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1 Optimization

Given a set S (the feasible region) and a function f : S → R (the objective function). Solve
max(f(x) : x ∈ S) or min(f(x) : x ∈ S)

(Note, min(f(x) : x ∈ S) = −max(−f(x) : x ∈ S))

1.1 Linear Programming

f(x) = cTx

S(x) = {x ∈ Rn : Ax ≤ b}

(C ∈ Rn, b ∈ Rm, A ∈ Rm×n).

1.2 Integer Linear Programming Problems

f(x) = cTx

S(x) = {x ∈ Zn : Ax ≤ b}

1.3 Complex Optimization

min(f(x) : x ∈ S)

such that S ⊆ Rn and convex; also f is convex

Remark Consider an optimization problem min(f(x) : x ∈ S). We can assume without
much loss of generality that

1. S ⊆ Rn

2. f is linear.
min(f(x) : x ∈ S) = min(z : z = f(x), x ∈ S)

3. S is convex (since for linear function, min(f(x) : x ∈ S) = min(f(x) : x ∈
conv(S))

1.4 Example

A two player game Given A ∈ Rm×n. Rose chooses a row i and Colin chooses a column
j independently then Colin pays Rose $aij

e.g.

A =

(
2 −2
1 5

)
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If Rose chooses 2 she gets ≥ 1. If she chooses 1, she gets ≥ (−2). If she chooses the
two rows with equal probabilities. She expects ≥ min(2+1

2 , −2+5
2 ) = 3

2

Rose wants to solve

maxp∈Rnminj∈{1,···n}(
m∑
i=1

pi · aij)

subject to p1 + · · ·+ pn = 1 such that p1, · · · , pn ≥ 0.

Equivalently, to maximize z such that z ≤
∑m

i=1 piaij , for j ∈ {1, · · · , n},
∑m

i=1 pi = 1,
pi ≥ 0.

Weighted bipartite matching Problem: Given n jobs, n workers and a ”utility” aij for
workers to complete job i. Find an assignment maximizing the total utility (i.e. the
sum of the utilities).

Formulation:

max

n∑
i=1

n∑
j=1

aijxij

subject to
n∑

j=1

xij = n, for i ∈ {1, · · · , n}

n∑
i=1

xij = n, for j ∈ {1, · · · , n}

xij ∈ {0, 1}, for i, j ∈ {1, · · · , n}

This is an integer linear programming formulation.

3D Matching Problem: given a ∈ Rn×n×n, aijk is the utility of job i completed by worker
j on machine k; find an “assignment” of maximum total utility.

Formulation

max

n∑
i=1

n∑
j=1

n∑
k=1

aijkxijk

n∑
i=1

n∑
j=1

xijk = 1; k ∈ {1, · · · , n}

n∑
i=1

n∑
k=1

xijk = 1; j ∈ {1, · · · , n}

n∑
j=1

n∑
k=1

xijk = 1; i ∈ {1, · · · , n}
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0 ≤ xijk ≤ 1 integer , i, j, k ∈ {1, · · · , n}

Remark: The 3D matching problem is NP-hard and, hence integer linear program-
ming is NP-hard

Diophantine Equation Example

max sin(πx)2 + sin(πy)2 + sin(πz)2

x3 + y3 − z3 = 0

x, y, z ≥ 1

Note this condition has optimal value is equal to 0 if and only if there are non-negative
integers x, y, z such that

x3 + y3 = z3

Here we have a side notes for diophantine equation: it is an equation p(x1, · · · , xn) =
0 where p is a polynomial with integer coefficients. Can we decode whether or not
there exist x1, · · · , xn ∈ Z such that p(x1, · · · , xn) = 0? No, not even if we fix n = 9

Formulation

min
n∑

i=1

sin(πxi)
2

subject to P (x1, · · · , xn) = 0

This has optimal value 0 off p has an integer root.

Distance feasibility Problem: Given A ∈ Rm×n, b ∈ Rm and z ∈ Rn, how far is z from
the feasible region {x ∈ Rn : Ax ≤ b}?
Formulation

min

n∑
i=1

(xi − zi)2

Ax ≤ b

This is a convex optimization problem

2 Feasibility Problem

2.1 Linear Algebra Review

Remark: Matrices do not have ordered rows and columns A ∈ FX×Y , F is a field, X, Y are
finite sets.
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2.1.1 Fundamental Theorem of Linear Algebra

For A ∈ Fm×n, b ∈ Fm, exactly one of the following holds:

1. There exists x ∈ Fn such that Ax = b

2. There exists y ∈ Fm such that yTA = 0 and yT b = 1 (that is we can take a linear
combination of the equation to get 0 = 1)

2.1.2 Solutions to linear systems

Let A ∈ Fm×n with rank(A) = m and let b = Fm. Let Aj denote the jth column of A,
and for B ∈ {1, · · · , n}, let AB = [Aj : j ∈ B]. We call B a basis if |B| = m and AB is
non-singular.

Note that if B is a basis, then there is a unique solution to

1. Ax = b

2. xj = 0, j /∈ B.

We call this the basic solution for B.The support of x ∈ Fn is supp(x) = {i : xi 6= 0}

Theorem 1. For A ∈ Fm×n, b ∈ Fn, if Ax = b has a solution, then it has a solution whose
support has size ≤ rank(A).

Note that Ax = b can be solved in O(mn rank(A)) arithmetic operations. Is this
efficient? What about the size of the solution? · · · .

2.1.3 The size of a solution

For ∈ Z, define size(a) ≤ [log(|a|+1)]+1 ≤ log2(|a|)+2,∀a ≥ 1. size(ab ) = size(a)+size(b).
Let A ∈ Zn×n, b ∈ Zn and let L be the size of the largest entry in A or b. Suppose that A
is nonsingular,

size(det(A)) ≤ size(n!(2L)n) ≤ 2 + log2(n!(2L)n) ≤ 2 + n(log2n+ L)

Now consider
x = A−1b

By Cramer’s Rule, each entry of det(A)A−1 a determinant of a sub matrix of A and, hence,
has size ≤ 2 + n(log2(n) + L) so each entry of x has size ≤ n+ (L+ 1)(2 + n(log2n+ L))
(this is polynomially bounded in the size of A, b)

6



3 Systems of Linear Inequalities

Theorem 2. (Farkas Lemma; Thm 2.7) Let A ∈ Rm×n and b ∈ Rm. Exactly one of the
following hold

1. There exists x ∈ Rn such that Ax ≤ b

2. There exists y ∈ Rm such that y ≥ 0, ytA = 0, and ytb = −1.

Easy part: (1) and (2) cannot both hold: if Ax ≤ b and y ≥ 0, then ytAx ≤ ytb.
So, if ytA = 0, then 0 ≤ ytb. It remains to prove that: if (1) does not hold then (2)
does. Restatement: Let fi : Rn → R be linear function i ∈ {1, · · · ,m}. If fi(x) ≤ 0, i ∈
{1, 2, · · · ,m} has no solution, then there exists α ∈ Rn

+ such that
∑m

i=1 αifi = 1. (Here
R+ = {z ∈ R : z ≥ 0})

3.1 Variable Elimination (Fourier-Motzkin)

Rewrite the inequalities as

xn ≥ gi(x1, · · · , xn−1), i ∈ A1

xn ≤ gi(x1, · · · , xn−1), i ∈ A2

0 ≥ gi(x1, · · · , xn−1), i ∈ A3

(A1, A2, A3) partition {1, · · · ,m} and g1, · · · , gm are defined implicitly.
Note that there is a solution if and only if there exist x1, · · · , xn−1 ∈ R satisfying the

third condition above such that

max
i∈A1

(gi(x1, · · · , xn−1)) ≤ min
i∈A2

(g1(x1, · · · , xn−1))

Equivalently,

gi(x1, · · · , xn−1) ≤ gj(x1, · · · , xn−1), i ∈ A1, j ∈ A2

0 ≥ gi(x1, · · · , xn−1), i ∈ A3

Note that this is a system and linear inequalities in n− 1 variables.
Assume that Farkas’s Lemma holds for systems with n − 1 variables. (The result is

trivial when n = 0)
Suppose that there is no solution in the above two inequalities. Then by the inductive

assumption, there exist α ∈ RA1×A2
+ and β ∈ RA3

+ such that∑
i∈A1

∑
j∈A2

αij(gi − gj) +
∑
k∈A3

βkgk = 1
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(Note A1 ×A2 = {(ij) : i ∈ A1, j ∈ A2})

For i ∈ {1, · · · ,m} we define ri =


∑

j∈A2
αij : i ∈ A1∑

j∈A1
αji : i ∈ A2

βi : i ∈ A3

Now fi(x1, · · · , xn) =


g0(x1, · · · , xm)− x0 : i ∈ A1

−g1(x1, · · · , xm) + xn : i ∈ A2

gi(x1, · · · , xm) i ∈ A3

Now α ≥ 0 and
m∑
i=1

αifi =
∑
i∈A1

(
∑
j∈A2

αij)(g1 − xm) +
∑
i∈A2

(
∑
j∈A1

αij(xn − gi)) +
∑
k∈A2

βkgk

= (
∑
i∈A1

∑
j∈A2

αij(gi − gj) +
∑
k∈A3

βkgk)− (
∑
i∈A1

∑
j∈A2

αij)xn + (
∑
i∈A1

∑
j∈A2

αij)xn = 1

Hence this proves Farkas’ Lemma.

3.2 Other Forms of Farkas’ Lemma

Theorem 3. Let A ∈ Rm×n and b ∈ Rm. Exactly one of the following hold:

1. There exists x ∈ Rn such that Ax = b, x ≥ 0.

2. There exists y ∈ Rn such that ytA ≥ 0, ytb = −1

Proof. (Ax = b, x ≥ 0) can be rewritten as A2 ≤ b,−Ax ≤ −b,−x ≤ 0.

Let A′ =

 A
−A
−I

 and b′ =

 b
−b
0

 so (1) is equivalent to (1’) there exists x ∈ Rn

such that A′x ≤ b′. By the Farkas Lemma, this is equivalent to (2’) there do not exist
y1, y2, y3 ∈ Rm such that

[y1, y2, y3]
TA′ = 0, [y1, y2, y3]

T b′ = −1, y1, y2, y3 ≥ 0

That is :

yT1 A− yT2 A− yT3 = 0

yT1 b− yT2 b = −1

y1, y2, y3 ≥ 0

That is

(y1 − y2)TA = y3

(y1 − y2)T b = −1

y1, y2, y3 ≥ 0
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That is equivalent to: there exists y ∈ Rm such that

yTA ≥ 0

yT b = −1

Theorem 4. Let A ∈ Rm×n, b ∈ Rn. Exactly one of the following hold:

1. There exists x ∈ Rn such that Ax ≤ b, x ≥ 0

2. There exists y ∈ Rm such that yTA ≥ 0, yT b = −1 and y ≥ 0.

From Geometry prospective, suppose A = [A1, · · · , An] ∈ Rm×n and b ∈ Rm

Define
cone(A1, · · · , An) = {A1x1 + · · ·+Anxn : x ∈ Rn, x ≥ 0}

Problem is b ∈ cone(A1, · · · , An)?
Equivalently: does (Ax = b, x ≥ 0) have a solution. by the above theorem, if b /∈

cone(A1, · · · , An), then there exists α ∈ Rm such that αTA ≥ 0 and aT b = −1.
Equivalently, αT

1 ≥ 0, αTA2 ≥ 0, · · · , αTAn ≥ 0, αT b = −1
Equivalently, A1, · · · , An are contained in the “half-space” {x ∈ Rm : αTx ≥ 0} but b

is not.
Equivalently: cone(A1, · · · , An) ⊆ {x ∈ Rm : αTx ≥ 0} but b /∈ {x ∈ Rm : αTx ≥ 0}

Theorem 5. b /∈ cone(A1, · · · , An) off there is a hyperplane separating b from cone(A1, · · · , An)

3.3 Separating Hyperplane Theorem

Theorem 6. Let S ⊆ Rn be a closed convex set and b ∈ Rm, If b /∈ S then there is a
hyperplane separating b from S.

4 Linear Programming

A linear program (or LP) is a problem of the form

max(cTx : Ax ≤ b)

or min(cTx : Ax ≥ b)

where A ∈ Rm×n, b ∈ Rm, c ∈ Rn.
Note: max(cTx : Ax ≤ b) = −min(−cTx : Ax ≤ b)
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Example

maximize x2

subject to

x1 + x2 ≤ 3

4x1 + x2 ≥ 4

x1 + 2x2 ≤ 4

x1, x2 ≥ 0

Now x∗ satisfies
4x1 + x2 = 4

x1 + 2x2 = 4

so x∗ = [47 ,
12
7 ]T and the optimal value is 12

7 .
Problem:How in general can we prove that a given solution is optimal? Equivalently,

how can we generate upper bound on the optimal value?
Answer: Take linear combination of the constraints.
Example:

x1 + x2 ≤ 3

4x1 + x2 ≤ 4

x1 + 2x2 ≤ 1

so x2 ≤ 2. Each feasible solution has objective value ≤ 2.
Note that to prove that x∗ is optimal we should only use inequalities that x∗ satisfies

with equality.
4x1 + x2 ≥ 4

x1 + 2x2 ≤ 4

(4α+ β)x1 + (α+ 2β)x2 ≤ 4(α+ β), (α ≤ 0, β ≥ 0)
We want 4α+β = 0 and α+2β = 1 to get the object function x2. Thus α = −1

7 , β = 4
7 ,

which gives x2 ≤ 12
7

Hence x∗ is optimal.

4.0.1 Duality

Remark: The problem of determining the best bound on the objective function via linear
combination of constraints, is an LP.

x1 + x2 ≤ 3 y1 ≥ 0

4x1 + x2 ≥ 4 y2 ≤ 0

x1 + 2x2 ≤ 4 y3 ≥ 0

x1, x2 ≥ 0
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Take the linear combination:

(y1 + 4y2 + y3)x1 + (y1 + y2 + 2y3)x2 ≤ 3y1 + 4y2 + 4y3

x1, x2 ≥ 0

We want
0x1 + 1x2 ≤ (y1 + 4y2 + y3)x1 + (y1 + y2 + 2y3)x2

so we want
y1 + 4y2 + y3 ≥ 0

and y1 + y2 + 2y3 ≥ 1

The dual of (P) is:


minimize 3y1 + 4y2 + 4y3

subject to y1 + 4y2 + y3 ≥ 0

y1 + y2 + 2y3 ≥ 1

y1 ≥ 0, y2 ≤ 0, y3 ≥ 0

By construction: If x is feasible for (P) and y is feasible for (D) then

x2 ≤ 3y1 + 4y2 + 4y3

LHS is the objective function for (P) and the RHS is the objective function for (D)
Note that for x∗ = [47 ,

12
7 ]T and y∗ = [0, 17 ,

4
7 ]. We get equality!

4.0.2 Unboundedness
minimize x1 + x2

subject to −2x1 + x2 ≤ 1

x1, x2 ≥ 0

Let x̂ =

(
1
2

)
and d =

(
1
1

)
. Then x̂ + αd is feasible for all α ≥ 0 and has objective

value 3 + 2α, so (P) is unbounded. Note that the “half-line” {x̂+αd : α ≥ 0} is contained
in the feasible region and cTd > 0.

Theorem 7. (“Fundamental Theorem of LP”) Every linear program either

1. is infeasible

2. is unbounded, or

3. has an optimal solution
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Consider the problem: (NLP )

{
minimize 1

x

subject to x ≥ 1

Consider an LP: (P ) max(cTx : Ax ≤ b), A ∈ Rm×n, b ∈ Rm, c ∈ Rn. Suppose that x̂ is
a feasible region with cT x̂ = r.

Lemma 1. If the column A is a linear combination of the other columns, then either

1. (P) has a feasible solution x̃ with cT x̃ = r and x̃1 = 0, or

2. there exists d ∈ Rn such that Ad = 0 and cTd > 0.

(Hence (P) is unbounded)

Proof. There exists z ∈ Rn such that Az = 0 and z1 = −1. We may assume that cT z = 0
since otherwise (2) holds with d = z or −z. Let x̃ = x̂ + x̂1 · z. Then x̂1 = 0, x̃ is feasible
and cT x̃ = cT x̂ = r.

Lemma 2. Let A′x ≤ b′ be the subsystem of Ax ≤ b that x̂ satisfies with equality. Then
x̂ is an extreme point of {x ∈ Rn : Ax ≤ b} if and only if rank(A′) = n.

Proof. Suppose that rank(A′) = n and x̂ = λx′ + (1 − λ)x2 where 0 < λ < 1 and x1 and
x2 are feasible.

Since A′x′ ≤ b′, A′x2 ≤ b′ and A′x̂ = b′, we have A′x1 = b′ and A′x2 = b′. Since
rank(A′) = n, x1 = x2. Therefore x̂ is an extreme point.

Conversely suppose that rank(A′) < n. Then there exists d ∈ Rn such that A′d = 0
and d 6= 0. For small ε > 0, x̂− εd and x̂+ εd ∈ {x′ ∈ Rn : Ax ≤ b} so x̂ is not an extreme
point.

Note that there are only finitely many extreme points of {x ∈ Rn : Ax ≤ b} (for each
subsystem A′x ≤ b′ of Ax ≤ b with rank(A′) = n there is at most one solution to A′x = b′).

Geometry: Let z1, · · · , zk ∈ Rn. We say that x is a convex combination of z1, · · · , zk if
there exist t1, · · · , tk ∈ R such that

x = t1z1 + · · ·+ tkzk

t1 + · · ·+ tk = 1

t ≥ 0

We define the convex hull of {z1, · · · , zk} denoted conv(z1, · · · , zk) to be the set of all
convex combination.

Claim: conv(z1, · · · , zk) is the smallest convex set that contain z1, · · · , zk.
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Theorem 8. Let A ∈ Rm×n with rank(A) = n, and let b ∈ Rm. Let P = {x ∈ Rn : Ax ≤
b} and K = {x ∈ Rn : Ax ≤ 0} and let C be the convex hull of the extreme points of P.
For each x ∈ P there exist z ∈ C and d ∈ K such that x = z + d.

Example:

(p)


x1 − x2 ≤ 2

−2x1 + x2 ≤ 1

x1, x2 ≥ 0

(k)


x1 − x2 ≤ 0

−2x1 + x2 ≤ 0

x1, x2 ≥ 0

(4, 3) ∈ P = (1, 0) ∈ C + (3, 3) ∈ K

Note: For each z ∈ C and d ∈ K, z + d ∈ P .

Proof. Let x̂ ∈ P and let A′x ≤ b′ be the subsystem of Ax ≤ b that x̂ satisfies with equality.
We may assume that

1. If x̂ ∈ P satisfies more of the constraints with equality than x̂, then there exist z̃ ∈ C
and d̃ ∈ K such that x̃ = z̃ + d̃

2. x̂ is not an extreme point. (otherwise take ẑ = x̂ and d̂ = 0)

By 2, rank(A′) < n (lemma 2) so there exists d ∈ Rn such that A′d = 0 and d 6= 0. Since
rank(A) = n,Ad 6= 0. By possibly replacing d with −d, we may assume that some entry
of Ad is negative.

Case 1: Ad ≤ 0, (so d ∈ K). Choose t1 = max (t ∈ R : x̂− td ∈ P ) (since Ad has
a negative entry, this is well defined).Let x1 = x̂ − t1d. Now x1 satisfies more of the
inequalities Ax ≤ b with equality than x̂ so by (1), there exists z1 ∈ C and d1 ∈ K such
that x1 = z1 + dz. Hence

x̂ = x1 + t1d = z1 + (d1 + t1d)

Note that z1 ∈ C and d1 + t1d ∈ K, as required.
Case 2: not case 1 (That is, Ad has both positive and negative entries) Let t1 =

max (t ∈ R : x̂− td ∈ P ) and t2 = max (t ∈ R : x̂+ td ∈ P ). Note that these are well de-
fined and positive. Let x1 = x̂ − t1d and x2 = x̂ + t2d. Note that x1 and x2 satisfy more
constraints with equality than x̂. So by (1), there exists z1, z2 ∈ C and d1, d2 ∈ K such
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that x1 = z1 + d1 and x2 = z2 + d2. Now,

x̂ =
t2

t1 + t2
x1 +

t1
t1 + t2

x2

=
t2

t1 + t2
(z1 + d1) +

t1
t1 + t2

(z2 + d2)

= (
t2

t1 + t2
z1 +

t1
t1 + t2

z2) + (
t2

t1 + t2
d1 +

t1
t1 + t2

d2)

Since C and K are convex

(
t2

t1 + t2
z1 +

t1
t1 + t2

z2) ∈ C and (
t2

t1 + t2
d1 +

t1
t1 + t2

d2) ∈ K

Corollary 1. Consider the LP

(p) max (cTx : Ax ≤ b)

where A ∈ Rm×n with rank(A) = n, b ∈ Rm, and c ∈ Rn, Either

1. (P) is infeasible

2. There is an extreme point of {x ∈ Rn : Ax ≤ b} that is optimal for (p), or

3. There is a feasible half line {x+ λd : λ ≥ 0} with cTd > 0 (Hence (p) is unbounded)

Proof. Assume that (p) is feasible. Let γ be the maximum objective value of an extreme
point of {x ∈ Rn : Ax ≤ b}. We may assume that there is a feasible solution x̂ with

vT x̂ > γ

By the theorem, we can write
x̂ = ẑ + d̂

where d̂ ∈ {x ∈ Rn : Ax ≤ 0} and ẑ is in the convex hull of the extreme point of
{x ∈ Rn : Ax ≤ b}. Note that cT ẑ ≤ γ. Hence cT d̂ > 0 and x̂+ λd̂ is feasible for all λ ≥ 0
so 3 is satisfied.

Corollary 2. (Fundamental Theorem) Consider the LP

(p) max (cTx : Ax ≤ b)

where A ∈ Rm×n, b ∈ Rm, c ∈ Rn. If (p) is feasible and bounded, then (p) has an optimal
solution.
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Proof. By Lemma 1, we may assume that rank(A) = n. Then the theorem follows from
corollary 2.

Corollary 3. (Unboundedness Theorem) Consider the LP:

(p) max(cT : Ax ≤ b)

where A ∈ Rm×n, b ∈ Rm, c ∈ Rn. Then (p) is a feasible half-line {x̂ + αd̂ : α ≥ 0} with
cT d̂ > 0

Proof. (←) easy
(→) By Lemma 1, we assume that rank(A) = n. Now the result is an immediate

corollary of 1.

Polytopes

A set of the form {x ∈ Rn : Ax ≤ b} is called a polyhedron. A bounded polyhedron is a
polytope.

Corollary 4. Every polytope is the convex hull of its extreme points.

Proof. Let P = {x ∈ Rn : Ax ≤ b} be a polytope. Since P is bounded if it does not contain
a line. so rank(A) = n.

By the theorem, if P is not the convex hull of its extreme points, then there exists
x̂ ∈ P that can be written as ẑ + d̂ where ẑ is in the cones hull of the extreme points and
d̂ ∈ {x ∈ Rn : Ax ≤ 0} with d̂ 6= 0.

Then {x̂+ αd̂ : α ≥ 0} is contained in P- contradicting that P is bounded.

Corollary 5. For z1, · · · , zt ∈ Rn, conv(z1, · · · , zt) is a polytope.

We call an inequality αTx ≤ β valid for conv(z1, · · · , zt) if αT zi ≤ β for each i ∈
{1, · · · , t}.

Lemma 3. If x̂ ∈ Rn is not contained in conv(z1, · · · , zt), then there is a valid inequality
such that αT x̂ > β. (That is, there is hyperplane that separating x̂ from z1, · · · , zt.

For example, Q0 = {
(
α
β

)
: αT z1 ≤ β, · · · , αT zt ≤ β}. Note that

1. This is a cone (since you can scale valid inequalities by non-negative numbers)

2. Q0 is a polyhedron since it is defined by a finite set of linear inequalities.
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Proof. Now define

A1 = {
(
α
β

)
∈ Q0 : −1 ≤

(
α
β

)
≤ 1}

Now Q1 is a polytope, let

(
α1

β1

)
, · · · ,

(
αs

βs

)
be the extreme points of Q1. Let P = {x ∈

Rn : (α1)Tx ≤ β1, · · · , (αs)Tx ≤ βs}.
Claim: P = conv(z1, · · · , zt).
Note z1, · · · , zt ∈ P so Conv(z1, · · · , zt) ⊆ P . Suppose that P 6= conv(z1, · · · , zt).

Then there exists x ∈ P − conv(z1, · · · , zt).By separation theorem, there exists

(
α
β

)
∈ Q0

such that
αT x̃ > β

By solving we may assume that

(
α
β

)
∈ Q1. By Corollary 4, there exist λ1, · · · , λs ≥ 0

with λ1 + · · ·+ λs = 1 and

(
α
β

)
= λ1

(
α′

β′

)
+ · · ·λs

(
αs

βs

)
Now,

β < αT x̃ = λ1(α
1)T x̃+ · · ·+ λs(α

s)T x̃ ≤ λ1β1 + · · ·+ λsβ
s = β

Contradiction.

Corollary 6. A set S ⊆ Rn is a polytope if and only lit it is the convex hull of a finite set
of points.

4.1 Caratheodory’s Theorem

Let S ⊆ Rn be finite. Then any point in conv(S) can be written as a convex combination
of at most n+ 1 points in S.

Theorem 9. Let A ∈ Rn×n and b ∈ Rn. If the system Ax ≤ b is infeasible, then it contains
an infeasible subsystem with at most n+ 1 inequalities.

Eventually, if H1, · · · , Hm ⊆ Rn are half spaces with empty intersection (that is, H1 ∩
· · · ∩Hm = ∅), then some sub collection of at most n+ 1 of these half spaces has an empty
intersection.

Corollary 7. If P1, · · · , Pm ⊆ Rn are polyhedra with empty intersection of ≤ n + 1 of
these polyhedra has empty intersection.

Proof. Each of the polyhedra is the intersection of finitely many half-space.
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4.2 Helly’s Theorem

If S1, · · · , Sm ⊆ Rn are convex sets with empty intersection then there is some sub collection
of ≤ n+ 1 of these sets has empty intersection.

Proof. We may assume that m ≥ n + 1, suppose that each sub collection of n + 1 of the

sets has nonempty intersection. Then there is a set X ⊆ Rn with |x| ≤
(

m
n+ 1

)
so that

each sub collection of n+ 1 of the sets contains an element of X. For i ∈ {1, · · · ,m} define
Pi = conv(X ∩ Si). So P1, · · · , Pm are polytopes by corollary 6.

By construction, every n + 1 of these polytopes has nonempty intersection. So P1 ∩
· · · ∩ Pm 6= ∅ by corollary 7. Therefore S1 ∩ · · · ∩ Sm 6= ∅

4.3 Duality

Consider the LP

{
max cTx

subject to Ax ≤ b
If y ∈ Rm and y ≥ 0 then

yTAx ≤ yT b

is a valid inequality for (P ). If yTA = cT , then

cTx ≤ yT b

. The dual of (p) is

{
min bT y

subject to AT y = c, y ≥ 0

4.3.1 Weak Duality Theorem

If x ∈ Rn is feasible for (P ) and y ∈ Rm is feasible for (D), then cTx ≤ bT y

Proof. cTx = (yTA)x = yT (Ax) ≤ yT b = bT y

Corollary 8. If (P ) is unbounded, the (D) is infeasible.

Proof. Contrapositive is obvious.

Corollary 9. If (D) is unbounded then (P ) is infeasible.

Corollary 10. If x̃ is feasible for (P ), ỹ is feasible for (D) and cT x̃ = bT ỹ, then x̃ is
optimal for (D) and ỹ is optimal for (D).
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4.3.2 Strong Duality Theorem

If (P ) has optimal solution x̃ then (D) has an optimal solution ỹ, and cT x̃ = bT ỹ.

Proof. Consider the system:
−cTx+ bT ≤ 0

Ax ≤ b

−AT y = −c

y ≥ 0

If x̃, ỹ satisfies above, then x̃ is feasible for (P ), ỹ is feasible for (D) and cT x̃ ≥ bT ỹ By
the weak duality theorem, cT x̃ = bT ỹ. So x̃ is optimal for (P ) and ỹ is optimal for (D) as
required. So we may assume that the inequalities has no solution.

Claims: If the inequalities has no solution then there exist x̄ ∈ Rn, ȳ ∈ Rm, and ẑ ∈ R,
satisfying

(2)



−cT x̄+ bT ȳ < 0

Ax̄ ≤ z̄b
AT ȳ = z̄c

ȳ ≥ 0

z̄ ≥ 0

Consider a solution (x̄, ȳ, z̄) to (2)
Case 1: z̄ ≥ 0. We can scale (x̄, ȳ, z̄) so that z̄ = 1. Now (x̄, ȳ) satisfies the inequalities

before (2). Contradiction.
Case 2: z̄ = 0. Now ȳTA = 0 and ȳ ≥ 0. Since (P ) is feasible ȳT b ≥ 0. That is

bT ȳ ≥ 0. Moreover, Ax̄ ≤ 0. However, (P ) is bounded, so cT x̄ ≤ 0 so −cT x̄ + bT ȳ ≥ 0 -
contradiction (2).

inf UB OPT

infeasible Y Y X

unbounded Y X X

optimal X X Y

Consider the following LPs:

(P1)

{
max cTx

subject to Ax ≤ b

(P2)


max cT (x1 − x2)
subject to A(x1 − x2) ≤ b

x1, x2 ≥ 0
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(P3)


max cT (x1 − x2)
subject to A(x1 − x2) + S = b

x1, x2, s ≥ 0

Claim: For any γ ∈ R, the following are equivalent

1. (P1) has a feasible solution with objective value γ.

2. (P2) has a feasible solution with objective value γ.

3. (P3) has a feasible solution with objective value γ.

(P2) is in standard inequality form

(PSI)


max cTx

subject to Ax ≤ b
x ≥ 0

. (P3) is in standard equality form.

(PSE)


max cTx

subject to Ax = b

x ≥ 0

The dual of (PSI) is:

(DSI)


min bT y

subject to AT y ≥ C
y ≥ 0

The dual at (PSE) is

(DSE)

{
min bT y

subject to AT y ≥ C

Theorem 10. (Strong duality for standard inequality form): If (PSI) has an optimal
solution x̄, then (PSI) has an optimal solution ȳ and cT x̄ = bT ȳ

Proof. Note that x̄ is optimal for

(P̃ )


max cTx

subject to

(
A

−I

)
x ≤

(
b

0

)
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The dual of (P̃ ) is

(D̃)


min bT y

subject to AT y − s = c

y, s ≥ 0

By the strong Duality Theorem, (D̃) has an optimal solution (ȳ, s̄) and cT x̄ = bT ȳ. Note
that, since s̄ ≥ 0, ȳ is feasible for (DSI). However cT x̄ = bT ȳ, so ȳ is optimal for (DSI).

Corollary 11. If (DSI) has an optimal solution, then (PSI) has an optimal solution x̄ and
cT x̄ = bT ȳ

(That is “the dual of (DSI) is (PSI)”)

Proof. Note that ȳ is optimal for

(P )


max −bT y
subject to −AT y ≤ c

y ≥ 0

which is in standard inequality form. The dual of (P) is

(D)


min −cTx
subject to −Ax ≥ −b

x ≥ 0

By the theorem, (D) has an optimal solution x̄ and −cT x̄ = −bT ȳ. Note that x̄ is clearly
optimal for (PSI).

Theorem 11. (Strong duality for standard equality form) If (PSE) has an optimal solution,
x̄, then (DSE) has an optimal solution ȳ and cT x̄ = bT ȳ.

4.4 Yet Other Theorem

(P )


max 3x1 − x2 + x3

subject to 2x1 + 2x2 = 4y1

x1 − 2x2 + 2x3 ≤ 3, y2 ≥ 0

x1, x2 ≥ 0
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The dual of (P) is

(D)



min 4y1 + 3y2

subject to 2y1 + y2 ≥ 3, x1 ≥ 0

2y1 − 2y2 ≥ −1, x2 ≥ 0

2y2 = 1, x3

y2 ≥ 0

(P) max (D) min

≤ constraint non-negative variable
≥ constraint non-positive variable
= constraint free variable
non-negative variable ≥ constraint
non-positive variable ≤ constraint
free variable = constraint

4.5 Complementary Slackness

Theorem 12. Complementary Slackness Theorem:

(P ) max(cTx : Ax ≤ b)

(D) min(bT y : AT y = c, y ≥ 0)

Let x be feasible for (P) and y be feasible for (D). Then cTx = bT y if and only if for each
i ∈ {1, · · · ,m} either yi = 0 or |Ai,1, · · · , Ai,n|x = bi

Proof. Consider (P) max(cT : Ax ≤ b) and its dual (D) min(bT y : AT y = c, y ≥ 0}
If x is feasible for (P) and y is feasible for (D) then

bT y − cTx = yT b− yTax = yT (b−Ax) =
m∑
i=1

yi(bi −
n∑

j=1

Aijxj)

yi ≥ 0, (bi −
n∑

j=1

Aijxj) ≥ 0

so

yi(bi −
n∑

j=1

Aijxj) ≥ 0

Equality holds if and only if either yi = 0 or
∑n

j=1Aijxj = bi
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4.5.1 Standard Inequality Form

Let x be feasible for (PSI) max(cTx : Ax ≤ b, x ≥ 0) and y be feasible for (DSI) min(bT y :
AT y ≥ c, y ≥ 0). Then cT = bT y if and only if

1. For each i ∈ {1, · · · ,m}|Ai,1, · · · , Ai,n|x = bi or yi = 0; and

2. For each j ∈ {1, · · · , n}|Ai,1, · · · , Ai,n|y = cj or xj = 0

4.5.2 Standard Equality Form

Let x be feasible for (PSE) max(cTx : Ax = b, x ≥ 0) and y be feasible for (DSE) min(bT y :
AT y ≥ c). Then bT y = cTx if and only if for each j ∈ {1, · · · , n} either |A1,j , · · · , An,j |y =
cj or xj = 0.

Proof. Rewrite (DSE) as (DSE’) max(−bT y : −Aty ≤ −c) and apply the original comple-
mentary slackness theorem

4.6 Optimality Theorem

Consider

(P )


max cTx

subject to Ax = b

x ≥ 0

and its dual

(P )

{
max bT y

subject to AT y ≥ c

where A ∈ Rm, and c ∈ Rn. We can assume that rank(A) = m (without loss of generality)

4.6.1 Basic Solution

A = |A1, · · · , An| and for B ⊆ {1, · · · , n}, Ab = |Ai : i ∈ B|. We call B a basis if |B| = m
and rank(AB) = m. For a basis B,

1. There is unique solution to

{
Ax = b

xj = 0, j /∈ B
This is a basic solution for B

2. There is a unique y ∈ Rm satisfying

(AB)T y = cB

this is the basic dual solution.
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If x is a basic solution for B and x ≥ 0, then we call x a basic feasible solution. If y is the
basic dual solution for B and AT y ≥ c, then we call y a basic dual feasible solution.

Theorem 13. Optimality Theorem: Let x ∈ Rn be the basic solution for B and y ∈ Rm

be the basic dual solution for B. Then cTx = bT y. Moreover, if x is feasible for (P) and y
is feasible, then x is optimal for (P) and y is optimal for (D).

Remarks:

1. x ∈ Rn is an extreme point of {x ∈ Rn : Ax = b, x ≥ 0} if and only if it is a basic
feasible solution

2. y ∈ Rm is an extreme point of {y ∈ Rm : AT y ≥ c} if and only if it is a basic dual
feasible solution.

Claim: A feasible solution for (P) us a basic feasible solution if and only if the columns
of |Aj : xj 6= 0| are linearly independent.

Proof. From LHS, by definition.
From RHS, any linearly independent set extends to a basis.

Proof. (Proof of optimality theorem)

bT y − cTx = xTAT y − xT = xT (AT y − c) = xTB(AT
By − cB)

Note: this proof works since x and y satisfy the complementary slackness conditions.

4.6.2 Finding a basic feasible solution

Input A feasible solution x̄

Output A basic feasible solution

1. Step 1: If [Aj : x̄j 6= 0] has independent columns, then STOP: Output x̄

2. Step 2: Find d ∈ Rn such that

(a) Ad = 0

(b) dj = 0 whenever x̄j = 0.

(c) d 6= 0

3. Step 3: If also, replace d with −d. Let λ = max(t ∈ R : x̄− td ≥ 0)

Replace x̄ with x̄− λd. Repeat from Step 1.

Note that: |support(x̄)| decreases with each iteration, so the algorithm terminates, and
by the claim, the solution returned is basic.
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4.7 Simplex Method

Goal: Given a basic feasible solution, solve (P ). Example:

(P )(1)



max 2x1 + 3x2

subject to x1 + x3 − x4 = 4

x2 − x3 + 2x4 = 2

−x1 + x2 + x5 = 4

x1, · · · , x5 ≥ 0

Note that B = {1, 2, 5} is a basis. For any feasible x,

2x1 + 3x2 = 2(4− x3 + x4) + 3(2 + x3 − 2x4) = 14 + x3 − 4x4

(Here we are eliminating the basic variable from the objective function) so (P) is equivalent
to

(P1)(2)



max 14 + x3 − 4x4

subject to x1 + x2 − x4 = 4

x2 − x3 + 2x4 = 2

2x3 − 3x4 + x5 = 6

x1, · · · , x5 ≥ 0

Note that (1) and (2) are equivalent linear system. Warning (P) and (P1) have different
duals. The basic solution is

x̄ = [4, 2, 0, 0, 6]T

and has objective value = 14. Note that x3 has a positive coefficient in the objective
function for (P1). Set x3 = t and x4 = 0. Now solve for x1, x2, x5.

x̃ = [4, 2, 0, 0, 6]T − t[−1,−1,−1, 0, 2]T

which has objective value = 14 + t. Take t = 3, we get x̃ = [1, 5, 3, 0, 0]T with objective
value 17. This is basis for B = {1, 2, 3}.

Eliminate the new basic variables from the objective function:

14 + x3 − 4x4 = 14 +
1

2
(6 + 3x4 − x5)− 4x4 = 17− 2.5x4 − 0.5x5 (3)

For any non-negative x we get an adjective value ≤ 17 with respect to (3), there x̃ =
[1, 5, 3, 0, 0]T is an optimal solution.
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4.8 Simplex Method

(P )


max cTx

subject to Ax = b

x ≥ 0

rank(A) = m

(D)

{
min bT y

subject to AT y ≥ c

Let x̄ be a basic feasible solution for a basis B, let ȳ be the basic dual solution for B, and
let σ̄ = cT x̄ = bT ȳ. Recall: (AB)T ȳ = cB. Note that, for any feasible x,

cTx = cTx− ȳT (Ax− b) = (c−AT ȳ)Tx+ ȳT b = (c−AT ȳ)Tx+ σ̄

we can rewrite (P) as

(P ′)


max c̄Tx+ σ̄

subject to Āx = b̄

x ≥ 0

where

1. c̄ = c−AT ȳ

2. Ā = (AB)−1A, and

3. b̄ = (AB)−1b

Note that:

1. ĀB = I so we may assume that the rows of Ā are indexed by the elements of B and
that b̄ is indexed by B.

2. x̄B = b̄

3. c̄B = cB −AT
B ȳ = 0

4. ȳ is feasible for (D) if and only if c̄ ≤ 0

Optimality: if c̄ ≤ 0, then x̄ is optimal for (P) and ȳ is optimal for (D). (by (4)). Suppose
that c̄j ≥ 0 for some j. (Note that j /∈ B - by (2)). xj is the entering variable.

Definition. d̄ ∈ R by

d̄i =


−āij i ∈ B
1 i = j

0 otherwise
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Note that the unique solution to 
Āx = b̄

xj = t

xi = 0, i /∈ B ∪ {j}

is x̄+ td, which has objective value v̄ + tc̄j (in (P))

Unboundedness: If d̄ ≥ 0, (P ) is unbounded. {x̄ + td̄ : t ≥ 0} is feasible halftime and
c̄T d̄ = c̄j > 0.

Update: Suppose that d̄ has a negative entry. Choose t = max (λ ∈ Rn : x̄+ λd̄ ≥ 0}
and replace x̄ with x̄ + td̄. By our choice and t, there exists i ∈ B such that x̄i = 0 and
d̄i < 0. x̄i is the leaving variables. Now d̄i = āij 6= 0, so B − {i}+ {j} is a basis. Replace
B with B − {i}+ {j}. Note that x̄ is the basic solution for B.

Now we repeat. Since the basis has changed in only two elements, it is easy to update
the problems (P’).

Termination

• There are ≤
(
n
m

)
bases;

• at each iteration the objective value does not go down.

• there are examples where the Simplex Method cycles (that is, it revisits a basis ).

• If the objective value does not increase in an iteration, then the solution x̄ is basic
for two distinct bases B1 and B2. Hence |support(x̄)| < m. (recall supports(x̄) =
{i ∈ {1, · · · , n} : x̄i 6= 0}).

A basic solution x̃ is non degenerate if |support(x̃)| = m. (P) is non-degenerate if each
of its basic solutions is non-degenerate. Note: The simplex method will terminate given
any non-degenerate linear program (in ≤

(
n
m

)
iterations)

Hirsch Conjecture (1957)

The distance between any two terraces in 1-skeleton of (P) is ≤ m. (False, 2010)
Problems

1. Is there a polynomial bound on the diameter of the 1-skeleton?

2. Is there a “pivoting rule” for the Simplex method that gives a polynomial-time algo-
rithm?
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4.9 Perturbation Method

Idea: We carefully select the leaving variable in order to avoid cycling, this is achieved by
perturbing b.

(D)


max cTn

subject to Ax = b

x ≥ 0

rank(A) = m Consider

(P )


max cTx

subject to Ax = b′

x ≥ 0

where b′ =


b1 + ε1

b2 + ε2

...
bn + εn

 hence ε is a variable that we think of as a small positive real number.

For polynomials p(ε) and q(ε), we write p(ε) < q(ε) if the coefficient of the smallest
degree term of q(ε)− p(ε) is positive. For example, 1 + ε+ 100000ε2 < 1 + 2ε.

Claim: (P’) is non degenerate.

Proof. For a basis B consider the basic solution x̄. We have

x̄B = (AB)−1b′

Since each row of (AB)−1 is a non-zero real vector and the entries of b’ are polynomials
with distinctt degrees, each term of x̄B is nonzero.

Note that we can solve (P) using the Simplex Method since it is non-degenerate.

4.9.1 Another way to avoid cycling-Smallest Subscript Rule

Break ties when choosing entering and leaving variables by taking the one of minimum
subscript.

Theorem 14. (Bland) The smallest subscript rule avoids cycling.

4.9.2 Feasibility

Consider

(P )


max cTx

subject to Ax = b

x ≥ 0

We have algorithms for:
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1. Given a feasible solution find a basic feasible solution

2. Given a basic feasible solution, solve (P)

How do you find a feasible solution? We can scale so that v ≥ 0. Consider the following
“auxiliary problem”.

(P ′)


max −s1 − s2 − · · · − sm
subject to Ax+ s = b

x, s ≥ 0

Note that:

1. x = 0, s = b is a basic feasible solution to (P’), so we can solve this using the Simplex
Method.

2. Since s ≥ 0,−s1 − s2 − · · · − sm ≤ 0, so (P’) is bounded so the Simplex Method will
terminate with an optimal solution (x̄, s̄).

3. if s̄ = 0, then x̄ is feasible solution to (P).

4. If x̃ is feasible for (P), then (x̃, 0) is an optimal solution for (P’)

Hence, the optimal value for (P’) is zero if and only if (P) has a feasible solution.
Remark, if (x̄, 0) is a basic feasible solution for (P’) thus x̄ is a basic feasible solution for
(P).

Farkars Lemma Exactly one of the following has a solution

1. Ax = b, x ≥ 0

2. AT y ≥ 0, bT y < 0

The dual of (P’) is

(D′)


min bT y

subject to AT y ≥ 0

y ≥ −1

If (P) is infeasible and ȳ is an optimum solution to (D’), then bT ȳ < 0, so ȳ satisfies
(AT y ≥ 0, bT y < 0). Note: this gives a more constructive proof of the Farkas Lemma.

4.10 Midterm Review

For z1, · · · , zn ∈ Rm, define conv(z1, · · · zn) = {λ1z1 + · · ·λnzn, λ ≥ 0, λ1 + · · · + λn = 1}
and cone(z1, · · · , zn) = {λ1z1 + · · ·λnzn, λ ≥ 0}.
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Separating Hyperplane Theorem (Farkas Lemma)

1. If b /∈ conv(z1, · · · , zn), then there is a hyperplane separating b from conv(z1, · · · , zn).

2. Similar for cone(z1, · · · , zn).

Polyhedral Theory

Polyhedron: {x ∈ Rn : Ax ≤ b}. Polytope: bounded polyhedron. A polyhedral cone is
{x ∈ Rn : Ax ≤ 0}.

Lemma 1 : For a polyhedron, P = {x ∈ Rn : Ax ≤ b}, the following are equivalent:

1. P has no extreme point

2. P contains a line

3. rank(A) < n.

Lemma 2 : Characterization of extreme point =⇒ There are only finitely many extreme
points.

Theorem A : S ⊆ Rn is a polytope if and only if it is the convex hull of a finite set of
points in Rn.

Theorem B : If S ⊆ Rn is a polyhedron cone, then there is a finite set z ∈ Rn such that
S = cone(z). The converse is also true.

For S1, S2 ∈ Rn, define S1 + S2 = {a+ b : a ∈ S1, b ∈ S2}.

Theorem C Let z be the set of extreme points of P = {x ∈ Rn : Ax ≤ b}. If P does not
contain a line then P = conv(z) + {x ∈ Rn : Ax ≤ 0}.

Theorem B and C implies there exist Z,D ∈ Rn finite such that

1. P = conv(Z) + cone(D). (We used that P does not contain a line, it is easy to
remove this condition.)

2. Note, we can scale so that ‖d‖ = 1 for each d ∈ D.

If (P) does not contain a line then there are unique minimal subsets Z,D ∈ Rn satisfying
(1) and (2). Z is the set of extreme point. D is the set of extreme rays. =⇒ “every
polyhedron that does not contain a line is generated by its extreme points and its
extreme rays.”
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Applications

Caratheodary’s Theorem

Helly’s Theorem

Linear Programming

(P )

{
max cTx

subject to Ax ≤ b

A ∈ Rm×n, b ∈ Rm, c ∈ Rn.

Fundamental Theorem (P) is either infeasible, unbounded or has an optimal solution.

Infeasibility Theorem (Karkas Lemma) (P) is infeasible if and only there exists y ∈
Rm satisfying (AT y = 0, bT y < 0, y ≥ 0).

Unboundedness Theorem (P) is unbounded if and only if (P) is feasible, and there
exists d ∈ Rn satisfying (Ad ≤ 0, cTd > 0).

The dual of (P) is

(D)


min bT y

subject to AT y = c

y ≥ 0

Weak Duality Theorem: if x̄ is feasible for (P) and ȳ is feasible for (D) then cT x̄ ≤ bT ȳ.
Ideally we could like x̄, ȳ with

cT x̄ = bT ȳ

That is we want x ∈ Rn and y ∈ Rm satisfying:

(1)


−cTx+ bty = 0

Ax ≤ b
−AT y = −c
y ≥ 0

Suppose no such x, y exists.
By the Assignment questions, there exist z ∈ R, x ∈ Rn and y ∈ Rm satisfying:

−cTx+ bT < 0

Ax ≤ bz

−AT y = −cz
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y ≥ 0

z ≥ 0

Claim: z = 0.

Proof. Otherwise we can scale to get z = 1, and then (x, z) satisfies (1) - contradiction.

Either:

1. x satisfies (cTx > 0, Ax ≤ 0), or

2. y satisfies (bT y < 0, AT y = 0, y ≥ 0).

In case (1): (P) is infeasible or unbounded and (D) is infeasible.
In case (2): (P) is infeasible and (P) is infeasible or unbounded. In either case, neither

(P) nor (D)has an optimal solution.

Strong Duality Theorem

(P) has an optimal solution if and only if (D) has an optimal solution. Moreover, if x̄ is
optimal for (P) and ȳ is optimal for (D), then

cT x̄ = bT ȳ

Application of duality

Theorem 15. If x̄ is an extreme point of the polyhedron

P = {x ∈ Rn : Ax ≤ b}

then there is a half space H such that P ∩H = {x̄}.

Proof. Since x̄ is an extreme point, there exists a partition (A′x ≤ b′, A′′x ≤ b′′) of the
inequalities Ax ≤ b such that: A′x̄ = b′, rank(A′) = n and A′ is n×n. (x̄ may satisfy some
of A′′x ≤ b′′ with equality)

Let c = (A′)T 1, α = cT x̄ = 1TA′x = 1T b′. H = {x ∈ Rn : cTx ≥ α}
Now consider the LP:

(P )


max cTx

subject to A′x ≤ b′

A′′x ≤ b′′

and its dual

(D)


min (b′)T y + (b′′)T z

(A′)T y + (A′′)T = z

y, z ≥ 0
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Let ȳ = 1 and z̄ = 0.
Now x̄ is feasible for (P), (ȳ, z̄) is feasible for (D) and cT x̄ = (b′)T ȳ + (b′′)T z̄ = α, so

x̄ is optimal for (P) and (ȳ, z̄) is optimal for (D). Consider another optimal solution x̃ for
(D). Note that ȳ > 0, so by the complementary slackness condition, A′x̃ = b′. However A’
is invertible, so x̃ = x̄. Hence x̄ is the unique optimal solution and H ∩ P = {x̄}.

Exercise: Let x̄ be an extreme point of P = {x ∈ Rn : Ax ≤ b}, where A ∈ Zm×n and
b ∈ Zm. Show that, if x̄ /∈ Zn, there exists c ∈ Zn such that x̄ is an optimal solution to
max(cTx : x ∈ P ) and cT x̄ /∈ Z.
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