ALGEBRA NOTE 6

JOHNEW ZHANG

1. Arithmetic Modulo for Polynomial

Overview : If $a, b, m \in \mathbb{Z}, m \geq 1$, then $a \equiv b(\bmod m) \Longleftrightarrow m \mid(a-b)$.
Definition 1. If F is a field, and $g, h, f \in \mathbb{F}[x], f \neq 0$, then $g \equiv h(\bmod f)$ if and only if $f \mid(g-h)$.
$x^{3}+x+1 \equiv x\left(\bmod x^{3}+1\right)$.

Theorem 1. If $a_{1} \equiv a_{2}(\bmod f)$ and $b_{1} \equiv b_{2}(\bmod f)$
$\left(a_{1}, a_{2}, b_{1}, b_{2}, f \in \mathbb{F}[x], f \neq 0\right)$.
Then $a_{1}+b_{1} \equiv a_{2}+b_{2}(\bmod f)$
$a_{1} b_{1} \equiv a_{2} b_{2}(\bmod f)$
Definition 2. The congruence class of $g \bmod f$ to b
$[g]=\{h \in \mathbb{F}[x]$ such that $h \equiv g(\bmod f)\}$.
So $\bmod x^{2}-1$.
$\left[x^{3}\right]=[x]$.
$\left[x^{2}+1\right]=2$.
Next day arithmetic for congruence classes.
Clearly
$g \equiv g(\bmod f)$
$g \equiv h(\bmod f) \Longleftrightarrow h \equiv g(\bmod f)$.

$$
g \equiv h \quad(\bmod f) \text { and } h \equiv j \quad(\bmod f) \Longrightarrow g \equiv j \quad(\bmod f)
$$

because $f \mid(g-h)$ and $f|(h-j) \Longrightarrow f|(g-j)$.
$[g]=\{h \in \mathbb{F}[x]: h \equiv g(\bmod f)\}$
$[g]=[h] \Longrightarrow$
$g \equiv g(\bmod f)$
Definition 3. $[g]+[h]=[g+h]$.
Fact: If $a_{1} \equiv a_{2}(\bmod f)$ and $b_{1} \equiv b_{2}(\bmod f)$
$\left(a_{1}, a_{2}, b_{1}, b_{2}, f \in \mathbb{F}[x], f \neq 0\right)$.
Then $a_{1}+b_{1} \equiv a_{2}+b_{2}(\bmod f)$

If a_{1}, a_{2} are in the same congruence class and b_{1}, b_{2} are in the same congruence class, then $a_{1}+b_{1}, a_{2}+b_{2}$ are in the same congruence class as well.

Also define $[g] h]=[g h]$.
Theorem 2. The set of congruence class (mod f) under these properties is a commutative ring. $0=[0], 1=[1]$.

Example : $\mathbb{F}=\mathbb{Q}$.
$f(x) \in \mathbb{Q}[x]$ is $x^{2}+1$.
$[x-1][x+1]=[(x-1)(x+1)]=\left[x^{2}-1\right]=[-2]$.
It is a nice observation : Working modulo f , $\operatorname{deg}(f) \geq 1$, every congruence class has a representative g with $\operatorname{deg}(g)<\operatorname{deg}(f)$.

Proof. If $f(x) \in \mathbb{F}[x], \operatorname{deg}(f) \geq 1$ and $h(x) \in \mathbb{F}[x]$, we can write $h(x)=f(x) q(x)+$ $r(x), \operatorname{deg}(r)<\operatorname{deg}(f)$.
$h \equiv r(\bmod f),[h]=[r]$.
Notation : If \mathbb{F} is a field and $f(x) \in \mathbb{F}[x]$ has degree less than or equal to 1 , then $\mathbb{F}[x] /(f)$ is the ring of congruence classes $(\bmod f)$.

Example : $\mathbb{F}=\mathbb{Z}_{3}, f(x)=x^{2}+1$
$\mathbb{F}[x] /(f)=\mathbb{Z}_{3}[x] /\left(x^{2}+1\right)$.
Every congruence class has a representative of degree less than 2.
Polynomial in $\mathbb{Z}_{3}[x]$ with degree less than 2. ($0,1,2, x, x+1, x+2,2 x, 2 x+1,2 x+2$)
The only congruence classes are [0], [1], $[2],[x],[x+1],[x+2],[2 x],[2 x+1],[2 x+2]$
So, $\mathbb{Z}_{3}[x] /(f)=\{[0], \ldots\}$.
Is this a field? Does every non-zero element have a multiplicative inverse?
This ring is a field.
First example of a finite field where the number of elements is not prime.
What are the finite fields?
$\mathbb{Z}_{p}, \mathbb{Z}_{3}[x] /\left(x^{2}+1\right)$.
Theorem 3. If \mathbb{F} is a field, and $f(x) \in \mathbb{F}[x]$ has degree ≥ 1, then $\mathbb{F}[x] /(f)$ is a field if and only if $f(x)$ is irreducible.

Proof. If $\mathrm{f}(\mathrm{x})$ is not irreducible, then $f(x)=g(x) h(x)$ with $g(x), h(x) \in \mathbb{F}[x], \operatorname{deg}(g), \operatorname{deg}(h)<$ $\operatorname{deg}(f)$
$[g],[h] \neq 0$ since $f \nmid g, f \nmid h$.
But $[g][h]=[g h]=[f]=0$.
If $[g]$ had a multiplicative inverse, then $[g]^{-1}[g][h]=[0]$
$[h]=0$, Therefore, this contradicts, so $[g]$ has an inverse $\Longrightarrow \mathbb{F}[x] /(f)$ is not a field.
If $\mathrm{f}(\mathrm{x})$ is irreducible, then for any $[g] \neq 0$, so $f \nmid g, \operatorname{gcd}(f, g)=1$
So we can choose $s, t \in \mathbb{F}[x]$ with $s f+t g=1$.
$[1]=[s f+t g]=[t g]=[t][g]$.
So $[g]^{-1}=[t]$, Since $[g] \neq 0$, was any element of $\mathbb{F} /(f)$, this is a field.
$x^{2}+1$ is irreducible in $\mathbb{Q}[x]$, so $\mathbb{Q}[x] /\left(x^{2}+1\right)$ is a field.
Consider : think of \mathbb{Q} being in this field, since for every rational $q \in \mathbb{Q},[q] \in Q[x] /\left(x^{2}+1\right)$. If $\left[q_{1}\right]=\left[q_{2}\right], q_{1}, q_{2} \in \mathbb{Q}$, then $x^{2}+1 \mid\left(q_{1}-q_{2}\right)$.
$q_{1}=q_{2}$ as rational numbers, so the function $q \Longrightarrow[q]$ is injective (one-to-one).
This function also contains a square root of -1 .
$[x]^{2}=\left[x^{2}\right]=[-1]$.
Field is "the same" as $\mathbb{Q}[i]$.
$\mathbb{Q}[x][y]=$ polynomials in x and y with coefficients in \mathbb{Q}.

2. Finite Field

Theorem 4. Let \mathbb{F} be a field, and $f(x) \in \mathbb{F}[x]$ an irreducible polynomial of degree ≥ 1. Then $\mathbb{F}[x] /(f)$
(i) is a field.
(ii) contains a copy of \mathbb{F}.
(iii) contains a root of $f(x)$.

Proof. (i) is already done.
(ii) We can define a function $g(a)=[a]$ for \mathbb{F} to $\mathbb{F}[x] /(f)$.

By definition, $g(a+b)=g(a)+g(b), g(a b)=g(a) g(b)$.
And also g is an injective function, because $g(a)=g(b)$, then $[a]=[b]$, so $f(x) \mid(b-a)$. This is impossible unless $b=a$.
(iii) $f([x])=[f(x)]=[0]=0$

Proposition 1. Let p be a prime, and $f(x) Z_{p}[x]$ an irreducible polynomial of degree $d \geq 1$. Then $\mathbb{Z}_{p}[x] /(f)$ is a field with p^{d} elements.
Proof. Every congruence class contains a unique polynomial $\mathrm{r}(\mathrm{x})$ with $\operatorname{deg}(r) \leq d-1$. If $r_{1}(x), r_{2}(x)$ have degree $\leq d-1$.
then if $\left[r_{1}\right]=\left[r_{2}\right]$, we have $f \mid\left(r_{2}-r_{1}\right) \operatorname{deg}(f)>\operatorname{deg}\left(r_{2}-r_{1}\right)$.
So this is only possible if $r_{1}=r_{2}$.
The congruence classes are in one-to-one correspondence with polynomial in $\mathbb{Z}_{p}[x]$ of degree $\leq d-1$.

The number of polynomials in $\mathbb{Z}_{p}[x]$ with degree $\leq d-1$ is the number of sequences $a_{0}, a_{1}, \ldots, a_{d-1} \in \mathbb{Z}_{p}$.

So there are p^{d} choices.
Theorem 5. Fermat's Little Theorem for Finite Fields:
If \mathbb{F} is a field with $n(<\infty)$ elements, and $a \in \mathbb{F}$ is non-zero, then $a^{n-1}=1$.
Proof. Define $f: F \rightarrow F$ by $f(X)=a x$.
Clearly, $f(0)=0$
f is one-to-one because if $f(x)=f(y)$, then $a x=a y \Longrightarrow a(x-y)=0$
$a^{-1} a(x-y)=a^{-1} 0$
Therefore, $x=y$.
f is onto, since for any $x \in \mathbb{F}, f\left(a_{-1} x\right)=x$.
So $\Pi_{x \in \mathbb{F}, x \neq 0} x=\Pi_{x \in \mathbb{F}, x \neq 0} f(x)={ }_{x} \in \mathbb{F}, x \neq 0(a x)=a^{n-1} \Pi_{x \in \mathbb{F}, x \neq 0} x$.
$\Pi_{x \in \mathbb{F}, x \neq 0} x \neq 0$
So $1=a^{n-1}$.
Corollary 1. If \mathbb{F} is a finite field with n elements, then $x^{n}=x$ factors as $\Pi_{a \in \mathbb{F}}(x-a)$.
Proof. For each $a \in \mathbb{F}$, either $a=0$, so $a^{n}-a=0^{n}-0=0$.
or $a \neq 0$, and
$a^{n}-a=a\left(a^{n-1}-1\right)=a 0=0$.
$\Pi_{a \in \mathbb{F}}(x-a) \mid x^{n}-x$.
But both have the same degree (n), so $c \Pi_{a \in \mathbb{F}}(x-a) \mid x^{n}-x=\left(x^{n} x\right)$ for some $c \in \mathbb{F}$. so $c=1$. and $\Pi_{a \in \mathbb{F}}(x-a) \mid x^{n}-x=\left(x^{n} x\right)$

