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1 Basic Time Series Concepts

Suppose stochastic process Yt. We need to do inference on {yt}Tt=1.
Let fYt(yt) unconditional density of Yt and its mean is

E(Yt) =

∫ ∞
−∞

ytfY (yt)dyt

where Yt = µ+ εt, E(εt) = 0, V (εt) = σ2. It is easy to see E(Yt) = µ.
Alternatively, there may be period so we can define Yt = βt + εt. Here E(Yt) = βt and V (Yt) =

E((Yt − µt)2) =
∫∞
−∞(yt − µt)2fY (yt)dyt = γ0t = σ2

Definition 1. Auto-covariance: {Yt}Tt=1. Consider vector xt =


Yt
Yt−1

...
Yt−j

. The joint distribution is

(Yt, Yt−1, · · · , Yt−j). Therefore the jth auto-covariance is

γjt =

∫ ∞
−∞
· · ·
∫ ∞
−∞

(yt − µt)(yt−j − µt−j)fYt,··· ,Yt−j (yt, · · · , yt−j)dyt · · · dyt−j

Serial correlation implies non-zero auto-covariances.

Definition 2. Stationarity:

• Covariance Stationarity means E(Yt) = µ and E[(Yt − µ)(Yt−j − µ)] = γj (it does not dependent
on time t. For scalars, γj = γ−j and for matrix Cj, it will be Cj = C ′j.

• Strict Stationarity: The entire joint distribution of (Yt, · · · , Yt−j1 , · · ·Yt−j2 , · · · , Yt−jn) depends
only on the intervals seperating the dates (j1, j2, · · · , jn).

• Note that a process is strictly stationary with finite second moments, then it must be covariance-
stationary. Strict stationarity does not imply weak stationarity (Cauchy distribution). Weak does
not imply the strict stationarity. If the processes are Gaussian, then weak is equivalent to the
strict.

Definition 3. Ergodicity: Time series averages are going to converge to the unconditional moments
as T →∞. It means ȳ = 1

T

∑T
t=1 yt → µ as T →∞.

1.1 Some Processes

• εt is a white noise if E[εt] = 0 and E[ε2t ] = σ2 and E[εtεt−j ] = 0,∀j 6= 0.

• Moving average process is defined as yt = εt + θεt−1 + µ. This is called the first-order MA.

E[yt] = E[εt] + θE[εt−1] + E[µ] = µ

V (yt) = E[(yt − µ)2] = E[[εt + θεt−1)
2] = E[ε2t 2εtεt−1θ + θ2ε2t−1] = (1 + θ2)σ2

Let auto-covariance

E[(yt − µ)(yt−1 − µ)] = E[(εt + θεt−1)(εt−1 + θεt−2)] = θσ2

First-order auto-correlation is

γ1√
γ0
√
γ1

=
γ1
γ0

=
θσ2

(1 + θ2)σ2
=

θ

1 + θ2

where γj = 0, j > 1
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• pth order moving average process

yt = µ+ εt + θ1εt−1 + · · ·+ θpεt−p

where E[yt] = µ and V (yt) = E[(yt − µ)2] = E[εt + θ1εt−1 + · · ·+ θpεt−p]
2 = 1 +

∑p
i=1 θ

2
pσ

2 and
E[εtεt−j ] = 0 and E[ε2t−j ] = σ2.

The jth autocovariance is

γj = E[(yt − µ)(yt−j − µ)] = E[(εt + θ1εt−1 + · · ·+ θpεt−p)(εt−j + θ1εt−j−1 + · · ·+ θpεt−j−p)

= θjσ
2 + θj+1θ1σ

2 + · · ·+ θpθp−jσ
2 j = 1, · · · , p

= 0 j > p

• ∞ order moving average processes

yt = µ+
∞∑
j=1

ψjεt−j

V (yt) = E[(yt − µ)2] = (

∞∑
j=0

ψ2
j )σ

2

where ψj is square summable. If
∑∞ |ψj | <∞, then it is ergodic for mean absolute summability.

• Autoregressive Processes: First order AR processes,

yt = c+ φyt−1 + εt

where |φ| < 1 for covariance stationarity.

Define the lag operator L such that Lyt = yt−1. Then yt(1−φL) = c+εt where |φ| < 1. Therefore

yt = (1− φL)−1(c+ εt) =
c

1− φ
+ εt + φεt−1 + φ2εt−2 + · · ·

E[yt] =
c

1− φ

V (yt) = σ2(1 + φ2 + φ4 + φ6 + · · · ) =
σ2

1− φ2

The first order autocovariance is

E[(yt − µ)(yt−1 − µ)] = E[εt + φεt−1 + φ2εt−2 + · · · )(εt−1 + φεt−2 + φ2εt−3 + · · · )
= φσ2 + φ3σ2 + φ5σ2 + · · ·

=
φσ2

1− φ2

The jth autocovariance is φjσ2

1−φ2 and the atuocorrelation is just
γj
γ0

= φj

For AR(p) = c+ φ1yt−1 + φ2yt−2 + · · ·+ φpyt−p + εt, then

yt(1− φ1L− φ2L2 − · · · − φpLp) = c+ εt

The p-th order polynomial L is

(1− φ1z − φ2z2 − · · · − φpzp) = (1− λ1z)(1− λ2z) · · · (1− λpz)

The roots (λ+j ) to be outside the unit circle for covariance stationarity.

Variance of AR(p) is

E[(yt−µ)2] = φ1[E(yt−1−µ)(yt−µ)]φ2[E(yt−2−µ)(yt−µ)]+· · ·+φpE[(yt−p−µ)(yt−µ)]+E[εt(yt−µ)]
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where γ0 = φ1γ1 + φ2γ2 + · · ·+ φpγp + σ2

Multiply through yt−µ = φ1(yt−1−µ) + · · ·+φp(yt−p−µ) + εt with yt−1−µ and take E[]. Then

γ1 = φ1γ0 + φ2γ1 + · · ·+ φpγp−1
...

γp = φ1γp + φ2γp−2 + · · ·+ φpγ0

divide above by γ0 then we can solve the system of equations so

pj = φ1pj + φ2pj−2 + · · ·+ φppj−p, j > p

This processes is called Yule-Walker.

• ARMA(p, q) is defined

yt = c+ φ1yt−1 + · · ·+ φpyt−p + εt + θ1εt−1 + · · ·+ θqεt−q

ARMA(1, 1) without a constant term. yt(1 − φ1L) = εt(1 + θ1L). notice if θ1 = −φ1, lag
polynomial cancels.

Definition 4. Autocovariance generating function is defined as when γj is absolutely summable, then

gy(z) =
∞∑

j=−∞
γjz

j

for complex scalar z.
The Fourier Transform of a time series {xt} is x(ω) =

∑∞
t=−∞ e

−iwtxt as a complex function of ω.
Here ω is the frequency. The inverse Fourier transformation is

xt =
1

2π

∫ π

−π
eiωtxtdω

Hence we can define the Fourier transform of the autocovariance as

S(ω) =
∞∑

j=−∞
e−iωjγj

= γ0(cos(ω) + i sin(ω)) γj = −γj

+
∞∑
j=1

cos(ωj)γj + i sin(ωj)γj cos(x) = cos(−x), sin(x) = − sin(−x)

= γ0 + 2
∞∑
j=1

γj cos(ωj)

For auto-correlation,

f(ω) =
S(ω)

γ0
=

∞∑
j=−∞

e−iωjρj

where ρj = γi
γ0

The inverse is

ρj =
1

2π

∫ π

−π
eiωjf(ω)dω

When j = 0,

1 =
1

2π

∫ π

−π
f(ω)dω

Here f(ω)
2π looks like a density function. This is called spectrum density function.
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For MA(1),

gy(z) = θσ2z−1 + (1 + θ2)σ2z0 + θσ2z1

= σ2(θz−1 + (1 + θ2) + θz)

= σ2(1 + θz)(1 + θz−1)

For MA(q),

gy(z) = σ2(1 + θ1z + θ2z
2 + · · ·+ θqz

q)(1 + θ1z
−1 + θ2z

−2 + · · ·+ θqz
−q)

For AR(1),

gy(z) =
σ2

(1− φz)(1− φz−1)

Definition 5. Invertibility: εt is recoverable from yt history. Then

yt = µ+ (1 + θL)εt

If |θ| < 1 we can multiply by (1 + θL)−1.

(1− θL+ θ2L2 + · · · )(yt − µ) = εt

MA process is invertible.

gy(z) = σ2(1 + θz)(1 + θz−1)

Consider Ỹt, (Ỹt − µ) = (1 + θ̃L)ε̃t then

gỹ(z) = σ̃2(1 + θ̃z)(1 + θ̃z−1)

= σ̃2(θ̃z)(θ̃−1z−1 + 1)(θ̃z−1)(θ̃−1z + 1)

Let θ = θ̃−1, σ2 = σ̃2θ̃2, yt, ỹt are the same autocovariances and same mean but yt not invertible so
cannot inverse ε̃t.

1.2 How should we define market efficiency?

There should have no predictability of returns. Let pt = logSt and pt+1 = pt + εt+1 + µ. Stock return
will be rt+1 = pt+1 − pt = εt+1 + µ so there is no serial correlation. Early research fail to reject the
ρ = 0. One way to look at it is to check

rt+1 = µ+ ρrt + εt+1

run a regression

ρ̂ =

T∑
t=1

(rt+1 − r̄)(rt − t̄)/
T∑
t=1

(rt − r̄)2

Under the null hypothesis, ρ = 0. Test statistic. ρ̂/
√
σ̂2/T ∼ N(0, 1) asymptotically. Under the

alternative, ρ > 0.
We will do Monte Carlo under the null or alternative with sample size T . Then a histogram can be

generated for the test statistic.
(check paper Poterba, Summers) Suppose pt = p∗t + µt where ut is serially correlated and p∗t is a

random walk. Here rt = pt − pt−1 = p∗t − p∗t−1 + µt − µt−1 and ut = eut−1 + vt where vt is iid. There
will be serial correlation in returns but rt = p∗t − p∗t−1 + (ρ− 1)ut−1 + vt. Suppose ρ = 0.98. They set
a variance ratio as

V (
24∑
k=1

rt+k)/2V (
12∑
k=1

rt+k)
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2 Forecasting

Suppose we want to forecast based on Yt+1 and xt = data. Let y∗t+1,t be forecast. We have quadratic

loss function, E[Yt+1 − Y ∗t+1,t]
2. On Hamilton, it proves E[Yt+1|Yt] is the minimum mean square error.

The linear projection is Y ∗t+1,t − x′tα. Forecast error is yt+1 − x′tα. Linear projection makes forecast
error orthogonal to xt, that is

E[xt(Yt+1 − x′tα)] = 0

E[xtYt+1]− E[xtx
′
t]α = 0

α = E[xtx
′
t]
−1E[xtYt+1] population statistics

OLS regression of yt+1 on xt is
yt+1 = x′tβ + ut+1, t = 1, · · · , T

where b =
[∑T

t=1 xtx
′
t

]−1 [∑T
t=1 xtyt+1

]
as sample estimate.

With covariance stationary, sample moment converges to the population moments as T →∞.

1

T

T∑
t=1

xtx
′
t

p→ E[xtx
′
t]

1

T

T∑
t=1

xtyt+1
p→ E[xtYt+1]

b
p→ α

Here we are assuming data are ergodic for second moments.

2.1 Wold’s Decomposition Theorem

Any covariance stationary

Yt =

∞∑
j=0

ψjεt−j + kt

where kt is the linearly deterministic. and ψ0 = 1,
∑∞

j=0 ψ
2
j <∞ and εt = yt − Ê[Yt|Yt−1, · · · ] a linear

projection errors.
Suppose we know εt’s, what is forecast of yt+s?

Yt+s = εt+s + ψ1εt+s−1 + ψ2εt+s−2 + · · ·
Ê[Yt+s|εtεt−1 · · · ] = ψsεt + ψs+1εt−1 + · · ·

The MSE of forecast is (1 + ψ2
1 + ψ2

2 + · · ·+ ψ2
s−1)σ

2 where σ2 = V (ε).

Define ψ(L)
Ls = L−s + ψ1L

1−s + ψ2L
2−s + · · · .

Define annihilation operator [ ]+ that sets negative powers to 0.

Ê[Yt+s|εt, εt−1, · · · ] =

[
ψ(L)

Ls

]
+

εt

Consider forecast of Yt+s based on Yt, Yt−1, · · · .

η(L)Yt = εt

η(L) =
∞∑
j=0

ηjL
j , η0 = 1,

∞∑
j=0

|ηj | <∞

for invertible representation η(L) = ψ(L)−1

Ê[Yt+s|Yt, Yt−1 · · · ] =

[
ψ(L)

Ls

]
+

η(L)Yt =

[
ψ(L)

Ls

]
+

1

ψ(L)
Yt

is called the Weiner-Kolmogorov Prediction Form.
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3 Introduction to the Generalized Method Moments (Hayashi)

3.1 Endogeneity Bias

Coffee market with demand qdt = α0 +α1pt +ut where ut is the unobservable shifter in demand α1 < 0.
Supply is qst = β0 + β1pt + vt where vt shifts supply. Equilibrium qdt = qst = qt. We observe pt and qt.

Solution is

pt =
β0 + α0

α1 − β1
+
vt − ut
α1 − β1

and

qt =
α1β0 − d0β1
α1 − β1

+
αvt − β1ut
α1 − β1

pt increases with rt < 0, ut > 0 and α1 < 0, β1 > 0.
OLS of qt on pt gives you qt = δ0 + δ1pt + εt. Here

δ̂1 =
cov(qt, pt)

var(pt)
=
cov(α0 + α1pt + ut, pt)

var(pt)

= α1 +
cov(ut, pt)

var(pt)
6= 0

This is called Endogeneity Bias to OLS or simultaneous Equation Bias. The solution for this
dilemma is to estimate the demand curve if we have another variable xt that shifts the supply curve.

Here we can have vt = β2xt + ζt where ζt is a new shock. The new innovations are

qdt = α0 + α1pt + ut

qst = β0 + β1pt + β2xt + ζt

where E[xtζt] = 0.
Here

pt =
β0 − α0

α1 − β1
+

β2
α1 − β1

xt +
ζt − ut
α1 − β1

qt =
α1β0 − α0β1
α1 − β1

+
α1β2
α1 − β1

xt +
α1ζt − β1ut
α1 − β1

where E[xtζt] = 0 and E[xtut] = 0. The above solution is called the reduced form simultaneous equation
system.

Express endogenous variables in terms of exogenous variables. OLS of pt on xt with δ̂1 = β2
α1−β1 .

OLS of qt on xt with δ̂2 = α1β2
α1−β1 . Thus

δ̂2

δ̂1
= α1

This estimator is called the instrumental variables estimator with xt as the instrument.

3.2 Two-Staged Least Square

1. Regress pt on xt with OLS. Then
p̂t = π̂0 + π̂1xt

The fitted value is
pt = p̂t + error at lagged+σp̂t

2. Regress qt on p̂t.
qt = α0 + α1p̂t + ut + α1(pt − p̂t)

where the last two terms is the composite error and is orthogonal to p̂t so the OLS of qt on p̂t
gives

α̂1 =
cov(qt, p̂t)

var(pt)
= α1

8



The fundamental equation of finance tells

Et[mt+1Rt+1] = 1

Can we estimate the parameters in this equation?

3.3 Single Equation GMM

Suppose
yt = z′tδ + εt, t = 1, · · · , T

where zt is L× 1.

A3.1 : Linearity

A3.2 : Ergodic stationarity such that xt is a k × 1 vector of instruments and wt is unique elements of
(yt, z

′
t, x
′
t)
′. This is stationary and ergodic.

A3.3 E[xtεt] = 0 is the orthogonality conditions. Let’s define gt = xtεt = xt(yt − z′tδ) is the function
of data and parameters. Here the variables are k × 1.

A4.4 k ≥ L is the rank condition for identification. Here E[xtz
′
t] is full column rank. Weak instruments

satisfy this axiom poorly. If identification, E[gt(wt, δ0)] = 0 at the true δ0. It is not 0 at δ 6= δ0.

E[xt(yt − z′tδ)] = 0

σxy − Σ′tδ = 0

in terms of population parameters. This is a system of k equations in L ≤ k unknowns. The
necessary and sufficient condition for one solution is k ≥ L. Over-identification is k > L. Just or
exact is k = L and under-identification is k < L.

A3.5 gt is a Martingale difference sequence with finite second moments. gt is a Martingale difference
sequence if

E[gt|gt−1gt−2 · · · ] = 0

xt is a Martingale such that
E[xt|Φt−1] = xt−1

If Φt−1 is xt−1, xt−2,

st =

t∑
j=1

gt−j = gt + gt−1 + gt−2 + · · · = gt + st−1, E[st] = E[gt] + st−1 = st−1

st is a Martingale and gt = st − st−1 is Martingale difference sequence.

A3.6 Finite 4th moment of the wt process

If gt is a Martingale difference sequence (MDS), then E[gtg
′
t] = variance of gt = S. Billingsley (1961)

used Central Limit Theorem for MDS. if gt is MDS that is stationary and ergodic with E[gtg
′
t] = S

then ḡ = 1
T

∑T
t=1 gt is sample mean and

√
T ḡ = 1√

T

∑T
t=1 gt

d→ N(0, S).

Comments

• If instruments include a constant E[εt] = 0.

• Alternative to A3.5 is E[εt|xt, xt−1, · · · ] = 0.

• gtg′t = ε2txtx
′
t.

• We will relax the linearity and serial correlation of gt.
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GMM defined an Economic model that gives a set of theoretical orthogonality condition E[xtεt] = 0.
This is the population moments. GMM chooses parameters to set a weighted average of sample moments
as close to zero as possible. (corresponding to the population moments). The model says

gT (δ̃) =
1

T

T∑
t=1

gt(wt, δ̃t)

where E[gt(δ0)] = 0. Here

gT (δ̃) =
1

T

T∑
t=1

xtyt −

(
1

T

T∑
t=1

xtz
′
t

)
δ̃ = sxy − Sxz δ̃

If k = L, just-identified, what is δ̂? δ̂xz = S−1xz sxy. Sets the sample orthogonality conditions to zero.
If xt = zt, then this is OLS.

If k > L, over-identified, GMM objective function

J(δ̃,W ) = TgT (δ̃)′WgT (δ̃)

where gT is the sample mean. Choose δ̂ as argmin of J(δ̃,W ). That is

J(δ̃,W ) = T (sxy − Sxz δ̃)′W (sxy − Sxz δ̃)

minimized by choice of S̃. FOC:
S′xzWsxy − S′xzWSxz δ̂ = 0

δ̂ =
[
S′xzWSxz

]−1
S′xzWsxy

Single equations GMM estimator with instrumental variable. Here W must be positive-definite.

sxy =
1

T

T∑
t=1

xtyt =
1

T

∑
t=1

Txt(z
′
tδ0 + εt) = Sxzδ0 +

1

T

T∑
t=1

xtεt = Sxzδ0 + gT (δ0)

δ̂ =
(
S′xzWSxz

)−1
S′xzW (Sxzδ0 + gT )

δ̂ = δ0 +
(
S′xzWSxz

)−1
S′xzWgT

√
T (δ̂ − δ0) = (SxzWSxz)

−1 S′xzW
1√
T

T∑
t=1

gt

converges to N(0, S) and S = E[gtg
′
t], the variance of gt. As T →∞, sample moments Sxz

p→ Σxz.

Avar(δ̂) =
(
Σ′xzWΣxz

)−1
Σ′xzWSWΣxz

(
Σ′xzWΣxz

)−1
Estimator of Avar use Sxz for Σxz., we need. to estimate Ŝ for S. That is

Ŝ =
1

T

T∑
t=1

ĝtĝ
′
t =

1

T

T∑
t=1

ε̂t
2xtx

′
t

ε̂t = yt − z′tδ̂ = z′tSt + εt − z′tδ̂
= εt + z′t(δ0 − δ)

1

T

T∑
t=1

ε̂2t

T∑
t=1

(
ε2t − 2(δ̂ − δ0)′ztεt + (δ̂ − δ0

)′
ztz
′
t(δ̂ − δ0)

as T →∞, then 1
T ε

2
t → E[ε2t ], δ̂ − δ0 → 0. 1

T

∑T
t=1 ztεt → finite middle→ 0 and 1

T

∑T
t=1 ztz

′
t → finite.
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To test this, we check
√
T (δ̂ − δ0)

d→ N(0, ˆAvar(δ̂)). Test δ̂2 = δ1,0. First we will check

δ̂2 − δ1,0
se(δ̂2)

where

se(δ̂2) =

√
e′iAvar(δ̂)ei/T

and ei = [0, 0, · · · , 1, · · · ], the ith element is 1.
Robust to conditional Heteroskedasticity. Wald Test of a vector of linear restriction is

H0 : Rδ0 = r

where r is number of restriction. Then

√
T (Rδ̂ −Rδ0)

d→ N(0, R ˆAvar(δ̂)R′)

where

Wald = T (Rδ̂ − r)′
[
R ˆAvar(δ̂)R′

]−1
g(Rδ̂ − r)

Non-linear restriction
H0 : a(δ0) = 0

A(δ) = ∆δa(δ)

The Wald test is

Ta(δ)′
{
A(δ̂) ˆAvar(δ̂)A(δ̂)′

}−1
a(δ̂)

where
a(δ̂) = a(δ0) +A(δ̄)(δ̂ − δ0)
√
Ta(δ̂)→ A(δ̄)

√
T (δ̂ − δ0)

What is W? Efficient GMM uses W = S−1.

Avar(δ̂) = Σ−1xz S
−1Σ−1xz

.
Hanson 1982 his theorem (3.2) proves that this is the smallest asymptotic variance of δ̂ for orthog-

onality conditions. (Hysashi P245 Prob 3).
However, we don’t know S. There is a 2-step efficient GMMs:

1. Use known W where W = Ik. Hisashi recommends to use W = S−1xx . If this is used, then

δ̂1 = (S′xzS
−1
xx Sxz)

−1S′xzS
−1
xx sxy

ε̂t = yt − z′tδ̂1

2. Use ε̂t to estimate

Ŝ1 =
1

T

T∑
t=1

ε̂2txtx
′
t

3. Use W = Ŝ−11 to estimate

δ̂2 = (S′xzŜ
−1
1 Sxz)

−1S′xzŜ
−1
1 sxy

4. Either stop or use (S′xzŜ
−1
1 Sxz)

−1 as ˆAvar of δ̂2 and then iterate util convergence. MC process
suggests this is suggested but not required.

Limit the number of orthogonality conditions: distinct elements S are k(k+1)
2 additional parame-

ters. T observations and k series can implode the equations very quickly.
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3.4 Hansen’s J-Test

Model may give overidentify restrictions because the number of orthogonality conditions is greater than
the number of parameters. The GMM objective function

J(δ̂, Ŝ−1) = TgT (δ̃)′Ŝ−1gT (δ̃)

We will take the arg min of δ as the above. Suppose this is δ0. Then

J =
√
TgT (δ0)

′S−1
√
TgT (δ0)→ χ2(k)

because
√
TgT (δ0)→ N(0, S). The estimation of δ̂ sets the L linear combination of

√
TgT (δ) = 0. We

know that J(δ̂, Ŝ−1)→ χ2(k − L) and this is called the Hansen’s J-Test.

√
TgT (δ̂) =

√
T

1

T

T∑
t=1

xt(yt − z′tδ̂)

=
√
T (sxy − Sxz δ̂) =

√
T
[
sxy − Sxz(S′xzŜ−1Sxz)−1S′xzŜ−1sxy

]
=
√
T
[
I − Sxz(S′xzŜ−1Sxz)−1S′xzŜ−1

]
sxy

=
√
TB̂sxy B̂ is not full column rank

B̂Sxz = 0

3.5 Likelihood-Ratio Test of H0

Here H0 has restrictions on the parameters.

1. Estimate without restrictions and get Ŝ1. TgT (δ̂)′Ŝ1gT (δ̂) where δ̂ is the unrestricted estimators.

2. Estimate with H0 restrictions using Ŝ1. TgT (δ̄)′Ŝ1gT (δ̄) where δ̄ is the restricted estimators.

Since we know the optimization with the constraints will be larger than the one without so we will
check the difference

J(δ̄, Ŝ1)− J(δ̂, Ŝ1)→ χ2(r)

3.6 Newey-West Motivation

Suppose we have {yt}Tt=1 n dimensional and covariance stationary. The mean is E[yt] = µ. Therefore
µ̂ = 1

T

∑T
t=1 yt. E[µ̂] = 1

T

∑T
t=1E[yt] = T

T µ = µ is unbiased.
The variance is

E[(µ̂− µ)(µ̂− µ)′] = E

[
1

T

T∑
t=1

(yt − µ)
1

T

T∑
t=1

(yt − µ)′

]

=
1

T 2
E

[
(y1 − µ)

T∑
t=1

(yt − µ)′ + (y2 − µ)

T∑
t=1

(yt − µ)′ + · · ·+ (yT − µ)

T∑
t=1

(yt − µ)′

]

=
1

T 2

{
TΓ0 + (T − 1)[Γ1 + Γ′1] + · · ·+ [ΓT−1 + Γ′T−1]

}
TV (µ̂) = Γ0 +

T − 1

T
[Γ1 + Γ′1] + · · ·+ 1

T
[ΓT−1 + Γ′T−1]

lim
T→∞

TV (µ̂) =

∞∑
j=−∞

Γj

Then we know

TE
[
(µ̂− µ)(µ̂− µ)′

]
= lim

T→∞
E

( 1√
T

T∑
t=1

gt(yt, µ)

)(
1√
T

T∑
t=1

gt(yt, µ)

)′
12



Then the variance of
√
TgT is S =

∑∞
j=−∞ Γj .

Recall S(ω) =
∑∞

j=−∞
1
2πΓje

−iωj with the spectrum density at frequency ω. The above condition
is just S(0).

3.7 Hansen-Hodrick JPE(1980)

Forward exchange rates as predictors of Future spot rates.

Ft,k = Et[St+k]

where
St+k = Et[St+k] + εt,t+k, with some reaction to news

However the actual data is not very stationary so the paper propose using the rates of appreciation
st+k − st (i.e. .05 means 5% appreciations in dollar) in logs and forward premium ft,k − st in logs (i.e.
.02 means 2% more expensive to purchase ponders with dollars for delivery in k periods).

With rational expectation that

st+k − st = Et(st+k − st) + ut+k,t

and Et(ut+k,t) = 0, under null hypothesis

Et[st+k − st] = α+ (ft,k − st)

Alternatively
st+k − st = α+ β(ft,k − st) + ut+k,t

where β = 1 as null is in interest. What are legitimate instruments to use? Anything is in the
information can be used as the instrument. (e.g., constant, forward premium). The orthogonality
condition is

E

[
ut+k,t

(
1

ft,k − st

)]
= 0

Then

gt(δ) = {(st+k − st)− α− β(ft,k − st)}
(

1
ft,k − st

)

where δ = (α, β)′. Let yt+k = st+k − st, xt =

(
1

ft,k − st

)
, y = (y1+k, · · · , yt+k)′, X =

x
′
1
...
x′T

 and

u =

u1+k,1
...

uT+k,T

. We have gT (δ) = 1
TX

′µ. Based on GMM, we have

J(δ̂,W ) = TgT (δ)′WgT (δ) = T

[
1

T
X ′(y −Xδ)

]′
W

[
1

T
X ′(y −Xδ)

]
δ̂ = (X ′X)−1X ′y is OLS.

δ̂ = (X ′X)−1X ′(Xδ0 + u) = δ0 +

(
(X ′X)

T

)−1
gT (δ0)

√
T (δ̂ − δ0) =

(
(X ′X)

T

)−1√
TgT (δ0)

√
TgT (δ0)→ N(0, S)

S =

∞∑
j=−∞

Γj , if Γj 6= 0

13



Γj = E[ut+k,txtut+k−j,t−jx
′
t−j ]

for j < k, Γj 6= 0, j ≥ k, Γj = 0. The paper was able to sample data more timely than the forecasting.

Hansen-Hodrick GMM uses Ŝ = Γ̂0 +
∑k−1

j=1(Γ̂j + Γ̂′j). Sometimes this estimator does not turns out to
be positive definite so Newey-West comes along.

3.8 Non-linear GMM: Consumption-based Asset Pricing

Let pjt = real price of asset j, djt = real dividend of asset j. u′(ct) = marginal utility of consumption.
The first order condition for equilibrium investment in an asset is the marginal cost is equal to the ex-
pected marginal utility in the future

u′(ct)pjt = Et[βu
′(ct+1)(pj,t+1 + dj,t+1)], j = 1, · · · , N (1)

One utility function people use is u(ct) =
c1−αt
1−α (CRRA). Then

rj,t+1 = real return =
pj,t+1 − dj,t+1

pjt

We can divide equation (1) by u′(ct)pit and take unconditional expectation

1 = E

[
β

(
ct+1

ct

)−α
Rj,t+1

]

must hold for j = 1, · · · , N
Orthogonality condition is

E

[
β

(
ct+1

ct

)−α
Rj,t+1 − 1

]
= 0

where θ = (α, β)′.

εt+1

(
θ,Rt+1,

ct+1

ct

)
=

[
β

(
ct+1

ct

)−α
Rj,t+1 − 1

]

Et

[
εt+1

(
θ,Rt+1,

ct+1

ct

)]
= 0

Et

[
εt+1

(
θ,Rt+1,

ct+1

ct

)
⊗ xt

]
= 0, xt ∈ Φt

(M instruments usual 1 of which is a constant.)
Define

gt(θ, wt+1) = εt+1

(
θ,Rt+1,

ct+1

ct

)
⊗ xt

where wt+1 unique elements of data
Here E[gt(θ, wt+1)] = 0. gt(θ, wt+1) is a k = MN dimensional time series function of data and

parameters.

A1 wt+1 is stationary and ergodic. Then, when gt(θ, wt+1) is continuous in θ for all wt+1 and differen-
tiable with respect to θ then

gT (θ) =
1

T

T∑
t=1

gt(θ, wt+1)
p→ E(gt(θ, wt+1))

this is the sample mean of the orthogonality condition.

GT (θ) = ∇gT (θ)→ E[G(θ)]

14



A2 Identification case: E(gt(θ, wt+1)) 6= 0,∀θ 6= θ0. Otherwise, 0.

A3
√
TgT (θ0)

d→ N(0, S). S =
∑∞

j=−∞ Γj but theory will often limit j.

GMM objective function is
JT (θ̂) = arg min

θ̂
TgT (θ)′WgT (θ)

for some positive definite symmetric k × k weighting matrix W. For over-identified k > p, the FOC is

GT (θ̂)WgT (θ̂) = 0

p linear combinations of sample average orthogonality conditions are zero.

aT gT (θ) = 0

(Hensen and Cochrarne use this) where aT = GT (θ̂)′W
Apply the mean-value theorem,

gT (θ̂) = gT (θ0) +GT (θ̄)(θ̂ − θ0)

We will substitute into the FOC.

GT (θ̂)W [gT (θ0) +GT (θ̄)(θ̂ − θ0)] = 0

√
T (θ̂ − θ0) = −[GT (θ̂)′WGT (θ̄)]−1GT (θ̂)′W

√
TgT (θ0)

Under the standard regularity conditions,

GT (θ̂), GT (θ̄)

converges to E[G(θ0)]. √
TgT (θ0)

d→ N(0, S)
√
T (θ̂ − θ0)

d→ N(0, Avar(θ̂))

where Avar(θ̂) = (G′WG)−1G′WSWG(G′WG)−1 and S is asymptotic variance of gT (θ, wt+1)
Setting W = S−1 is optimal

Avar(θ̂) = (G′S−1G)−1

1. Calculate θ̂1 with known W = I

2. Calculate Ŝ1 using θ̂1 to get the variance of gt(θ̂, wt+1). Impose the lag restrictions on Γ̂j = 0.

3. Use W = Ŝ−1 to get θ̂2 either stop or iterate to convergence.

4. Form GT (θ̂) = ∇θgT (θ̂) either analytically or numerically. Define a procedure that calculates
gT (θ̂). Taking numerical gradient at θ̂ of procedure.

5. Do tests with √
T (θ̂ − θ0)

d→ N(0,
[
GT (θ̂)′Ŝ−1GT (θ̂)

]−1
)

Suppose we have n assets.

εt+1 = β

(
ct+1

ct

)−α
Rt+1 − 1

gt(θ, wt+1) = εt+1

gT (θ) =
1

T

T∑
t=1

gt(θ,Wt+1)
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where θ = (β, α)′

GT (θ̂) = ∇θgT (θ̂) =

[
1

T

T∑
t=1

(
ct+1

ct

)−α
Rt+1;

1

T

T∑
t=1

−β log

(
ct+1

ct

)(
ct+1

ct

)−α
Rt+1

]
Et[εt+1] = 0, by theory

Ŝ =
1

T

T∑
t=1

gt(θ̂, wt+1)gt(θ̂, wt+1)
′

√
T

[(
β̂
α̂

)
−
(
β̂0
α̂0

)]
d→ N(0, (GT (θ̂)′Ŝ−1GT (θ̂))−1)

3.9 The Asymptotic Distribution of the Orthogonality Conditions

gT (θ̂) = gT (θ0) +GT (θ̄)(θ̂ − θ0)
The following is true because the first-order condition

G′TWgT (θ̂) = 0 = G′TWgT (θ0) +G′TWGT (θ̂ − θ0)

We argue that
θ̂ − θ0 = −(G′TWGT )−1G′TWgT (θ0)

gT (θ̂) = gT (θ0)−GT (G′TWGT )−1G′TWgT (θ0)

= [I −GT (G′TWGT )−1G′TW ]gT (θ0)

We know that √
T (gT (θ0))

d→ N(0, S)
√
TgT (θ̂)

d→ N(0, [I −G(G′WG)−1G′W ]S[I −G(G′WG)−1G′W ]′)

If W = S−1, then above is going to be reduced to

[IG(G′S−1G)−1G′S−1]S[IG(G′S−1G)−1G′S−1]′

= S −G(G′S−1G)−1G′S−1S −G(G′S−1G)−1G′S−1 +G(G′S−1G)−1G′S−1

= [S −G(G′S−1G)−1G′

Asymptotically, √
TgT (θ̂)

d→ N(0, Ŝ −GT (G′T Ŝ
−1G)−1G′T )

From Lemma 4.2 (either Hayashi or Hamilton), we know that

Tg′T (θ̂)S−1gT (θ̂) ∼ χ2(r − p)

where r is the number equations and p is number of parameters.
Ŝ estimates the variance of gt(θ) where V (gt(θ)) = E[gt(θ)gt(θ)

′]. Under null we have E[gt(θ)] = 0.
Here we have a few tips as given in the following to improve our test

1. Consider the estimate for S as 1
T

∑T
t=1 gt(θ̂)gt(θ̂)

′ where gt(θ) is serially uncorrelated. We can
improve the power of the test by setting

Ŝ =
1

T

T∑
t=1

[gt(θ̂)− gT (θ̂)][gt(θ̂)− gT (θ̂)]′

2. Scale data so variances of gt(θ) are similar.

3. Keep model relatively small. Since K(K+1)
2 in S to be unknown, the size of S can be very large.

4. In our asset pricing model
Et[mt+1(θ)Rt+1] = 1

If we have instrument 1 and xt, then the orthogonality conditions of our model becomes

E

[
mt+1(θ)Rt+1 ⊗

(
1
xt

)
− 1⊗

(
1
xt

)]
= 0
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3.10 Hansen-Hodrick (1983)

Consider conditional CAPM with constant βs with excess return

Et(Rit+1) = βiEt(Rmt+1), i = 1, · · · , N

We know from rational expectation

Rit+1 = Et(Rit+1) + εit+1, εit+1 ⊥ Φt

where Φt is the information set of the investors. Consider the linear projection of Et[Rmt+1] on to xt
observable. Then

Et(Rmt+1) = α+ δ′xt + vt, vt ⊥ (1, xt)

where this is a latent variable approach.

Rit+1 = βi(α+ δ′xt) + βivt + εit+1, i = 1, · · · , N

Let’s call

uit+1 = βivt + εit+1 ⊥
(

1
xt

)
Normalize β1 = 1. Then we can write the following

Rit+1
...

RNt+1

 =


1
β2
...
βN

 (α+ δ′xt) +


u1t+1

u2t+1
...

uNt+1


where our orthogonality conditions are

E



u1t+1

u2t+1
...

uNt+1

⊗
(

1
xt

) = 0

Here we assume xt has m elements and k from α and δ, (N01) from β’s. Then We have Nk > N−1+k
over-identified GMM.

4 Vector Auto-regression

4.1 Maximum Likelihood Estimation

Let f(yt|xt, yt−1; θ) probability density function of yt given past xt and yt−1 (the past history). View
f(yt|xt, yt−1; θ) as a function of unknown θ and a likelihood function. Here we know∫

A
f(yt|xt, yt−1; θ)dyt = 1

Cremer (1946) says under appropriate regularity conditions, we can differentiate the above with respect
to θ ∫

A

∂f(yt|xt, yt−1; θ)
∂θ

= 0

Multiply by f
f on both side. Then we have∫

A

∂f(yt|xt, yt−1; θ)
∂θf(yt|xt, yt−1; θ)

f(yt|xt, yt−1; θ) = 0
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Thus

E

[
∂ log f(yt|xt, yt−1; θ)

∂θ

]
= 0

Define st(θ) = ∂ log f(yt|xt,yt−1;θ)
∂θ is the t-th score function. The maximum likelihood function tells us

Et−1[st(θ)] = 0

and
E[st(θ)] = 0

Hence the maximum likelihood function is GMM on the score function.

L(yt) =
T∏
t=1

f(yt|xt, yt−1; θ)

since the innovations (the residuals basically) in yt are serially uncorrelated. Then

l(yt) =

T∑
t=1

log f(yt|xt, yt−1; θ)

From maximum likelihood, we have
max l(yt)

to set

1

T

T∑
t=1

st(θ) =
1

T

T∑
t=1

st(θ0) +
1

T

T∑
t=1

(st(θ)− st(θ0) = 0

We know
√
T (

1

T

T∑
t=1

st(θ0))
d→ N(0, S)

where S = E[st(θ0)st(θ0)
′] because st(θ0) is serially uncorrelated. We know

1

T

T∑
t=1

∂st(θ)

∂θ

d→ E

[
∂2 log f

∂θ∂θ′

]
= −G

√
T (θ − θ0)

d→ N(0, G−1SG−1)

where G has same square dimension as S. In MLE, S = G = I = fisher’s information matrix

√
T (θ − θ0)

d→ N(0, I−1)

S = E

(
∂f

∂θ

∂f

∂θ

′)
= −E

[
∂2f

∂θ∂θ′

]
if the model is true.

4.2 Vector Auto-regression

We will be doing first-order vector-autoregression

yt = Ayt−1 + εt

with zero means and
yt
N×1

= C
N×1

+ Φ1
N×N

yt−1 + · · ·+ Φpyt−p + εt
N×1

where εt is serially uncorrelated and N(0,Ω) and yt has dimension N . The key is VAR completely
characterizes the auto-correlated yt.
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T + p observations (conditional on the first p observation) on yt. Goal is estimate

θ = (C,Φ1, · · · ,Φp,Ω)

Conditional distribution of yt given in past data is

yt ∼ N(C + Φ1yt−1 + · · ·+ Φpyt−p,Ω) = N(Π′xt,Ω)

Define

xt =


1

yt−1
...

yt−p

 ,Π′ = (C,Φ1, · · · ,Φp)

yjt = Cj + Φ′1jyt−1 + · · ·+ Φ′pjyt−p + εjt

The conditional density function of the t-th observation is going to be

f(yt|xt, θ) = (2π)−N/2
∣∣Ω−1∣∣1/2 exp

[
−1

2
(yt −Π′xt)

′Ω−1(yt −Π′xt)

]
Then the log-likelihood function is

l(θ) =

T∑
t=1

log f(yt|xt, θ) =
−TN

2
log(2π) +

T

2
log(Ω−1)− 1

2

T∑
t=1

(yt −Π′xt)
′Ω−1(yt −Π′xt)

Choose Θ̂ to maximize L(Θ)

Π̂′ =

[
T∑
t=1

ytx
′
t

][
T∑
t=1

xtx
′
t

]−1
This is the OLS equation by equation.

Useful matrix calculation results:

1. Consider a quadratic form in A non-symmetric

∂x′Ax

∂aij
= xixj

∂x′Ax

∂A
= xx′

2.
∂ log |A|
∂A

= (A′)−1

Then we have

∂l(θ)

∂θ
=
T

2
Ω′ − 1

2

T∑
t=1

εtε
′
t = 0

Then

Ω̂′ =
1

T

T∑
t=1

εtε
′
t
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4.3 Choice of Lag Length

Given Ω̂, value of l(θ̂)

l(Ω̂, Π̂) = −TN
2

log(2π) +
T

2
log
∣∣∣Ω̂−1∣∣∣− 1

2

T∑
t=1

ε̂′tΩ̂
−1ε̂t = −TN

2
(12 + log(2π)) +

T

2
log
∣∣∣Ω̂−1∣∣∣

where

1

2

T∑
t=1

ε̂′tΩ̂
−1ε̂t =

1

2
tr

(
T∑
t=1

ε̂′tΩ̂
−1ε̂t

)
=

1

2
tr

(
T∑
t=1

Ω̂−1ε̂tε̂
′
t

)
=

1

2
tr
(

Ω̂−1T Ω̂
)

=
TN

2

where

Ω̂ =
1

T

T∑
t=1

ε̂tε̂
′
t

Suppose we want to test lag length p0 < p1. p0 imposes N2(p1 − p0) 0 restrictions.

2(l1 − l0) = 2

(
T

2
log
∣∣∣Ω̂−1∣∣∣− T

2
log
∣∣∣Ω̂−1∣∣∣) = T

(
log
∣∣∣Ω̂−1∣∣∣− log

∣∣∣Ω̂−1∣∣∣) ∼ χ2
N (p1 − p0)

For small sample, Sim (1980) argues that

2(l1 − l0) = (T − k)
(

log
∣∣∣Ω̂−1∣∣∣− log

∣∣∣Ω̂−1∣∣∣)
where k = 1+Np1. The other ones are Akaike Information Criterion and Schwarz Information Criterion.

They say choose the lag length that minimizes the log
∣∣∣Ω̂p

∣∣∣+ (pN2 +N)C(T )
T where C(T ) = 2 for AIC

and log(T ) for SIC.

4.4 Cambell (1991) and Hodrick (1992)

Let zt = [logRt, Dt/Pt, rbt]
′ where rbt = it −

∑12
j=1 it−j
12 (detrend interest rate, relative build rate), Rt is

continuous compounded return, Dt is dividend rate and Pt is price.
Here z(t) is de-meaned.

zt+1 = Azt + ut+1

(I −AL)zt+1 = ut+1 =⇒ zt+1 = (I −AL)−1ut+1 = ut+1 +Aut +A2ut−1 + · · ·

ut+1 is serially uncorrelated and let E[ut+1u
′
t+1] = V is the innovation covariance matrix. The uncon-

ditional variance of zt+1 is equal to

C(0) = E[zt+1z
′
t+1] = E[(ut+1 +Aut +A2ut−1 + · · · )(ut+1 +Aut +A2ut−1 + · · · )′]

= V +AV A′ +A2V A′2 + · · ·

C(0) =

∞∑
j=0

AjV A′j

E[zt+1z
′
t+1] = E[(Azt + ut+1)(Azt + ut+1)

′] = AE[ztz
′
t]A
′ + E[ut+1u

′
t+1]

C(0) = AC(0)A′ + V

Hamilton Proposition 10.4 states

vec(XY Z) = (Z ′ ⊗X)vec(Y )

where vec is a stack operator.
Then

vec(C(0)) = vec(AC(0)A′) + vec(V ) = (A⊗A)vec(C(0)) + vec(V ) = [IN2 −A⊗A]−1vec(V )
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C(1) = E[zt+1z
′
t] = E[(Azt + ut+1)(z

′
t)] = AE[ztz

′
t] = AC(0)

C(2) = E[zt+2z
′
t] = E[(A2z − t+Aut+1 + ut+2)z

′
t] = A2C(0)

C(j) = E[zt+jz
′
t] = AjC(0)

C(−j) = C(j)′

Suppose we are interested in long horizon predictability. Let

logRt+k,k = logRt+1 + · · ·+ logRt+k

What is the variance of logRt+k,k. First, we will get the variance of
∑k

j=1 zt+j

Vk = E[(zt+1 + zt+2 + · · ·+ zt+k)(zt+1 + zt+2 + · · ·+ zt+k)
′]

Vk = kC(0) + (k− 1)(C(1) +C(−1)) + · · ·+ (C(k− 1) +C(−k+ 1) = kC(0) +

k−1∑
j=1

(k− j)(C(j) +C(j)′)

(Note V (logRt+k,k) = e′1Vke1 where e1 = (1, 0, 0)′)
Fama-French looked at

logRt+k,k = αk,1 + βk,1
Dt

Pt
+ ut+k,k

we can use GMM with overlapping data.

βk,1 = Cov(logRt+1 + · · ·+ logRt+k, Dt/Pt)/V ar(Dt/Pt)

But from VAR, all auto-covariances are determined. In particular, we can get

βk,1 =
e′1[C(1) + · · ·+ C(k)]e2

e′2C(0)e2
=
e′1(A+A2 + · · ·+Ak)C(0)e2

e′2C(0)e2

This is implied slope coefficients. We can use delta method to get the variance.
The k-period variance ratio is

V Rk =
V ar(logRt+1 + · · ·+ logRt+k

kV ar(Rt+1)
=
e′1[kC(0) +

∑k−1
j=1(k − j)(C(j) + C(j)′)]e1

ke′1C(0)e1

R2 from implied regression is the explained variance over the total variance that is

R2
1(1) =

β2k,1e
′
2C(0)e2

e′1Vke1

Explanatory Power of VAR at k horizon is

R2
2(k) = 1− Innovation Variance

Total Variance

requires the k-period innovation variance. ut+1,1 = ut+1 at k = 1. This is innovation in zt+1.

ut+2,2 = ut+2 +Aut+1 at k = 2

ut+3,3 = ut+3 +Aut+2 +A2ut+1 at k = 3

ut+k,k = [I +AL+A2L2 + · · ·+Ak−1Lk−1]ut+k = [(I −AL)−1(I −AkLk)]ut+k
The innovation variance is

k∑
j=1

(I −A)−1(I −Aj)V (I −Aj)′(I −A)′−1 = Wk

R2
2(l) = 1− e′2Wke2

e′1Vke1

Midterm March 7, 9-12 am, Uris 332, Closed Book and Notes
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4.5 Impulse Response Functions

Univariate yt, Et[yt+s]− Et−1[yt+s] response to a shock εt = 1.

yt = α+

∞∑
j=0

θjεt−j , θ0 = 1

It’s impulse response functions are the following

Et[yt+1]− Et−1[yt+1] = θ1

...

Consider VAR, yt = µ+ Φyt−1 + εt. Then

E[εtε
′
t] = Ω, full rank

yt = (I − ΦL)−1(µ+ εt) = (I − Φ)−1µ+
∞∑
j=0

Φjεt−j

We are interested in impulse response function of yk,t+j to the shock of εk,t, that is

e′kΦ
jek

where ek and ek are indicator vectors. In other words, the following is equivalent

e′kΨjek

where yt = µ+
∑∞

j=0 Ψεt−j εh,t = 1 with εj,t = 0 if j 6= h makes no sense because it never happens in
the world (you cannot really test this).

Ω is real symmetric positive definite so we can write

Ω = ADA′

where A is lower triangular with 1’s on the diagonal with positive entries off diagonal and zero elsewhere
and D is a diagonal matrix. Now let’s consider a process ut = A−1εt. Hence we have

E[utu
′
t] = A−1E[εtε

′
t](A

−1)′ = A−1Ω(A−1)′ = A−1ADA′(A−1)′ = D

so ut’s are mutually uncorrelated. How let’s consider

Aut = εt

u1t = ε1t

u2t = ε2t − a21u1t
... =

...

ujt = εjt − aj1ut1t − aj2u2t − · · · − aj,j−1uj−1,t
Because ujt are uncorrelated, ujt is the projection error of εjt onto (u1t, · · · , uj−1,t) and ajk are projec-
tion coefficients. Let xt be (yt, yt−1, · · · ). Then we have

ε1t = y1t − E[y1t|xt−1], · · · , εjt = yjt − E[yjt|xt−1]

The change in the projection
∂Ê[εjt|y1t, xt−1]

∂y1t
= aj1

For the vector we have
∂Ê[εt|y1t, xt−1]

∂y1t
= a1

Consequently,
∂Ê[yt+s|y1t, xt−1]

∂y1t
= Ψsa1

This is the orthogonalized impulse response function. The issue is that the orthogonalization requires
theory to make sense.
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4.6 Variance Decompositions

What percent of forecast error variance is due to ujt? We know that

yt+s − ŷt+s = εt+s + Ψ1εt+s−1 + Ψ2εt+s−2 + · · ·+ εt+1

MSE(yt+s|t) = Ω + Ψ1ΩΨ′1 + · · ·+ Ψs−1ΩΨs−1

Ω = ADA′, Djj = var(ujt)

Ω = a1a
′
1var(u1t) + a2a

′
2var(u2t) + · · ·+ ama

′
mvar(umt)

MSE(yt+s|t) =
m∑
j=1

var(ujt)[aja
′
j + Ψ1aja

′
jΨ
′
1 + · · ·+ Ψs−1aja

′
jΨs−1]

The contribution of ujt is

var(ujt)[aja
′
j + Ψ1aja

′
jΨ
′
1 + · · ·+ Ψs−1aja

′
jΨs−1]

Since MSE → Γ0, the variance of yt as s→∞, then it becomes the unconditional variance.

4.7 Models of Non-Stationarity Time Series

Hamilton Chapter 15 and Hayashi Chapter 9.
When we have stationary processes

yt = µ+
∞∑
j=0

ψjεt−j , ψ0 = 1

where
∑∞

j=0 |ψj | <∞, ψ(z) = .0 has roots outside the unit circle.

• E[yt] = µ

• E[yt+s|ytyt−1, · · · ]→ µ as s→∞

However in general, economics and finance data are not stationary. We can take natural log. There
are a few methods that attempt to solve the non-stationarity problem.

• Deterministic time trend
yt = µ+ δt+ ψ(L)εt

where ψ(L)εt is as above. Here yt is trend stationary. Campbell, Lettau, Malkiel, Xu (2001) JF
argues that the aggregate idiosyncratic volatility of returns had a trend.

• Unit-Root Processes
(1− L)yt = δ + ψ(L)εt

The last part should be stationary. We also assume ψ(1) 6= 0. yt process is stationary after the
first difference, e.g. log of GDP, log of price, log of exchange rate.

∆ lnGDPt = rate of growth

∆ lnPt = rate o inflation change

∆ lnSt = change rate of appreciation rate

Why ψ(1) 6= 0? Suppose yt is stationary, yt = µ + χ(L)εt is stationary. Then (1 − L)yt is also
stationary and (1−L)yt = (1−L)χ(L)εt = ψ(L)εt but ψ(1) = 0 in this case. It rules out starting
with a stationary process.

The prototypical unit root process is a random walk with drift, that is

yt = δ + yt−1 + εt, εt i.i.d
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dyt = δ + εt

The unit root processes are integrated of order 1.

dy(t)

dt
= x(t) =⇒ y(t) =

∫
x(t)dt

∆yt = xt

is
yt = xt + yt−1

yt−1 = xt−1 + yt−2

...

yt =

∞∑
j=0

xt−j

where y − t is the sum over time of xt.

By analogy, we get I(2) are integrated of order 2.

(1− L)2yt = k + ψ(L)εt

ARMA(p, q) was stationary AR(p), MA(q). ARIMA(p, d, q) so difference d times and then
AR(p) and MA(q) processes.

φ(L)(1− L)dyt = θ(L)εt

Typically (1, 1, 1) is enough.

4.7.1 Compare Forecasts

If Yt is the level of GDP, yt = ln(Yt) then

∆yt = growth rate of GDP

This change can be population, labor force participation, investment and technology change. They are
usually stationary.

Trend Stationary
yt = α+ δt+ ψ(L)εt

yt+s = α+ δ(t+ s) + ψ(L)εt+s

ŷt+s,t = E[yt+s|yt, · · · ] = α+ δ(t+ s) + ψsεt + ψs+1εt−1 + · · ·

E[ŷt+s,t − α− δ(t+ s)]→ 0

as ψj dies out

The forecast errors
yt+s − ŷt+s,t = εt+s + ψ1εt+s−1 + · · ·+ ψs−1εt+1

The MSE of the Forecast is σ2(1 + ψ2
1 + · · · + ψ2

s−1). As s → ∞, MSE goes to unconditional
variance of ψ(L)εt.

Unit Root
∆yt = δ + ψ(L)εt

yt+s = ∆yt+s + ∆yt+s−1 + · · ·∆yt+1 + yt

= (δ + ψ(L)εt+s) + (δ + ψ(L) + εt+s−1) + · · ·+ (δ + ψ(L)εt+1) + yt

ŷt+s,t → sδ + y∗
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as s→∞
The forecast errors

yt+s − ŷt+s,t = ∆yt+s + ∆yt+s−1 + · · ·+ ∆yt+1 + yt − [∆ŷt+s,t + · · ·+ ∆ŷt+1,t + ŷt]

= (εt+s + ψ1εt+s−1 + · · ·+ ψs−1εt+1)

+ (εt+s−1 + ψ2εt+s−2 + · · ·+ ψs−2εt+1)

+
...

= εt+1

= εt+s + (1 + ψ1)εt+s−1 + (1 + ψ1 + ψ2)εt+s−2 + · · ·+ (1 + ψ1 + ψ2 + · · ·+ ψs−1)εt+1

MSE = σ2[1 + (1 + ψ1)
2 + · · ·+ (1 + ψ1 + ψ2 + · · ·+ ψs−1)

2

4.8 Hodrick-Prescott Filter

Let yt = log(GDP ) = gt + ct where gt is a smooth trend (∆gt is stationary) and ct is a cyclical
component. We want to minimize the cyclical components subject to gt not varying very much.

min
{gt}Tt=1

{
T∑
t=1

(yt − gt)2 + λ

T∑
t=1

((gt − gt−1)− (gt−1 − gt−2))2
}

where quarterly data uses λ = 600 (A particular unobservable components model).

4.9 Special Cases

Random walk with drift
ŷt+s,t = sδ + yt + εt+s

log series is expected to grow at the rate of δ from wherever it is yt.
ARIMA(0, 1, 1):

∆yt = δ + εt + θεt−1

ŷt+1,t = δ + yt + εt+1

yt+1 − ŷt+1,t = θεt

εt = yt − ŷt,t−1, for δ = 0

ŷt+1,t = yt + θ(yt − ŷt,t−1) = (1 + θ)yt − θŷt,t−1
For |θ| < 1

(1 + θL)ŷt+1,t = (1 + θ)yt

ŷt+1,t. =
(1 + θ)yt

1− (−θL)
= (1 + θ)

∞∑
j=0

(−θ)jyt−j

This is exponential smoothing. If θ < 0. the right hand side is how people formed expectations in
1960s. Friedman (1957) says it permanent increases. Muth (1961) says exponential smoothing is only
rational if series is (0, 1, 1).

4.10 Beveridge-Nelson Decomposition

Every unit-root process can be decomposed into a random walk with drift plus a zero-mean stationary
component.

(1− L)yt = µ+ a(L)εt

where roots a(z) are outside the unit circle.

yt = zt + ct
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where zt is the random walk with drift and ct is the stationary part.
The claim is that

zt = µ+ zt−1 + a(1)εt

ct = a∗(L)εt, a
∗
j = −

∞∑
k=j+1

ak

Proof. Proof by construction.
(1− L)yt = (1− L)zt + (1− L)ct

(1− L)zt = µ+ a(1)εt

(1− L)ct = (1− L)a∗(L)εt

a(1) = a0 + a1 + a2 + a3 + · · ·

(1− L)a∗0 = −a1 − a2 − a3 − · · ·+ a1L+ a2L+ · · ·

(1− L)a∗1L = −a2L− a3L− · · ·+ a2L
2 + a3L

2 + · · ·
...

(1− L)yt = µ+ (a(1) + (1− L)a∗(L))εt = µ+ a(L)εt

4.11 Fractional Integration

ARIMA(p, d, q) implies (1 − L)dyt = ψ(L)εt for MA infinity representation. The impulse response
function decays geometrically.

(1− ρL)yt = εt =⇒ yt = εt + ρεt−1 + ρ2εt−2 + ρ3εt−3

Granger, Jayeux (1980) and Hosking (1981) considers [(1− L)d]−1 exists for d < 1
2

yt = (1− L)−d(ψ(L))εt

f(z) = (1− z)−d

df

dz
= d(1− z)−(d+1)

d2f

dz2
= (d+ 1)d(1− z)−(d+z)

...

Power series expansion of f(z) around z = 0

f(z) = f(0) +
df

dz

∣∣∣∣
z=0

z +
1

2!

d2f

dz2

∣∣∣∣
z=0

z2 + · · ·+ · · ·

(1− z)−d = 1 + dz +
1

2
(d+ 1)dz2 +

1

3!
(d+ 2)(d+ 1)dz3 + · · ·

(1− L)−d =

∞∑
j=0

hjL
j

where h0 = 1 and hj = 1
j!(d+ j − 1)(d+ j − 2) · · · (d+ 1)d Therefore

yt = (1− L)−dεt = h0εt + h1εt−1 + h2εt−2 + · · ·

Infinite order MA with particular impulse response function decays slowly than the geometric decay.
(long memory; Bollerslev GARCH)
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4.11.1 GARCH

yt = µ+ εt

where
εt = N(0, ht)

and
ht = ω + βht−1 + αε2t−1 conditional variance processes

ht = E[ε2t ]

E[ht] = ω + βE[ht−1] + αE[ε2t−1]

V = E[ht] = E[ht−1] = E[ε2t−1]

V =
ω

1− α− β
, α+ β < 1

By applying the factional integration into GARCH, we call it FGARCH.

4.12 Testing For Unit-Root

Section 15.4 from Hamilton gives a good discussion about this topic. Suppose

yt = yt−1 + εt

is the truth
yt = ρyt−1 + εt

set ρ = .9999 with 10,000 observation you won’t be able to reject ρ = .99999 v.s. 1
Consider

yt = ρyt−1 + ut

where ut is i.i.d N(0, σ2) Estimate ρ̂ with OLS

ρ̂ =

∑T
t=1 yt−1yt∑T
t=1 y

2
t−1

=

∑T
t=1 yt−1(ρyt−1 + ut)∑T

t=1 y
2
t−1

= ρ+

∑T
t=1 yt−1ut∑T
t=1 y

2
t−1

when yt is stationary
√
T (ρ̂− ρ) =

1/
√
T
∑T

t=1 yt−1ut

1/T
∑T

t=1 y
2
t−1

where
√
T (ρ̂ − ρ) → N(0,Ω) and Ω = Q−1SQ−1, Q = E[y2t−1] and S = E[y2t−1, u

2
t ] = Qσ2 with

homoskedasticity.

Ω = Q−1Qσ2Q−1 = σ2Q−1

Q = E[y2t−1] =
σ2

1− ρ2

Ω =
σ2

σ2/(1− ρ2)
= (1− ρ2)

√
T (ρ̂− ρ)→ N(0, 1− ρ2)

Notice if ρ = 1, we would have N(0, 0). It is impossible. The law of large numbers and convergence
only work for |ρ| < 1.

Suppose rather by scaling by the root of T, let’s scale by T.

T (ρ̂− ρ) =
1/T

∑T
t=1 yt−1ut

1/T 2
∑T

t=1 y
2
t−1
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If yt is random walk, ρ = 1, let y0 = 0

yt = ut + ut−1 + · · ·+ u1

yt ∼ N(0, tσ2) (2)

y2t = (yt−1 + ut)
2 = y2t−1 + 2yt−1ut + u2t

yt−1ut =
1

2
(y2t − y2t−1 − u2t )

Therefore,
T∑
t=1

yt−1ut =
1

2
(y2T − y20)− 0.5

T∑
t=1

u2t = 0.5y2T − 0.5
T∑
t=1

u2t

1/T
T∑
t=1

yt−1ut = 0.5/Ty2T − 0.5/T
T∑
t=1

u2t

Divide by σ2

0.5/(σ2T )y2T − 0.5/(σ2T )

T∑
t=1

u2t

This is equal to

0.5(yT /(σ
√
T ))2 − 0.5/(σ2T )

T∑
t=1

u2t = 0.5χ2(1)− 0.5 = 0.5(χ2(1)− 1)

The denominator is

E

[
1

T 2

T∑
t=1

y2t−1

]
=

1

T 2
σ2

T∑
t=1

(equation 2− 1) =
σ2(T − 1)T

T 22

by functional central limit theory
You can demonstrate that T (ρ̂ − 1) < 0 68% of the time, even though ρ = 1. Hayashi has Dikey-

Fuller discussion on page 487 and table B5 on page 762.

yt = yt−1 + εt

yt = ρyt−1 + εt

Calculate T (ρ̂ − 1) for T = 100. The probability T (ρ̂ − 1) < 131 is 95% and T (ρ̂ − 1) < −7.9 is 5%.
Reject ρ = 1 if T (ρ̂ − 1) < −7.9 at 5% critical value. ρ̂ − 1 = 1

100(−7.9). ρ̂ = 1 − 0.079 = .921. if
ρ̂ < .92, you can reject H0 : ρ = 1.

4.13 Cointegration

yt(m× 1)

each yit is I(1), i = 1, · · · ,m. a′yt where a is m× 1 vector of constants is stationary.
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4.13.1 Purchasing Power Parity

($/£) = St. P
$
t is the dollar price level and P£

t is pound price level. Internal purchasing power is the

1

P $
t

=
Goods

$

and the external purchasing power in the UK

1

St
=

£

$
,

1

P£
t

=
Goods

£

Then
1

P $
t

=
1

St

1

P£
t

Take logs

S
$/£
t = P $

t − P£
t

St 6= SPPPt

St − P $
t + P£

t = deviations from PPP

where St is I(1), P $
t is I(1) and P£

t is I(1). Here a′ = (1,−1, 1) and a′

 St
P $
t

P£
t

 = stationary process cointegration

4.14 Price-Dividend Ratio and Campbell-Shiller Decomposition

Let rt+1 = rate of return on a stock, pt = log price of stock, dt = log dividend.

exp(rt+1) =
Pt+1 +Dt+1

Pt

Factor out Dt+1 and Divide numerator and denominator by Dt then

exp(rt+1) =

[
Pt+1

Dt+1
+ 1
]
Dt+1

Dt

Pt
Dt

Take logs
rt+1 = log[exp(pt+1 − dt+1) + 1] + ∆dt+1 − (pt − dt)

rt+1 = log[1 + exp(p− d)] +
exp(p− d)

1 + exp(p− d)
(pt+1 − dt+1 − p− d) + ∆dt+1

rt+1 = κ+ ρ(pt+1 − dt+1) + ∆dt+1 − (pt − dt)(κ is some constant term)

Holds ex post and ex ante. Take Et of both side.

(pt − dt)(1− ρL−1) = κ+ ∆dt+1 − rt+1

pt − dt =
κ

1− ρ
+ Et

∞∑
j=1

ρj−1(∆dt+j − rt+j)(Campbell-Shiller Decomposition)

Here rt+j is stationary, dt+1 is I(1), ∆dt+1 is stationary, pt+1 is I(1). Lastly, (pt − dt) is stationary.
The CS decomposition is driven by the similarity of the dividend to earning’s ratio Dt

EAt
where

dt − eat is stationary.

4.14.1 Lettau-Ludigson: log Consumption Wealth Ratio

cayt = ct − αwt
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4.14.2 Hamilton’s Canonical Example

2y’s,
y1t = γy2t + u1t

y2t = y2t−1 + u2t

where u1t and u2t are serially uncorrelated white noise.

∆y2t = u2t

so y2t is I(1) and y2t is ARIMA(0, 1, 0).

∆y1t = γ∆y2t + u1t − u1t−1 = γu2t + u1t − u1t−1 = rt + θrt−1

∆y1t = vt + θvt−1 is I(1) and y1t is ARIMA(0, 1, 1).

y1t − γy2t = u1t

so this is stationary. Hence y1t and y2t are cointegrated with vector (1,−γ).
For VAR representation, we need ε1t + ε2t as forecast errors relative to Φt−1.

ε1t = γε2t + u1t

ε2t = u2t

Et−1(y1t) = γEt−1(y2t)

y1t − Et−1(y1t) = ε1t = γ(y2t − Et−1(y2t)) + u1t = γε2t + u1t

Hence
u1t = ε1t − γε2t

Postulate stationary VAR in ∆y1t and ∆y2t.(
∆y1t
∆y2t

)
= Ψ(L)

(
ε1t
ε2t

)
Can we invert Ψ(L) to get finite order VAR

ψ(L) =

(
(1− L) γL

0 1

)

∆y1t = γ∆y2t + ∆u1t = γu2t + u1t − u1t−1
= γε2t + u1t − (ε1t − γε2t)
= ε1t − ε1t−1 + γε2t

= (1− L)ε1t + ε2t−1

We know that Ψ(z) has a root at 1 so |Ψ(1)| = 0 so Ψ(z)−1 does not exist. We have

∆y1t = γ∆y2t −∆u1t = Γu2t + u1t − u1t−1

u1t−1 = y1t−1 − γy2t−1(
∆y1t
∆y2t

)
=

(
−1 γ
0 0

)(
y1t−1
y2t−1

)
+

(
γu2t + u1t

u2t

)
(

∆y1t
∆y2t

)
=

(
−1 γ
0 0

)(
y1t−1
y2t−1

)
+

(
ε1t
ε2t

)
Cointegrated VAR lapped cointegrated variable on the right hand side. This is error correction repre-
sentation.
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4.15 Normalizations

If yt(m× 1) and each yit is I(1) and a′yt is stationary. “a” (cointegration factor) is not unique and for
scalar b, ba also implies stationary process and a11 = 1 is a appropriate normalization. There may be
h < m unique cointegrating vectors. We can stack them in A(m× h) where

A′ =

a
′
1
...
a′h


∆yt is stationary and δ = E[∆yt] define ut = ∆yt − δ. Write the Wold Decomposition of ut as

ut = εt + Ψ1εt−1 + Ψ2εt−2 + · · · = Ψ(L)εt

E[εtε
′
t−s] =

{
Ω s = 0

0 s 6= 0

Ψ(1) = Im + Ψ1 + Ψ2 + · · ·

Claim: If A′yt is stationary, then the necessary conditions are

A′Ψ(1) = 0

A′δ = 0

Proof.
∆yt = δ + Ψ(L)εt

a vector MA representation. Iterate into the path and get

yt = y0 + δt+ (ut + ut−1 + · · ·+ u1)

Do the Beveridge-Nelson decomposition, we say

Ψ(L) = Ψ(1) = (1− L)α(L)

where α(L) =
∑∞

j=0 αjL
j , αj = (Ψj+1 + Ψj+2 + · · · )

ut = Ψ(L)εt = Ψ(1)εt + α(L)(εt − εt−1)

Define ηt = α(L)εt stationary substitute for ut’s

yt = y0 + δt+ [Ψ(1)εt + (ηt − ηt−1) + Ψ(1)εt−1 + (ηt−1 − ηt−2) + · · ·+ Ψ(1)ε1 + η1 − η0]

yt = y0 + δt+ Ψ(1)[εt + εt−1 + · · ·+ ε1] + ηt − η0
This is the multivariate Beveridge-Nelson.

A′yt = A′y0 +A′δt+A′ψ(1)[εt + · · ·+ ε1] +A′ηt −A′η0

so A′δ = 0 and A′Ψ(1) = 0 for stationarity.

Ψ(z) =

(
1− z γt

0 1

)

Ψ(1) =

(
0 γ
0 1

)
a′ = (1,−γ)

a′Ψ(1) = (1,−γ)

(
0 γ
0 1

)
= 0
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4.16 Triangular Representation

A′ =

a
′
1
...
a′h


where A′yt is stationary vectors, A′δ = 0 and A′Ψ(1) = 0.

A′ =


1 0 · · · −γ1,h+1 −γ1,h+2 · · · −γ1,m
0 1 · · · −γ2,h+1 −γ2,h+2 · · · −γ2,m
...

...
...

...
...

...
· · · · · · 1 −γh,h+1 −γh,h+2 · · · −γh,m

 = [I,−Γh×(m−h)]

zt = A′yt and E[zt] = µ∗1 Partition

yt =

(
y1t
y2t

)
Demeaned zt, z

∗
t = zt − µ∗1.

z∗t + µ∗1 = A′yt = [In,−Γ]

(
y1t
y2t

)
y1t = Γy2t + µ∗1 + z∗t

∆y2t = δ2 + u2t

where u2t = E[∆y2t] is serially correlated. Write the stationary components as a Wold decomposition.(
z∗t
u2t

)
=
∞∑
j=0

(
Hs

Js

)
εt−s

where ε is m by 1, H is h by m and J is g by m. With Beveridge-Nelson Decomposition, we have

y2t = y2s + δ2t+ J(1)[ε1 + · · ·+ εt] + η2t − η2s

We have
y2t = ũ2 + δ2t+ ζ2t + η2t

where ũ2 = y2s − η2s, ζ2t is random walk and η2t is stationary.

y1t = Γy2t + u∗1 + z∗t

y1t = u∗1 + Γ(ũ2 + δ2 + ζ2t + η2t) + z∗t

y1t − ũ∗1 + Γ(δ2 + ζ2t) + η̃1t

where ũ1 = µ∗1 + Γũ2, η̃1t = z∗t + Γη2t This is the Stock-Watson Common Trends Representation of
yt series. yt is linear-combination of g deterministic trends δ2t and g common random walks ζ2t. and
stationary components (

ũ1
ũ2

)
+

(
η̃1t
η̃2t

)
4.17 Error Correlation VAR

yt as p-th order non-stationary VAR.

yt = d+ Φ1yt−1 + · · ·+ Φpyt−p + εt

Φ(L)yt = d+ εt,Φ(L) = I − Φ1L− Φ2L
2 − · · · − ΦpL

p

∆yt = δ + Ψ(L)

(∆− L)Φ(L)yt = Φ(1)δ + Φ(L)Ψ(L)εt
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(1− L)(α+ εt) = Φ(1)δ + Φ(L)Ψ(L)εt

(1− L)α = 0,Φ(1)δ = 0 is required

(1− L)Im = Φ(L)Ψ(L) identical. polynomial in lag operator.

(1− z)Im = Φ(z)Ψ(z), z = 1 =⇒ Φ(1)Ψ(1) = 0

For any row Φ(1) denote Π′,
Π′Ψ(1) = 0,Π′δ = 0

determines the cointegration vector.

Π = Ab,Π′ = b′A′,∀ rows of Φ(1),Φ(1) = BA′

. Hence Φ(1) is singular.
|Im − Φ1z − Φ2z

2 − · · ·Φpz
p| = 0

at z = 1. There is at least unit root.

yt = α+ Φ1.yt−1 + · · ·+ Φpyt−p + εt

yt = ρ1∆yt−1 + ρ2∆yt−2 + · · ·+ ρp−1∆yt−p−1 + α+ ρ+ εt

where
ρ = Φ1 + · · ·+ Φp

ρs = −[Φs+1 + · · ·+ Φp], s = 1, · · · , p− 1

Subtract yt−1

yt − yt−1 = ∆yt = ρ1∆yt−1 + · · ·+ ρp−1∆yt−p+1 + α.+ (ρ− I)yt−1 + εt

[ρ− I] = −[I − Φ1 − · · · − Φp] = −Φ(1) = −BA′

∆yt = α∆yt−1 + · · ·+ δp−1∆yt−p+1 −BA′yt−1εt

4.18

PPP theory says
zt = St − P $

t + P£
t

is stationary where a = (1,−1, 1). Then we can use DF to test unit root for each series and zt. Then zt
is stationary and St, P

$
t , P

£
t are cointegrated. In Hamilton, with lira and dollar exchange rate, each was

I(1) but Zt could not reject unit root. Normalize an = 1 and estimate (n−1) cointegrating parameters.

y1t = γ2y2t + γ3y3t + · · ·+ γmymt + ε1t

Minimize the sum of squared residual which is the second moment of zt if there is cointegration

1

T

T∑
t=1

ε21t → E[z2t ]

if cointegration; otherwise, their 1
T SSR diverges and 1

T 2SSR converges to Brownian motion.
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