ALGEBRA NOTE 6

JOHNEW ZHANG

1. ARITHMETIC MODULO FOR POLYNOMIAL
Overview : If a,b,m € Z,m > 1, then a = b (mod m) <= m|(a — ).

Definition 1. If F is a field, and g, h, f € F[z], f #0,
then g = h (mod f) if and only if f|(g — h).

2’4+ r+1=2 (mod 23 +1).

Theorem 1. If a; = az (mod f) and by = by (mod f)
(a1,a2,b1,bo, f € Fz], f #0).
Then a1 + by = az + be (mod f)
a1b1 = agbz (mod f)

Definition 2. The congruence class of g mod f to b
[9] = {h € F[z] such that h= g (mod f)}.

So mod z2 — 1.
2] = [a].
[22 +1] = 2.

Next day arithmetic for congruence classes.
Clearly

g=g (mod f)
g=h (mod f) <= h=g (mod f).

g=h (mod f)andh=j (mod f) = g=j (mod f)
because f|(g — h) and f|(h —j) = fl(g —j)-
l9] ={h € Flz] : h=g (mod f)}
l9] = [h] =
g=g (mod f)
Definition 3. [g] + [h] = [g + h].

Fact : If a1 = az (mod f) and by = be (mod f)

(CLl,&Q,bl,bQ,f € }F[IE]?JC # 0)
Then ay + by = ag + b2 (mod f)
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If a1,as are in the same congruence class and by, by are in the same congruence class,
then a; + b1, as + b2 are in the same congruence class as well.
Also define [g|h] = [gh].

Theorem 2. The set of congruence class (mod f) under these properties is a commutative
ring. 0 =[0],1 = [1].

Example : F = Q.

f(z) € Qz] is 22 + 1.

o= 1z +1] = [(z — (@ +1)] = [1? — 1] = [-2].

It is a nice observation : Working modulo f, deg(f) > 1, every congruence class has a
representative g with deg(g) < deg(f).

Proof. If f(z) € Flx],deg(f) > 1 and h(x) € F[z], we can write h(z) = f(z)q(x) +
r(x), deg(r) < deg(f).

h=r (mod f),[h] = [r].

Notation : If F is a field and f(z) € F[x] has degree less than or equal to 1, then F[x]/(f)
is the ring of congruence classes (mod f).

O

Example : F = Z3, f(z) =22 + 1

Flal /(f) = Zala] /(2 + 1).

Every congruence class has a representative of degree less than 2.

Polynomial in Zs[z] with degree less than 2. (0,1,2,z,2 + 1,2 + 2,2z,2x + 1,2z + 2)
The only congruence classes are [0], [1], [2], [z], [x + 1], [z + 2], [2z], [2z + 1], [22 + 2]
So,Zs[x]/(f) = {[0],...}.

Is this a field? Does every non-zero element have a multiplicative inverse?

This ring is a field.

First example of a finite field where the number of elements is not prime.
What are the finite fields?
Zp, Zs[z]/(2* + 1).

Theorem 3. IfF is a field, and f(x) € Flz| has degree > 1, then Flz|/(f) is a field if and
only if f(x) is irreducible.

Proof. 1f f(x) is not irreducible, then f(x) = g(x)h(z) with g(z), h(z) € F[z], deg(g), deg(h) <
deg(f)

[gl,Th] # 0 since ft g, f 1 h.

But [g][h] = [gh] = [f] = 0.

If [g] had a multiplicative inverse, then [¢]~*[g][h] = [0]

[h] = 0, Therefore, this contradicts, so [g] has an inverse = F|[z]/(f) is not a field.

If f(x) is irreducible, then for any [g] # 0, so f 1 g, gcd(f,g) =1

So we can choose s,t € F[z] with sf +tg = 1.

[1] = [sf + tg] = [tg] = [t][g].

So [g]~! = [t], Since [g] # 0, was any element of F/(f), this is a field. O
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2?2 + 1 is irreducible in Q[z], so Q[z]/(2? + 1) is a field.

Consider : think of Q being in this field, since for every rational ¢ € Q, [¢] € Q[x]/(z%+1).
If [¢1] = (2], @1, 92 € Q, then 2% + 1|(q1 — q2).

q1 = @2 as rational numbers, so the function ¢ = [q] is injective (one-to-one).

This function also contains a square root of -1.

2 = [2) = [-1].

Field is "the same” as Q[i].

Q[z][y] = polynomials in x and y with coefficients in Q .

2. FINITE FIELD

Theorem 4. Let F be a field, and f(x) € Flx] an irreducible polynomial of degree > 1.
Then Fla]/(f)

(i) is a field.

(ii) contains a copy of F.

(iii) contains a root of f(z).

Proof. (i) is already done.

(ii) We can define a function g(a) = [a] for F to F[z]/(f).

By definition, g(a + b) = g(a) + g(b), g(ab) = g(a)g(b).

And also g is an injective function, because g(a) = g(b), then [a] = [b], so f(z)|(b — a).
This is impossible unless b = a.

(i) £([x]) = [f(x)] = [0] = 0 )

Proposition 1. Let p be a prime, and f(z)Zy[x] an irreducible polynomial of degree d > 1.
Then Zy|x]/(f) is a field with p? elements.

Proof. Every congruence class contains a unique polynomial r(x) with deg(r) < d — 1. If
r1(x),r2(x) have degree < d — 1.

then if [ry] = [ro], we have f|(r2 —r1) deg(f) > deg(ra —r1).

So this is only possible if 1y = ro.

The congruence classes are in one-to-one correspondence with polynomial in Z,[x] of
degree < d — 1.

The number of polynomials in Z,[x] with degree < d — 1 is the number of sequences
ag,a1,...,04—1 € Zp.

So there are p? choices. O

Theorem 5. Fermat’s Little Theorem for Finite Fields :
IfF is a field with n (< 0o) elements, and a € F is non-zero, then a"~! = 1.

Proof. Define f : F — F by f(X) = ax.
Clearly, f(0) =0
f is one-to-one because if f(x) = f(y), then ax = ay = a(x —y) =0
ala(x —y) =a'0
Therefore, z = y.



4 JOHNEW ZHANG

f is onto, since for any = € F, f(a_1z) = .

So HzGF,x#Ox = HwGF,w;ﬁOf(x) =€l x 7é O(ax) = an_lﬂzeF,x;téOx-

HxE]F,x;éOx 7é 0

So1l=a""1 O

Corollary 1. If F is a finite field with n elements, then " = x factors as lyep(x — a).

Proof. For each a € FF, either a =0,s0a” —a=0"—-0=0.
or a # 0, and
a" —a=a(a" ' —1)=a0=0.
Myep(z —a)|x™ — x.
But both have the same degree (n), so cll ep(z — a)|z™ — x = (z"x) for some ¢ € F.
so ¢ = 1. and Hyep(x — a)|z™ — z = (") O



