ALGEBRA NOTE 5

JOHNEW ZHANG

1. POLYNOMIALS

If R is a commutative ring, then let R[z] be the set of polynomials with coefficients in
R.
f(@) =agz? + ag_1z¥ ' + .+ arz + aQZZfZO a;x’, a; € R,

Adding and multiplying polynomials.
S g aiat+ S b= (a; + by)a
Z?:o aiwzzf:o bixZ:Z(Zﬂ-k:l a;bi)z".

Check that R[z] is also a commutative ring, with 0 and 1, being the constant polynomials
0 and 1.

The degree of a polynomial )" a;x’ is the largest d such that ag # 0.

The zero polynomial has degree —oo

If Fis a field, and f(x), g(z) € F[z],

then deg(fg) = deg(f) + deg(g).

Example : of a ring, where that doesn’t work.
R = Zﬁ7

flx) =322 +1,9(x) = 22° + .

f(@)g(z) = (322 + 1)(22° + x) = 22° + 323 + .
Therefore the degree is 5.

Why does it work in a field?

(ajz%+ (lower degree terms))(bez¢+(lower terms))= a;b.z"¢ + lower degree terms.

If the coefficients are in a field IF, and a; # 0, b # 0, then ajb. # 0, also. (integral
domain)

Application:
Let F be a field, and f(x) € F[x] is a unit. Then f(x) is constant.

Proof. 1f g(x) € F[z] with fg = 1, then deg(f) + deg(g) = deg(fg) = 0.
f#0,9#0, so deg(f),deg(g) = 0,
So deg(f) + deg(g) = 0.
flz)=3"ga;x", deg(f) is the largest d such that aq # 0.
1
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So f(x) =ap € F.g(z) =by € F. O

AKA: If F is a field, then algebra in F[z] is a lot like algebra in Z.
We really need F to be a field, or things are not like Z.

Example: In Z, if a®> = 1, then a = +1.
If f(x) € Zy|x], then (2f(x) +1)2 =4f(z)? +4f(z) +1=1.

Lemma 1. Let F is a field, and f(x),g(x) € Flz] (non-zero). Then there are polynomials
a(x) and r(z),
such that, g(x) = q(x) f(z) +r(z) and deg(r) < deg(f). Also, q(z) and r(x) are unique.

Proof. We can assume that deg(g) < deg(f). Otherwise, ¢ = 0,7 = ¢ works.

We are going to proceed by induction on the degree of g.

If deg(g) = 0, then either deg(g) < deg(f) (done!) or else.

f(z) and g(z) are both constant.

If f(z) = ag,g(x) = by, then g(x) = 2 f(x) + 0

Induction step: Assume that for any go(x) € F[x] with deg(g2) < deg(g)

we can write

92(z) = q2(z) f () + ra(x), deg(r2) < deg(f)

Write g(z) = agz?+ other terms of lower degree.

And f(z) = bex®+ lower order terms. be # 0.

Let ga(z) = g(x) — % f(z)a—*.

Write out the first term

ga(x) = (agz®+...)— 7 ()29 (bez®+...) = (agz?+...) = (agz?+..)=0-20+... =
something of degree less than d = deg(g).

deg(g2) < deg(g).

By the induction hypothesis, we can write go(z) = q2(z) f(x) + r(z) with g, r € Flx],
deg(r) < deg(f).

Since g(z) = ga(x) + % f ()20 f(z),

we get,

9(x) = 290 f(2) +go(@) [(2) + () = (8 F@)a% + (@) () + (). with deg(r) <
deg(f),

So take

a(z) = 2 F(2)2% + ga(2).

By induction, we can do this for all polynomials.

Secondly, for the uniqueness,

Suppose that g(z) = qi(z) f(z) + r1(z) and g(z) = g2(x) f(x) + r2(z)

with deg(r1), deg(re) < deg(f).

Then 0 = (q1(z)f(z) + ri(2)) — (@ (2) f(2) + 71 (2))

Sor1—r2 = flg2 — q1).

Since F is a field,

deg(r1 — r2) = deg(f) + deg(g2 — q1)
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If go — q1 # 0, then deg(ry — rq) > deg(f)
But deg(r1), deg(ra) < deg(f).

So deg(r1 —r2) < deg(f)

Useful fact deg(f + g) < max{deg(f),deg(g)}
So we have a contradiction.

Coq1 = Q2,71 = T2.

The proof shows how to do the division algorithm.

Example: Long divide 22+ 1 into 2® — 222 4+ 1 and find the quotient ¢(x) and remainder
r(zx).

=22 +1=a(@?+1)+(-222 -2 +1)

222 — 2 +1=2(22+1)+ (—z +3).

So the remainder is (—x + 3).

Therefore 23 — 222 + 1 = (22 + 1) (2 — 2) + (—z + 3).

Proposition 1. If F is a field, f(x) € Flz|, and ¢ € F, then f(c) = 0, if and only if
(z—o)|f ().

Proof. By the division algorithm, we can write f(z) = ¢(x)(x —c¢)+r(x) where deg(r(x)) <
deg(x —c) = 1.

Since deg(r) < 1, then r € F is a constant.

So f(c) =qlc)(c—c)+r=r.

In fact, f(z) = q(z)(x —c) + f(c)

If f(c) =0, then f(x) =q(x)(z —¢), so z — ¢|f(z).

On the other hand, if f(z) = (z — ¢)h(x),

then f(c) = (c—c)h(c) =0

U

Definition 1. For a commutative ring R, we say that a divides b, (for a,b € R) if and
only if b = ac for some ¢ € R, alb.

IfF is a field, and f(x), g(z) € Flz], then f(z)|g(x) means ci f(x)|cag(z) for any c1,ca €
F, (they are not 0)

For example, (z — 1)|(z% — 1)(inQ]x])
but also (2z — 2)|(z3 — 1).

Theorem 1. (Euclidean Algorithm for Polynomials)

Let F be a field, f(x),g(z) € Flz]. non-zero, then f(x),g(x) have a greatest common
divisor.

Le., there is a polynomial d(z) so that

(1) d|f.d|g.

(2) if e(x) € Flx| with e|f,e|lg then e|d.
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(3) Bezout’s Properties: There exists s(x),t(x) € Flz], with d = fs+ gt.
d is not unique, but if ds is another polynomial with all the same properties, then d(x) =
cdy(zx) for some non-zero ¢ € F.

Observation: If F is a field and f,g € F[z] then f|g,g|f if and only if f = cg for some
ce Fc#0.

Proof. If f = cg then g|f, and g = ¢~ f, so flg.
If g|f, flg, deg(f) = deg(g).
So g = fh for some h € F[z], deg(h) = 0.
Then h =c € F. O

If d has those properties in the theorem of the gcd of polynomials, then so does cd for

any c € F.c # Q.
On the other hand, if ds also has all of these properties, then d|d2 and ds|d, so da = cd.

Definition 2. f(x) € F|[x] is monic if f(x) = x%+smaller terms.
So for f(x),g(x) € F|x] there is a unique monic d satisfying the condition d|f,d|g.
We call that the ged of f(x), g(x).

Proof of the theorem:

Proof. We can suppose that deg(f) > deg(g),

Using the division algorithm, write
f=ag+r1, deg(r1) < deg(g).

= qor1 + 12, de(r2) < deg(ry)
Eventually, r; = 0.
i3 = qj-1rj—2 + rj-1 (x)
rj—2=qjrj—1+0.
Then take d = r;_1.
d = rj-1|rj-2
d’?“j_g
Continuing, d|f, d|g.
Then want to show that d = sf + tg for some s,t € F[z].
By the x, d = (1)rj—3 + (—¢qj—1)rj—2.
but rj_4 = qj_orj_3+71j_2
so d = ()rj-3 + (=gj-1)(rj—a — gj—2rr—3) = () + (?)g.
Now, if e|f, e|lg, then e|sf + tg = d.

]

Example: Find the ged of f(z) = z* — 223 + 2% — 2z, g(z) = 2* + 323 + 222 + 32 + 1.
Go through the Euclidean Algorithm and the long division,

you get the ged is d = 2% + 1. 22 + 1= (Zz + 1) f(z) + (P2 + 1)g(z).

GCDs for polynomial over F VS GCDs for integers.
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1.1. Unique factorization for polynomials.

Definition 3. A polynomial f(x) € Flx] is irreducible if and only if whenever f(x) =
g(x)h(x),9,h € Flz|, then g or h is constant.

Theorem 2. Any non-zero polynomial f(x) € Flx] can be written as
f=api ... pt
where a € F,
p; € Flx] are distinct monic and irreducible, and e; > 1.
This representation is unique (up to order).

Lemma 2. If p,q,r € Flx], and gcd(p,q) = 1 and p|qr, then p|r

Proof. Choose s,t € F[x] so that sp + tq = 1.
r=r-1=r(sp+tq) =prs+rqt
Therefore the whole thing is divisible by p. ([l

Corollary 1. If p is irreducible, and p|qiqz . . . qr, then plg; for some 1.

Proof. (For r = 2) Suppose that p is irreducible and p|q;¢a.
gcd(p, q1) is a divisor of p(n).
So ged(p,q1) = 1 or cp, for some c € F.
If ged(p, q1) = cp, then eplqi, so plqi.
If gcd(p,q1) = 1, then the previous lemma gives p|qa.
If r > 2, just do induction:

plage. - ¢ =a(g. . 4.
Then either p|g1 or plga. .. ¢

Theorem 3. Unique factorization for polynomial:
IfF is a field and f(x) € F|x] is non-zero, then f can be written as
f(x) = ap?'ps? ... per with a € F.
p; monic irreducible, e; > 1.
Uniquely (up to reordering the product).

Proof. If f(z) = az?+ ..., then ! f(z) is monic.
So we’ll assume that f(x) is monic.
Want to show that f(z) can be written as a product of irreducible monic polynomials.
By induction on the degree.
Base case: deg(f) = 1.
Then f(z) =z + b for some b € F.
f(x) is irreducible.
Suppose that the statement is true for polynomials of degree less than degree of f.
If f is irreducible, we are done.
If not, we can write f(x) = g(x)h(z) with deg(g),deg(h) < deg(f). .
Say g(z)bx®+ ..., h(x) =cxc...
f(z) = bexT 4 ...
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So be = 1.

Then f(z) = g(z)h(x) = (cg(z))(c—1h(z)) = (2 + .. ) (Tw +...) .

By the induction hypothesis, both cg(z) and c_jh(z) can be written as a product of
monic, irreducible polynomials, So f(z) can, too.

By the induction, any monic polynomial can be written as a product of monic irreducible
polynomials.

If f(z) € F[z] is non-zero (possibly not monic) then f(x) = ap{'ps?...pE as in the
theorem.

For uniqueness, suppose that

ap‘lalpg2 cpsr = bgt .. g’ with a,b € F non-zero, p;,¢; monic and irreducible, and
e, w; > 1.

Multiplying out, a is the coefficient of the higher power of x in apf! p§2 ...p¥r.and b is
the coefficient of the highest power of x in bg;™ ... g"".

So a =1b.

Now we want to show that

ap‘i’lpg2 Pl =bgy g

= p; are the ¢; (in some order).

Induction on the number of factors n =e; +eg + ...+ e,.

Base case : n=1LHS =p=¢q;" ... q"r

RHS should not be the product of two monic irreducible polynomials. So RHS = ¢,
and p = q.

So we are done if n = 1.

Now suppose that this is true for products of factor than n monic, irreducible polyno-
mials.

If p‘ilpgz cpir =gy . .q¥ with n = e; + e2 + ... + e, then p; is monic, irreducible,
and p1]|q”" ... g¥r

By the corollary, p|g; for some j. But the g; are irreducible, so p; = cg; for some ¢ € F.

Since p and q are monic, ¢ =1,

Therefore, p1 = ¢;. so p§171p§2 cpir =gt .qéuj_l e

By the induction hypothesis, the polynomials on the LHS are the same as the polyno-
mials, on the RHS, up to the order.

By the induction, the representation is unique.
O

We’ve been looking at polynomials in F[x] where F is a field. What about polynomials
in Z[z].

Irreducible polynomial in Z[z].

Question : When can f(z) € Z[z] be factored (in Z[x]).

A polynomial f(x) € Z[z] is primitive if the ged of the coefficients is 1. LE. if there is
no prime dividing all of the coefficients.

Lemma 3. If f and g€ Z[z] are primitive, then so is f - g.
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Proof. Let p be a prime, and f(x) = Z?:o a;x’,a; € 7,
f(l‘) = Zf:o bixi, bl S Z,
By hypothesis, there is at least one i with p{ b;. Let i be the smallest i such that p 1 b;.
Similarly, let jo be the least j such that p{ a;.
Now, fg = (3ilo aia®) (o bie') = S5 (35 jop asbi) .
Then coefficient of z?0t70 ig Ei+j:io+j0:ko a;b;.
This = (aobko + albko_l + .. ) + ajObZ-O + (aj0+1b1'071 + ...+ akgbo).
Therefore, this expression is not divisible by p.
So the coefficient of 20170 in f - ¢ is not divisible by p.
Since p was any prime, f - ¢ is primitive. O

Theorem 4. Gauss Lemma : if f(x) € Z[x] and f(z) is reducible in Q[x], then f(x) is
reducible in Z|x].

Proof. Let f(x) € Z]z]. and suppose that f = gh, for g,h € Q|z], deg(g),deg(h) < deg(f).
Choose M, N € Z such that Mg(z), Nh(x) € Z[x].
Also, of , os the ged of the coefficients of Mg(x), then Mg(z) = mg1(z),for g1(z) € Z|x]
primitive.
Similarly, Nh(z) = nhi(x) where hi(z) € Z[x] is primitive.
Now, gih1 € Zx] is primitive, and mn(gi1h1) = (mgi(x))(nhi(x)) = Mg(x)Nh(z) =
If d is the ged of the coefficients of f, then mn = M Nd.
MNdgi(z)hi(z) = MN f(z)
and 5o (dgy (2)) (ha(2)) = £(z). dor(z), ha(2) € Zfa].
(degrees haven’t changed). O

Corollary 2. Let f(z) = ch'lzo a;zt € Z[x].,
and suppose that
f(5)y =0, b,ceZ ged(b,c) = 1.

C
Then clag, blag.

Proof. Suppose that f(2) = 0. Then in Q[z], (v — 2)|f(z).

C

So in fact there is some integer N such that if N(z — %) € Z|x] is primitive and N (z —

OIS (@)
So (cx —b)|f(x) in Z[z].
That means (cz — b)(gex® + ...+ go) = (agz? + ...+ ap)(cgex® + ... — bgo) = (agz? +
Lo+ ao).
So ag = —bgo Then b|ag, c|ag. O
Example :

Show that f(x) = 325 4+ 2z — 2 has no rational roots.
Solution : If f(%) =0, % € Q in least terms.

The corollary says that b|2, ¢[3, b= +1, £2.
c=+1,+3.

Then list it,
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None of these is a root.

Theorem 5. FEisenstein’s Criterion :
Let f(z)Z]x].
fz) = Z?:o a;x',a; € Z,a; # 0.
If there is a prime p such that
1) ptag.
2) pla; for 0 <i <d.
3) p* f ao.
Then f(x) is irreducible.

Example : f(x) = 22'% — 102% + 5
Is irreducible, since 5 1 2, 5[10, 5|5, 52|5.

Proof. Suppose f(x) is reducible and write f(z) = g(z)h(z) = (3%, bimi)(zg’zo cjzd).
deg(g)> deg(h) < deg(f), bs, ¢j € L.
ag = byc, (assuming m = deg(g),n = deg(h))
So p1bm,p1cn.
Also ag = bycg
So plboco but p? t boco
Thus, exactly one of cg, by is divisible by p.
We will suppose that p|bg, p 1 co.
Let ig be the least value of i such that pt b;.
Look at a;,. (ip < m < d).
By the assumption, pl|a;, since ig < d.
iy = Zj—f—k:io brcj = biyco + bijg—1c1 + -+ - + bocy, -
Divisible by p, since p|b; for i < ig.
So p|bioCO but p 'f biovp 'f €o-
This is a contradiction, so f(z) does not factor in Q[x].

2. ALGEBRAIC NUMBERS
A number a € C is algebraic if there is some polynomial f(x) € Q[z] such that f(a) = 0.
Example : /2 is the positive solution to 2% — 2 = 0.
If f(z) € Q[z], the roots of f(x) (in C or in R) are somehow described.

In terms of Q, f(z) = 1027 — 3z — 1.
f(a) =0.

If a € C is not algebraic, then it is transcendental.

Theorem 6. If a € C us algebraic, then there is a unique monic polynomial f(x) € Q
such that f(a) =0 and f(x)|g(x) for any non-zero g(x) € Q[x] such that g(a) = 0.
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Proof. We know that a is the root of some non-zero polynomial. Let f(x) be apolynomial
of lowest degree in Q[x] which is monic, and f(a) = 0.

Suppose that g(a) = 0, for g(x) € Q[z].

Write g(z) = q(z) f(x) + r(z),q,r € Q[z] and deg(r) < deg(f).

Then 0 = g(a) = q(a)f(a) + r(a) = r(a), since f(a) = 0.

If r(x) is not the zero polynomial then dividing by the leading coefficient, give a poly-
nomial 72(x) € Q[z]. which is monic, and r(2](a) = 0, deg(r2) < deg(f).

It contradicts, so r(z) =0, g(x) = q(x) f(x).

In other words, f(x)|g(x).

If fi(x), f2(x) both have this property.

fa(a) =0 so
J1(@)]f2) ()
fi(a) =0, fa(z)|f1(z)

This means that f1(x) = cfa(z) for some non-zero ¢ € Q.
But both are monic, ¢ = 1. ]

The polynomial in the theorem is the minimal polynomial for a.

Corollary 3. If a € C is the root of a polynomial f(x) € Q[z] which is non-zero and
irreducible, then a is irrational. (unless deg(f) =1)

Proof. If a is rational, then (z — a)|f(x). (given that f(a) = 0).
So f(x) is not irreducible. O

Example :
f(z) = 2™ — 2 € Q[x] is irreducible by the Eisenstein’s Criterion .
So if n > 1, then 2= ¢ Q.

Example :
V2 + /3 is algebraic, but what is the minimal polynomial f(z) € Q[z]. such that
f(V2+V3)=0.

Solution 1. Need some aqw® 4+ ag_1w? '+ ...+ ag =0, aq € Q.
w=+v2+3
w? = (V24 v3)% =5+ 2V6.
w3 = 11v/2 + 9V/3.
w* = 49 + 201/6.
w* — 10w? = (49 + 20v/6) — 10(5 + 2v6) = —1
w — 10w? +1 = 0.
f(x) = z* — 102 + 1.
fw)=0.
Done but is f(x) the minimal polynomial?
If not, f(x) factors in Z[z].
If f(x) factors, then either it has a root in Q, or else if factors as (quadratic)(quadratic).
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By Gauss Lemma Corollary, the only possible roots of f(x) in Q are z = +1.

f(x) has no root in Q, so if it is reducible, it factors as f(z) = z* — 1023 + 1 = (22 +
az +b)(2% + cx + d) = 2 + (a + ¢)2® + (d + b+ ac)x® + (ad + be)x + bd.

There is no solution for this equation group.

3. TRANSCENDENTAL NUMBERS

a € C is transcendental if and only if it is not algebraic.
Examples (without proof)

e, m....

How do you show that specific number is transcendental?

Theorem 7. Liouville : Suppose that a € R is a root of the irreducible polynomial f(x) €
Q[z]. Then there is a § > 0 such that |a — §| > (;id for any rational number % € Q in lowest

terms d = deg(f) > 1.

For any real number a, you can find rational % with |a — §| as small as you want.
For example, just cut off the decimal expression of a at some point.

a = 1.362187...,% = 1.362187

If T want |a — §| < €, a algebraic and irrational.
G < <e

1
so (de71)a < q.

Proof. We have f(z) € Q[z] of degree d > 1, irreducible. f(a) = 0.

Without loss of generality, f(x) € Z[z].

so f(z) = agz® + ...+ a1z + ag,a; € Z.

What a lower bound on |z — al for x € Q .

If x is not in [a — 1,a + 1], then |z —a| > 1.

On the other hand, if x is in [a — 1,a + 1], then for some ¢ in [a — 1,a + 1] we have
[f (@) = [f' (o)l — al.

|f'(c)| < M for ¢ on the interval for some M.

v —al > &1f@)

Now we want a lower bound on |f(x)| for x € Q.

Write x = %,p,q € Z.

f(%)—ad%+...+ao.

qdf(g) =agp? + ... +ag_1gpTt + ..+ aipg?T + apg?.

So qdf(g) € Z.

and it is not 0, so ]qdf(g)] > 1.

OESY

p_ 11
L—al > g; g

So if L is not in [a —1,a + 1], |a—§|>12qidandof§isin [a—1,a+1].
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M—l

=¥
q

ars 1V

min{l,M 1} min{l,M '}
d >

qd
| = q 2¢4

So |a —

Construction transcendental construct a € R with very good approximation in Q.

For £ € Q, |\/§—§]>q%forsomeé>0.
Want to use this to show that certain numbers are transcendental.

Example : Let
a=>20 10710,
Then a is transcendental.

Proof. First of all, a = {5 + g5z + 155 + 102 + 191 + 1972 - - - = 0.11000100...010...010....
Point : the partial sums are rational numbers that are extremely close to a.
n —10!
Let or =370 107" € Q.
¢n = 10™
po= w107 =14+10" + 10" +... .
1 -m! _ 1
%:Zm=110 " — 10°
2 —m! _ 11
%:Zmzl].o m = 100"
_\3 —m! _ 110001
B =2 =107 = f550000-
Ja—a| = [ Y05, 107 = 107 = YL 107 = 10Dt 10= () g <
2. 10—(n+1)!
ja— 22| <210~ D! = 2107 HD = 2., Y for all n,
Now, suppose that a is algebraic. So
f(a) = 0. for some irreducible f(z) € Q[z]. of degree d > 2.
By Liouville’s Theorem, there is a § > 0 such that |a — §| > ;id, for all % € Q.

) Pn 2
So pri < |a—q7| < o

1 d
So dgitt < 248,
As soon as n > d, we get
107" =g, <174 < 2 forall n > d.
% is some real numbers.

This is impossible. So a is not algebraic. ([l

Can use this to show that > °_; b= is transcendental for any integer b > 2.
Lots of transcendental numbers.
e is transcendental.



