COMPLEX NUMBERS

JOHNEW ZHANG

$$
x^{2}+1=0 .
$$

Definition 1. The set of complex numbers is $\mathbb{C}=\{x+2 y: x, y \in \mathbb{R}\}$, where i is a symbol having the properties $i^{2}=-1$.

```
\(\mathbb{Q}[\sqrt{2}]\).
We define addition and multiplication on \(\mathbb{C}\).
\(z=x+i y, w=u+i v \in \overline{\mathbb{C}}\).
\(z+w=(x+u)+i(y+v)\).
\(z \cdot w=(x+i y)(u+i v)=(x u-y v)+i(x v+u y)\).
```

Theorem 1. \mathbb{C} is a field.
If $z=x+i y \neq 0, \mathrm{z}$ has a multiplicative inverse.

$$
z^{-1}=\frac{1}{x+i y}=\frac{x-i y}{x^{2}+y^{2}} .
$$

Definition 2. If $z=x+i y \in \mathbb{C}$,
$x+i y$ is the standard form of the z.
(x, y) are the Cartesian Coordinates.
$x=\operatorname{Re}(z)$ is the real part of z.
$y=\operatorname{Im}(z)$ is the imaginary part of z.
$z=0+i y$ is purely imaginary.
Geometric representation of \mathbb{C}.
The function $f: \mathbb{C} \rightarrow \mathbb{R}$ is a bijection.
$x+i y \rightarrow(x, y)$
Check ($\mathbb{C},+$)
Corresponds to parallelogram law of addition of vectors.
Exercise :
Write the standard form of $(1+i)^{-2}$
$(1+i)^{-2}=-\frac{1}{2} i$.

Definition 3. If $z=x+i y \in \mathbb{C}$, the complex conjugate of z is $\bar{z}=x-i y \in \mathbb{C}$.
The modulus (or obsolete value) of z is $|z|=\sqrt{x^{2}+y^{2}}$.
Theorem 2. Properties:
(1) $\overline{z+w}=\bar{z}+\bar{w}$
(2) $\overline{z w}=\overline{z w}$.
(3) $\overline{\bar{z}}=z$
(4) $z \bar{z}=x^{2}+y^{2}=|z|^{2}$.
(5) $z+\bar{z}=2 x$
(6) $z-\bar{z}=2 i y$.
(7) $z \neq 0, z^{-1}=\frac{\bar{z}}{|z|^{2}}$
(1) $|z|=0 \Longleftrightarrow z=0$.
(2) $|\bar{z}|=|z|$.
(3) $|z w|=|z||w|$.
(4) $|z| \geq x,|z| \geq y$.
(5) Triangle Inequality
$|z+w| \leq|z|+|w|$.
(6) $|z-w| \geq||z|-|w||$

1. Polar Coordinates

Let $z=x+2 y \in \mathbb{C}$.
Let $r=|z|, \theta=$ angle in radius.
(r, θ) polar coordinates of z.
$r \in \mathbb{R}, r \geq 0$.
$\theta \in \mathbb{R}, \theta$ is not unique $(\theta+2 k \pi, k \in \mathbb{Z})$
$0=(0, \theta)$.
$z=r(\cos \theta+i \sin \theta)=r c i s \theta$.
Converting \rightarrow from polar to standard form.
$z=r \operatorname{cis}(\theta), \rightarrow z=r \frac{\cos \theta}{x}+r \frac{r \sin \theta}{y}$.
From standard to polar form.
$z=x+i y \rightarrow z=|z| \operatorname{cis}(), r=\sqrt{x^{2}+y^{2}}=|z|, \theta / \tan \theta=\frac{x}{y}$.
and some quodrant as (x, y).
Examples
(1) Write $z=5 \operatorname{cis} \frac{\pi}{4}$ in standard form.
(2) Write $-\sqrt{3}-i$ in polar form.

Theorem 3. Let $z_{1}=r_{1} \operatorname{cis}\left(\theta_{1}\right), z_{2}=r_{2} \operatorname{cis}\left(\theta_{2}\right)$ be complex number.
Then $z_{1} z_{2}=r_{1} r_{2} \operatorname{cis}\left(\theta_{1}+\theta_{2}\right)$.
Proof. $z_{1} z_{2}=\left(r_{1} \cos \theta_{1}+i r_{1} \sin \theta_{1}\right)\left(r_{2} \cos \theta_{2}+i r_{2} \sin \theta_{2}\right)=r_{1} r_{2} \operatorname{cis}\left(\theta_{1}+\theta_{2}\right)$.

Corollary 1. De Moivre's Theorem :
$(r \operatorname{cis}(\theta))^{n}=r^{n} \operatorname{cis}(\theta n), n \in \mathbb{N}, r \in \mathbb{R}, \theta \in \mathbb{R}$.
Write $(1-\sqrt{3} i)^{6}$ in standard form.
Convert to polar form $(1-\sqrt{3} i)=2 \operatorname{cis}\left(-\frac{\pi}{3}\right)$.

$$
(1-\sqrt{3} i)^{6}=\left(2 \operatorname{cis}\left(-\frac{\pi}{3}\right)\right)^{6}=2^{6}
$$

Theorem 4. Roots of Complex Numbers :
Let $z=r_{i} \operatorname{cis}(\theta), n \in \mathbb{N} .\left(w \in \mathbb{C}, w^{n}=z\right)$
Then the nth complex root of z are $r^{\frac{1}{n}} \operatorname{cis}\left(\frac{\theta+2 k \pi}{n}\right), k=0,1 \ldots n-1$.
Find the standard form of $1^{\frac{1}{4}}$.
Solve $z^{4}+z^{2}+1=0$, Let $w=z^{2}$.
$w^{2}+w+1=0 . w=\frac{-1 \pm \sqrt{3} i}{2}$
Exponential Form
Define the function : $\mathbb{R} \rightarrow \mathbb{C}$
$\theta \rightarrow \cos \theta+i \sin \theta=e^{i \pi}$.
Why exponential?
(1) $e^{i \theta_{1}} e^{i \theta_{2}}=e^{i\left(\theta_{1}+\theta_{2}\right)}$
(2) $\left(e^{i \theta}\right)^{n}=e^{i n \theta}, n \in \mathbb{N}$.
(3) $\frac{d e^{i \theta}}{d \theta}=i e^{i \theta}$.
(1) When $z \cdot \bar{z}=1$?

2. Elliptic Curve

Simple Answer
Solution to an equation of the form $y^{2}=x^{3}+a x+b$, where a and b are given (in come field). $\left(27 b^{2}+4 a^{3} \neq 0\right)$
$F=\mathbb{R}$.
Example: $y^{2}=x^{3}+1$.
Elliptic curves are groups.
Rule for adding points
Example : Let $C: y^{2}=x^{3}+1$.
Suppose you pick two points on the elliptic curve, p and q .
Rule 1: $p=q$, then we pick the tangent line of p .
We need to add a point O , which is an all vertical lines. Reflection of O is O .
Fact : This operation makes the points on the curve (along with O) into a group, with O as the identity.

For all points p and $\mathrm{q}, p+q=q+p$.
(Abelian group)

1) $p+O=p$ for all p on C .
2)For every p on the curve, there is a -p such that $p+(-p)=O$.

So $-(x, y)=(x,-y)$.
$p+(q+r)=(p+q)+r$.
If p and q have rational coordinates, then the line joining p and q has rational coefficient.

So the equation $x^{3}+1=(m x+b)^{2}$.
Then x^{3} - polynomial in $\mathbb{Q}[x]=0$.
Since the x -coordinates of p and q are rational the third point must have a rational x-coordinate.

Since $y=m x+b$, the y -coordinate is rational and same for the flip.
If p and q have coefficients in any field F , so does $p+q$.
Example: On $y^{2}=x^{3}+1$, calculate $2(2,-3)$
$(0,-1)$.
Interpret tangents as double intersections.
Inflection points : interpret as triple intersection.
2.1. Elliptic Curve Brief Conclusion. Elliptic Curve is the solution to an equation of the form $y^{2}=x^{3}+a x+b$, where a and b are give in some field $\left(27 b^{2}+4 a^{3} \neq 0\right)$

Then let's define some properties.

1. Rule of adding points

Suppose we pick up two points on the elliptic curve, p and q.
$p+q=c: \mathrm{c}$ is the reflection of the other solution of the line (pass p and q) and the curves.

Rule 1: $p=q$, then we pick the tangent line of p .
Rule 2: If the tangent line is vertical. We need to add a point O, which is all vertical lines. Reflection of O is O .

Fact: This operation makes the points on the curve (along with O) into a group, with O as the identity.

For all points p and $\mathrm{q}, p+q=q+p$
$p+O=p$
$p+(-p)=O$
$p+(q+r)=(p+q)+r$
for a point $(x, y)=-(x,-y)$
Above all is a brief description of elliptic curves.
2.2. Application of Elliptic Curve. Consider this field, \mathbb{Z}_{p}. p is a prime number.

We can actually find all the point on $y^{2}=x^{3}+a x+b$, such that $27 b^{2}+4 a^{3} \neq 0$.
What can those points be used for?
With an elliptic curve C over a finite field.
Consider Diffie-Helmon Key exchange on \mathbb{Z}_{p}, it also applies to the elliptic curve.
Suppose Alice and Bod want to agree on a common secret

1) Alice and Bob select a prime p and an elliptic curve C over \mathbb{Z}_{p}, and a point Q on C.
2) Alice choose a, and make aQ public
3) Bob choose b , and make bQ public. ($a, b \geq 2$ are integers)
4) Common secret : abQ.

For a third person, to get the key, he has to solve the ECDLP.
Given an elliptic curve C over \mathbb{Z}_{p}, a point Q and the point a Q and find a.

However this process is hard.

