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1 Introduction

1.1 Risk Free Investment

Let it be the nominal interest rate. Then the return is (1 + it) = Rft+1. Holding period return on a

pure discount bond which pays $1 at t+ n, P
(n)
t . Therefore the return can be calculated as

Rt+1 =
P

(n−1)
t+1

P
(n)
t

1.2 Stock

Stock return Pt is Pt+1+Dt+1

Pt
= Payoff

Price . The rates of return are Rt+1 − 1 = exp(rt+1) where rt+1 is the

continuous compounded rate of return. r
(n)
t+1 = logP

(n−1)
t+1 − logP

(n)
t .

1.3 Option

If you invested in an option with strike K, the payoff is

max(0, St+1 −K)

and the return is
max(0, St+1 −K)

Ct

where
Ct = cost today for the call option

1.4 Forward

Now let St = $
e and Ft,n = Forward Exchange Rate at t for t+n. The payoff on purchasing e forward

is
St+m − Ft,m

Invest $1 in e money market where there is a risk free of (1 + iet ).

1. Convert $1 to e to get 1
St

2. Invest 1
St

(1 + iet )

3. Convert to $,
St+1(1+iet )

St
in return. It is although exposed to the foreign exchange risk.

We can eliminate the uncertainty by selling the e interest forward. Then

Ft,1
St

(1 + iet ) = known first period return

This should be equal to the risk return and it is called covered interest rate parity

1 + i$t =
Ft,1
St

(1 + iet )

1.5 Euler Equation

The Euler equation for investor has the intuition that the marginal benefit of return on investment is
equal to the marginal cost of the forgone consumption. Secondly, the price consumption level Pt =

$
General Goods where 1

Pt
is the goods sacrificed. Then

1

Pt
MUt = utility marginal cost
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so
Rt+1 = $ in the future

Rt+1

Pt+1
= goods in the future

Rt+1

Pt+1
βMUt+1 = MU in the future discounted to present

Then
1

Pt
MUt = Et

[
βMUt+1

Rt+1

Pt+1

]
is the Euler equation. In time series class, we let the MU be the C−γt . Here, we know the left hand
side today so we can divide it into the expectation. Thus we have

1 = Et

[
β
MUt+1

MUt

R$
t+1

Pt+1/Pt

]
= E[m$

t+1R
$
t+1]

where m$
t+1 is the pricing kernel or stochastic discount factor for all assets.

R$
t+1

(1 + πt+1)
= real return

πt+1 =
Pt+1 − Pt

Pt
is the rate of inflation

For real returns, we have the real pricing kernel, that is βMUt+1

MUt
= mt+1 while the nominal pricing

kernel is m$
t+1 = mt+1

(1+πt+1) . Now we can write

E[mt+1Rt+1] = 1

1.6 Notes Regarding the Above Equation

Risk free return can be written as

Rft+1 =
1

E[mt+1]

because we can let the return to be the risk free return and solve for it. However, due to Jensen’s
inequality,

E[Rft+1] = E

[
1

Et[mt+1]

]
6= 1

E[mt+1]

For other assets,
Et[mt+1Rt+1] = 1

has the covariance decomposition as the following

Ct(mt+1, Rt+1) = Et[mt+1Rt+1]− Et[mt+1]Et[Rt+1]

Et[Rt+1] =
1

Et[mt+1]
− 1

Et[mt+1]
Ct(mt+1, Rt+1) = Rft+1 −R

f
t+1Ct(mt+1, Rt+1)

The expected excess return is −Rft+1Ct(mt+1, Rt+1). Here the covariance is negative.

E[Rt+1 −Rft+1] = − 1

E[mt+1]
C(mt+1, Rt+1)

E[Rt+1 −Rft+1]

σ(Rt+1)
= −ρ(mt+1, Rt+1)

σ(mt+1)

E[mt+1]

where the left side is the Sharpe Ratio. The maximum Sharpe Ratio is when the asset is perfectly
negatively correlated to the stochastic discount factor. In this case the largest is σ(mt+1)

E[mt+1] . If our utility

function is CRRA =
C1−γ
t

1−γ and MU = C−γt and mt+1 = β
C−γ
t+1

C−γ
t

= β exp(−γ∆ct+1) where ct+1 = logCt.

The variance of mt+1 larger, the greater variance of the consumption on growth or large γ.
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1.7 Minimum Second Moment Asset

Consider an asset Rmt+1 = mt+1

E[m2
t+1]

. Then we know that

E

[
mt+1

mt+1

m2
t+1

]
= 1

This is the minimum second moment asset.

Proof. Let Rzt+1 = Zt+1

E[m2
t+1]

is arbitrary asset and we need to show E[Rzt+1
2] ≥ E[Rmt+1

2].

E[mt+1R
2
t+1] = 1

E[mt+1Zt+1] = E[m2
t+1]

E[(Rzt+1 −Rmt+1)2] ≥ 0

E[Z2
t+1]− 2E[Zt+1mt+1] + E[m2

t+1] > 0

E[Z2
t+1]− 2E[m2

t+1] + E[m2
t+1] > 0

E[Z2
t+1] ≥ E[m2

t+1]

E[Rmt+1
2] =

E[m2
t+1]

E[m2
t+1]2

E[Rzt+1
2] =

E[Z2
t+1]

E[m2
t+1]2

Thus
E[Rzt+1

2] ≥ E[Rmt+1
2]

1.8 Conditional CAPM

In this section, we are going to get Et[R
i
t+1 −R

f
t+1] = βitEt[R

b
t+1 −R

f
t+1] where

βit =
Ct(R

i
t+1, R

b
t+1)

Vt(Rbt+1)

Rmint+1 =
mt+1

Et[mt+1]2

Define a benchmark return
Rbt+1 = ωtR

min
t+1 + (1− ωt)Rft+1

where the conditional variance of this benchmark return is

Vt(R
b
t+1) = ω2

t Vt(R
min
t+1 ) = ω2

t [Et[R
min
t+1

2
]− Et[Rmint+1 ]2]

Et[R
i
t+1 −R

f
t+1] = −Rft+1Ct(mt+1, R

i
t+1)

Vt(R
b
t+1) = ω2

t

[
Et[m

2
t+1]

(Et[m2
t+1])2

− (Et[mt+1])2

(Et(m2
t+1))2

]
Then

Et[R
i
t+1 −R

f
t+1] = −Rft+1ω

2
t

[
Et[m

2
t+1]

(Et[m2
t+1])2

− (Et[mt+1])2

(Et(m2
t+1))2

]
Ct(R

i
t+1, R

b
t+1)

Vt(Rbt+1)

We know that

ωt
Et[m2

t+1]
Ct(mt+1, R

i
t+1) = Ct

(
ωt

mt+1

Et[m2
t+1]

, Rit+1

)
= C(Rbt+1, R

i
t+1)
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.

Et[R
i
t+1 −R

f
t+1] = −Rft+1ωt

[
1− Et[mt+1]2

Et[m2
t+1]

]
Ct(R

i
t+1, R

b
t+1)

Vt(Rbt+1)

Multiply this by −Rft+1ωt into the bracket and add subtract Rft+1 inside. Thus above equation is just

=

[
Rft+1 −R

f
t+1 − ωtR

f
t+1 + ωtR

f
t+1

Et[mt+1]2

Et[m2
t+1]

]
βit

=
[
(1− ωt)Rft+1 + ωtEt[R

min
t+1 ]−Rft+1

]
βit

Et[R
i
t+1 −R

f
t+1] = βitEt[R

b
t+1 −R

f
t+1]

Hence the conditional CAPM holds for benchmark returns.

Rbt+1 = ωtR
min
t+1 + (1− ωt)Rft+1

Rmint+1 =
mt+1

Et[m2
t+1]

1.9 Systematic vs Idiosyncratic or Unsystematic Risk

Systematic risk implies a covariance with mt+1 giving rise to risk premium and unsystematic uncertainty
is uncorrelated with mt+1 that does not give rise to the risk premium. Rational expectations

Rit+1 = Et[R
i
t+1] + εit+1

mt+1 = Et[mt+1] + εmt+1

Ct(mt+1, R
i
t+1) = Ct(ε

m
t+1, ε

i
t+1), source of risk premium

εit+1 = βitε
m
t+1 + νit+1

where νit+1 ⊥ εmt+1

βit =
Ct(ε

m
t+1, ε

i
t+1)

Vt(εmt+1)

Et[R
i
t+1 −R

f
t+1] = −Ct(mt+1, R

i
t+1)Rft+1 = −Rft+1Ct(ε

m
t+1, ε

i
t+1) = −Rft+1β

i
tVt(ε

m
t+1) = −βitλt

where λt = Rft+1Vt(ε
m
t+1)

Only systematic risk is priced and price of risk is λt.

1.10 Factor Model

Rpt = ω′Rt and Rt ∼ N(µ,Σ).
Suppose we maximize portfolio using the mean-variance maximizer

max
ω
{ω′µ− γ

2
ω′Σω}

Then the FOC condition is
µ− γΣω = 0

ω =
1

γ
Σ−1µ

.

E[Rpt ] =
1

γ
µ′Σ−1µ

V (Rpt ) =
1

γ
µ′Σ−1ΣΣ−1µ

1

γ
=

1

γ2
µ′Σ−1µ

Sharpe Ratio =
E[Rpt ]

V (Rpt )
=

1
γµ
′Σ−1µ

1
γ

√
µ′Σ−1µ

=
√
µ′Σ−1µ
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1.10.1 Hansen-Jagannathan Bounds

It relates. the standard deviation of pricing kernel to asset returns.

Et[mt+1(Rit+1 −R
f
t+1)] = 0

Let Ret+1 = excess return. We don’t observe mt+1 but consider theoretical regression of mt+1 onto
1, Ret+1 some vector

mt+1 = α+ β′Ret+1 + εt+1

β = Σ−1C(mt+1, R
e
t+1) = Σ−1(Et[mt+1Rt+1]− Et[mt+1]Et[R

e
t+1]) = −Σ−1E[mt+1]E[Ret+1]

V (mt+1) ≥ V (β′Ret+1) = β′Σβ = E[mt+1]µ′Σ−1ΣΣΣ−1µ

σ(mt+1)

E[mt+1]
≥
√
µ′Σ−1µ

1.11 Risk Neutral Probabilities

Et[mt+1R
i
t+1] = 1

consider S states of the world with probability πt(s)

S∑
s=1

πt(s)mt+1(s)Rit+1(s) = 1

S∑
s=1

πt(s)mt+1(s) =
1

Rft+1

= Et[mt+1]

Let’s define π∗t (s) = πt(s)mt+1(s)
Et[mt+1] . These are all positive and sum to 1. They are like probabilities.

S∑
s=1

π∗t (s) = 1

We have
S∑
s=1

πt(s)mt+1(s)Rt+1(s)

Et[mt+1]
=

1

Et(mt+1)
= Rft+1

S∑
s=1

π∗t (s)R
f
t+1 = Rft+1

EQt (Rit+1) = Rft+1

where π∗t (s) is the risk neutral probability.

1.12 International Implications

Et[m
$
t+1R

$
t+1] = 1

where
m$
t+1 is USD SDF

Et[m
e
t+1R

e
t+1] = 1

where
m$
t+1 is EURO SDF

In the Euler equation theory,

m$
t+1 =

βµ′(C$
t+1)(1/p$

t+1)

u′(c$
t )(1/p

$
t )
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and

met+1 =
βµ′(Cet+1)(1/pet+1)

u′(cet )(1/pet )

Return in $ to $1 invested in European assets

R$
t+1 =

1

St
Ret+1St+1

where St = $/e

Et[m
$
t+1R

e
t+1

St+1

St
] = 1

if markets are complete, then

met+1 = m$
t+1

St+1

St

take log
st+1 − st = logmet+1 − logm$

t+1

where the left hand side is the continuously compounded rate of appreciation of euro vs dollar.

V (st+1 − st) = V (logmet+1) + V (logm$
t+1)− 2ρ(logm$

t+1, logmet+1)σlogmet+1
σlogm$

t+1

Solve for

−ρ =
V (st+1 − st)− V (logmet+1) + V (logm$

t+1)

2σlogmet+1
σlogm$

t+1

ρ = 1− 0.12

2σlogmet+1
σlogm$

t+1

if σlogmet+1
= σlogm$

t+1
= 0.5 and suppose V (st+1 − st) = 0.12.

Then ρ = 0.98.

2 Factor Models

Et[Mt+1R
e
i,t+1] = 0

Et[Mt+1] =
1

Rft

Mt+1 = a− bft+1

where a = 1.
Therefore,

E[Mt+1, R
e
i,t+1] = E[Mt+1]E[Rei,t+1] + Cov(Mt+1, R

e
t+1)

E[Rei,t+1] = −
Cov(Mt+1, R

e
i,t+1)

E[Mt+1]
= b

Cov(ft+1, R
e
i,t+1)

E[Mt+1]

If ft+1 is the expected excess returns, then

E[ft+1] = b
V (ft+1)

E[Mt+1]
or

b

E[Mt+1]
=
E[ft+1]

V (ft+1)

E[Rei,t+1] =
Cov(ft+1, R

e
i,t+1)

V (ft+1)
E[ft+1]

Now what is
Cov(ft+1,Rei,t+1)

V (ft+1) ? The beta for this factor.

Rei,t+1 = αi + βift + εi,t+1

7



α̂i = E[Rei,t+1]− β̂iE[ft] = 0

Here, εit is homoskedastic and normally distribution and

α̂i
SE(α̂i)

= t-distribution

Rei,t+1 = α1 + β1ft + ε1,t+1

...

ReN,t+1 = αN + βNft + εN,t+1

The OLS GMM orthogonality condition is

E

[
ε1,t+1

(
1
ft

)]
= 0

...

E

[
εN,t+1

(
1
ft

)]
= 0

Hence we will write

gT (b) =
1

T

T∑
t=1

(
εt
εtft

)
= ET

[(
εt
εtft

)]
and b = (α, β)′.

α̂ = ET [Ret ] = β̂ET [ft]

β̂ =
ET [(Ret − ET (Ret ))ft]

ET ((ft − ET (ft))ft]
=
CovT (Ret , ft)

V arT (ft)

Then by GMM, √
T (b̂− b)→ N(0, (D′TS

−1
T DT )−1)

where DT = V̄bgT (b) and

ST =

(
ET (εtε

′
t) ET (εtε

′
tft)

ET (εtε
′
tft) ET (εtε

′
tf

2
t )

)

DT = ∇gT (b) = ∇

(
1
T

∑T
t=1(Ret − α− βft)

1
T

∑T
t=1(Retft − αft − βf2

t )

)
=

(
−IN −INET (ft)

−INET (ft) −INET (f2
t )

)
= −

(
−1 −ET (ft)

−ET (ft) −ET (f2
t )

)
⊗IN

Hence
(D′TS

−1
T DT )−1 = D−1

T STD
−1
T

V ar(

(
α̂

β̂

)
) =

1

T

{((
1 ET (ft)

ET (ft) ET (f2
t )

)
⊗ IN

)−1(
ET (εtε

′
t) ET (εtε

′
tft)

ET (εtε
′
tft) ET (εtε

′
tf

2
t )

)((
1 ET (ft)

ET (ft) ET (f2
t )

)
⊗ IN

)−1
}

= Ω̂

α̂′Ω̂−1
ααα̂ ∼ χ2(N)

If εt is serially uncorrelated and conditionally homoskedastic, then

ST =

(
1 ET (ft)

ET (ft) ET (f2
t )

)
⊗ Σ

where Σ = ET [εtε
′
t] Let

A =

(
1 ET (ft)

ET (ft) ET (f2
t )

)
8



(D′TS
−1
T DT )−1 = [−A⊗ IN ]−1[A⊗ Σ][−A⊗ IN ]−1 = A−1AA−1 ⊗ Σ = A−1 ⊗ Σ

where

A−1 =
1

ET (f2
t )− ET (ft)2

(
1 ET (ft)

ET (ft) ET (f2
t )

)
=

1

V arT (ft)

(
1 ET (ft)

ET (ft) ET (f2
t )

)
V ar(α̂) =

1

T

ET (f2
t )

V ar(ft)
Σ =

1

T

[V ar(ft) + E(f2
t )]

V ar(ft)
Σ =

1

T

[
1 +

ET (ft)
2

V ar(ft)

]
Σ

α̂′(V ar(α̂))−1α̂ = T

(
1 +

ET (ft)
2

V ar(ft)

)−1

α′Σ−1α

Thus the GRS test for a small sample is

T

T − 2

T −N − 1

N

(
1 +

ET (ft)
2

V arT (ft)

)−1

α̂′(V ar(α̂))−1α̂ ∼ FN,T−N−1

2.1 Non-traded Factor

What if the factor is not traded, then
E[mtR

e
t ]

where mt = 1− bft

E[Ret ] = bCov(Ret+1, ft+1) = bV ar(ft+1)V ar−1(ft+1)Cov(Ret+1, ft+1)

where λ = bV ar(ft+1) and β = V ar−1(ft+1)Cov(Ret+1, ft+1).
Then E[Re1,t] = βiλ but λ 6= E[ft]. This leads to α′is are not zero. The goal is to test

E[Reit] = λβi

that is a cross sectional testing where time series regression is ran and if the betas have a linear
relationship with the return.

gT (b) =

 ET [Ret − a− βft]
ET [(Ret − a− βft)ft]

ET [Ret − βλ]

 =

0
0
0


GMM

gT (b)WgT (b)

∂gT (b)

∂b

′
WgT (b) = D′TWgT (b)

where b = (α, β, λ). This is equivalent to solve

agT (b) = 0, a = D′TW

(1) Efficient GMM

ST = ET

 εtε
′
t εtε

′
tft εt(R

e
t − βλ)′

εtε
′
tft εtε

′
tf

2
t εtft(R

e
t − βλ)′

(Ret − βλ)ε′t (Ret − βλβtε′t (Ret − βλ)(Ret − βλ)′



DT =
∂gT
∂b

= ET

 −IN −ft ⊗ IN 0
−ft ⊗ IN −ft ⊗ IN 0
0⊗ IN −λ⊗ IN β

 =

−
 1 ET (ft)
ET (ft) ET (f2

t )
0 λ

⊗ IN :

0
0
β


then

√
T

α̂β̂
λ̂

−
αβ
λ

→ N(0, (D′TS
−1
T DT )−1)

TgT (β̂)′S−1
T gT (β̂) ∼ χ2(3N − (2N − 1))
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(2)

a =

(
I2N 0
0 β′

)
λ̂ = (β̂′β̂)−1β̂′ET (Ret )

agT (b) = 0 =⇒ β̂, â are OLS estimates
√
T (b̂− b)→ N(0, Ω̂)

where
Ω̂ = (D′TWDT )−1D′TWSTWDT (D′TWDT )−1 = (aD)−1aSTa

′(aD)′−1

(3)

a =

(
I2N 0
0 β′Σ−1

)
(GLS)

λ̂ = (β′Σ−1β)−1.β′Σ−1ET [Ret ]

(4) LM approach
Reit. = βiλ+ βi(f̂t − µp)− εit

E

[(
εt
εtft

)]
= 0

E[ft]− µf = 0

Use efficient GMM

2.2 Fama MacBeth  R1t
...

RNT

 =

β1
...
βN

 λ̂t +

 α̂1t
...

α̂Nt


(1) Estimate βi’s from time series regression.

(2) Run cross-sectional regression

(3)

λ̂ =
1

T

T∑
t=1

λ̂t

α̂i =
1

T

T∑
t=1

α̂it

σ2(λ̂) =
1

T

K∑
J=−K

wjET [(λ̂t − λ̂)(λ̂t − λ̂)′]

When K = 0,

α̂ =

 α̂1
...
α̂N

→ Cov(α̂) =
1

T

T∑
t=1

(α̂t − α̂)(α̂t − α̂)′

Then
α̂′Cov(α̂)−1α̂ ∼ χ2(N − 1)

10



Rei,t. = βiλ+ εit, i = 1, · · · , N ; t = 1, · · ·T

Ret = βλ+ εt

Rt =

R
e
1

...
ReT

 =

β...
β

λ+

 ε1
...
εN


or

R = Bλ+ ε

Then
λ̂OLS = (B′B)−1BR

B′B = Tβ′β

B′R = β′
T∑
t=1

Rt

(B′B)−1 =
1

T
(β′β)−1

E[εε′] = Ω

Cov(λ̂OLS) = (B′B)−1B′Ω̂B(B′B)−1

where

B′ΩB = Tβ′Σβ =
1

T
(β′β).−1.Tβ′Σβ

1

T
(β′β)−1 =

1

T
(β′β)−1β′Σβ(β′β)−1

estimate Σ with
ET [ε̂tε̂

′
t]

and
ε̂t = Rt − βλ̂OLS

ET (Ret ) on β

ET (Ret ) = βλ+ ET (εt)

λXS = (β′′β)−1β′ET (Ret )

σ2(λ̂XS = (β′β)−1β′Cov(ET (εt))β(β′β)−1

Cov(ET (εt)) =
1

T
Σ

σ2(λ̂XS) =
1

T
((β′β)−1β′Σβ(β′β)−1

In particular for FM.
λt = (β′β)−1β′Ret

λ̂FM =
1

T

T∑
t=1

λ̂t = (β′β)−1β′
1

T

T∑
t=1

Ret = (β′β)−1β′ET (Ret )

Cov(λ̂FM ) =
1

T
Cov(λ̂t) =

1

T
(β′β)−1β′Σ((β′β)−1β′)′

λ̂t = (β′β)−1β′Ret = (β′β)−1β′(βλ+ εt) = λ+ (β′β)−1β′εt

1

T
λ̂t = λ̂FM = λ+

1

T

T∑
t=1

(β′β)−1β′εt

V ar(λ̂FM − λ̂)→ N(0,Ω)

11



Ω =
1

T

T∑
t=1

(β′β)−1β′Σβ(β′β)−1

To sum up,
mt = a+ bft

E[(a+ b′f̃t)Ri,t] = 1

aE[Rit] = 1− b′E[f̃tRit]

E[Rit] =
1

a
− b′

a
E[f̃tRit] =

1

a
− E[Ritf

′
t ]E[f̃tf̃

′
t ]
−1E[f̃tf̃

′
t ]
b

a
=

1

a
+ β′iλ

where βi = E[f̃tf̃
′
t ]
−1E[ftRit]. f̃t = ft − E[ft] and λ = −E[f̃tf

′] ba
That is

E[Rit] = γ + β′iλ ⇐⇒ m,t = a+ b′f̃t

2.3 Horse Race - Multi-factor Factor Model

Given f1t factor, do you need f2t factor. SDF mt = a+ b′1f1t + b′2f2t use a set of test asset and GMM
to estimate b̂1 and b̂2.

b̂′2var(b̂2)−1b̂2 ∼ χ2(#b2)

This is Wald test - estimate the alternative and test the zero restrictions. You can also use likelihood
ratio test using GMM

• Estimate with unrestricted model JUR.

• Estimate the restricted model with S−1
UR as weighting matrix

mt = a+ b′1f1t

to get JRES

TJResT − TJURT ∼ χ2(# of restriction)

2.3.1 Testing the CAPM - Sharpe-Lintner

Miller and Scholes (1972) say β’s are measured with error. The estimation bias will shift down the
security market line. They propose to form portfolios on β̂i and re-estimate the β’s of portfolios.

Reit = βiR
e
mt.+ εit, σ(Remt) ≈ 15%(pa), σ(εit) ≈ 20− 40%(pa)

R̄eit
σt/
√
T

cannot reject all average returns are equal and equal to zero

and CAPM worked with the β sorted portfolios for 13 years.

Size Rolf Banz found the small firm effect sorted by market equity (decile)

E[Resmall,t] = α+ βsmallE[Remt], α > 0

David Booth, Founder of Dimensional Fund Advisor (DFA), capitalizes on this result. SMB is
the small minus big portfolio.

Book to Market is book equity divided by market equity. High book-to-market firms have high
returns - value stocks (Ben Graham, “Value Investing”) and low book-to-market are growth
(glamor) stock with low E[R]. HML factor is high-low.

12



Multi-factor model Merton (1973) suggests

Et[R
e
i,t+1] = βitEt[R

e
m,t+1] +

N∑
j=1

δi,j,tEt[R
e
j,t+1]

where δij,t = exposure of asset i to risk factor j. N factors describes the changes in investment
opportunities. Need to find factors that spans the relevant multi-factor efficient set.

Rit =

N∑
j=1

βijRjt + εit, i = 1, · · · , N = 3− 5

(The premise is does asset manager require stock picking ability?)

Another Anomaly Novy-Marx (2013) operating profitability

OPt =
Revenuet − CGSt − Interestt − SGAt

End of Period Book Valuet

Within size quintile, increasing OP implies higher average return. (RMW, robust versus weak)

Investment
Growth in Asset (fiscal t− 1)

Total Assets (t− 2)

Firms with high investment and have low return (CMA, conservative minus aggressive)

Momentum is a big anomaly sorted on Rt−12,t−1 invested at t. Winners outperform losers. This gives
UMD portfolio (ups minus down)

11 Anomalies Stambaugh and Yuan, “Mispricing Factors”, RFS 2017 developed a 4 factor model
with MKT, SMB (different from FF), 2 factors capture 11 anomalies related to FF3.

1. Net stock issuance, Ritter (1991). Equity issuers underperform non-issuers. Annual log
change split adjusted shares outstanding.

2. Composite equity issue, Daniel, Titman (2006). Growth in total market equity minus rate
of return per share over 12 months.

3. Accruals, Sloan (1996). High accrual firms worse than low accrual.

4. Net operating assets. Hirschleifer et. al (2004). Operating assets minus operating liability
over the total assets. Low predict low return.

5. Asset growth, Cooper et. al (2008).

ATt −ATt−1

ATt−1

with four month lag. High bad.

6. Investment to assets, Titman, Wei, Xing (2004), Xing (2008).

Gross PPEt + ∆Inventory

ATt−1

with 4 month lag. High bad.

7. Distress, Campbell, Hilscher and Szilagyi (2008). Model failure probability. High probability
of failure implies low return.

8. O-Score, Ohlson (1980). Static model of bankruptcy probability. High probability of
bankruptcy implies lower return.

9. Momentum, Jegadesesh and Titman (1993). Carhart (1997) added UMD to FF model.

10. Gross profitability, Novy-Marx (2013). High profit implies high return.

13



11. Return on Assets, FF (2006).

Income before extraordinary items

ATQ

They sorted them into 2 groups and ranked on anomaly, take 10% most over-valued and 10%
most under-valued.

Method 1 Run Reit = αi + biMKTt + ciSMBt + uit. Compute 11 × 11 covariance matrix of
uit. “Clustering Method”, Ward (1963) is used. Two groups came out, MGMT (cluster of
management group) and PERF (cluster of performance).

Method 2 Generate a z-score on the anomaly ranking

zj =
sj − s̄
σs

, sj = raw rank

Then do the same regression as method 1.

MGMT are net stock issuance, composite equity issuance, accruals, net operating assets, asset
growth, investment to assets. PERF are distress, O-Score, momentum, gross profit, ROA. They
equal-weight within the two clusters, P1 and P2 for each firm. Mispricing factors are 2× 3 sorts.

1. Size median NYSE

2. Independently sort on P1 and P2, 20% and 80% combined NYSE, AMEX, NASDAQ.

SMB is small 60% unused minus big 60% unused.

3 Options

A call option is a contract that gives the buyer the right but not the obligation to buy asset at predeter-
mined strike price X at maturity European (at maturity) and American (prior at t). If St is the asset
price at time t, the payoff at T = max(ST −X, 0). ct = option price and mt,T = SDF between t and T.
Then

ct = Et[mt,T max(0, ST −X)]

Returns is
max(0, ST −X)

ct
A put option is a contract that buyers buy the right. to sell asset at. X at T to the seller of the

option (European option). The payoff is max(0, X − ST ).

Straddle Purchase of a call option and put option at the same strike price. The payoff is max(0, ST −
X) + max(0, X − ST ). This is a bet on volatility.

To write an option is to sell it. Writing out-of-money options generate cash flow (put: X < St, call:
X > St). At the money is X = St or forward price. In the money call X < St and in the money put
X > St.

3.1 Put-Call Parity

ct = Et[mt,T max(0, ST −X)], pt = Et[mt,T max(0, X − ST )]

Buy a call and sell a put,
ct − pt = Et[mt,T (ST −X)]

For a non-dividend paying stock,

Et[mt,TST ] = St, Et[mt,TX] =
X

1 + it

Therefore, the put-call parity for non-dividend paying stock is

ct − pt = St −
X

1 + it
14



3.2 No Arbitrage Binomial Pricing (One-Period)

Find a portfolio of stock and borrowing that replicates the payoff on call. Suppose

st = $150, interest rate = 0.5%

What is the price of the call option with strike $152? In addition, we know that st+1 = 145 or 155.
Let’s buy z shares of stock and borrow y dollars. Then the cost of our portfolio is 150z − y. In

the bad state, we will have 145z − 1.005y = 0 and in the good state, we have 152z − 1.0005y = 3.
Then we can solve the linear equations to get y = $43.28, z = 0.3. Then by no arbitrage, we have
c = $150× 0.3− $43.28 = $1.72.

You can solve the option prices recursively through a binomial tree. Note that we did not know the
probabilities of up and down.

• Just with the magnitudes.

• The replicating portfolio involves leverage. Expected return on the call > E[R] (10-30 times)

3.3 Introduction to Continuous Time, Stochastic Processes

Discrete time random walk:
zt − zt−1 = εt

V ar(zt+2 − zt) = 2V ar(zt+1 − zt)
The variance scales with time directly. We can define zt+δ − zt ∼ N(0,∆) for a small δ. increments in
z(t) are independent of z(t).

dzt = zt+δ − zt, for arbitrarily small δ

The stochastic integral defines the level of zt relative to z0.

zt − z0 =

∫ t

δ=0
dzδ

Because the variance scale with time, the standard deviation scales with the square root of time. The
standard deviation describes a typical size change of a normally distributed random variable so zt+δ−zt
has typical size

√
∆. Therefore, zδ−zt

∆ has typical size 1√
∆

. Thus, sample path of zt are continuous

but not differentiable. Now, Et[dzt] = 0 since dzt is the forward increment and variance of dzt is
Et[dz

2
t ] = dt where dt is the limit as ∆ gets small. Here, dzt is the brownian motion process and is the

building block of all diffusion models.

3.4 Processes

dxt = µ(·)dt+ σ(·)dzt
where µ(·) and σ(·) are function of t information set (all conditional on time t)

Random walk with a drift is
dxt = µdt+ σdzt

Take the integral both sides

xt − x0 = µ(t− 0) + σ(zt − z0) =⇒ xt = x0 + µt+ εt, εt ∼ N(0, σ2t)

AR(1): xt = (1− ρ)µ+ ρxt−1 + εt where µ is the long run mean. Subtract xt−1 from both sides

xt − xt−1 = −(1− ρ)(xt−1 − µ) + εt = −φ(xt − µ) + εt

dxt = −φ(xt − µ)dt+ σdzt

This is called Ornstein-Uhlenbeck process. Square root process

dxt = −φ(xt − µ)dt+ σ
√
xtdzt

Et[σ
√
xtdzt)

2] = σ2xtdt

volatility varies with xt and as xt goes to 0, the drift pulls xt toward µ. If µ > 0 and φ > 0, then
2φµ > σ2 guarantees xt always positive. “Feller condition”.
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3.4.1 Pricing Processes

dpt = p0µd− t+ ptσdzt

Return
dpt
pt

= µdt+ σdzt

Generally
dpt
pt

= µ(·)(·)dt+ σdzt

Local mean is µ(·)dt and local variance

Et[(dpt/pt − µ(·)dt)2] = σ(·)2dt

3.4.2 Itô’s Lemma

If yt = f(xt) and xt follows a diffusion process what is yt?
Take a second-order Taylor series,

dyt =
∂f

∂x
dxt +

1

2

∂2f

∂x2
t

dx2
t

dxt = µxdt+ σxdzt

(dxt)
2 = (µ2

x(dt)2 + 2µxσxdtdzt + σ2
xdz

2
t )

Set (dt)2 = 0, dtdzt = 0.They go to 0 faster than dt

dyt =
∂f

∂x
dxt +

1

2

∂2f

∂x2
σ2
xdt = (

∂f

∂x
µx +

1

2

∂2f

∂x2
σ2
x)dt+

∂f

∂x
σxdzt

(this is like the Jensen’s inequality)
Now let’s apply this to our call option.

ct = C(St, t)

dct = c− tdt + csdSt +
1

2
cssdS

2
t

We need a continuous time discount factor:

ptΛt = Et[Λt+1pt+1]

∂Λt
Λt

= −rdt− µ− r
σ

dzt − σwdwt

dzt = brownian motion driving stocks

dwt = orthogonal to dzt

dSt
St

= µdt+ σdzt

Et
dSt
St
− rdt = −Et

dΛt
Λt

dSt
St

(µ− r)dt = −Et(−rdt−
µ− r
σ

dzt − dwt)(µdt+ σdzt) = E[
µ− r
σ

σdz2
t ] = (µ− r)dt

c0 = price of a call option at time 0
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Then

c0 = E0
ΛT
Λ0

max(0, ST −X)

=

∫
ΛT
Λ0

max(0, ST −X)df(ΛT , ST )

c0 = S0N(d1)−Xe−rTN(d2)

where N(k) =
∫ k
−∞

1√
2π
e−z

2/2dz and

d1 =
logS0/X + (r + σ2/2)T

σ(
√
T )

d2 = σ
√
T − d1

3.5 Coval and Shumway

Et[mTRT ] = 1 =⇒ Et[RT −RfT ] = −Covt(mT , RT )

Et[mT ]

RcT = return on a call option =
max(0, ST −X)

ct

Et[R
c
T −R

f
TT ] = −Cov(mT ,

max(0, ST −X)

ct
)

On right hand side, move ct out and multiply by St/St and move 1
St

in, then

= −Covt
(

mT

Et(mT )
,
max(0, ST −X)

St

)
St
ct

= −Covt
(

mT

Et[mT ]
,
ST
St

)
St
ct

+ Covt

(
mT

Et[mT ]
,
max(0, X − ST )

St

)
St
ct

(RcT −R
f
T ) = Et[RT −RfT ]

St
Ct

+ Covt

(
mT

Et[mT ]
,
max(0, X − ST )

St

)
St
ct

4 Term Structure of Interest Rate

P
(N)
t = Price of a zero coupon bond paying $1 at t+N

ln(P
(N)
t ) = p

(N)
t

y
(N)
t = Continuously compounded yield to maturity

P
(N)
t = exp(−Ny(N)

t ) =⇒ p
(N)
t = −Ny(N)

t

Zero coupon yields are the basis of discounting. Risk-free bond pays C and $1 at maturity, then

Pt =

N∑
j=1

CFt+j

exp(jy
(j)
t )

, CFt+j = C, j = 1, · · · , N − 1, CFt+N = 1 + C

Holding period return on N period bond

HPR
(N)
t+1 =

P
(N−1)
t+1 − 1

P
(N)
t
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hpr
(N)
t+1 = p

(N−1)
t+1 − p(N)

t = −(N − 1)y
(N−1)
t+1 +Ny

(N)
t

Forward rates are implicit in the term structure at what rate can you contract today to borrow or lend
starting at N period in the future for 1 period.

FN→N+1
t =

P
(N)
t

P
(N+1)
t

=
exp(−Ny(N)

t

exp(−(N + 1)y
(N+1)
t

fN→N+1
t = p

(N)
t − p(N+1)

t = (N + 1)y
(N+1)
t −Ny(N)

t = y
(N+1)
t +N(y

(N+1)
t − y(N)

t )

Forward rate above yield when yields are upward sloping.

fN→N+1
t +N(y

(N)
t ) = (N + 1)y

(N+1)
t = return on $1 invested for N + 1 period

so

p
(N)
t = (p

(N)
t − p(N−1)

t ) + (p
(N−1)
t − p(N−2)

t ) + · · ·+ (p
(2)
t − p

(1)
t ) + p

(1)
t

= −fN−1→N
t − fN−2→N−1

t − · · · − f1→2
t − y(1)

t

p
(N)
t = −

N−1∑
j=0

f j→j+1
t

P
(N)
t = exp

−N−1∑
j=0

f j→j+1
t


Price of N -period zero coupon bond is discounted value of $1 when discount rates are the forward rates.
There are three ideas about how yields are determined

1. N-period yield is the average of expected future 1 period yields plus risk premium:

y
(N)
t =

1

N
Et[y

(1)
t + y

(1)
t+1 + · · ·+ y

(1)
t+N−1] + rpy

(N)
t

where rp has Jensen’s inequality as well as risk.

2. Forward rate is the expected spot rates plus risk premium

fN→N+1
t = Et[y

(1)
t+N ] + rpf

(N)
t

3. The expected holding period return is the risk free rate plus the risk premium

Et[hpr
(N)
t+1 ] = y

(1)
t + rpr

(N)
t

Ignore the risk term to start:

y
(1)
t = 3%, y

(2)
t = 6%

1. 6% = 1
2(3% + Et[y

(1)
t+1]) and Et[y

(1)
t+1] = 12%− 3% = 9%

2. f1→2
t = 2y

(2)
t − y

(1)
t = 12%− 3% = 9%

3. Et[p
(1)
t+1 − p

(2)
t ] = 3% and Et[−y(1)

t+1 + 2× 6%] = 3% so Et[y
(1)
t+1] = 9%

We must take the risk into account.

Et[Mt+1HPR
(N)
t+1] = Et[Mt+1

P
(N−1)
t+1

P
(N)
t

] = 1

P
(N)
t = Et[Mt+1P

(N−1)
t+1 ]
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P
(N−1)
t+1 = Et[Mt+2P

(N−2)
t+2 ]

P
(N)
t = Et[Mt+1Mt+2P

(N−2)
t+2 ]

...

P
(N)
t = Et[

N∏
j=1

Mt+j ], the term structure provides lots of information about distribution of Mt+j

If Mt+j is lognormal, then P
(N)
t is lognormal

P
(N)
t = Et[Mt+1P

(N−1)
t+1 ] = exp

{
Et(mt+1) +

1

2
Vt(mt+1) + Et[p

(N−1)
t+1 ] +

1

2
Vt(p

(N−1)
t+1 ) + Ct(mt+1, p

(N−1)
t+1 )

}
Et[Mt+1] = exp(−y(1)

t )

exp(Et[mt+1] +
1

2
Vt(mt+1)) = exp(−y(1)

t )

Et[mt+1] +
1

2
Vt(mt+1) = −y(1)

t

Hence

p
(N)
t = −y(1)

t + Et[p
(N−1)
t+1 ] +

1

2
Vt(p

(N−1)
t+1 ) + Ct(mt+1, p

(N−1)
t+1 )

Et[p
(N−1)
t+1 − p(N)

t ]− y(1)
t = −1

2
Vt(p

(N−1)
t+1 )− Ct(mt+1, p

(N−1)
t+1 )

where the above says the expected excess holding period rate of return is equal to the Jensen’s inequality

term and the risk premium term. We call the right hand side as rpr
(N)
t

4.1 Canonical Affine Model

mt+1 = −y(1)
t −

1

2
λ′tλt − λ′tεt+1

where εt+1 ∼ N(0, Ik) is k-dimensional vector of risks necessary to price bonds: level, slope and
curvature as driving processes and λt is the prices of risk. Let Xts are state variables and Xt+1 =
µ+ ΦXt + Σεt+1 where Σ is the square root of Xt+1

λt = λ0 + λ1Xt

y
(1)
t = δ0 + δ′1Xt

P
(N)
t = exp(AN + β′NXt)

where AN is a constant and BN is the constant parameters.
Use the method of undermined coefficient to solve for recursions AN and BN as functions of

µ,Φ, λ0, λ1, δ0, δ1,Σ.

p
(N)
t = −y(1)

t + Et[p
(N+1)
t+1 ] +

1

2
Vt(p

(N+1)
t+1 ) + Ct(mt+1, p

(N+1)
t+1 )

AN +B′NXt = −δ0 − δ′1Xt + Et[AN−1 +B′N−1(µ+ ΦXt)] +
1

2
B′N−1ΣΣ′BN−1 + Ct(−λ′tεt+1, B

′
N−1Σεt+1)

= −δ0 − δ′1Xt + Et[AN−1 +B′N−1(µ+ ΦXt)] +
1

2
B′N−1ΣΣ′BN−1 −B′N−1Σ(λ0 + λ1Xt)

AN = −δ0 +AN−1 +B′N−1µ+
1

2
B′N−1ΣΣ′BN−1 −B′N−1Σλ0

B′N = −δ′1 +B′N−1Φ−B′N−1Σλ1
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We can define A1 = −δ0 and B1 = −δ1. Then

AN −AN−1 = A1 +B′N−1(µ− Σλ0) +
1

2
B′N−1ΣΣ′BN−1

B′N = B′1 +B′N−1(Φ− Σλ1)

p
(N)
t = −Ny(N)

t ,we have term structures in terms of AN , BN

Note, µ− Σλ0,Φ− Σλ1 are risk adjustments to X processes.

4.2 Campbell-Schiller: Yield Spreads and Interest Rate Movements: A Bird’s Eye
View

This paper strongly demonstrates the need for time variant risk premium.

Et[p
(N−1)
t+1 − p(N)

t ]− y(1)
t = constant

a type of expectation hypothesis

1. Start with excess rate of return on n period bond held m < n periods.

Et[−(n−m)y
(n−m)
t+m + ny

(n)
t ]−my(m)

t = C

Add and subtract my
(m)
t

(n−m)y
(m)
t − (n−m)Et[y

(n−m)
t+m ] +m(y

(n)
t − y(m)

t ) = C

Et[y
(n−m)
t+m − y(n)

t ] = C +m(y
(n)
t − y(m)

t )

2.
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