ALGEBRA NOTE 6

JOHNEW ZHANG

1. ARITHMETIC MODULO FOR POLYNOMIAL

Overview : If $a, b, m \in \mathbb{Z}, m \ge 1$, then $a \equiv b \pmod{m} \iff m | (a - b)$.

Definition 1. If F is a field, and $g, h, f \in \mathbb{F}[x], f \neq 0$, then $g \equiv h \pmod{f}$ if and only if f|(g-h).

 $x^3 + x + 1 \equiv x \pmod{x^3 + 1}$.

Theorem 1. If $a_1 \equiv a_2 \pmod{f}$ and $b_1 \equiv b_2 \pmod{f}$ $(a_1, a_2, b_1, b_2, f \in \mathbb{F}[x], f \neq 0).$ Then $a_1 + b_1 \equiv a_2 + b_2 \pmod{f}$ $a_1b_1 \equiv a_2b_2 \pmod{f}$

Definition 2. The congruence class of $g \mod f$ to b $[g] = \{h \in \mathbb{F}[x] \text{ such that } h \equiv g \pmod{f}\}.$

So mod $x^2 - 1$. $[x^3] = [x]$. $[x^2 + 1] = 2$.

Next day arithmetic for congruence classes. Clearly

 $g \equiv g \pmod{f}$ $g \equiv h \pmod{f} \iff h \equiv g \pmod{f}.$

 $g \equiv h \pmod{f} \text{ and } h \equiv j \pmod{f} \implies g \equiv j \pmod{f}$ because f|(g-h) and $f|(h-j) \implies f|(g-j)$. $[g] = \{h \in \mathbb{F}[x] : h \equiv g \pmod{f}\}$ $[g] = [h] \implies$ $g \equiv g \pmod{f}$

Definition 3. [g] + [h] = [g + h].

Fact : If $a_1 \equiv a_2 \pmod{f}$ and $b_1 \equiv b_2 \pmod{f}$ $(a_1, a_2, b_1, b_2, f \in \mathbb{F}[x], f \neq 0)$. Then $a_1 + b_1 \equiv a_2 + b_2 \pmod{f}$

JOHNEW ZHANG

If a_1, a_2 are in the same congruence class and b_1, b_2 are in the same congruence class, then $a_1 + b_1, a_2 + b_2$ are in the same congruence class as well.

Also define [g]h] = [gh].

Theorem 2. The set of congruence class (mod f) under these properties is a commutative ring. 0 = [0], 1 = [1].

Example : $\mathbb{F} = \mathbb{Q}$. $f(x) \in \mathbb{Q}[x]$ is $x^2 + 1$.

 $[x-1][x+1] = [(x-1)(x+1)] = [x^2 - 1] = [-2].$

It is a nice observation : Working modulo f, $deg(f) \ge 1$, every congruence class has a representative g with deg(g) < deg(f).

Proof. If $f(x) \in \mathbb{F}[x]$, $deg(f) \geq 1$ and $h(x) \in \mathbb{F}[x]$, we can write h(x) = f(x)q(x) + r(x), deg(r) < deg(f).

 $h \equiv r \pmod{f}, [h] = [r].$

Notation : If \mathbb{F} is a field and $f(x) \in \mathbb{F}[x]$ has degree less than or equal to 1, then $\mathbb{F}[x]/(f)$ is the ring of congruence classes (mod f).

Example : $\mathbb{F} = \mathbb{Z}_3, f(x) = x^2 + 1$ $\mathbb{F}[x]/(f) = \mathbb{Z}_3[x]/(x^2 + 1).$

Every congruence class has a representative of degree less than 2. Polynomial in $\mathbb{Z}_3[x]$ with degree less than 2. (0, 1, 2, x, x + 1, x + 2, 2x, 2x + 1, 2x + 2)The only congruence classes are [0], [1], [2], [x], [x + 1], [x + 2], [2x], [2x + 1], [2x + 2]So, $\mathbb{Z}_3[x]/(f) = \{[0], \ldots\}$. Is this a field? Does every non-zero element have a multiplicative inverse?

Is this a field? Does every non-zero element have a multiplicative inverse? This ring is a field.

First example of a finite field where the number of elements is not prime. What are the finite fields?

 $\mathbb{Z}_p, \mathbb{Z}_3[x]/(x^2+1).$

Theorem 3. If \mathbb{F} is a field, and $f(x) \in \mathbb{F}[x]$ has degree ≥ 1 , then $\mathbb{F}[x]/(f)$ is a field if and only if f(x) is irreducible.

Proof. If f(x) is not irreducible, then f(x) = g(x)h(x) with $g(x), h(x) \in \mathbb{F}[x], deg(g), deg(h) < deg(f)$

$$\begin{split} & [g], [h] \neq 0 \text{ since } f \nmid g, f \nmid h. \\ & \text{But } [g][h] = [gh] = [f] = 0. \\ & \text{If } [g] \text{ had a multiplicative inverse, then } [g]^{-1}[g][h] = [0] \\ & [h] = 0, \text{ Therefore, this contradicts, so } [g] \text{ has an inverse } \Longrightarrow \mathbb{F}[x]/(f) \text{ is not a field.} \\ & \text{If } f(x) \text{ is irreducible, then for any } [g] \neq 0, \text{ so } f \nmid g, gcd(f,g) = 1 \\ & \text{So we can choose } s, t \in \mathbb{F}[x] \text{ with } sf + tg = 1. \\ & [1] = [sf + tg] = [tg] = [t][g]. \\ & \text{So } [g]^{-1} = [t], \text{ Since } [g] \neq 0, \text{ was any element of } \mathbb{F}/(f), \text{ this is a field.} \\ & \Box \end{split}$$

 $\mathbf{2}$

 $x^2 + 1$ is irreducible in $\mathbb{Q}[x]$, so $\mathbb{Q}[x]/(x^2 + 1)$ is a field. Consider : think of \mathbb{Q} being in this field, since for every rational $q \in \mathbb{Q}, [q] \in Q[x]/(x^2+1)$. If $[q_1] = [q_2], q_1, q_2 \in \mathbb{Q}$, then $x^2 + 1|(q_1 - q_2)$. $q_1 = q_2$ as rational numbers, so the function $q \implies [q]$ is injective (one-to-one). This function also contains a square root of -1. $[x]^2 = [x^2] = [-1]$. Field is "the same" as $\mathbb{Q}[i]$. $\mathbb{Q}[x][y] =$ polynomials in x and y with coefficients in \mathbb{Q} .

2. FINITE FIELD

Theorem 4. Let \mathbb{F} be a field, and $f(x) \in \mathbb{F}[x]$ an irreducible polynomial of degree ≥ 1 . Then $\mathbb{F}[x]/(f)$

(i) is a field.

(ii) contains a copy of \mathbb{F} .

(iii) contains a root of f(x).

Proof. (i) is already done.

(ii) We can define a function g(a) = [a] for \mathbb{F} to $\mathbb{F}[x]/(f)$.

By definition, g(a+b) = g(a) + g(b), g(ab) = g(a)g(b).

And also g is an injective function, because g(a) = g(b), then [a] = [b], so f(x)|(b-a). This is impossible unless b = a.

(iii) f([x]) = [f(x)] = [0] = 0

Proposition 1. Let p be a prime, and $f(x)Z_p[x]$ an irreducible polynomial of degree $d \ge 1$. Then $\mathbb{Z}_p[x]/(f)$ is a field with p^d elements.

Proof. Every congruence class contains a unique polynomial r(x) with $deg(r) \le d - 1$. If $r_1(x), r_2(x)$ have degree $\le d - 1$.

then if $[r_1] = [r_2]$, we have $f|(r_2 - r_1) \deg(f) > \deg(r_2 - r_1)$. So this is only possible if $r_1 = r_2$.

The congruence classes are in one-to-one correspondence with polynomial in $\mathbb{Z}_p[x]$ of degree $\leq d-1$.

The number of polynomials in $\mathbb{Z}_p[x]$ with degree $\leq d-1$ is the number of sequences $a_0, a_1, \ldots, a_{d-1} \in \mathbb{Z}_p$.

So there are p^d choices.

Theorem 5. Fermat's Little Theorem for Finite Fields : If \mathbb{F} is a field with $n \ (< \infty)$ elements, and $a \in \mathbb{F}$ is non-zero, then $a^{n-1} = 1$.

Proof. Define $f: F \to F$ by f(X) = ax. Clearly, f(0) = 0f is one-to-one because if f(x) = f(y), then $ax = ay \implies a(x - y) = 0$ $a^{-1}a(x - y) = a^{-1}0$ Therefore, x = y.

JOHNEW ZHANG

f is onto, since for any $x \in \mathbb{F}$, $f(a_{-1}x) = x$. So $\prod_{x \in \mathbb{F}, x \neq 0} x = \prod_{x \in \mathbb{F}, x \neq 0} f(x) =_x \in \mathbb{F}, x \neq 0 (ax) = a^{n-1} \prod_{x \in \mathbb{F}, x \neq 0} x$. $\prod_{x \in \mathbb{F}, x \neq 0} x \neq 0$ So $1 = a^{n-1}$.

Corollary 1. If \mathbb{F} is a finite field with *n* elements, then $x^n = x$ factors as $\prod_{a \in \mathbb{F}} (x - a)$.

Proof. For each $a \in \mathbb{F}$, either a = 0, so $a^n - a = 0^n - 0 = 0$. or $a \neq 0$, and $a^n - a = a(a^{n-1} - 1) = a0 = 0$. $\prod_{a \in \mathbb{F}} (x - a) | x^n - x$. But both have the same degree (n), so $c \prod_{a \in \mathbb{F}} (x - a) | x^n - x = (x^n x)$ for some $c \in \mathbb{F}$. so c = 1. and $\prod_{a \in \mathbb{F}} (x - a) | x^n - x = (x^n x)$

4