
Advanced Machine Learning Final Project: Variational Autoencoders

Abstract

As images can be considered as realizations drawn from a latent variable model, we are implement-
ing a variational autoencoder using neural networks as the variational family to approximate the
Bayesian representation. Unlike the other parametric distribution, neural networks can approxi-
mate arbitrary distribution reasonably well. In this project, we are also interested in examining the
effectiveness of such encoders on the SVHN dataset. By comparing different architectures, we hope
to understand how the dimension of the latent space affects the learned representation and visualize
the learned manifold for low dimensional latent representations. Lastly, we will do a comparison
among different variational autoencoders.

1. Introduction

In this final project report, we will discuss the methodology used to produce the variational
autoencoder based on Kingma, Welling (2014) and explore how the model performs on the MNIST
and SVHN dataset. At first, it is worthwhile to summarize how the proposed methodology works
and what is the intuition behind it. Before, discussing the methodology, let’s define some basic
notation used in the rest of this document.

• X is the dataset we are interested in. Since we are working mostly on image dataset, we will
call X the image data.

• z is the latent state variable.

• pφ(z|X) is the target distribution of the latent state space.

• qθ(z|X) is the variational family for the latent state space.

The proposed variational autoencoder is constructed on the premise that the image data is
generated by some hidden features (i.e. the latent state variables). In addition, we believe the
latent features for a specific set of images (e.g. a set of dog pictures) are sampled based on a prior
distribution of z. The following figure shows the idea.

X

z

N

We are interested in modeling the target distribution of the latent state space given the data X,
pφ(z|X). However, typically this distribution is not tractable so we are using variational inference
proposed in the paper. Here especially, we are performing inference using the (Kullback-Leibler)
KL divergence metrics. In the rest of the report, we will discuss the methodology used in the
estimation, present some results on the MNIST and SVHN dataset using different architectures,
and link some potential improvements on the autoencoder.
Preprint submitted to Advance Machine Learning December 30, 2017

2. Methodology

As discussed in the introduction, we need to do variational inference on the target distribution
pφ(z|X). In other words, we need to pick qθ(z|X) from a variational family that minimize the KL
divergence metric,

minDKL(qθ(z|X)‖pφ(z|X))

Based on Doersch (2016), we can have the following relationship for our KL metrics

log p(X)−DKL(qθ(z|X)‖pφ(z|X)) = Eq[log pφ(X|z)]−DKL(qθ(z|X)‖p(z))

This is the core of the variational autoencoder used in the report. Since DKL(qθ(z|X)‖pφ(z|X)) is
non-negative and, in general, needs to be minimized, the right hand side acts as the lower bound
of the log-likelihood function of the marginal image distribution. Let’s denote it as

L(X,φ, θ) = Eq[log pφ(X|z)]−DKL(qθ(z|X)‖p(z))

Intuitively, we can maximize the log-likelihood function, that is, maximize the L(X,φ, θ). L(X,φ, θ)
consists of two parts, the reconstruction error and the the KL divergence of the approximate pos-
terior from the prior.

One can use Monte-Carlo EM method to estimate the θ and φ but it can be slow. Here, we will
use the stochastic gradient descent through the backpropagation in a neural network. In order to
do this, we have to use a reparameterization trick to provide inputs z for pφ(X|z). Now consider
two networks, the autoencoding network (encoder) and the reconstruction network (decoder). The
encoder takes a set of image and outputs its hidden features; the decoder consumes some hidden
features sampled from the prior distribution of the latent state variables and generates parameters
in the distribution pφ(X|z). Kingma, Welling (2014) says the sampled input to the decoder, z
can be expressed as a deterministic variable gθ(x, ε), where ε is called an auxiliary variable. For
example, in the univariate Gaussian case, z = µ+ σε, where ε ∼ N(0, 1).

2.1. Gaussian Encoder

Typically, people use Gaussian as the variational inference family for Encoder distribution. In
addition, we can also assume the prior distribution of the latent state model is Gaussian. Doersch
(2016) derived the KL divergence of two Gaussian as following

1

2

(
tr(Σ

(
X, θ)−1Σ

)
+ (µ(X, θ)− µ)′Σ(X, θ)(µ(X, θ)− µ)− k + log

(
|Σ(X, θ)|
|Σ|

))
where k is the dimension of number of latent features.

If we assume the prior distribution of the latent state model is a standard multivariate Gaussian,
then the KL divergence is

1

2
(tr(Σ(X, θ)) + µ(X, θ)′µ(X, θ)− k − log |Σ(X, θ)|)

For the reparameterization part, we can sample from N(µ(X, θ),Σ(X, θ)) by first sampling
ε ∼ N(0, I) and then compute z = µ(X, θ) + Σ(X, θ)1/2ε. In particular, since the prior distribution
of z is standard spherical Gaussian, the posterior is close to have a diagonal covariance matrix.
Hence we can simplify the computation to be

z = µ(X, θ) +
√
tr(Σ(X, θ))ε

Lastly, the distribution of the decoder can be chosen as either Bernoulli or Gaussian. For
Gaussian, we use diagonal matrix for its covariance matrix.

2

(a) Sample Data (b) 2-D Space (c) 5-D Space (d) 10-D Space (e) 20-D Space

Figure 1: (a) is random MNIST sample used to generate the pictures (b), (c), (d) and (e). The rest of the images
are the generated images based on different dimensionalities of latent state space. Please see the iPython Notebook
for underlying architectures.

3. Empirical Analysis

In this section, we will discuss the details of our experiment on the MNIST and SVHN datasets
respectively. As the variational autoencoder performance on MNIST dataset is generally well be-
haved, we will investigate it first. Then we will discuss the effectiveness of the variational autoen-
coder on SVHN dataset. Regarding the detailed architectures of the neural networks used in this
final report, please refer to the attached iPython notebook, “Final Project Notebook”.

3.1. MNIST Data

In the first experiment on the MNIST dataset, we used a simple fully connected neural network
for Gaussian encoder and Bernoulli decoder for various dimensionalities of the latent space. In
Figure 1, we have an average result from the generative decoder based on the sample data shown in
1a. As the dimension increases in the latent space, we see a significant improvement on the decoder.
In the later SVHN model, we will observe similar behavior. In the 2 dimensional space, it appears
only 0, 1, 3, 8 and 9 are recognized. In 1c, 6 and 7 get recognized. In 1d and 1e, all digits can be
represented by the decoder.

In Figure 2, 2a shows the space learned by our autoencoder. It is consistent from what we see in
the 2D case in Figure 1b. We know that the MNIST images are only 28×28 so it may not seem to
bad to use low dimensional latent space to represent it and using a Bernoulli decoder makes sense
here because the images are only black and white. Now, when we move from MNIST to SVHN, the
input size is getting increased to 32 × 32 × 3 (RGB images). With the complexity of images, we
may not get as good representation under low dimensional settings. In the SVHN data section, we
will discuss the architectures we have looked at and how they do.

3.2. SVHN Data

It is natural to start from the model used in the MNIST case and then progress towards more
complicated architectures. Hence, we will start our experiment from fully connected networks to
convolutional network.

3.2.1. Experiments with Bernoulli Decoder and Fully Connected Neural Network

Although the SVHN images are RGB images, pixel information is saved as between 0 and 1. It
is convenient that the matplotlib library can render them into colored images. Therefore, we can
still model this as a probability in Bernoulli distribution but the representation is the relative color.
Since the input size of the SVHN data is a lot larger than the MNIST, we add additional layers
within the encoder and decoder as an effort to gain more complexity. First, we start with the two

3

(a) MNIST Manifold (b) SVHN Bern Manifold (c) SVHN Bern Manifold* (d) SVHN Gauss Manifold

Figure 2: Visualizations of learned data manifold for generative models with two-dimensional latent space. a) is the
learned space for MNIST with Bernoulli distribution. b) is the learned space for SVHN with Bernoulli and simple
feed-forward network. c) is the learned space for SVHN with Bernoulli distribution and convolutional encoder. d) is
the learned space for SVHN with Gaussian distribution and convolutional encoder.

(a) Sample Data (b) 5-D Space (c) 20-D Space (d) 50-D Space (e) 100-D Space

Figure 3: (a) is random SVHN sample used to generate the pictures (b), (c), (d) and (e). The rest of the images
are the generated images based on different dimensionalities of latent state space. Here, the neural networks used
for both encoder and decoder are simple feed-forward network. In addition, the distribution of decoder is Bernoulli.
Please see the iPython Notebook for underlying architectures.

dimensional manifold learned from the SVHN images (Figure 2b). The autoencoder seems to be
able to pick number 8 but all the images learned are homogeneous other than the shades. In short,
the feature of shades and number 8 are captured by the encoder. This is a decent representation.

Next, we increase the dimensions of the latent space to 5, 20, 50 and 100 (the same for the rest
of the discussions for SVHN). In Figure 3, 3b may validate the patterns we have seen in the low
dimensional case are 8s. As the dimension raises, more colors and numbers are classified but they
are still far from the sample data. In particular, the color green has not been perceived by the
learner. Maybe we should try something different.

Convolutional neural networks are good at doing image processing and computer vision projects
tend to use it to do image classifications. Hence, it can be a worthwhile thing to try. In all our
examples below, we are only using one convolutional layer on the encoder side but not the decoder.
In general, we may have decoders as mirror images of the encoder so many use deconvolutional
layers to output the generated images. In addition, the training time for convolutional neural
networks is typically quite long without GPU and more computing power. For simplicity, we are
one convolutional layer with 16 activation maps to process the images.

4

(a) Sample Data (b) 5-D Space (c) 20-D Space (d) 50-D Space (e) 100-D Space

Figure 4: (a) is random SVHN sample used to generate the pictures (b), (c), (d) and (e). The rest of the images
are the generated images based on different dimensionalities of latent state space. Here, the neural networks used
for encoder is convolutional neural networks and for decoder is simple feed-forward networks. In addition, the
distribution of decoder is Bernoulli. Please see the iPython Notebook for underlying architectures.

(a) Sample Data (b) 5-D Space (c) 20-D Space (d) 50-D Space (e) 100-D Space

Figure 5: (a) is random SVHN sample used to generate the pictures (b), (c), (d) and (e). The rest of the images
are the generated images based on different dimensionalities of latent state space. Here, the neural networks used
for encoder is convolutional neural networks and for decoder is simple feed-forward networks. In addition, the
distribution of decoder is Gaussian. Please see the iPython Notebook for underlying architectures.

3.2.2. Experiments with Bernoulli Decoder and Convolutional Neural Network

Let’s continue with the Bernoulli decoder. In Figure 2c, the learned manifold looks similar to
2b. In addition, color blue is also included. This can be considered as the feature of color spectrum.
While increasing the dimensions, we do observe the vast improvement on generated images in Figure
4. At 100D latent space, the generated images are almost the same as the sample data.

3.2.3. Experiments with Gaussian Decoder and Convolutional Neural Network

Lastly, since RGB is not a probability, Gaussian decoders may be more appropriate than
Bernoulli decoders. From Figure 5, under the same neural network architecture, the performance is
similar to the Bernoulli version so there might not be an advantage using Gaussian. However, one
issue for Gaussian is that it can produce negative means and we have to apply sigmoid functions
on the means so they are forced to be between 0 and 1.

Interestingly, in Figure 2d, the learned manifold with 2 latent features under Gaussian assump-
tion produce more separation between light and dark colors, and the digit 8 is more apparent. It
is arguable that the autoencoder with a Gaussian decoder may learn faster than the ones with
Bernoulli.

4. Conclusion

The variational autoencoder based on Kingma, Welling (2014) can learn the SVHN dataset well
enough using Convolutional neural networks. As more latent features are considered in the images,

5

the better the performance of the autoencoders is. Lastly, a Gaussian decoder may be better than
Bernoulli decoder working with colored images.

6

Reference

[1] [stat.ML] Diederik P. Kingma and Max Welling, Auto-Encoding Variational Bayes, 2014.

[2] [stat.ML] Carl Doersch, Tutorial on Variational Autoencoders, 2016.

7

	Introduction
	Methodology
	Gaussian Encoder

	Empirical Analysis
	MNIST Data
	SVHN Data
	Experiments with Bernoulli Decoder and Fully Connected Neural Network
	Experiments with Bernoulli Decoder and Convolutional Neural Network
	Experiments with Gaussian Decoder and Convolutional Neural Network

	Conclusion

