\cdots-a_{j, j-1} u_{j-1, t}
\end{aligned}
$$

Because $u_{j t}$ are uncorrelated, $u_{j t}$ is the projection error of $\varepsilon_{j t}$ onto $\left(u_{1 t}, \cdots, u_{j-1, t}\right)$ and $a_{j k}$ are projection coefficients. Let x_{t} be $\left(y_{t}, y_{t-1}, \cdots\right)$. Then we have

$$
\varepsilon_{1 t}=y_{1 t}-E\left[y_{1 t} \mid x_{t-1}\right], \cdots, \varepsilon_{j t}=y_{j t}-E\left[y_{j t} \mid x_{t-1}\right]
$$

The change in the projection

$$
\frac{\partial \hat{E}\left[\varepsilon_{j t} \mid y_{11}, x_{t-1}\right]}{\partial y_{1 t}}=a_{j 1}
$$

For the vector we have

$$
\frac{\partial \hat{E}\left[\varepsilon_{t} \mid y_{11}, x_{t-1}\right]}{\partial y_{1 t}}=a_{1}
$$

Consequently,

$$
\frac{\partial \hat{E}\left[y_{t+s} \mid y_{1 t}, x_{t-1}\right]}{\partial y_{1 t}}=\Psi_{s} a_{1}
$$

This is the orthogonalized impulse response function. The issue is that the orthogonalization requires theory to make sense.

4.6 Variance Decompositions

What percent of forecast error variance is due to $u_{j t}$? We know that

$$
\begin{gathered}
y_{t+s}-\hat{y}_{t+s}=\varepsilon_{t+s}+\Psi_{1} \varepsilon_{t+s-1}+\Psi_{2} \varepsilon_{t+s-2}+\cdots+\varepsilon_{t+1} \\
M S E\left(y_{t+s} \mid t\right)=\Omega+\Psi_{1} \Omega \Psi_{1}^{\prime}+\cdots+\Psi_{s-1} \Omega \Psi_{s-1} \\
\Omega=A D A^{\prime}, D_{j j}=\operatorname{var}\left(u_{j t}\right) \\
\Omega=a_{1} a_{1}^{\prime} \operatorname{var}\left(u_{1 t}\right)+a_{2} a_{2}^{\prime} \operatorname{var}\left(u_{2 t}\right)+\cdots+a_{m} a_{m}^{\prime} \operatorname{var}\left(u_{m t}\right) \\
M S E\left(y_{t+s} \mid t\right)=\sum_{j=1}^{m} \operatorname{var}\left(u_{j t}\right)\left[a_{j} a_{j}^{\prime}+\Psi_{1} a_{j} a_{j}^{\prime} \Psi_{1}^{\prime}+\cdots+\Psi_{s-1} a_{j} a_{j}^{\prime} \Psi_{s-1}\right]
\end{gathered}
$$

The contribution of $u_{j t}$ is

$$
\operatorname{var}\left(u_{j t}\right)\left[a_{j} a_{j}^{\prime}+\Psi_{1} a_{j} a_{j}^{\prime} \Psi_{1}^{\prime}+\cdots+\Psi_{s-1} a_{j} a_{j}^{\prime} \Psi_{s-1}\right]
$$

Since $\operatorname{MSE} \rightarrow \Gamma_{0}$, the variance of y_{t} as $s \rightarrow \infty$, then it becomes the unconditional variance.

4.7 Models of Non-Stationarity Time Series

Hamilton Chapter 15 and Hayashi Chapter 9.
When we have stationary processes

$$
y_{t}=\mu+\sum_{j=0}^{\infty} \psi_{j} \varepsilon_{t-j}, \psi_{0}=1
$$

where $\sum_{j=0}^{\infty}\left|\psi_{j}\right|<\infty, \psi(z)=.0$ has roots outside the unit circle.

- $E\left[y_{t}\right]=\mu$
- $E\left[y_{t+s} \mid y_{t} y_{t-1}, \cdots\right] \rightarrow \mu$ as $s \rightarrow \infty$

However in general, economics and finance data are not stationary. We can take natural log. There are a few methods that attempt to solve the non-stationarity problem.

- Deterministic time trend

$$
y_{t}=\mu+\delta t+\psi(L) \varepsilon_{t}
$$

where $\psi(L) \varepsilon_{t}$ is as above. Here y_{t} is trend stationary. Campbell, Lettau, Malkiel, Xu (2001) JF argues that the aggregate idiosyncratic volatility of returns had a trend.

- Unit-Root Processes

$$
(1-L) y_{t}=\delta+\psi(L) \varepsilon_{t}
$$

The last part should be stationary. We also assume $\psi(1) \neq 0 . y_{t}$ process is stationary after the first difference, e.g. \log of GDP, log of price, log of exchange rate.

$$
\Delta \ln G D P_{t}=\text { rate of growth }
$$

$$
\Delta \ln P_{t}=\text { rate o inflation change }
$$

$\Delta \ln S_{t}=$ change rate of appreciation rate
Why $\psi(1) \neq 0$? Suppose y_{t} is stationary, $y_{t}=\mu+\chi(L) \varepsilon_{t}$ is stationary. Then $(1-L) y_{t}$ is also stationary and $(1-L) y_{t}=(1-L) \chi(L) \varepsilon_{t}=\psi(L) \varepsilon_{t}$ but $\psi(1)=0$ in this case. It rules out starting with a stationary process.
The prototypical unit root process is a random walk with drift, that is

$$
y_{t}=\delta+y_{t-1}+\varepsilon_{t}, \varepsilon_{t} \text { i.i.d }
$$

$$
d y_{t}=\delta+\varepsilon_{t}
$$

The unit root processes are integrated of order 1.

$$
\begin{gathered}
\frac{d y(t)}{d t}=x(t) \Longrightarrow y(t)=\int x(t) d t \\
\Delta y_{t}=x_{t}
\end{gathered}
$$

is

$$
\begin{gathered}
y_{t}=x_{t}+y_{t-1} \\
y_{t-1}=x_{t-1}+y_{t-2} \\
\vdots \\
y_{t}=\sum_{j=0}^{\infty} x_{t-j}
\end{gathered}
$$

where $y-t$ is the sum over time of x_{t}.
By analogy, we get $I(2)$ are integrated of order 2 .

$$
(1-L)^{2} y_{t}=k+\psi(L) \varepsilon_{t}
$$

$A R M A(p, q)$ was stationary $A R(p), M A(q)$. $A R I M A(p, d, q)$ so difference d times and then $A R(p)$ and $M A(q)$ processes.

$$
\phi(L)(1-L)^{d} y_{t}=\theta(L) \varepsilon_{t}
$$

Typically $(1,1,1)$ is enough.

4.7.1 Compare Forecasts

If Y_{t} is the level of GDP, $y_{t}=\ln \left(Y_{t}\right)$ then

$$
\Delta y_{t}=\text { growth rate of GDP }
$$

This change can be population, labor force participation, investment and technology change. They are usually stationary.

Trend Stationary

$$
\begin{gathered}
y_{t}=\alpha+\delta t+\psi(L) \varepsilon_{t} \\
y_{t+s}=\alpha+\delta(t+s)+\psi(L) \varepsilon_{t+s} \\
\hat{y}_{t+s, t}=E\left[y_{t+s} \mid y_{t}, \cdots\right]=\alpha+\delta(t+s)+\psi_{s} \varepsilon_{t}+\psi_{s+1} \varepsilon_{t-1}+\cdots \\
E\left[\hat{y}_{t+s, t}-\alpha-\delta(t+s)\right] \rightarrow 0
\end{gathered}
$$

as ψ_{j} dies out
The forecast errors

$$
y_{t+s}-\hat{y}_{t+s, t}=\varepsilon_{t+s}+\psi_{1} \varepsilon_{t+s-1}+\cdots+\psi_{s-1} \varepsilon_{t+1}
$$

The MSE of the Forecast is $\sigma^{2}\left(1+\psi_{1}^{2}+\cdots+\psi_{s-1}^{2}\right)$. As $s \rightarrow \infty$, MSE goes to unconditional variance of $\psi(L) \varepsilon_{t}$.

Unit Root

$$
\begin{gathered}
\Delta y_{t}=\delta+\psi(L) \varepsilon_{t} \\
y_{t+s}=\Delta y_{t+s}+\Delta y_{t+s-1}+\cdots \Delta y_{t+1}+y_{t} \\
=\left(\delta+\psi(L) \varepsilon_{t+s}\right)+\left(\delta+\psi(L)+\varepsilon_{t+s-1}\right)+\cdots+\left(\delta+\psi(L) \varepsilon_{t+1}\right)+y_{t} \\
\hat{y}_{t+s, t} \rightarrow s \delta+y_{*}
\end{gathered}
$$

as $s \rightarrow \infty$
The forecast errors

$$
\begin{aligned}
y_{t+s}-\hat{y}_{t+s, t} & =\Delta y_{t+s}+\Delta y_{t+s-1}+\cdots+\Delta y_{t+1}+y_{t}-\left[\Delta \hat{y}_{t+s, t}+\cdots+\Delta \hat{y}_{t+1, t}+\hat{y}_{t}\right] \\
& =\left(\varepsilon_{t+s}+\psi_{1} \varepsilon_{t+s-1}+\cdots+\psi_{s-1} \varepsilon_{t+1}\right) \\
& +\left(\varepsilon_{t+s-1}+\psi_{2} \varepsilon_{t+s-2}+\cdots+\psi_{s-2} \varepsilon_{t+1}\right) \\
& +\vdots \\
& =\varepsilon_{t+1} \\
& =\varepsilon_{t+s}+\left(1+\psi_{1}\right) \varepsilon_{t+s-1}+\left(1+\psi_{1}+\psi_{2}\right) \varepsilon_{t+s-2}+\cdots+\left(1+\psi_{1}+\psi_{2}+\cdots+\psi_{s-1}\right) \varepsilon_{t+1} \\
M S E & =\sigma^{2}\left[1+\left(1+\psi_{1}\right)^{2}+\cdots+\left(1+\psi_{1}+\psi_{2}+\cdots+\psi_{s-1}\right)^{2}\right.
\end{aligned}
$$

4.8 Hodrick-Prescott Filter

Let $y_{t}=\log (G D P)=g_{t}+c_{t}$ where g_{t} is a smooth trend (Δg_{t} is stationary) and c_{t} is a cyclical component. We want to minimize the cyclical components subject to g_{t} not varying very much.

$$
\min _{\left\{g_{t}\right\}_{t=1}^{T}}\left\{\sum_{t=1}^{T}\left(y_{t}-g_{t}\right)^{2}+\lambda \sum_{t=1}^{T}\left(\left(g_{t}-g_{t-1}\right)-\left(g_{t-1}-g_{t-2}\right)\right)^{2}\right\}
$$

where quarterly data uses $\lambda=600$ (A particular unobservable components model).

4.9 Special Cases

Random walk with drift

$$
\hat{y}_{t+s, t}=s \delta+y_{t}+\varepsilon_{t+s}
$$

\log series is expected to grow at the rate of δ from wherever it is y_{t}.
$\operatorname{ARIMA}(0,1,1)$:

$$
\begin{gathered}
\Delta y_{t}=\delta+\varepsilon_{t}+\theta \varepsilon_{t-1} \\
\hat{y}_{t+1, t}=\delta+y_{t}+\varepsilon_{t+1} \\
y_{t+1}-\hat{y}_{t+1, t}=\theta \varepsilon_{t} \\
\varepsilon_{t}=y_{t}-\hat{y}_{t, t-1}, \text { for } \delta=0 \\
\hat{y}_{t+1, t}=y_{t}+\theta\left(y_{t}-\hat{y}_{t, t-1}\right)=(1+\theta) y_{t}-\theta \hat{y}_{t, t-1}
\end{gathered}
$$

For $|\theta|<1$

$$
\begin{gathered}
(1+\theta L) \hat{y}_{t+1, t}=(1+\theta) y_{t} \\
\hat{y}_{t+1, t}=\frac{(1+\theta) y_{t}}{1-(-\theta L)}=(1+\theta) \sum_{j=0}^{\infty}(-\theta)^{j} y_{t-j}
\end{gathered}
$$

This is exponential smoothing. If $\theta<0$. the right hand side is how people formed expectations in 1960s. Friedman (1957) says it permanent increases. Muth (1961) says exponential smoothing is only rational if series is $(0,1,1)$.

4.10 Beveridge-Nelson Decomposition

Every unit-root process can be decomposed into a random walk with drift plus a zero-mean stationary component.

$$
(1-L) y_{t}=\mu+a(L) \varepsilon_{t}
$$

where roots $a(z)$ are outside the unit circle.

$$
y_{t}=z_{t}+c_{t}
$$

where z_{t} is the random walk with drift and c_{t} is the stationary part.
The claim is that

$$
\begin{gathered}
z_{t}=\mu+z_{t-1}+a(1) \varepsilon_{t} \\
c_{t}=a^{*}(L) \varepsilon_{t}, a_{j}^{*}=-\sum_{k=j+1}^{\infty} a_{k}
\end{gathered}
$$

Proof. Proof by construction.

$$
\begin{gathered}
(1-L) y_{t}=(1-L) z_{t}+(1-L) c_{t} \\
(1-L) z_{t}=\mu+a(1) \varepsilon_{t} \\
(1-L) c_{t}=(1-L) a^{*}(L) \varepsilon_{t} \\
a(1)=a_{0}+a_{1}+a_{2}+a_{3}+\cdots \\
(1-L) a_{0}^{*}=-a_{1}-a_{2}-a_{3}-\cdots+a_{1} L+a_{2} L+\cdots \\
(1-L) a_{1}^{*} L=-a_{2} L-a_{3} L-\cdots+a_{2} L^{2}+a_{3} L^{2}+\cdots \\
\vdots \\
(1-L) y_{t}=\mu+\left(a(1)+(1-L) a^{*}(L)\right) \varepsilon_{t}=\mu+a(L) \varepsilon_{t}
\end{gathered}
$$

4.11 Fractional Integration

ARIMA (p, d, q) implies $(1-L)^{d} y_{t}=\psi(L) \varepsilon_{t}$ for MA infinity representation. The impulse response function decays geometrically.

$$
(1-\rho L) y_{t}=\varepsilon_{t} \Longrightarrow y_{t}=\varepsilon_{t}+\rho \varepsilon_{t-1}+\rho^{2} \varepsilon_{t-2}+\rho^{3} \varepsilon_{t-3}
$$

Granger, Jayeux (1980) and Hosking (1981) considers [(1-L) $]^{-1}$ exists for $d<\frac{1}{2}$

$$
\begin{gathered}
y_{t}=(1-L)^{-d}(\psi(L)) \varepsilon_{t} \\
f(z)=(1-z)^{-d} \\
\frac{d f}{d z}=d(1-z)^{-(d+1)} \\
\frac{d^{2} f}{d z^{2}}=(d+1) d(1-z)^{-(d+z)}
\end{gathered}
$$

Power series expansion of $f(z)$ around $z=0$

$$
\begin{gathered}
f(z)=f(0)+\left.\frac{d f}{d z}\right|_{z=0} z+\left.\frac{1}{2!} \frac{d^{2} f}{d z^{2}}\right|_{z=0} z^{2}+\cdots+\cdots \\
(1-z)^{-d}=1+d z+\frac{1}{2}(d+1) d z^{2}+\frac{1}{3!}(d+2)(d+1) d z^{3}+\cdots \\
(1-L)^{-d}=\sum_{j=0}^{\infty} h_{j} L^{j}
\end{gathered}
$$

where $h_{0}=1$ and $h_{j}=\frac{1}{j!}(d+j-1)(d+j-2) \cdots(d+1) d$ Therefore

$$
y_{t}=(1-L)^{-d} \varepsilon_{t}=h_{0} \varepsilon_{t}+h_{1} \varepsilon_{t-1}+h_{2} \varepsilon_{t-2}+\cdots
$$

Infinite order MA with particular impulse response function decays slowly than the geometric decay. (long memory; Bollerslev GARCH)

4.11.1 GARCH

$$
y_{t}=\mu+\varepsilon_{t}
$$

where

$$
\varepsilon_{t}=N\left(0, h_{t}\right)
$$

and

$$
\begin{gathered}
h_{t}=\omega+\beta h_{t-1}+\alpha \varepsilon_{t-1}^{2} \text { conditional variance processes } \\
h_{t}=E\left[\varepsilon_{t}^{2}\right] \\
E\left[h_{t}\right]=\omega+\beta E\left[h_{t-1}\right]+\alpha E\left[\varepsilon_{t-1}^{2}\right] \\
V=E\left[h_{t}\right]=E\left[h_{t-1}\right]=E\left[\varepsilon_{t-1}^{2}\right] \\
V=\frac{\omega}{1-\alpha-\beta}, \alpha+\beta<1
\end{gathered}
$$

By applying the factional integration into GARCH, we call it FGARCH.

4.12 Testing For Unit-Root

Section 15.4 from Hamilton gives a good discussion about this topic. Suppose

$$
y_{t}=y_{t-1}+\varepsilon_{t}
$$

is the truth

$$
y_{t}=\rho y_{t-1}+\varepsilon_{t}
$$

set $\rho=.9999$ with 10,000 observation you won't be able to reject $\rho=.99999$ v.s. 1
Consider

$$
y_{t}=\rho y_{t-1}+u_{t}
$$

where u_{t} is i.i.d $N\left(0, \sigma^{2}\right)$ Estimate $\hat{\rho}$ with OLS

$$
\hat{\rho}=\frac{\sum_{t=1}^{T} y_{t-1} y_{t}}{\sum_{t=1}^{T} y_{t-1}^{2}}=\frac{\sum_{t=1}^{T} y_{t-1}\left(\rho y_{t-1}+u_{t}\right)}{\sum_{t=1}^{T} y_{t-1}^{2}}=\rho+\frac{\sum_{t=1}^{T} y_{t-1} u_{t}}{\sum_{t=1}^{T} y_{t-1}^{2}}
$$

when y_{t} is stationary

$$
\sqrt{T}(\hat{\rho}-\rho)=\frac{1 / \sqrt{T} \sum_{t=1}^{T} y_{t-1} u_{t}}{1 / T \sum_{t=1}^{T} y_{t-1}^{2}}
$$

where $\sqrt{T}(\hat{\rho}-\rho) \rightarrow N(0, \Omega)$ and $\Omega=Q^{-1} S Q^{-1}, Q=E\left[y_{t-1}^{2}\right]$ and $S=E\left[y_{t-1}^{2}, u_{t}^{2}\right]=Q \sigma^{2}$ with homoskedasticity.

$$
\begin{gathered}
\Omega=Q^{-1} Q \sigma^{2} Q^{-1}=\sigma^{2} Q^{-1} \\
Q=E\left[y_{t-1}^{2}\right]=\frac{\sigma^{2}}{1-\rho^{2}} \\
\Omega=\frac{\sigma^{2}}{\sigma^{2} /\left(1-\rho^{2}\right)}=\left(1-\rho^{2}\right) \\
\sqrt{T}(\hat{\rho}-\rho) \rightarrow N\left(0,1-\rho^{2}\right)
\end{gathered}
$$

Notice if $\rho=1$, we would have $N(0,0)$. It is impossible. The law of large numbers and convergence only work for $|\rho|<1$.

Suppose rather by scaling by the root of T, let's scale by T.

$$
T(\hat{\rho}-\rho)=\frac{1 / T \sum_{t=1}^{T} y_{t-1} u_{t}}{1 / T^{2} \sum_{t=1}^{T} y_{t-1}^{2}}
$$

If y_{t} is random walk, $\rho=1$, let $y_{0}=0$

$$
\begin{gather*}
y_{t}=u_{t}+u_{t-1}+\cdots+u_{1} \\
y_{t} \sim N\left(0, t \sigma^{2}\right) \tag{2}\\
y_{t}^{2}=\left(y_{t-1}+u_{t}\right)^{2}=y_{t-1}^{2}+2 y_{t-1} u_{t}+u_{t}^{2} \\
y_{t-1} u_{t}=\frac{1}{2}\left(y_{t}^{2}-y_{t-1}^{2}-u_{t}^{2}\right)
\end{gather*}
$$

Therefore,

$$
\begin{gathered}
\sum_{t=1}^{T} y_{t-1} u_{t}=\frac{1}{2}\left(y_{T}^{2}-y_{0}^{2}\right)-0.5 \sum_{t=1}^{T} u_{t}^{2}=0.5 y_{T}^{2}-0.5 \sum_{t=1}^{T} u_{t}^{2} \\
1 / T \sum_{t=1}^{T} y_{t-1} u_{t}=0.5 / T y_{T}^{2}-0.5 / T \sum_{t=1}^{T} u_{t}^{2}
\end{gathered}
$$

Divide by σ^{2}

$$
0.5 /\left(\sigma^{2} T\right) y_{T}^{2}-0.5 /\left(\sigma^{2} T\right) \sum_{t=1}^{T} u_{t}^{2}
$$

This is equal to

$$
0.5\left(y_{T} /(\sigma \sqrt{T})\right)^{2}-0.5 /\left(\sigma^{2} T\right) \sum_{t=1}^{T} u_{t}^{2}=0.5 \chi^{2}(1)-0.5=0.5\left(\chi^{2}(1)-1\right)
$$

The denominator is

$$
E\left[\frac{1}{T^{2}} \sum_{t=1}^{T} y_{t-1}^{2}\right]=\frac{1}{T^{2}} \sigma^{2} \sum_{t=1}^{T}(\text { equation } 2-1)=\frac{\sigma^{2}(T-1) T}{T^{2} 2}
$$

by functional central limit theory
You can demonstrate that $T(\hat{\rho}-1)<068 \%$ of the time, even though $\rho=1$. Hayashi has DikeyFuller discussion on page 487 and table B5 on page 762.

$$
\begin{gathered}
y_{t}=y_{t-1}+\varepsilon_{t} \\
y_{t}=\rho y_{t-1}+\varepsilon_{t}
\end{gathered}
$$

Calculate $T(\hat{\rho}-1)$ for $T=100$. The probability $T(\hat{\rho}-1)<131$ is 95% and $T(\hat{\rho}-1)<-7.9$ is 5%. Reject $\rho=1$ if $T(\hat{\rho}-1)<-7.9$ at 5% critical value. $\hat{\rho}-1=\frac{1}{100}(-7.9) . \hat{\rho}=1-0.079=.921$. if $\hat{\rho}<.92$, you can reject $H_{0}: \rho=1$.

4.13 Cointegration

$$
y_{t}(m \times 1)
$$

each $y_{i t}$ is $I(1), i=1, \cdots, m . a^{\prime} y_{t}$ where a is $m \times 1$ vector of constants is stationary.

4.13.1 Purchasing Power Parity

$(\$ / £)=S_{t} . P_{t}^{\$}$ is the dollar price level and $P_{t}^{£}$ is pound price level. Internal purchasing power is the

$$
\frac{1}{P_{t}^{\$}}=\frac{\text { Goods }}{\$}
$$

and the external purchasing power in the UK

$$
\frac{1}{S_{t}}=\frac{£}{\$}, \frac{1}{P_{t}^{£}}=\frac{\text { Goods }}{£}
$$

Then

$$
\frac{1}{P_{t}^{\Phi}}=\frac{1}{S_{t}} \frac{1}{P_{t}^{£}}
$$

Take logs

$$
\begin{gathered}
S_{t}^{\$ / £}=P_{t}^{\$}-P_{t}^{£} \\
S_{t} \neq S_{t}^{P P P}
\end{gathered}
$$

$$
S_{t}-P_{t}^{\$}+P_{t}^{£}=\text { deviations from PPP }
$$

where S_{t} is $I(1), P_{t}^{\$}$ is $I(1)$ and $P_{t}^{£}$ is $I(1)$. Here $a^{\prime}=(1,-1,1)$ and $a^{\prime}\left(\begin{array}{c}S_{t} \\ P_{t}^{\$} \\ P_{t}^{£}\end{array}\right)=$ stationary process cointegration

4.14 Price-Dividend Ratio and Campbell-Shiller Decomposition

Let $r_{t+1}=$ rate of return on a stock, $p_{t}=\log$ price of stock, $d_{t}=\log$ dividend.

$$
\exp \left(r_{t+1}\right)=\frac{P_{t+1}+D_{t+1}}{P_{t}}
$$

Factor out D_{t+1} and Divide numerator and denominator by D_{t} then

$$
\exp \left(r_{t+1}\right)=\frac{\left[\frac{P_{t+1}}{D_{t+1}}+1\right] \frac{D_{t+1}}{D_{t}}}{\frac{P_{t}}{D_{t}}}
$$

Take logs

$$
\begin{gathered}
r_{t+1}=\log \left[\exp \left(p_{t+1}-d_{t+1}\right)+1\right]+\Delta d_{t+1}-\left(p_{t}-d_{t}\right) \\
r_{t+1}=\log [1+\exp (\overline{p-d})]+\frac{\exp (\overline{p-d})}{1+\exp (\overline{p-d})}\left(p_{t+1}-d_{t+1}-\overline{p-d}\right)+\Delta d_{t+1} \\
r_{t+1}=\kappa+\rho\left(p_{t+1}-d_{t+1}\right)+\Delta d_{t+1}-\left(p_{t}-d_{t}\right)(\kappa \text { is some constant term })
\end{gathered}
$$

Holds ex post and ex ante. Take E_{t} of both side.

$$
\begin{gathered}
\left(p_{t}-d_{t}\right)\left(1-\rho L^{-1}\right)=\kappa+\Delta d_{t+1}-r_{t+1} \\
p_{t}-d_{t}=\frac{\kappa}{1-\rho}+E_{t} \sum_{j=1}^{\infty} \rho^{j-1}\left(\Delta d_{t+j}-r_{t+j}\right)(\text { Campbell-Shiller Decomposition })
\end{gathered}
$$

Here r_{t+j} is stationary, d_{t+1} is $I(1), \Delta d_{t+1}$ is stationary, p_{t+1} is $I(1)$. Lastly, $\left(p_{t}-d_{t}\right)$ is stationary.
The CS decomposition is driven by the similarity of the dividend to earning's ratio $\frac{D_{t}}{E A_{t}}$ where $d_{t}-e a_{t}$ is stationary.

4.14.1 Lettau-Ludigson: log Consumption Wealth Ratio

$$
c a y_{t}=c_{t}-\alpha w_{t}
$$

4.14.2 Hamilton's Canonical Example

$2 y$'s,

$$
\begin{gathered}
y_{1 t}=\gamma y_{2 t}+u_{1 t} \\
y_{2 t}=y_{2 t-1}+u_{2 t}
\end{gathered}
$$

where $u_{1 t}$ and $u_{2 t}$ are serially uncorrelated white noise.

$$
\Delta y_{2 t}=u_{2 t}
$$

so $y_{2 t}$ is $I(1)$ and $y_{2 t}$ is $\operatorname{ARIMA}(0,1,0)$.

$$
\Delta y_{1 t}=\gamma \Delta y_{2 t}+u_{1 t}-u_{1 t-1}=\gamma u_{2 t}+u_{1 t}-u_{1 t-1}=r_{t}+\theta r_{t-1}
$$

$\Delta y_{1 t}=v_{t}+\theta v_{t-1}$ is $I(1)$ and $y_{1 t}$ is $\operatorname{ARIMA}(0,1,1)$.

$$
y_{1 t}-\gamma y_{2 t}=u_{1 t}
$$

so this is stationary. Hence $y_{1 t}$ and $y_{2 t}$ are cointegrated with vector $(1,-\gamma)$.
For VAR representation, we need $\varepsilon_{1 t}+\varepsilon_{2 t}$ as forecast errors relative to Φ_{t-1}.

$$
\begin{gathered}
\varepsilon_{1 t}=\gamma \varepsilon_{2 t}+u_{1 t} \\
\varepsilon_{2 t}=u_{2 t} \\
E_{t-1}\left(y_{1 t}\right)=\gamma E_{t-1}\left(y_{2 t}\right) \\
y_{1 t}-E_{t-1}\left(y_{1 t}\right)=\varepsilon_{1 t}=\gamma\left(y_{2 t}-E_{t-1}\left(y_{2 t}\right)\right)+u_{1 t}=\gamma \varepsilon_{2 t}+u_{1 t}
\end{gathered}
$$

Hence

$$
u_{1 t}=\varepsilon_{1 t}-\gamma \varepsilon_{2 t}
$$

Postulate stationary VAR in $\Delta y_{1 t}$ and $\Delta y_{2 t}$.

$$
\binom{\Delta y_{1 t}}{\Delta y_{2 t}}=\Psi(L)\binom{\varepsilon_{1 t}}{\varepsilon_{2 t}}
$$

Can we invert $\Psi(L)$ to get finite order VAR

$$
\begin{gathered}
\psi(L)=\left(\begin{array}{cc}
(1-L) & \gamma L \\
0 & 1
\end{array}\right) \\
\Delta y_{1 t}=\gamma \Delta y_{2 t}+\Delta u_{1 t}=\gamma u_{2 t}+u_{1 t}-u_{1 t-1} \\
=\gamma \varepsilon_{2 t}+u_{1 t}-\left(\varepsilon_{1 t}-\gamma \varepsilon_{2 t}\right) \\
=\varepsilon_{1 t}-\varepsilon_{1 t-1}+\gamma \varepsilon_{2 t} \\
=(1-L) \varepsilon_{1 t}+\varepsilon_{2 t-1}
\end{gathered}
$$

We know that $\Psi(z)$ has a root at 1 so $|\Psi(1)|=0$ so $\Psi(z)^{-1}$ does not exist. We have

$$
\begin{gathered}
\Delta y_{1 t}=\gamma \Delta y_{2 t}-\Delta u_{1 t}=\Gamma u_{2 t}+u_{1 t}-u_{1 t-1} \\
u_{1 t-1}=y_{1 t-1}-\gamma y_{2 t-1} \\
\binom{\Delta y_{1 t}}{\Delta y_{2 t}}=\left(\begin{array}{cc}
-1 & \gamma \\
0 & 0
\end{array}\right)\binom{y_{1 t-1}}{y_{2 t-1}}+\binom{\gamma u_{2 t}+u_{1 t}}{u_{2 t}} \\
\binom{\Delta y_{1 t}}{\Delta y_{2 t}}=\left(\begin{array}{cc}
-1 & \gamma \\
0 & 0
\end{array}\right)\binom{y_{1 t-1}}{y_{2 t-1}}+\binom{\varepsilon_{1 t}}{\varepsilon_{2 t}}
\end{gathered}
$$

Cointegrated VAR lapped cointegrated variable on the right hand side. This is error correction representation.

4.15 Normalizations

If $y_{t}(m \times 1)$ and each $y_{i t}$ is $I(1)$ and $a^{\prime} y_{t}$ is stationary. "a" (cointegration factor) is not unique and for scalar $b, b a$ also implies stationary process and $a_{11}=1$ is a appropriate normalization. There may be $h<m$ unique cointegrating vectors. We can stack them in $A(m \times h)$ where

$$
A^{\prime}=\left(\begin{array}{c}
a_{1}^{\prime} \\
\vdots \\
a_{h}^{\prime}
\end{array}\right)
$$

Δy_{t} is stationary and $\delta=E\left[\Delta y_{t}\right]$ define $u_{t}=\Delta y_{t}-\delta$. Write the Wold Decomposition of u_{t} as

$$
\begin{gathered}
u_{t}=\varepsilon_{t}+\Psi_{1} \varepsilon_{t-1}+\Psi_{2} \varepsilon_{t-2}+\cdots=\Psi(L) \varepsilon_{t} \\
E\left[\varepsilon_{t} \varepsilon_{t-s}^{\prime}\right]= \begin{cases}\Omega & s=0 \\
0 & s \neq 0\end{cases} \\
\Psi(1)=I_{m}+\Psi_{1}+\Psi_{2}+\cdots
\end{gathered}
$$

Claim: If $A^{\prime} y_{t}$ is stationary, then the necessary conditions are

$$
\begin{gathered}
A^{\prime} \Psi(1)=0 \\
A^{\prime} \delta=0
\end{gathered}
$$

Proof.

$$
\Delta y_{t}=\delta+\Psi(L) \varepsilon_{t}
$$

a vector MA representation. Iterate into the path and get

$$
y_{t}=y_{0}+\delta t+\left(u_{t}+u_{t-1}+\cdots+u_{1}\right)
$$

Do the Beveridge-Nelson decomposition, we say

$$
\Psi(L)=\Psi(1)=(1-L) \alpha(L)
$$

where $\alpha(L)=\sum_{j=0}^{\infty} \alpha_{j} L^{j}, \alpha_{j}=\left(\Psi_{j+1}+\Psi_{j+2}+\cdots\right)$

$$
u_{t}=\Psi(L) \varepsilon_{t}=\Psi(1) \varepsilon_{t}+\alpha(L)\left(\varepsilon_{t}-\varepsilon_{t-1}\right)
$$

Define $\eta_{t}=\alpha(L) \varepsilon_{t}$ stationary substitute for u_{t} 's

$$
\begin{gathered}
y_{t}=y_{0}+\delta t+\left[\Psi(1) \varepsilon_{t}+\left(\eta_{t}-\eta_{t-1}\right)+\Psi(1) \varepsilon_{t-1}+\left(\eta_{t-1}-\eta_{t-2}\right)+\cdots+\Psi(1) \varepsilon_{1}+\eta_{1}-\eta_{0}\right] \\
y_{t}=y_{0}+\delta t+\Psi(1)\left[\varepsilon_{t}+\varepsilon_{t-1}+\cdots+\varepsilon_{1}\right]+\eta_{t}-\eta_{0}
\end{gathered}
$$

This is the multivariate Beveridge-Nelson.

$$
A^{\prime} y_{t}=A^{\prime} y_{0}+A^{\prime} \delta t+A^{\prime} \psi(1)\left[\varepsilon_{t}+\cdots+\varepsilon_{1}\right]+A^{\prime} \eta_{t}-A^{\prime} \eta_{0}
$$

so $A^{\prime} \delta=0$ and $A^{\prime} \Psi(1)=0$ for stationarity.

$$
\begin{gathered}
\Psi(z)=\left(\begin{array}{cc}
1-z & \gamma_{t} \\
0 & 1
\end{array}\right) \\
\Psi(1)=\left(\begin{array}{ll}
0 & \gamma \\
0 & 1
\end{array}\right) \\
a^{\prime}=(1,-\gamma) \\
a^{\prime} \Psi(1)=(1,-\gamma)\left(\begin{array}{ll}
0 & \gamma \\
0 & 1
\end{array}\right)=0
\end{gathered}
$$

4.16 Triangular Representation

$$
A^{\prime}=\left(\begin{array}{c}
a_{1}^{\prime} \\
\vdots \\
a_{h}^{\prime}
\end{array}\right)
$$

where $A^{\prime} y_{t}$ is stationary vectors, $A^{\prime} \delta=0$ and $A^{\prime} \Psi(1)=0$.

$$
A^{\prime}=\left(\begin{array}{ccccccc}
1 & 0 & \cdots & -\gamma_{1, h+1} & -\gamma_{1, h+2} & \cdots & -\gamma_{1, m} \\
0 & 1 & \cdots & -\gamma_{2, h+1} & -\gamma_{2, h+2} & \cdots & -\gamma_{2, m} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \\
\cdots & \cdots & 1 & -\gamma_{h, h+1} & -\gamma_{h, h+2} & \cdots & -\gamma_{h, m}
\end{array}\right)=\left[I,-\Gamma_{h \times(m-h)}\right]
$$

$z_{t}=A^{\prime} y_{t}$ and $E\left[z_{t}\right]=\mu_{1}^{*}$ Partition

$$
y_{t}=\binom{y_{1 t}}{y_{2 t}}
$$

Demeaned $z_{t}, z_{t}^{*}=z_{t}-\mu_{1}^{*}$.

$$
\begin{gathered}
z_{t}^{*}+\mu_{1}^{*}=A^{\prime} y_{t}=\left[I_{n},-\Gamma\right]\binom{y_{1 t}}{y_{2 t}} \\
y_{1 t}=\Gamma y_{2 t}+\mu_{1}^{*}+z_{t}^{*} \\
\Delta y_{2 t}=\delta_{2}+u_{2 t}
\end{gathered}
$$

where $u_{2 t}=E\left[\Delta y_{2 t}\right]$ is serially correlated. Write the stationary components as a Wold decomposition.

$$
\binom{z_{t}^{*}}{u_{2 t}}=\sum_{j=0}^{\infty}\binom{H_{s}}{J_{s}} \varepsilon_{t-s}
$$

where ε is m by $1, \mathrm{H}$ is h by m and J is g by m . With Beveridge-Nelson Decomposition, we have

$$
y_{2 t}=y_{2 s}+\delta_{2} t+J(1)\left[\varepsilon_{1}+\cdots+\varepsilon_{t}\right]+\eta_{2 t}-\eta_{2 s}
$$

We have

$$
y_{2 t}=\tilde{u}_{2}+\delta_{2} t+\zeta_{2 t}+\eta_{2 t}
$$

where $\tilde{u}_{2}=y_{2 s}-\eta_{2 s}, \zeta_{2 t}$ is random walk and $\eta_{2 t}$ is stationary.

$$
\begin{gathered}
y_{1 t}=\Gamma y_{2 t}+u_{1}^{*}+z_{t}^{*} \\
y_{1 t}=u_{1}^{*}+\Gamma\left(\tilde{u}_{2}+\delta_{2}+\zeta_{2 t}+\eta_{2 t}\right)+z_{t}^{*} \\
y_{1 t}-\tilde{u}_{1}^{*}+\Gamma\left(\delta_{2}+\zeta_{2 t}\right)+\tilde{\eta}_{1 t}
\end{gathered}
$$

where $\tilde{u}_{1}=\mu_{1}^{*}+\Gamma \tilde{u}_{2}, \tilde{\eta}_{1 t}=z_{t}^{*}+\Gamma \eta_{2 t}$ This is the Stock-Watson Common Trends Representation of y_{t} series. y_{t} is linear-combination of g deterministic trends $\delta_{2} t$ and g common random walks $\zeta_{2 t}$. and stationary components

$$
\binom{\tilde{u}_{1}}{\tilde{u}_{2}}+\binom{\tilde{\eta}_{1 t}}{\tilde{\eta}_{2 t}}
$$

4.17 Error Correlation VAR

y_{t} as p-th order non-stationary VAR.

$$
\begin{gathered}
y_{t}=d+\Phi_{1} y_{t-1}+\cdots+\Phi_{p} y_{t-p}+\varepsilon_{t} \\
\Phi(L) y_{t}=d+\varepsilon_{t}, \Phi(L)=I-\Phi_{1} L-\Phi_{2} L^{2}-\cdots-\Phi_{p} L^{p} \\
\Delta y_{t}=\delta+\Psi(L) \\
(\Delta-L) \Phi(L) y_{t}=\Phi(1) \delta+\Phi(L) \Psi(L) \varepsilon_{t}
\end{gathered}
$$

$$
\begin{gathered}
(1-L)\left(\alpha+\varepsilon_{t}\right)=\Phi(1) \delta+\Phi(L) \Psi(L) \varepsilon_{t} \\
(1-L) \alpha=0, \Phi(1) \delta=0 \text { is required } \\
(1-L) I_{m}=\Phi(L) \Psi(L) \text { identical. polynomial in lag operator. } \\
(1-z) I_{m}=\Phi(z) \Psi(z), z=1 \Longrightarrow \Phi(1) \Psi(1)=0
\end{gathered}
$$

For any row $\Phi(1)$ denote Π^{\prime},

$$
\Pi^{\prime} \Psi(1)=0, \Pi^{\prime} \delta=0
$$

determines the cointegration vector.

$$
\Pi=A b, \Pi^{\prime}=b^{\prime} A^{\prime}, \forall \text { rows of } \Phi(1), \Phi(1)=B A^{\prime}
$$

. Hence $\Phi(1)$ is singular.

$$
\left|I_{m}-\Phi_{1} z-\Phi_{2} z^{2}-\cdots \Phi_{p} z^{p}\right|=0
$$

at $z=1$. There is at least unit root.

$$
\begin{gathered}
y_{t}=\alpha+\Phi_{1} \cdot y_{t-1}+\cdots+\Phi_{p} y_{t-p}+\varepsilon_{t} \\
y_{t}=\rho_{1} \Delta y_{t-1}+\rho_{2} \Delta y_{t-2}+\cdots+\rho_{p-1} \Delta y_{t-p-1}+\alpha+\rho+\varepsilon_{t}
\end{gathered}
$$

where

$$
\begin{gathered}
\rho=\Phi_{1}+\cdots+\Phi_{p} \\
\rho_{s}=-\left[\Phi_{s+1}+\cdots+\Phi_{p}\right], s=1, \cdots, p-1
\end{gathered}
$$

Subtract y_{t-1}

$$
\begin{gathered}
y_{t}-y_{t-1}=\Delta y_{t}=\rho_{1} \Delta y_{t-1}+\cdots+\rho_{p-1} \Delta y_{t-p+1}+\alpha .+(\rho-I) y_{t-1}+\varepsilon_{t} \\
{[\rho-I]=-\left[I-\Phi_{1}-\cdots-\Phi_{p}\right]=-\Phi(1)=-B A^{\prime}} \\
\Delta y_{t}=\alpha \Delta y_{t-1}+\cdots+\delta_{p-1} \Delta y_{t-p+1}-B A^{\prime} y_{t-1} \varepsilon_{t}
\end{gathered}
$$

4.18

PPP theory says

$$
z_{t}=S_{t}-P_{t}^{\$}+P_{t}^{£}
$$

is stationary where $a=(1,-1,1)$. Then we can use DF to test unit root for each series and z_{t}. Then z_{t} is stationary and $S_{t}, P_{t}^{\$}, P_{t}^{£}$ are cointegrated. In Hamilton, with lira and dollar exchange rate, each was $I(1)$ but Z_{t} could not reject unit root. Normalize $a_{n}=1$ and estimate $(n-1)$ cointegrating parameters.

$$
y_{1 t}=\gamma_{2} y_{2 t}+\gamma_{3} y_{3 t}+\cdots+\gamma_{m} y_{m t}+\varepsilon_{1 t}
$$

Minimize the sum of squared residual which is the second moment of z_{t} if there is cointegration

$$
\frac{1}{T} \sum_{t=1}^{T} \varepsilon_{1 t}^{2} \rightarrow E\left[z_{t}^{2}\right]
$$

if cointegration; otherwise, their $\frac{1}{T} S S R$ diverges and $\frac{1}{T^{2}} S S R$ converges to Brownian motion.

