
ALGEBRA NOTE 6

JOHNEW ZHANG

1. Arithmetic Modulo for Polynomial

Overview : If a, b,m ∈ Z,m ≥ 1, then a ≡ b (mod m) ⇐⇒ m|(a− b).

Definition 1. If F is a field, and g, h, f ∈ F[x], f 6= 0,
then g ≡ h (mod f) if and only if f |(g − h).

x3 + x + 1 ≡ x (mod x3 + 1).

Theorem 1. If a1 ≡ a2 (mod f) and b1 ≡ b2 (mod f)
(a1, a2, b1, b2, f ∈ F[x], f 6= 0).
Then a1 + b1 ≡ a2 + b2 (mod f)
a1b1 ≡ a2b2 (mod f)

Definition 2. The congruence class of g mod f to b
[g] = {h ∈ F[x] such that h≡ g (mod f)}.

So mod x2 − 1.
[x3] = [x].
[x2 + 1] = 2.

Next day arithmetic for congruence classes.
Clearly
g ≡ g (mod f)
g ≡ h (mod f) ⇐⇒ h ≡ g (mod f).

g ≡ h (mod f) and h ≡ j (mod f) =⇒ g ≡ j (mod f)

because f |(g − h) and f |(h− j) =⇒ f |(g − j).
[g] = {h ∈ F[x] : h ≡ g (mod f)}
[g] = [h] =⇒
g ≡ g (mod f)

Definition 3. [g] + [h] = [g + h].

Fact : If a1 ≡ a2 (mod f) and b1 ≡ b2 (mod f)
(a1, a2, b1, b2, f ∈ F[x], f 6= 0).
Then a1 + b1 ≡ a2 + b2 (mod f)
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If a1, a2 are in the same congruence class and b1, b2 are in the same congruence class,
then a1 + b1, a2 + b2 are in the same congruence class as well.

Also define [g]h] = [gh].

Theorem 2. The set of congruence class (mod f) under these properties is a commutative
ring. 0 = [0], 1 = [1].

Example : F = Q.
f(x) ∈ Q[x] is x2 + 1.
[x− 1][x + 1] = [(x− 1)(x + 1)] = [x2 − 1] = [−2].
It is a nice observation : Working modulo f, deg(f) ≥ 1, every congruence class has a

representative g with deg(g) < deg(f).

Proof. If f(x) ∈ F[x], deg(f) ≥ 1 and h(x) ∈ F[x], we can write h(x) = f(x)q(x) +
r(x), deg(r) < deg(f).

h ≡ r (mod f), [h] = [r].
Notation : If F is a field and f(x) ∈ F[x] has degree less than or equal to 1, then F[x]/(f)

is the ring of congruence classes (mod f).
�

Example : F = Z3, f(x) = x2 + 1
F[x]/(f) = Z3[x]/(x2 + 1).
Every congruence class has a representative of degree less than 2.
Polynomial in Z3[x] with degree less than 2. (0, 1, 2, x, x + 1, x + 2, 2x, 2x + 1, 2x + 2)
The only congruence classes are [0], [1], [2], [x], [x + 1], [x + 2], [2x], [2x + 1], [2x + 2]
So,Z3[x]/(f) = {[0], . . .}.
Is this a field? Does every non-zero element have a multiplicative inverse?
This ring is a field.

First example of a finite field where the number of elements is not prime.
What are the finite fields?
Zp,Z3[x]/(x2 + 1).

Theorem 3. If F is a field, and f(x) ∈ F[x] has degree ≥ 1, then F[x]/(f) is a field if and
only if f(x) is irreducible.

Proof. If f(x) is not irreducible, then f(x) = g(x)h(x) with g(x), h(x) ∈ F[x], deg(g), deg(h) <
deg(f)

[g], [h] 6= 0 since f - g, f - h.
But [g][h] = [gh] = [f ] = 0.
If [g] had a multiplicative inverse, then [g]−1[g][h] = [0]
[h] = 0, Therefore, this contradicts, so [g] has an inverse =⇒ F[x]/(f) is not a field.
If f(x) is irreducible, then for any [g] 6= 0, so f - g, gcd(f, g) = 1
So we can choose s, t ∈ F[x] with sf + tg = 1.
[1] = [sf + tg] = [tg] = [t][g].
So [g]−1 = [t], Since [g] 6= 0, was any element of F/(f), this is a field. �
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x2 + 1 is irreducible in Q[x], so Q[x]/(x2 + 1) is a field.
Consider : think of Q being in this field, since for every rational q ∈ Q, [q] ∈ Q[x]/(x2+1).
If [q1] = [q2], q1, q2 ∈ Q, then x2 + 1|(q1 − q2).
q1 = q2 as rational numbers, so the function q =⇒ [q] is injective (one-to-one).
This function also contains a square root of -1.
[x]2 = [x2] = [−1].
Field is ”the same” as Q[i].
Q[x][y] = polynomials in x and y with coefficients in Q .

2. Finite Field

Theorem 4. Let F be a field, and f(x) ∈ F[x] an irreducible polynomial of degree ≥ 1.
Then F[x]/(f)

(i) is a field.
(ii) contains a copy of F.
(iii) contains a root of f(x).

Proof. (i) is already done.
(ii) We can define a function g(a) = [a] for F to F[x]/(f).
By definition, g(a + b) = g(a) + g(b), g(ab) = g(a)g(b).
And also g is an injective function, because g(a) = g(b), then [a] = [b], so f(x)|(b − a).

This is impossible unless b = a.
(iii) f([x]) = [f(x)] = [0] = 0

�

Proposition 1. Let p be a prime, and f(x)Zp[x] an irreducible polynomial of degree d ≥ 1.

Then Zp[x]/(f) is a field with pd elements.

Proof. Every congruence class contains a unique polynomial r(x) with deg(r) ≤ d − 1. If
r1(x), r2(x) have degree ≤ d− 1.

then if [r1] = [r2], we have f |(r2 − r1) deg(f) > deg(r2 − r1).
So this is only possible if r1 = r2.
The congruence classes are in one-to-one correspondence with polynomial in Zp[x] of

degree ≤ d− 1.
The number of polynomials in Zp[x] with degree ≤ d − 1 is the number of sequences

a0, a1, . . . , ad−1 ∈ Zp.

So there are pd choices. �

Theorem 5. Fermat’s Little Theorem for Finite Fields :
If F is a field with n (<∞) elements, and a ∈ F is non-zero, then an−1 = 1.

Proof. Define f : F → F by f(X) = ax.
Clearly, f(0) = 0
f is one-to-one because if f(x) = f(y), then ax = ay =⇒ a(x− y) = 0
a−1a(x− y) = a−10
Therefore, x = y.
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f is onto, since for any x ∈ F, f(a−1x) = x.
So Πx∈F,x 6=0x = Πx∈F,x 6=0f(x) =x∈ F, x 6= 0(ax) = an−1Πx∈F,x 6=0x.
Πx∈F,x 6=0x 6= 0
So 1 = an−1. �

Corollary 1. If F is a finite field with n elements, then xn = x factors as Πa∈F(x− a).

Proof. For each a ∈ F, either a = 0, so an − a = 0n − 0 = 0.
or a 6= 0, and
an − a = a(an−1 − 1) = a0 = 0.
Πa∈F(x− a)|xn − x.
But both have the same degree (n), so cΠa∈F(x− a)|xn − x = (xnx) for some c ∈ F.
so c = 1. and Πa∈F(x− a)|xn − x = (xnx) �


