
CS 241 Notes : Foundations of Sequential Programming

Johnew Zhang

April 7, 2012

Contents

1 Lecture 1 3
1.1 Bits : Binary Digits . 3
1.2 Two’s complement . 3

1.2.1 Bites . 4

2 Lecture 2 5
2.1 Stored Program Computer . 5
2.2 The operations between CPU and RAM . 5

3 Lecture 3 7
3.1 MIPS Programming . 7

3.1.1 Examples . 8

4 Lecture 4 10
4.1 Input/output . 12
4.2 Array . 13

5 Lecture 5 13
5.1 How to write an assembler? . 14
5.2 Analysis . 14

6 Lecture 6 15
6.1 How to write an assembler? . 15

6.1.1 Pass 1 . 15
6.1.2 Pass 2 . 16

7 Lecture 7 17
7.1 MERL : MIPS Executable Relocatable Linkable Format 17

1

8 Lecture 8 : Programs that operate on MERL files 17
8.1 Assembler . 18

8.1.1 Modifying Assembler to Produce MERL 18
8.2 Loader (Relocating) Implementation . 19
8.3 Linker . 19

9 Lecture 9 : Formal Language (in contrast to ”Natural Language”) 19
9.1 Binary Integers (no leading zeros) . 20
9.2 Applications of Formal Language . 20
9.3 Regular Languages . 20

10 Lecture 10 : DFA 21
10.1 Program . 21
10.2 DFA . 21
10.3 NFA . 22

11 Lecture 11 : Using Finite Automata for Translation, Searching & Scan-
ning 22
11.1 Finite Translation - Finite Automaton with Output 22
11.2 Moore Machine . 23
11.3 Implementing ε transition in NFA . 24

11.3.1 ε NFA recognizer . 24

12 Lecture 12 : Regular grammar 24
12.1 Regular Expressions - Textual generative specification 25

12.1.1 Examples for Regular expressions . 25
12.2 Extended notations - more compact expression of some things 25

13 Lecture 13 : Context-Free Language (CFL) &Grammars (CFGs) 25
13.1 An example of this grammar . 26
13.2 Parsing . 26
13.3 Parse Tree . 27

13.3.1 Canonical derivation . 27

14 Lecture 14 : Parsing 27
14.1 Generic Top-Down Parser, given x ∈ L(G) 28
14.2 Generic Canonical Top-down Parser, given x ∈ L(G) 28
14.3 Generic Bottom-Up Parser for x ∈ L(G) . 28
14.4 Generic Canonical Bottom-Up Parser for x ∈ L(G) - yield rightmost deriva-

tion in reverse . 29
14.5 Stack-Based Parsing . 29

14.5.1 Augmented Grammar G’ . 29

2

14.6 Top-down Canonical Stack-based . 30
14.7 Bottom-Up Canonical Stack-based Parser 30

15 Lecture 15: LL(1) Parser 31
15.1 LL(1) parser to parse input x, given Predict 31
15.2 Example . 32

16 Lecture 16: 32
16.1 LR Parser (Linear time using states on stack) 33
16.2 Not on Exam: how to construct the LR DFA 33

17 Context-sensitive Analysis 33

18 Code Generating 36

19 Memory Management 47

20 Optimization 52

1 Lecture 1

1.1 Bits : Binary Digits

A bit is anything that has two states. For example, the switch for light has two state
up/down and for the light, it is on/off. We can represent those states as 0/1 or −/|.

Single bit cannot do anything so we usually put them into group of k bits.
Consider k = 2 and up/down and red/black. Then we can find 4 combinations of these.

It is not difficult to find out that for k bits, there are 2k combinations.

Little ending big ending name
0 0 1 fred
2 1 2 barney
1 2 3 wilmort
3 3 4 betty

Above are called unsigned integer representation.

1.2 Two’s complement

Negatives are represented as unsigned 2k greater. For example −2 = −2 + 22 = 2. Positive
are remain the same.

3

k = 4 unsigned 2’s complement
0000 0 0
0001 1 1
0010 2 2
0011 3 3
· · · · · · · · ·
1110 14 -2
1111 15 -1

Computer Arithmetic

In the computer, we type 7 + 3 (4 bit arithmetic). Well, in this case, all the calculations
are done by modulo 2k. For 7− 6, it is equivalent to 7 + (−6) = 7 + 10 = 1.

0111(7)
+0011(3)

1010
(1)

0111(7)
+1010(10)

0001
(2)

Hexadecimal

0, 1, 2, · · · , 9, A,B,C,D,E, F are numbers to represent it.

1.2.1 Bites

Byte is a group of 8 bits (k = 8, 256 combinations). In this case, unsigned is between
0 and 255; signed is between -128 and 127; ASCII codes are characters corresponding to
numbers between 0 and 127.

bytes meaning represents unsigned 2’s complement Hex ASCII
01100001 97 97 61 a

UNICODE There are 1 million symbols in UNICODE.

UTF-8 Sequence of bytes for each character

Extended ASCII

Word 4 bytes (32 bits); unsigned is between 0 and 232 − 1; 2’s complement is between
−231 and 231 − 1. and 8 bytes (64 bits)

4

2 Lecture 2

2.1 Stored Program Computer

CS 241 MIPS is a kind of ”Von Neumann Architecture” and it has 32-bit instructions. It
is Reduced Instruction Set Computer (RISC).

2.2 The operations between CPU and RAM

A RAM is sequence of bits and organized into bytes/words. For a 32-bit machine, 4
bytes/words and each byte has an address and each word has the address of such byte.

CPU : Centered Processing Unit
RAM : Random Address Memory
We can have operations between CPU and RAM. fetch(addr) and store (addr, value).

For example, store(8, FAZE1C1D).
CPU has registers (from $0 to $31, 32-bit wide), special register (PC(Program Counter),

IR (Instruction Register), HI, and LO) and Control Unit.
In Control Unit, it assigns some value to PC and runs through a infinite loop. Inside

the loop, it fetches RAM @ PC into IR; PC ← PC + 4. decode and execute instruction in
IR.

PC = somevalue;

for (;;) {

fetch RAM @ PC into IR;

PC = PC +4;

decode and execute instruction in IR;

}

5

Explanation of MIPS reference sheet ;

1. the first 6 0s means it is a simple instruction

2. the five s and five t and ect. means a register

3. $ 0 is always equal to 0

Here is one example for jr31.hex :

; 0000 0011 1110 0000 0000 0000 1000

; 0 3 e 0 0 0 8

.word 0x03e0008

6

3 Lecture 3

3.1 MIPS Programming

Three human readable :

1. binary (ASCII 0’s and 1’s)

2. hexdecimal text

3. assembly language

C MIPS

int x,y,z; $2 is x, $7 is y and $21 is z

unsigned a, b, c; $4 is a, $8 is b and $19 is c

float w; no direct MIPS implementation

x = y + z; add $2 $7 $21

a = b+ c; add $4 $8 $19

y = z; add $7 $0 $21

a = b ∗ c; multu $8 $19, mflo∗ $4

x = 42; lis $42, .word 42

if(t) α; translate(α)

if (t)x = y + z; ∗
if (t) α; else β ∗∗
while (t) α; ∗ ∗ ∗
for (α;β; γ)δ; α while (β) { δ; γ}
do { α } while (t) ∗ ∗ ∗∗

Notes : Hi and Lo represent 64-bit two’s compliment
∗ suppose t is $10, $10=0, false; $10 =1, true. Then beq $10 $0 1; add $2 $7 $21.

Another example bees $10 $0 nnn, translate (α) where nnn is number of instructions in
translate(α)
∗∗ beq $10, $0, nnn, translate(α), beq $0, $10, mmm. translate(β), where nnn is 1

plus the number of instructions in translate(α) and mmm is the number of instruction in
translate(β)
∗ ∗ ∗ translate(t), beq $10 $0 nnn; translate(α); beq $0 $0 mmm, where nnn is the

number of instructions in translate(α) plus 1 and -mmm is the number of instructions in
translate(t) plus the number of instructions in translate(α) plus 2
∗ ∗ ∗∗ translate(α); translate(t); ben $10, $0, mmm; where -mmm is the number of

instructions in translate (α) plus the number instruction in translate(t) plus 1.

7

3.1.1 Examples

add value in register 5 to value in req 7, and store result in req 3

; 00000000101001110001100000100000

; 00A71820

add $3 $5 $7

; 00000011111000000000000000001000

; 03E00008

jr $31

add 42 to 57, store result in $3

; 00000000000000000001000000010100

; 00001014

lis $2

; 00000000000000000000000000101010

; 0000002A

.word 42

; 00000000000000000001100000010100

; 00001814

lis $3

; 00000000000000000000000000110100

; 00000034

.word 52

; 00000000010000110001100000100000

; 00431820

add $3 $2 $3

; 00000011111000000000000000001000

; 03E00008

jr $ 31

Change value in register 1 to its absolute value e.g. $1 = 20 unchanged; $1 = 2, change
to 20

If $1 =0, $1 = - $1

; 00000010101000010000000000101010

8

; 02A1002A

slt $21 $1 $0

; 00010010101000000000000000000001

; 12A00001

beq $21 $0 1

; 00000000000000010000100000100010

; 00010822

sub $1 $0 $1

; 00000011111000000000000000001000

; 03E00008

jr $31

Suppose int a,b,c, · · · , z, A, B, C, · · · , Z, 52 variables.
Use RAM instead of registers, pick a RAM address that you are not using, say 100000,

100012, 66664, 996.
Suppose x is 100000, y is 100012, and z is 100020.

x = y +z;

lis $7

.word 100012; addr of y

lw $3, 0($7) ; contents of y

lis $7

.word 100020 ; addr of z

lw $15, 0($7) ; contents of z

add $7, $3, $15 ; y+z

lis $6

.word 100000; adds of x

sw $7,0($6)

How to get memory?
for example,

jr $31

.word ; x

.word ; y

.word ; z

Well we can put label for .word, e.g. lis $7; .word x
We can do the other way ”stack”.

9

4 Lecture 4

Program 1

; sum the integers from 1 to N

; input : $1 is N

;output : $3 is the sum

; temp : $2

add $3, $0, $0 ; zero accumulator

; beginning of loop

add $3, $3, $1 ; add $1 to $3

lis $2 ; decrement $2

.word -1

add $1, $1, $2

bne $1, $0, -5 ;branch to beginning of loop (if not done)

jr $31 ; return

Like this we going to create a program first :

R = 0;

do {

R = R + N;

N = N-1;

} while (N != 0)

return R;

Program 2

; sum the integers from 1 to N

; input : $1 is N

;output : $3 is the sum

; temp : $2

add $3, $0, $0 ; zero accumulator

beginLoop: : (label)

add $3, $3, $1 ; add $1 to $3

lis $2 ; decrement $2

.word -1

add $1, $1, $2

bne $1, $0,beginLoop ;branch to beginning of loop (if not done)

jr $31 ; return

10

Program 3

; sum the integers from 1 to N

; input : $1 is N

;output : $3 is the sum

; all register except $3 must have initial value

; we will change $1 and $2. Save and restore them.

; Need a label so we can call the procedure.

sumOneToN;

sw $1, -4($30) ; save $1 on the stack

sw $2, -8($30) ; save $2 on the stack

lis $2 ; reset the stack pointer

.word 8

sub $30, $30, $2

add $3, $0, $0 ;zero accumulator

beginLoop:

add $3, $3, $1 ; add $1 to $3

lis $2 ; decrement $2

.word -1

add $1, $1, $2

bne $1, $0, beginLoop

lis $2 ; reset the stack pointer

.word 8

add $30, $30, $2

lw $1, -4($30) ; restore $1 from stack

lw $2, -8($30) ; restore $2 from stack

jr $31 ; return from sumOneToN

Program 4 : Calling procedure

sw $31, -4($30) ; save $31 on stack

lis $31

.word 4

sub $30, $30, $31; call sumOnetoN(13)

lis $1

11

.word 13

lis $4

.word sumOneToN

jalr $4 ; put return address in $31

; replace PC with contents of $1

lis $31 ; restore $31 from stack

.word 4

add $30, $30, $31

lw $ 31, -4($30)

jr $31 ; return to OS

Then you can add the program for sumOneToN to the program above.

Program 5

; store $1 in x

; store $2 in y

; i.e. story 42 in $1, $5 in $2

lis $3

.word x

lw $1, 0($3)

lis $4

.word y

lw $2, 0($4)

add $5, $1, $2

sw $5, 0($3) ;; x = x +y

jr $31

x : .word 42

y : .word 55

4.1 Input/output

MIPS can read a byte or write a byte to stdin/ stout, i.e. getchar(), putchar().

Program 6

; cat

12

lis $1

.word 0xffffooo4

lis $3

.word -1

loop :

lw $2, 0($1)

beq $2, $3, quit

sw $2, 8($1)

beq $0, $0, loop

quit

jr $31

4.2 Array

Program 7 : Array

; read 2nd element of array

lw $3, 4($5)

jr $31

; read 2nd element of array

; input : $1 is the array, $2 is length

; output : $3 contains last element of array

add $5, $2, $2 ;; double $2

add $5 $5, $5 ;; double $5

add $5, $5, $1 ;; add array address

lw $3, -4($5)

jr $31

5 Lecture 5

An assembler file is a text file. An assembler reads the source file (MIPS assembly language)
and it outputs an object file (MIPS binary machine code) or error report. Well an assembler
is just a translator from MIPS assembler language to binary.

Source file example

0 ; hello

0 lis $4; load 16

4 .word fortytwo

13

8 lw $3, 0($4)

c jr $31

10 fortytwo ; .word 42

Object file example(as listed by xxd)

0000 : 0000 2014 0000 0010 8c83 0000 019 0008

0010 : 0000 0029

0020 :

0030 :

The value of fortytwo is 16 (0x10).

5.1 How to write an assembler?

1. understand the source language

2. understand object language

3. understand the meaning/correspondence between source and object

4. write an assembler

• divide into components

• specialized techniques

• test

A unix file is a sequence of lines with ascii characters and ended by newline (10)
The i is the value of a label minus (4 plus the location of instruction) and then divided

by 4.
Well in the assembler, there are two parts : analysis and synthesis. Analysis means

to take them into parts. Then synthesis means to put it together. First, to analyze if
it is a valid program and then transform into data structures. In the transformation to
data structures, we have three parts :a. split program into lines (get line,readline); b,
lexical analysis (scanning);c. context-free analysis (parsing); d)context-sensitive analysis
(semantic analysis) Secondly we are going to create the MIPS binary from the result of
analysis. In the middle, there is an intermediate representation.

5.2 Analysis

split program into lines

lexical analysis Example, translate fred: dick: lw 0($30) ; hello into a sequence of
lexical units (tokens). You will be provided a scanner. It is a sequence of pairs <
kind, lexeme>. In c++, it is vector<Token> and in scheme it is list.

14

Context-free analysis

Context-sensitive analysis

6 Lecture 6

6.1 How to write an assembler?

2 pass Assembler :

1. Pass 1 check program for validity; build sumbol table; build intermediate represen-
tation of instruction

2. Pass 2 : encode instructions/oprands as MIPS instruction words; output MIPS in-
structions.

6.1.1 Pass 1

Location is a number,symbol table is symbol.
For every input line, scan line into sequence of tokens (discount comments). for every

label definition at start of sequence of tokens. Then we have two choices :

1. Choice 1 : check that there is no <label, value > in symbol table where label is
the lexical. if already there : ERROR. Add < label, location > to symbol table. If
there is an opecode (following the labels) depending on opecode, determine whether
or not the remaining tokens are valid. For example add $1,$2,$5 has five tokens. reg,
comma, reg, comma,reg.

location is location plus 4

Finally, if we use choice 2, we will check duplicate label in the symbol table.

For the intermediate representation :

(a) record source file [not possible in marmoset]

(b) list/vector of source lines : resort everything in pass;

(c) only non-null lines;

(d) only opcodes/operands (of non-null line)

2. Choice 2 : don’t check

15

6.1.2 Pass 2

For every non-null line of input depending on the opecode, encode the opeode and operands
into MIPS instruction word and output instruction.

Source

location intermediate

0 --> ; hello

0 --> add $1, $2, $3 add $1, $2, $3

4 --> foo: zip: ;hi again

4 --> beq $1, $2, bar beq $1, $2, bar

8 --> bar : .word foo .word foo

Symbol Table

/-------------------\

| foo | 4 |

| zip | 4 |

| bar | 8 |

\-------------------/

C program to print out bytes

// encode add $d, $s, $t and output it

int s = 2;

int t = 3;

int d = 1;

// 0000 00ss ssst tttt dddd d000 0010 0000

//template for add with 0s for s, t, d

int addintstr = 0x00000020;

// set the sssss stuff to s

int MIPSinstr = addinstr + (s << 21) + (t << 16) + (d << 11);

// output

printchar(MIPSinstr >> 8); the second last bite

printchar(MIPSinstr); // output the last bite of MIPSinstr

Scheme program to print out bytes

16

(define d 1)

(define s 2)

(define t 3)

(define addinstr #0x00000020)

(define MIPSinstr (+ addinstr (arithmetic-shift s 21)

(arithmetic-shift t 16)

(arithmetic-shift t 11)))

(write-byte (bitwise-and (arithmetic-shift MIPSinstr -24) 0xff))

(write-byte (bitwise-and (arithmetic-shift MIPSinstr -16) 0xff))

(write-byte (bitwise-and (arithmetic-shift MIPSinstr -8) 0xff))

(write-byte (bitwise-and MIPSinstr 0xff))

7 Lecture 7

MIPS binary file load in the RAM and in the RAM, there is a loader which is loaded by
an initial loader. Also in the ROM there is a mini-loader to trigger the initial loader.

According to the example in the class, we can calculate the following :

offset ii =
target(B)− current− 4

4

Sticky note is two words and has 8 bytes long. The length of the header is 8.

7.1 MERL : MIPS Executable Relocatable Linkable Format

It is formed by three parts : header(cookie, length of the MIPS code, length of the MIPS
code plus the length of code in the header), MIPS program and sticky notes.

8 Lecture 8 : Programs that operate on MERL files

MERL

+========+

| header | RAM

========== +========+

|MIPS | ========> | |

========== +========+

|Sticky |

| notes |

+========+

17

There is a link file to link them.

8.1 Assembler

java cs241.linkasm consumes a MIPS file and translates it into a MERL file. The difference
between CS241.binasm and CS241.linkasm is you don’t have to modify the MIPS file.

8.1.1 Modifying Assembler to Produce MERL

1. Pass 1 :

Relocation list :

Location counter : 0xc

For each line of code, we do the normal stuff but if we have .word X, where X is a
label, then we need to append location counter to reallocation list.

2. Pass 2 :

output cookie 0x10000002

output length = location counter + 8× length of relocation list

output codelength = location counter

output MIPS program in usual way

for each location in relocation list

output 1

output location from list

a.asm :

.import proc (please fill in proc at location at 0x10)

lis $1

.word proc

jalr $1

b.asm :

.export proc (proc is at location 0xc)

proc:

jr $31

We put these two files into cat and get ab.asm and then put the assembler and get a
MIPS file. If the assembler is a linker then we get a MERL file.

18

Let’s assemble a.asm to a.merl and b.asm to b.merl. Hence we put them through the
linker and then get MERL.

8.2 Loader (Relocating) Implementation

• determine α (load the address)

• Copy MERL to RAM starting at address α.

• let Sticky note = α+ RAM[α+ 8] (*) if RAM [SN] = 1 (add α sticky note),
RAM [Address to reallocate] = Location to relocate + α = RAM [SN + 4] + α
else error
SN ← SN + 8
repeat (*) if SN < RAM [α+ 4] + α = merl length + α = end of MERL.

8.3 Linker

From 8.1.1, we get a.merl (h1, m1, s1) and b.merl (h2, m2, s2). These two files go through
the linker we get a new merl file, ab.merl (h12, m1 m2, s1, s2). Well, the location of m2 is
the code length of h1. Then we need to reallocate m2 from c plus code length of h1. Since
we moved m2, we also need to move the sticky notes.

External Symbol Table

We put proc in the table and 0x18 in the loc.

9 Lecture 9 : Formal Language (in contrast to ”Natural
Language”)

A formal language L is a set of strings from a given alphabet, Σ.
Σ is a finite set of symbols, e.g. {a, b, c, · · · , z} or {red, green, blue} or {1, 2, 3, 4, 5, 6}

or {0, 1} or ASCII.
A string x is a finite sequence of symbols from Σ, e.g. abc, 12113, red green ...,

010111010101.
Languages Σ = {0, 1} L = {01, 10, 11, 111}.
Each element often called a ”word” or ”sentence”.
ε denotes empty string where ε /∈ Σ.
Noam Chonsky tried to describe English and other natural languages using math.

19

9.1 Binary Integers (no leading zeros)

Σ = {0, 1}
L = {0, 1, 10, 11, 100, 101, 110, · · · }.
L = {all valid MIPS assembly programs} = {All MIPS binary programs that terminate when executed}
This is the halting programs with regard to the undecidability.

9.2 Applications of Formal Language

1. Specify things a communication aid e.g. to program in a programming language to
implement programming language

2. Recognize language - recognizer take x as input answers. Is x ∈ L?

3. parsing - parser proves that x ∈ L such that i.e. constructs a derivation

4. translation - given x ∈ L, denote y ∈ L′ such that y corresponds to x.

Chonsky (1955) hierarchy :

1. Type 0 : Anything you write a computer program in recognize.

2. Type 1: Context-sensitive

3. Type 2: Context-free

4. Regular Language

9.3 Regular Languages

Two definitions :

1. Generative (using set) :

• finite alphabet Σ,

• any finite set of strings from Σ is regular. e.g {} or {ε};
• union of two regular language is regular;

• concatenation of two regular language is regular (concatenation of 2 strings
z = xy is just the sequence consisting of the symbols in x followed by symbols
in y) (concatenation of languages L1L2 = {xy|x ∈ L1, y ∈ L2});
• repetition of two languages is regular. (L∗ = {ε} ∪ L∗L)

2. Alternative Definition : alphabet Σ, L = {any string x that can be recognized by a
finite state machine (FSM) aka finite automaton}
A finite automaton is a model of computation.

20

Finite Automaton

Σ, finite set of states. labels transitions between states; bubble diagrams; set of final states.

Deterministic Finite State Automaton (DFA)

A finite automaton with determinism restriction : for any given state and symbol, at most
one transitions. from the state may be labeled with the symbol.

Non-deterministic Finite Automaton

No determinism restriction.

10 Lecture 10 : DFA

DFA = (Σ, S, T, start, finish)
e.g. Σ = {0, 1}, L = binary integers with no useless-zero.
S = {fred,binary,wilma}
start = barney
finish = {fred,wilma}

T

S Σ fred

barney 1 wilma
wilma 0 wilma
wilma 1 wilma
fred 0 err
fred 1 err
err 1 err
err 0 err

Gotcha : T is a partial function to make it total add new state ”err”.

10.1 Program

Σ is the number/name symbols
S is the number/name of states
T is the array T [state, symbol] or a function int T(int, state, int symbol)
start is just a state (number/name)
finish is set (list, array, finish [state] = 1 if state ∈ finish; otherwise 0.

10.2 DFA

Recognizer
input : DFA, string

21

x = a1, a2, · · · , an where ∀i, ai ∈ Σ.
The algorithm

state <- start

for : from 1 to n

state <- T[state, ai]

if finish[state], accept, (x in L)

else reject (x not in L)

NFA is the table we list the relationships. Well, it is not a function.
There is a function returning a set
barney 1 { fred, wilma}
barney 0 {fred }
wilma 0 {wilma}
...

...
...

10.3 NFA

Set up is almost the same as the DFA.
The algorithm

state <- start

for : from 1 to n

state <- The union of all the state in S, T[S, ai]

if the intersection of finish and states is not empty, accept, (x in L)

else reject (x not in L)

Examples of DFAs
Σ = {0, 1}
L = even binary integers (ends in 0.

Σ = {0, 1}

L is divisible by 4

11 Lecture 11 : Using Finite Automata for Translation,
Searching & Scanning

11.1 Finite Translation - Finite Automaton with Output∑
in

= input alphabet

22

∑
out

= output alphabet states

T : Σ× S → S

OState finish : Σ× S → Σ∗out

For example,
Σin = {a, b, c}

Σout = {A,B,C}

L = {cab, bac}

Translate cab→ CAB, bac→ BAC.

11.2 Moore Machine

O : S → Σ∗out

Sometimes Language is unimportant

state <- state

fro i in 1 to n

output <- output O[state,ai]

state <- T[state,ai]

if state in final accept

return output

As an example, binary integers Σin = {0, 1} translate to Σout = {−, |}
Remove ”stutters” - repeated consecutive symbols

0→ 0

00→ 0

11→ 1

011000111→ 0101

where L = Σ∗

Σin = Σout = {0, 1}

23

11.3 Implementing ε transition in NFA

Algorithm for ε−closure(S) - all states reachable by 0 or more ε transitions from a member
of S.

answer ← S
workset ← S
while work set 6= ∅.
remove some element s from work set
for every s′ ∈ T [s, ε]
if s′ /∈ answer.
answer ← answer ∪{s′}
workset← workset ∪ {S′}
return answer

11.3.1 ε NFA recognizer

Input x = a1, a2, · · · , an
states← ε− closure({state})
for i from 1 to n
newstates ← ∪s∈stateT [s, ai]
states← ε− closure(newstates)
accept if states∩finish 6= ∅

Why? Constructive proof that any regular language is recognized by some ε NFA.(and
hence by some DFA using subset constructions on the ε NFA).

12 Lecture 12 : Regular grammar

Regular language is a finite sets that have union, concatenation, and repetition properties.

1. finite sets: empty set, singleton, big set

empty set L = {} - ε NFA

singleton string s L = {s}-one finish state

2. Concatenation L1L2- use ε transition to connect the finish state of L1 and the start
state of L2

3. Union L1 ∪ L2-create a new start state points to the start states of L1, L2 and their
finish states using epsilon transition to point to a new finish state

4. Repetition L1∗- Similarly, create a new start start and finish state and connect them
use epsilon transitions and point the new start to each corresponding old start state
and old finish state.

24

12.1 Regular Expressions - Textual generative specification

regular-language L regular expression R(L)

{ε} ε (or just nothing ())
{a} a
L1L2 R(L1)R(L2)
L1 ∪ L2 R(L1)|R(L2) or R(L1) +R(L2)
L∗ R(L)∗

∅ ∅

12.1.1 Examples for Regular expressions

1. Σ = {0, 1} binary number

0|1(0|1)∗

2. product of 1 or more binary numbers

Σ = {0, 1, ∗} 0|1(0|1)∗(∗0|1(0|1)∗)∗

3. Σ = {0, 1, ∗,+} sum of 1 or more products

0|1(0|1)∗(∗0|1(0|1)∗) ∗ (+0|1(0|1)∗(∗0|1(0|1)∗)∗)∗

4. Note : size of regular expression doubles with each example

12.2 Extended notations - more compact expression of some things

1. Variable: I = 0|1(0|1)∗. P = I(∗I)∗.S = P (∗P)∗. As you see, we can apply simple
substitution but careful not to use recursion.

2. R+ = RR∗

3. Algol 68 definition : {R|S} = R(SR)∗

Hence our regular expression for example 3 could be {{0|1(0|1)∗|∗}|+}

4. {R‖S} = R(SR)+

Also there exists irregular expression like (0|1)∗/× (111|000)× 0|1∗

13 Lecture 13 : Context-Free Language (CFL) &Grammars
(CFGs)

1. CFL is a language generated by CFG

2. exactly what can be recognized by a non-deterministic push-down automaton (NPDA)

25

3. generally CF recognizers require multiple stacks or equivalent (O(n3) time, n is the
input size; a better methods will be O(n2.7))

4. Deterministic CFLs - recognized by deterministic PDA. (O(n) parser/recognizer,
LR(k) parser)

13.1 An example of this grammar

G:

S -> AhB

A -> ab

A -> cd

B -> e

B -> fg

L(G):

{ abhe, abhfg, cdhe, cdhfg}

Derivation is the substitution process.
Formal Definition of CFG CFG :
N : finite set of non-terminal symbols (variables)
P : finite set of terminal symbols (alphabet)
R : set of rules of the form A→ α where A is a non-terminal symbol and α is terminal

or non-terminal symbols (A ∈ N,α ∈ (N ∪ T)∗)
S : start symbol S ∈ N
Conventions :
a,b,c,d, · · · terminals
A,B,C, · · · , S non-terminals
X,Y, Z,W terminals or non-terminals V = N ∪ T (vocabulary of G)
x, y, z, w strings from T ∗

α, β, · · · strings from V ∗

Definition. αABβ ⇒”derives” αγβ means A→ γ ∈ R
α⇒∗ β ”derives in 0 or more steps” means α = β4or∃γ, α⇒ γ and γ ⇒∗ β.
L(G) = {x|S ⇒∗ x}
A derivation of S ⇒∗ x proves that x ∈ L(G)

13.2 Parsing

Given x ∈ L(G), find a derivation.
e.g. Show that abhe ∈ L(G)
top-down parsing S ⇒ Ahb⇒ abhB ⇒ able

26

bottom-up parse abhe⇒ abhB ⇒ AhB ⇒ S (reverse derivation)

Suppose I can always choose leftmost nonterminal in a top down parse, I get left most
derivation.

righmost : abhe⇒ Ahe⇒ AhB ⇒ S
leftmost : abhe⇒ abhB ⇒ AhB ⇒ S
This process is called ”finding the handle”

More notations :
xAβ ⇒lm xγβ A→ γ.
αAy ⇒rm αγy A→ γ.

13.3 Parse Tree

S

/ | \

A h B

/ | |

a b e

Strictly speaking, a parser is given x ∈ L what if x /∈ L? Modern parsers are also
recognizers.

Binary numbers with no useless 0’s :
T = {0, 1}, N = {S,D}, R = {S → 0, S → 1D,D → ε,D → D1, D → D0} Then

L(G) = {0, 1, 10, · · · } This definition is not ambiguous for 101 since the language has a
unique parse tree.

Consider the following rule {S → 1, S → 1D,D → ε,D → 1, D → 0, D → DD}

13.3.1 Canonical derivation

R = {S → 0, S → D,D → 1, D → D0, D → D1}.
This rule is meaningful since we can label each nodes of the parsing tree with meaningful

informations.

14 Lecture 14 : Parsing

We talked about Top down, bottom up and canonical parsing last lecture. Today we will
learn the parsing algorithms (stacked based).

E.G.

27

G

S -> AhB

A -> ab

A -> cd

B -> e

B -> fg

14.1 Generic Top-Down Parser, given x ∈ L(G)

δ ← S
where δ 6= x do
choose any A where δ = αAβ
choose A→ γ ∈ R [oracle]
δ ← αAβ [expansion]
done

Let’s apply our algorithm:
x = cdhfg
δ = S α = ε, β = ε, A = S
δ = AhB, γ = AhB
δ = Ahfg
δ = cdhfg

14.2 Generic Canonical Top-down Parser, given x ∈ L(G)

δ ← S
where δ 6= x do
choose A where δ = zAβ
choose A→ γ ∈ R [oracle]
δ ← αAβ [expansion]
done

x = cdhfg
δ = S α = ε, β = ε, A = S
δ = AhB, γ = AhB
δ = cdhB
δ = cdhfg

14.3 Generic Bottom-Up Parser for x ∈ L(G)

δ ← x
while δ 6= S do

28

choose αγβ where δ = αγβ and A→ γ ∈ R (the γ is the handle)
δ ← αAβ [reduction]
done

δ = cdhfg
δ = cdhB
δ = AhB
δ = S

14.4 Generic Canonical Bottom-Up Parser for x ∈ L(G) - yield rightmost
derivation in reverse

δ ← x
while δ 6= S do
choose αγβ where δ = αγz and A→ γ ∈ R (the γ is the handle)
δ ← αAz [reduction]
done

δ = cdhfg
δ = Ahfg
δ = AhB
δ = S

14.5 Stack-Based Parsing

14.5.1 Augmented Grammar G’

It is formed from any CFG.
N ′ = N ∪ {S′}
T ′ = T ∪ {`,a}
R′ = R ∪ {S′ →` S a}
S′ is start symbol
L(G′) = {` x a |x ∈ L(G)}

input is x in L(G)

|- x -| in L(G’)

parse for |- x -|

do the parse by reading x from left to right

at any point we have x = yz

where y = input already seen

z = input not yet seen

29

14.6 Top-down Canonical Stack-based

crux : way to represent δ
use a stack
δ = input seen stack top bottom

input(seen) input (not seen) top of stack δ

ε ` cdhfg a ` S a ` S a
read ` cdhfg a S a ` S a
expand ` cdhfg a AhB a ` AhB a
expand ` cdhfg a cdhB a ` cdhB a
read ` c dhfg a dhB a ` cdhB a
read ` cd hfg a hB a ` cdhB a
read ` cdh fg a B a ` cdhB a
` cdh fg a fg a ` cdhfg a
read ` cdhf g a g a ` cdhfg a
read ` cdhfg a a ` cdhhfg a
` cdhfg a ε ε ` cdhhfg a

After the break we will talk about the Oracle. One Oracle : LL(1) parser. You have
Predict[top of stack, first symbol of unseen input]

14.7 Bottom-Up Canonical Stack-based Parser

Crux : way to represent δ
use a stack
δ =stack input not seen.

Stack top seen unseen δ

ε ε ` cdhfg a ` cdhfg a
shift ` ` cdhfg a ` cdhfg a
shift ` c ` c dhfg a ` cdhfg a
shift ` cd ` cd hfg a ` cdhfg a
reduce ` A ` cd hfg a ` Ahfg a
shift ` Ah ` cdh fg a ` Ahfg a
shift ` Ahf ` cdhf g a ` Ahfg a
shift ` Ahfg ` cdhfg a ` Ahfg a
reduce ` AhB ` cdhfg a ` AhB a
` S ` cdhfg a a ` S a
` S ` cdhfg a ε ` S a

30

Oracle

Conceptually,
Reduce[stack, first unseen symbol] = {A→ α} that could be reduced.
Shift[stack, first unseen symbol] = yes/no
If there is exactly one of reduce and shift, for all stacks, grammar os LR(1).

In 1950, Donald Knuth discovered that any canonical parser was a regular language.

15 Lecture 15: LL(1) Parser

We talked about different kind of parser in last lecture and mentioned oracle which has a
predict function N × T → R∗ and |Predict(A, a)| ≤ 1.

For LL(1) parsing,

1. build predict function:

|Predict(A, a)| ≤ 1 for all A, a, then the grammar is LL(1).

2. use predict in stack-based parser

Above all, it is a parser generator.

15.1 LL(1) parser to parse input x, given Predict

push `
push S
push a
` S a is the top of the stack.
for every symbol a in ` x a from left to right while top of stack ∈ N .
if Predict[top of stack, a] = {A→ α}
pop[A] from stack
push every symbol in α from right to left
if top of stack 6= a then reject
accept!

Correct prefix properly

informally detect error as soon as possible; more formally, if LL(1) rejects let y be input
read so far, there exists z such that yz ∈ L

there does not exist z’ such that yaz′ ∈ L.

1.S′ →` S a

31

2.S → AhB

3.A→ ab

4.A→ cd

5.B → e

6.B → fg

a b c d e f g ` a
S’ 1
S 2 2
A 3 4
B 5 6

15.2 Example

S -> if x then S

S -> if x then S else S

S -> y

If you write a parsing tree for if x then if x then y else y, you will get two distinct
parsing trees. This problem is called ”dangling else problem.

Define
empty: V ∗ → {true, false}
empty(α) =def α→∗ ε
first : V ∗ → 2T

first(α) =def {a|α→∗ aβ}
follow : N → 2T

follow =def {a|S →∗ αAaβ}
Predict(A, a) = {A→ α|a ∈ first(α)||empty(α) and a ∈ follow(A)}

-precompute empty(A) for A ∈ N
-precompute first(A) A ∈ N .
-precompute follow(A) A ∈ N
-compute predict

16 Lecture 16:

Oracle - ”have we seen a handle?” ”Is this a correct prefix?”

to parse input x
push `

32

for each a in x a (from left to right)
while Reduce[stack, a] = {A→ α}
pop α symbols from stack
push A
if happy[stack, a] = true, push a
otherwise reject
accept

Reduce : V ∗ × T → R∗ [size of set ≤ 1]
Happy : V ∗ × T → {true, false}

Observation (Knuth 1965)
-set of all valid stacks is a regular language

16.1 LR Parser (Linear time using states on stack)

push T[start, |-]

for each a in x -|

while Reduce[top of stack, a] = { A -> a}

pop |a| times from stack

push T[top of stack, A]

if T[top of stack, a] in F

push T[top of stack, a]

else reject

accept

16.2 Not on Exam: how to construct the LR DFA

start with NFA
states in NFA (items)
A→ α · β where A→ αβ ∈ R.

There is online notes from a kind person: https://github.com/matomesc/cs241

17 Context-sensitive Analysis

Context-sensitive Analysis

- semantic analysis

- how to do A9

33

- all checking of valid input that can’t be done _easily_ by lexical &

context-free analysis

Uses:

- syntax-directed translation

What we need to do:

- check variables are declared once and once only

- check that variables are used correctly

an example grammar:

‘‘‘

// part of WLPP language specification

procedure -> INT WAIN LPAREN dcl COMMA dcl RPAREN LBRACE dcls statements

RETURN expr SEMI RBRACE

type -> INT // typeof(type) = INT

type -> INT STAR // typeof(type) = INT STAR

dcls ->

dcls -> dcls dcl BECOMES NUM SEMI

dcls -> dcls dcl BECOMES NULL SEMI

dcl -> type ID

‘‘‘

Building a symbol table

- it will hold a collection of symbols, with information about each symbol

- for now just: ‘type ? { int, int* }‘

- check for duplicates

- check all __uses__ of symbols

- type of every expression & subexpression in input

__multiset__ symbol table: ‘syms(N) = { <id, type>[i] }‘

example symbol table for the above grammar:

‘‘‘

// symbol table for procedure

syms(procedure) = syms(dcls) + syms(dcl1) + syms(dcl2)

34

// an easy one symbols for dcls - the empty set

syms(dcls) = {}

// for dcl -> type ID

syms(dcl) = { <lexeme(ID), typeof(type)> }

‘‘‘

- check to make sure that ‘id1 != id2‘ for all distinct ‘<id1, type1>, <id2, type2> ?

syms(procedure)‘

- now we have the following functions:

‘‘‘

typeof(type) - declared type

typ(E) - type of any particular expression E ? { int, int*, error }

‘‘‘

more grammar:

‘‘‘

statements ->

statements -> statements statement

statement -> lvalue BECOMES expr SEMI

lvalue -> ID

typ(ID) = t if <lexeme(ID), t> in symbol_table else error

lvalue -> STAR factor

typ(lvalue) = if typ(factor) == int* then int else error

expr -> term

typ(expr) = typ(term)

expr -> expr PLUS term

(expr1 = left expr, expr2 = right expr as per usual)

typ(expr1) = int if typ(expr2) == int and typ(term) == int OR

typ(expr1) = int* if typ(expr2) == int and typ(term) == int* OR

typ(expr1) = int* if typ(expr2) == int* and typ(term) == int OTHERWISE error

term -> factor

typ(term) = typ(factor)

35

factor -> lvalue

typ(factor) = typ(lvalue)

factor -> NUM

typ(NUM) = int

factor -> ID

typ(ID) = t if <lexeme(ID), t> in symbol_table else error

factor -> STAR factor

‘‘‘

18 Code Generating

Code Generation (completing the compiler)

Summary so far:

‘‘‘

WLPP Source -> Scanner -> Token List -> Parser -> WLPPI file -> Context-Sensitive

analysis (using the parse tree) + Code generation

-> asm file -> CS241.binasm -> MIPS binary -> mips.twoints

‘‘‘

Pretty much every single one can error.

‘‘‘

Procedure -> asm file (stdout):

Prologue

Code fragment code (procedure) from syntax directed translation

Epilogue

‘‘‘

Prologue

- prologue establishes conventions

- save registers

- capture parameters

- anything else than needs to get setup

36

Epilogue

- restore registers

- produce the result

- utility procedures (for instance an external print procedure for stdout)

Conventions

- self imposed rules to make everybody get along

- how is data going to be represented?

- how are variables going to be represented? WLPP has ‘int‘ and ‘int *‘

- how are expressions going to be represented?

- how are registers to be used for __parameters__ and __results__?

Suggested Conventions

Can also be found [here](http://www.student.cs.uwaterloo.ca/~cs241/))

Prologue Code Generation

- save registers

- set $11, $4

- allocate memory on stack for __all variables__

- the __symbol table__ will tell us this information

- use __stack__

- subtract ‘$4 * n‘ from the stack pointer ‘$30‘

‘‘‘

// allocating a stack frame

====== <-$30 (after)

(stack frame)

====== <-$30 (initial)

======

‘‘‘

Epilogue Code Generation

It basically has to undo the prologue.

37

- add ‘4n‘ to the stack pointer ‘$30‘

- restore registers (except $3 which will store the procedure’s result)

- ‘jr $31‘

- also include library procedures here such as ‘print‘

Code Generation for Declarations, Statements & Expressions

factor -> ID

- lookup factor in symbol table

- ‘offset(ID)‘ is assigned offset in frame for ID

- get that result into $3

code for factor:

‘‘‘

lw $3, offset($29)

‘‘‘

factor -> NUM

‘‘‘

lis $3

.word value(NUM)

‘‘‘

factor -> NULL

Oh how are we gonna represent pointer? Well an ‘int *‘ is an address and ‘NULL‘

is represented by address 0.

This is just a convention.

Then all we need to do to represent ‘NULL‘ is zero the result register:

‘‘‘

sub $3, $3, $3

‘‘‘

factor -> (expr)

38

‘code(factor) = code (expr)‘

statement -> lvalue = expr;

We know how to generate ‘expr‘. But how do we generate ‘lvalue‘? (lvalue is the

left hand side of an expression).

We want the lvalue to return an address in RAM ie. store the address in $3.

‘‘‘

code(lvalue) // $3 now holds pointer to lvalue

// push $3 on stack

sw $3, -4($30)

sub $30, $30, $4

code(expr) // result of expr in $3

// pop $3 off stack into $5

add $30, $30, $4

lw $5, -4($30)

// store $3 at address $5

sw $3, 0($5)

‘‘‘

This could have easily been done by returning ‘lvalue‘ in register ‘$5‘ to save us from

messing with the stack.

factor -> & lvalue

‘‘‘

assert(typ(lvalue) == int)

‘‘‘

Since the lvalue has already been generated, there is nothing else to do so ‘

code(factor) = code(lvalue)‘

factor1 -> * factor2

‘‘‘

39

assert(typ(factor2)) == int *)

lw $3, 0($3)

‘‘‘

lvalue -> ID

- find the offset of ‘ID‘ in the symbol table. This offset should be relative to

‘$29‘ (stack frame pointer)

‘‘‘

lis $5

.word offset

add $3, $29, $5

‘‘‘

lvalue -> * factor

‘‘‘

assert(typ(factor) == int *)

// since * factor is a pointer and lvalue is also a pointer, there is nothing to be done

code(lvalue) = code(factor)

‘‘‘

dcls -> dcls dcl = NUM;

‘‘‘

assert(typeof dcl == int)

code(dcl) // $3 now stores address of dcl’s ID

// load value(NUM) into $5

lis $5

.word value(NUM)

// put $5 at address $3

sw $5, 0($3)

code(dcls)

‘‘‘

dcl -> type ID

40

- same as lvalue -> ID

‘‘‘

lis $5

.word offset(ID)

add $3, $29, $5

‘‘‘

procedure -> INT WAIN ... dcl1 ... dcl1 ... dcls ... statements ... expr

This is the __meat__

‘‘‘

// this returns an lvalue

// it is also the first parameter to the procedure

code(dcl1)

// store it

sw $1, 0($3)

// 2nd parameter

code(dcl2)

// store it

sw $2, 0($3)

code(dcls)

code(statements)

// final result that goes into $3

code(expr)

‘‘‘

expr -> expr - or + term

case 1: ‘typ(expr) = typ(term) = int‘

‘‘‘

code(expr) // result in $3

sw $3, -4($30)

sub $30, $30, $4 // push $3 on stack

code(term) // result in $3

41

add $30, $30, $4 // pop stack

lw $5, -4($30) // into $5

sub $3, $5, $3 // for -

add $3, $5, $3 // for +

‘‘‘

case 2: ‘typ(expr) = int*, typ(term) = int‘

‘‘‘

code(expr)

sw $3, -4($30)

sub $30, $30, $4

code(term)

add $3, $3, $3

add $3, $3, $3 // multiply by 4

add $30, $30, $4

lw $5, -4($30)

add $3, $5, $3

‘‘‘

case 3: ‘typ(expr) = int, typ(term) = int*‘

‘‘‘

code(term)

sw $3, -4($30)

sub $30, $30, $4

code(expr)

add $3, $3, $3

add $3, $3, $3 // multiply by 4

add $30, $30, $4

lw $5, -4($30)

add $3, $5, $3

‘‘‘

‘‘‘

int *a;

int *b;

a - b = (addr(a) - addr(b)) / 4

‘‘‘

42

term1 -> term2 * or / or % factor

‘‘‘

code(term2)

sw $3, -4($30)

sub $30, $30, $4

code(factor)

add $30, $30, $4

lw $5, -4($30)

// for multiplication

mult $5, $3 // result goes into HI/LO so we have to move em from there

mflo $3

// for division

// div $5, $3

// mflo $3

// for remainder

// div $5, $3

// mfhi $3

‘‘‘

factor -> NEW INT [expr]

- create heap in prologue

- allocate ‘n‘ bytes where ‘n‘ is result of expr

- how are we gonna accomplish this? two library functions we’ll write: ‘malloc‘

- the call to ‘malloc‘ needs to be in epilogue

‘‘‘

code(expr)

add $1, $3, $3

add $1, $1, $1 // put 4 * $3 in $1

// call malloc, and result is in $3

lis $3

.word malloc

jalr $3

‘‘‘

statement -> DELETE [] expr ;

43

‘‘‘

code(expr)

add $1, $3, $0

lis $3

.word free // assume we have a function called free in the epilogue

jalr $3

‘‘‘

statement -> PRINTLN (expr) ;

‘‘‘

code(expr)

add $1, $3, $0

lis $3

.word println // again assume println function in epilogue

jalr $3

‘‘‘

test -> expr1 == expr2

- test is a boolean expression

- since we don’t have booleans in WLPP, we need to define some conventions

for true and false

- a word containing ‘0‘ for false

- a word containing ‘1‘ for true

- one implementation:

‘‘‘

code(expr1)

sw $3, -4($30)

sub $30, $30, $4

code(expr2)

add $30, $30, $4

lw $5, -4($30)

add $1, $11, $0 // put 1 in $1

beq $3, $5, 1

add $1, $0, $0 // put 0 in $1

add $3, $1, $0 // copy $1 to $3

‘‘‘

44

test -> expr1 != expr2

- same code as above except return values are reversed

‘‘‘

code(expr1)

sw $3, -4($30)

sub $30, $30, $4

code(expr2)

add $30, $30, $4

lw $5, -4($30)

add $1, $0, $0

beq $3, $5, 1

add $1, $11, $0

add $3, $1, $0 // copy $1 to $3

‘‘‘

test -> expr1 < expr2

‘‘‘

code(expr1)

sw $3, -4($30)

sub $30, $30, $4

code(expr2)

add $30, $30, $4

lw $5, -4($30)

slt $3, $5, $3

‘‘‘

test -> expr1 > expr2

- same as above except the comparison:

‘‘‘

slt $3, $3, $5

‘‘‘

test -> expr1 <= expr2

- note: ‘<=‘ is the same as ‘not >‘

45

‘‘‘

code(expr1)

// push $3

code(expr2)

// pop $5

slt $3, $3, $5 // is expr2 < expr1

sub $3, $11, $3 // so we need to NOT this

‘‘‘

test -> expr1 >= expr2

- same as above but reverse the expressions:

‘‘‘

code(expr2)

// push $3

code(expr1)

// pop $5

slt $3, $3, $5 // is expr2 < expr1

sub $3, $11, $3 // so we need to NOT this

‘‘‘

statement -> if (test) { statements1 } else { statements2 }

‘‘‘

code(test)

beq $3, $0, falsepart

code(statements1)

beq $0, $0, done

falsepart:

code(statements2)

done:

‘‘‘

This won’t work because if we have nested if-else statements, we will have

duplicate labels.

The easiest way around this is to write a ‘nextLabel()‘ function to generate a unique

number suffix for every label.

Another implementation is:

46

‘‘‘

code(test)

bnq $3, $0, truepart

code(statements2)

beq $0, $0, done

truepart:

code(statements1)

done:

‘‘‘

Another limitation is that ‘code(statements1)‘ is limited to ~32k

instructions due to the ‘beq‘.

statement -> while (test) { statements }

‘‘‘

loop457:

code(test)

beq $3, $0, done456 // random suffix

code(statements)

beq $0, $0, loop457

done456:

‘‘‘

19 Memory Management

Memory Management

- how to represent __variables__, values and data structure

- put variables in __frames__

- what about __precedures__, dynamic data structures?

- WLPP has only the main procedure

- C/C++ has user-defined procedures

- Scheme’s got nested procedures

Procedures

‘‘‘c

// global

int q;

47

// some procedure

int foo(int x, int y) {

int a = 3;

int* b = NULL;

a = a + q;

return *(a+b);

}

// anohter procedure

int bar(int w) {

int z;

z = z + q;

}

‘‘‘

- how to represent ‘x, y, a, b‘?

- what about the __global__ ‘q‘?

- how to represent the procedure?

Parameters

- our convention: ‘x‘ is passed as ‘$1‘ and ‘y‘ is passed as ‘$2‘

- easiest is to put ‘x, y‘ in RAM

Local variables

- create a __frame__ for foo allocated on __stack__ whenever foo is _called_!

- create new frame, set the __frame pointer__

Local frame

The local frame pointer will point to local variables in the __local frame__,

in this case:

‘‘‘

// foo’s local stack frame

---- <- frame pointer (fp)

b

a

48

y

x

// bar’s local stack frame

---- <- fp

z

w

‘‘‘

Global frame

‘‘‘

q

‘‘‘

Nested Procedures

- the most inner stack frame must also have access to previously allocated

stack frames

Non-stack Memory Management

- allocated storage that __persists__ beyond procedure invocation

‘‘‘c

x = new int[10]; // allocate 10 words

//

delete[] x; // free it up

‘‘‘

Garbage Collection

What about Scheme (or almost any other modern language)?

49

- we only allocate memory

- the language has built in __automatic garbage collection__ which frees

unused memory

- we will discuss this concept in details next lecture

- but the idea is we keep track of everything we allocated and find all the

reachable data,

then get rid of uncreachable data

Another way to get a dangling reference in C:

‘‘‘c

int* dangle() {

int x;

int* y = &x;

return y;

}

int* a = dangle();

// global fp

a

// dangle’s fp

x

y

// but once dangle executes, the frame will get deleted leaving ‘a‘ dangling

‘‘‘

Anyways the idea is stack based memory management sucks.

Implementing Non-stack Memory Management

- build a set of library functions that implement the following on a global arena

of storage (aka __heap__):

- note this is different that priority queues which is also implemented

50

by a heap (which is a tree data struct)

- initialization

- finalization

- allocation (how we get new memory)

- reclamation (reuse memory that is no longer in use)

- identification

- reuse

- modify the code generator to invoke the library functions as

__simple approach__

- use heap for __fixed-sized__ allocation unsits

- eg. Scheme: ‘(cons a b)‘

__complex approach__

- __varaible-sized__ allocation units

Fixed-size Allocation

- done in the initialization (prologue)

- allocate a "big" area of storage from stack (just like the frame):

‘‘‘c

---- <- ap

ARENA

---- <- end

.word 0

‘‘‘

- allocation for fixed size ‘n‘:

- find available ‘n‘ bytes, or __fail__ (this is important)

- use the __slice of bread__ algorithm:

‘‘‘c

start end

^ ^

| (USED) x (UNUSED) |

51

^

first_available

if (first_available + n > end) {

fail()

}

avail = avail + n

return avail - n

‘‘‘

- finalization? get rid of ‘ARENA‘

- reuse is trivial (vacuous): ‘free() {}‘

- wastes space, needlessly fails

- this is due to fragmentation in the heap ie. ‘XOXOX‘ where ‘X‘ is used

and ‘O‘ was used but was freed

- fail only if there is not enough unused memory to satisfy the request

- we need to keep track of unused (free) storage using an available space list:

‘‘‘c

// X = used

// stores pointers to the first byte of each free chunk

// each node points to the next chunk of free space

List = a1 -> a2 -> a3 -> a4;

a1 a2 a3 a4

| XXXX XXX XXX |

^

avail

if asl != null then

tmp = asl

asl = *(asl)

else if avail + n > end then fail

else avail = avail + n

return avail - n

‘‘‘

52

20 Optimization

Optimization

Source -> Compiler -> Object

‘assert m[source] = m[object]‘

In general, there is ‘object1 ! = object2 != object3‘ such that ‘m[object1] =

m[object2] = m[object3]‘

goodness[object]

Ideally, find ‘objecti‘ such that ‘m[objecti] = m[source]‘ and ‘goodness[objecti]‘ is

maximized.

But what is ‘goodness‘?

- typically __speed__ (minimize running time)

Static Optimization

Done at compile time based on things that we know already.

Dynamic Optimization

Done at runtime.

Space

- often smaller = faster

- also smaller and optimized loops results in faster programs due to instruction and data

caching in the CPU

- space is really easy to measured

For example consider optimizing a ‘beq‘:

‘‘‘

beq $0, $0, foo // only works if branch offset <= 32767 words

// a workaround is to do:

53

lis $5

.word foo

jr $5

‘‘‘

But consider a lot of flow control (ie. a lot of branches). Optimizing these branches is

an NP complete problem because the optimization of one branch affects the

optimization of the rest. So one solution is approximating optimizations that

are always safe (ie. use long branches everywhere) but some branches

could definitely be shortened.

Approaches to Optimization

Constant expression evaluation (folding)

- ‘x = x + 2 * 3; => x = x + 6;‘

- from syntax directed translation, the code we generate can either:

- puts result in $3

- computes result as constant

- ‘code(exec) = < code, representation >‘

Dead code elimination

Example:

‘‘‘C

if (6 != 2 * 3) {

// ...

}

‘‘‘

There should be no code generated

Invariant detection

Treat variables that don’t change as constants.

Example:

‘‘‘C

int x = 2;

54

// ...

// x never changes

// treate x as constant

‘‘‘

How do we prove that x is a constant?

- check for ‘x = ‘, definitely not a constant since x was updated

- check for ‘y = &x‘ is tricky because ‘*y‘ now points to ‘x‘ and if you do ‘*y = 25‘,

then this will change ‘x‘

- this is a big thing in compiler optimization (alias detection)

- you wanna be as safe and complete as possible

- very tricky stuff going on with these __invariants__

Common expression elimination

Copy elimination:

‘‘‘C

// this can be optimized

x = 2 * y + 10;

z = 2 * y;

// to the following, provided z doesn’t cahnge

z = 2 * y;

x = z + 10;

‘‘‘

Another example:

‘‘‘C

x = a[10];

a[10] = 2;

‘‘‘

Since we do a lot of work trying to find the address of ‘a[10]‘, the compiler can

then cache the address.

Loop optimization

Example:

55

‘‘‘C

q = 2 * 3 * y;

while (t) {

x = x + 2 * 3 * y; // if y is unchaged in loop, move it outside (to q)!

}

‘‘‘

This _might_ make things faster if we’re executing the loop a large

number of times.

Strength reduction

‘‘‘c

char *a, *b;

strlen(strcat(a,b));

‘‘‘

- doing concatenation for nothing!

- represent strings as their length and value

- if you only manipulate the length, then their value becomes dead code

- consider the following:

‘‘‘c

for (i = 0; i < 10; i++) {

a[i] = 2;

}

‘‘‘

- when you do a[i], you are storing 2 at ‘addr(a) + 4 * i‘

- the issue here is ‘4 * i‘

- transform it to this:

‘‘‘c

t = addr(a) + 40

for (i = 0, I = addr(a); I < t; i += 1, I += 4) {

// store 2 at address I

}

‘‘‘

- keeping a copy of the original ‘i‘ is useful if the value of ‘i‘ was used inside the

56

loop (ie. ‘a[i] = i‘)

Register usage

We have 32 registers available. Suppose we use 16 to store variables.

This means that these 16 variables won’t be in the frame, saving us from messing with

the stack frame.

So, for instance, consider we need to return a variable that we have in ‘$22‘.

We could copy it to ‘$3‘: ‘add $3, $22, $0‘, but this is a redundant copy.

We should just leave

it in ‘$22‘ and next when we use it we should expect it in ‘$22‘. This requires a change

of our __conventions__:

- result of expr can be any register: ‘<code, resultreg>‘

‘expr -> expr + term‘:

‘‘‘

// code(expr1):

sw $r, -4($30) // where r is resultreg(expr1)

‘‘‘

- then we tell code which registers it is allowed to use: ‘code(expr, allow)‘

where ‘allow‘ is a set of registers that can be safely used

‘‘‘

code(expr1, allow)

code(expr2, allow) // result in is resultreg(expr2)

code(term, allow \ resultreg(expr2)) // set difference

// pick a register $t from allow, unless allow is empty

add $t, $r, $s // where $r is resultreg(expr), $s = resultreg(term)

‘‘‘

- sometimes if we’re out of registers, this is called __register pressure__

- managing registers is also a pretty difficult problem

Managing registers

57

Consider the following production:

‘expr -> expr + term;‘

Let needregs(expr) = how many registers we need to allocate good code

So, ‘needregs(expr1) = max(needregs(expr2), needreg(term)) + 1‘. Remeber to save a

register for the return result

(hence the ‘+ 1‘)

58

