ALGEBRA NOTE 5

JOHNEW ZHANG

1. Polynomials

If \mathbb{R} is a commutative ring, then let $\mathbb{R}[x]$ be the set of polynomials with coefficients in \mathbb{R}.
$f(x)=a_{d} x^{d}+a_{d-1} x^{d-1}+\ldots+a_{1} x+a_{0}=\sum_{i=0}^{d} a_{i} x^{i}, a_{i} \in \mathbb{R}$.
Adding and multiplying polynomials.
$\sum_{i=0}^{d} a_{i} x^{i}+\sum_{i=0}^{d} b_{i} x^{i}=\sum_{i=0}^{d}\left(a_{i}+b_{i}\right) x^{i}$.
$\sum_{i=0}^{d} a_{i} x^{i} \sum_{i=0}^{d} b_{i} x^{i}=\sum\left(\sum_{j+k=1} a_{j} b_{k}\right) x^{i}$.
Check that $\mathbb{R}[x]$ is also a commutative ring, with 0 and 1 , being the constant polynomials 0 and 1.

The degree of a polynomial $\sum_{i=0}^{m} a_{i} x^{i}$ is the largest d such that $a_{d} \neq 0$.
The zero polynomial has degree $-\infty$
If \mathbb{F} is a field, and $f(x), g(x) \in \mathbb{F}[x]$,
then $\operatorname{deg}(f g)=\operatorname{deg}(f)+\operatorname{deg}(g)$.
Example : of a ring, where that doesn't work.
$\mathbb{R}=\mathbb{Z}_{6}$,
$f(x)=3 x^{2}+1, g(x)=2 x^{5}+x$.
$f(x) g(x)=\left(3 x^{2}+1\right)\left(2 x^{5}+x\right)=2 x^{5}+3 x^{3}+x$.
Therefore the degree is 5 .
Why does it work in a field?
$\left(a_{j} x^{d}+(\right.$ lower degree terms $\left.)\right)\left(b_{e} x^{e}+(\right.$ lower terms $\left.)\right)=a_{j} b_{e} x^{d+e}+$ lower degree terms.
If the coefficients are in a field \mathbb{F}, and $a_{j} \neq 0, b_{e} \neq 0$, then $a_{j} b_{e} \neq 0$, also. (integral domain)

Application:
Let \mathbb{F} be a field, and $f(x) \in \mathbb{F}[x]$ is a unit. Then $f(x)$ is constant.
Proof. If $g(x) \in \mathbb{F}[x]$ with $f g=1$, then $\operatorname{deg}(f)+\operatorname{deg}(g)=\operatorname{deg}(f g)=0$.
$f \neq 0, g \neq 0$, so $\operatorname{deg}(f), \operatorname{deg}(g) \geq 0$,
So $\operatorname{deg}(f)+\operatorname{deg}(g)=0$.
$f(x)=\sum_{i=0}^{m} a_{i} x^{i}, \operatorname{deg}(f)$ is the largest d such that $a_{d} \neq 0$.

So $f(x)=a_{0} \in \mathbb{F} \cdot g(x)=b_{0} \in \mathbb{F}$.
AKA: If \mathbb{F} is a field, then algebra in $\mathbb{F}[x]$ is a lot like algebra in \mathbb{Z}.
We really need \mathbb{F} to be a field, or things are not like \mathbb{Z}.
Example: In \mathbb{Z}, if $a^{2}=1$, then $a= \pm 1$.
If $f(x) \in \mathbb{Z}_{4}[x]$, then $(2 f(x)+1)^{2}=4 f(x)^{2}+4 f(x)+1=1$.

Lemma 1. Let \mathbb{F} is a field, and $f(x), g(x) \in \mathbb{F}[x]$ (non-zero). Then there are polynomials $q(x)$ and $r(x)$,
such that, $g(x)=q(x) f(x)+r(x)$ and $\operatorname{deg}(r)<\operatorname{deg}(f)$. Also, $q(x)$ and $r(x)$ are unique.
Proof. We can assume that $\operatorname{deg}(g) \leq \operatorname{deg}(f)$. Otherwise, $q=0, r=q$ works.
We are going to proceed by induction on the degree of g.
If $\operatorname{deg}(g)=0$, then either $\operatorname{deg}(g)<\operatorname{deg}(f)$ (done!) or else.
$f(x)$ and $g(x)$ are both constant.
If $f(x)=a_{0}, g(x)=b_{0}$, then $g(x)=\frac{b_{0}}{a_{0}} f(x)+0$
Induction step: Assume that for any $g_{2}(x) \in \mathbb{F}[x]$ with $\operatorname{deg}\left(g_{2}\right)<\operatorname{deg}(g)$
we can write
$g_{2}(x)=q_{2}(x) f(x)+r_{2}(x), \operatorname{deg}\left(r_{2}\right)<\operatorname{deg}(f)$
Write $g(x)=a_{d} x^{d}+$ other terms of lower degree.
And $f(x)=b_{e} x^{e}+$ lower order terms. $b_{e} \neq 0$.
Let $g_{2}(x)=g(x)-\frac{a_{d}}{b_{e}} f(x) x^{d-e}$.
Write out the first term
$g_{2}(x)=\left(a_{d} x^{d}+\ldots\right)-\frac{a_{d}}{b_{e}} f(x) x^{d-e}\left(b_{e} x^{e}+\ldots\right)=\left(a_{d} x^{d}+\ldots\right)-\left(a_{d} x^{d}+\ldots\right)=0 \cdot x^{d}+\ldots=$
something of degree less than $d=\operatorname{deg}(g)$.
$\operatorname{deg}\left(g_{2}\right)<\operatorname{deg}(g)$.
By the induction hypothesis, we can write $g_{2}(x)=q_{2}(x) f(x)+r(x)$ with $q_{2}, r \in \mathbb{F}[x]$, $\operatorname{deg}(r)<\operatorname{deg}(f)$.

Since $g(x)=g_{2}(x)+\frac{a_{d}}{b_{e}} f(x) x^{d-e} f(x)$,
we get
$g(x)=\frac{a_{d}}{b_{e}} x^{d-e} f(x)+q_{2}(x) f(x)+r(x)=\left(\frac{a_{d}}{b_{e}} f(x) x^{d-e}+q_{2}(x)\right) f(x)+r(x)$. with $\operatorname{deg}(r)<$ $\operatorname{deg}(f)$,

So take
$q(x)=\frac{a_{d}}{b_{e}} f(x) x^{d-e}+q_{2}(x)$.
By induction, we can do this for all polynomials.
Secondly, for the uniqueness,
Suppose that $g(x)=q_{1}(x) f(x)+r_{1}(x)$ and $g(x)=q_{2}(x) f(x)+r_{2}(x)$
with $\operatorname{deg}\left(r_{1}\right), \operatorname{deg}\left(r_{2}\right)<\operatorname{deg}(f)$.
Then $0=\left(q_{1}(x) f(x)+r_{1}(x)\right)-\left(q_{1}(x) f(x)+r_{1}(x)\right)$
So $r_{1}-r_{2}=f\left(q_{2}-q_{1}\right)$.
Since \mathbb{F} is a field,
$\operatorname{deg}\left(r_{1}-r_{2}\right)=\operatorname{deg}(f)+\operatorname{deg}\left(q_{2}-q_{1}\right)$

If $q_{2}-q_{1} \neq 0$, then $\operatorname{deg}\left(r_{1}-r_{2}\right) \geq \operatorname{deg}(f)$
But $\operatorname{deg}\left(r_{1}\right), \operatorname{deg}\left(r_{2}\right)<\operatorname{deg}(f)$.
So $\operatorname{deg}\left(r_{1}-r_{2}\right)<\operatorname{deg}(f)$
Useful fact $\operatorname{deg}(f+g) \leq \max \{\operatorname{deg}(f), \operatorname{deg}(g)\}$
So we have a contradiction.
$\therefore, q_{1}=q_{2}, r_{1}=r_{2}$.

The proof shows how to do the division algorithm.
Example: Long divide $x^{2}+1$ into $x^{3}-2 x^{2}+1$ and find the quotient $q(x)$ and remainder $r(x)$.
$x^{3}-2 x^{2}+1=x\left(x^{2}+1\right)+\left(-2 x^{2}-x+1\right)$
$-2 x^{2}-x+1=2\left(x^{2}+1\right)+(-x+3)$.
So the remainder is $(-x+3)$.
Therefore $x^{3}-2 x^{2}+1=\left(x^{2}+1\right)(x-2)+(-x+3)$.

Proposition 1. If \mathbb{F} is a field, $f(x) \in \mathbb{F}[x]$, and $c \in \mathbb{F}$, then $f(c)=0$, if and only if $(x-c) \mid f(x)$.

Proof. By the division algorithm, we can write $f(x)=q(x)(x-c)+r(x)$ where $\operatorname{deg}(r(x))<$ $\operatorname{deg}(x-c)=1$.

Since $\operatorname{deg}(r)<1$, then $r \in \mathbb{F}$ is a constant.
So $f(c)=q(c)(c-c)+r=r$.
In fact, $f(x)=q(x)(x-c)+f(c)$
If $f(c)=0$, then $f(x)=q(x)(x-c)$, so $x-c \mid f(x)$.
On the other hand, if $f(x)=(x-c) h(x)$,
then $f(c)=(c-c) h(c)=0$

Definition 1. For a commutative ring \mathbb{R}, we say that a divides b, (for $a, b \in \mathbb{R}$) if and only if $b=a c$ for some $c \in \mathbb{R}, a \mid b$.

If \mathbb{F} is a field, and $f(x), g(x) \in \mathbb{F}[x]$, then $f(x) \mid g(x)$ means $c_{1} f(x) \mid c_{2} g(x)$ for any $c_{1}, c_{2} \in$ \mathbb{F}, (they are not 0)

For example, $(x-1) \mid\left(x^{3}-1\right)($ in $\mathrm{Q}[\mathrm{x}])$
but also $(2 x-2) \mid\left(x^{3}-1\right)$.

Theorem 1. (Euclidean Algorithm for Polynomials)
Let F be a field, $f(x), g(x) \in F[x]$. non-zero, then $f(x), g(x)$ have a greatest common divisor.
I.e., there is a polynomial $d(x)$ so that
(1) $d|f, d| g$.
(2) if $e(x) \in F[x]$ with $e|f, e| g$ then $e \mid d$.
(3) Bezout's Properties: There exists $s(x), t(x) \in F[x]$, with $d=f s+g t$.
d is not unique, but if d_{2} is another polynomial with all the same properties, then $d(x)=$ $c d_{2}(x)$ for some non-zero $c \in F$.

Observation: If F is a field and $f, g \in F[x]$ then $f|g, g| f$ if and only if $f=c g$ for some $c \in F, c \neq 0$.

Proof. If $f=c g$ then $g \mid f$, and $g=c^{-1} f$, so $f \mid g$.
If $g|f, f| g, \operatorname{deg}(f)=\operatorname{deg}(g)$.
So $g=f h$ for some $h \in F[x], \operatorname{deg}(h)=0$.
Then $h=c \in F$.
If d has those properties in the theorem of the gcd of polynomials, then so does cd for any $c \in F, c \neq Q$.

On the other hand, if d_{2} also has all of these properties, then $d \mid d_{2}$ and $d_{2} \mid d$, so $d_{2}=c d$.

Definition 2. $f(x) \in F[x]$ is monic if $f(x)=x^{d}+$ smaller terms.
So for $f(x), g(x) \in F[x]$ there is a unique monic d satisfying the condition $d|f, d| g$. We call that the gcd of $f(x), g(x)$.

Proof of the theorem:
Proof. We can suppose that $\operatorname{deg}(f) \geq \operatorname{deg}(g)$,
Using the division algorithm, write
$f=q_{1} g+r_{1}, \operatorname{deg}\left(r_{1}\right)<\operatorname{deg}(g)$.
$g=q_{2} r_{1}+r_{2}, \operatorname{de}\left(r_{2}\right)<\operatorname{deg}\left(r_{1}\right)$
Eventually, $r_{j}=0$.
$r_{j-3}=q_{j-1} r_{j-2}+r_{j-1}(\star)$
$r j-2=q_{j} r_{j-1}+0$.
Then take $d=r_{j-1}$.
$d=r_{j-1} \mid r_{j-2}$
$d \mid r_{j-3}$
Continuing, $d|f, d| g$.
Then want to show that $d=s f+t g$ for some $s, t \in F[x]$.
By the $\star, d=(1) r_{j-3}+\left(-q_{j-1}\right) r_{j-2}$.
but $r_{j-4}=q_{j-2} r_{j-3}+r_{j-2}$
so $d=(1) r_{j-3}+\left(-q_{j-1}\right)\left(r_{j-4}-q_{j-2} r_{r-3}\right)=(?) f+(?) g$.
Now, if $e|f, e| g$, then $e \mid s f+t g=d$.

Example: Find the gcd of $f(x)=x^{4}-2 x^{3}+x^{2}-2 x, g(x)=x^{4}+3 x^{3}+2 x^{2}+3 x+1$.
Go through the Euclidean Algorithm and the long division,
you get the gcd is $d=x^{2}+1 . x^{2}+1=\left(\frac{5}{11} x+\frac{14}{11}\right) f(x)+\left(\frac{-5}{11} x+1\right) g(x)$.
GCDs for polynomial over F VS GCDs for integers.

1.1. Unique factorization for polynomials.

Definition 3. A polynomial $f(x) \in F[x]$ is irreducible if and only if whenever $f(x)=$ $g(x) h(x), g, h \in F[x]$, then g or h is constant.
Theorem 2. Any non-zero polynomial $f(x) \in F[x]$ can be written as
$f=a p_{1}^{e_{1}} \ldots p_{k}^{e_{k}}$
where $a \in F$,
$p_{i} \in F[x]$ are distinct monic and irreducible, and $e_{i} \geq 1$.
This representation is unique (up to order).
Lemma 2. If $p, q, r \in F[x]$, and $\operatorname{gcd}(p, q)=1$ and $p \mid q r$, then $p \mid r$
Proof. Choose $s, t \in F[x]$ so that $s p+t q=1$. $r=r \cdot 1=r(s p+t q)=p r s+r q t$ Therefore the whole thing is divisible by p .
Corollary 1. If p is irreducible, and $p \mid q_{1} q_{2} \ldots q_{r}$, then $p \mid q_{i}$ for some i.
Proof. (For $r=2$) Suppose that p is irreducible and $p \mid q_{1} q_{2}$.
$\operatorname{gcd}\left(p, q_{1}\right)$ is a divisor of $p(n)$.
So $\operatorname{gcd}\left(p, q_{1}\right)=1$ or $c p$, for some $c \in F$.
If $\operatorname{gcd}\left(p, q_{1}\right)=c p$, then $c p \mid q_{1}$, so $p \mid q_{1}$.
If $\operatorname{gcd}\left(p, q_{1}\right)=1$, then the previous lemma gives $p \mid q_{2}$.
If $r>2$, just do induction:
$p \mid q_{1} q_{2} \ldots q_{r}=q_{1}\left(q_{2} \ldots q_{r}\right)$.
Then either $p \mid q_{1}$ or $p \mid q_{2} \ldots q_{r}$.

Theorem 3. Unique factorization for polynomial:
If \mathbb{F} is a field and $f(x) \in \mathbb{F}[x]$ is non-zero, then f can be written as
$f(x)=a p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{r}^{e_{r}}$ with $a \in \mathbb{F}$.
p_{i} monic irreducible, $e_{i} \geq 1$.
Uniquely (up to reordering the product).
Proof. If $f(x)=a x^{d}+\ldots$, then $\frac{1}{a} f(x)$ is monic.
So we'll assume that $f(x)$ is monic.
Want to show that $f(x)$ can be written as a product of irreducible monic polynomials.
By induction on the degree.
Base case: $\operatorname{deg}(f)=1$.
Then $f(x)=x+b$ for some $b \in F$.
$f(x)$ is irreducible.
Suppose that the statement is true for polynomials of degree less than degree of f .
If f is irreducible, we are done.
If not, we can write $f(x)=g(x) h(x)$ with $\operatorname{deg}(g), \operatorname{deg}(h)<\operatorname{deg}(f)$.
Say $g(x) b x^{e}+\ldots, h(x)=c x^{e} \ldots$
$f(x)=b c x^{e+w}+\ldots$.

So $b c=1$.
Then $f(x)=g(x) h(x)=(c g(x))\left(c_{-1} h(x)\right)=\left(x^{e}+\ldots\right)\left(x_{w}+\ldots\right)$.
By the induction hypothesis, both $c g(x)$ and $c_{-1} h(x)$ can be written as a product of monic, irreducible polynomials, So $f(x)$ can, too.

By the induction, any monic polynomial can be written as a product of monic irreducible polynomials.

If $f(x) \in \mathbb{F}[x]$ is non-zero (possibly not monic) then $f(x)=a p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{r}^{e_{r}}$ as in the theorem.

For uniqueness, suppose that
$a p_{1}^{e_{1}} p_{2}^{e^{2}} \ldots p_{r}^{e_{r}}=b q_{1}^{w_{1}} \ldots q_{r}^{w_{r}}$ with $a, b \in F$ non-zero, p_{i}, q_{i} monic and irreducible, and $e_{i}, w_{i} \geq 1$.

Multiplying out, a is the coefficient of the higher power of x in $a p_{1}^{e_{1}} p_{2}^{e^{2}} \ldots p_{r}^{e_{r}}$. and b is the coefficient of the highest power of x in $b q_{1}^{w_{1}} \ldots q_{r}^{w_{r}}$.

So $a=b$.
Now we want to show that
$a p_{1}^{e_{1}} p_{2}^{e^{2}} \ldots p_{r}^{e_{r}}=b q_{1}^{w_{1}} \ldots q_{r}^{w_{r}}$
$\Longrightarrow p_{i}$ are the q_{j} (in some order).
Induction on the number of factors $n=e_{1}+e_{2}+\ldots+e_{r}$.
Base case : $n=1$ LHS $=p=q_{1}^{w_{1}} \ldots q_{r}^{w_{r}}$
RHS should not be the product of two monic irreducible polynomials. So $R H S=q$, and $p=q$.

So we are done if $n=1$.
Now suppose that this is true for products of factor than n monic, irreducible polynomials.

If $p_{1}^{e_{1}} p_{2}^{e^{2}} \ldots p_{r}^{e_{r}}=q_{1}^{w_{1}} \ldots q_{r}^{w_{r}}$ with $n=e_{1}+e_{2}+\ldots+e_{r}$, then p_{1} is monic, irreducible, and $p_{1} \mid q_{1}^{w_{1}} \ldots q_{r}^{w_{r}}$

By the corollary, $p \mid q_{j}$ for some j . But the q_{j} are irreducible, so $p_{1}=c q_{j}$ for some $c \in \mathbb{F}$. Since p and q are monic, $c=1$,
Therefore, $p_{1}=q_{j}$. so $p_{1}^{e_{1}-1} p_{2}^{e^{2}} \ldots p_{r}^{e_{r}}=q_{1}^{w_{1}} \ldots q_{j}^{w_{j}-1} \ldots q_{r}^{e_{r}}$
By the induction hypothesis, the polynomials on the LHS are the same as the polynomials, on the RHS, up to the order.

By the induction, the representation is unique.

We've been looking at polynomials in $\mathbb{F}[x]$ where \mathbb{F} is a field. What about polynomials in $\mathbb{Z}[x]$.

Irreducible polynomial in $\mathbb{Z}[x]$.
Question: When can $f(x) \in \mathbb{Z}[x]$ be factored (in $\mathbb{Z}[x]$).
A polynomial $f(x) \in \mathbb{Z}[x]$ is primitive if the gcd of the coefficients is 1 . I.E. if there is no prime dividing all of the coefficients.

Lemma 3. If f and $g \in \mathbb{Z}[x]$ are primitive, then so is $f \cdot g$.

Proof. Let p be a prime, and $f(x)=\sum_{i=0}^{d} a_{i} x^{i}, a_{i} \in \mathbb{Z}$, $f(x)=\sum_{i=0}^{e} b_{i} x^{i}, b_{i} \in \mathbb{Z}$,
By hypothesis, there is at least one i with $p \nmid b_{i}$. Let i be the smallest i such that $p \nmid b_{i}$. Similarly, let j_{0} be the least j such that $p \nmid a_{j}$.
Now, $f g=\left(\sum_{i=0}^{d} a_{i} x^{i}\right)\left(\sum_{i=0}^{d} b_{i} x^{i}\right)=\sum_{i=0}^{d+e}\left(\sum_{i+j=k} a_{j} b_{i}\right) x^{k}$.
Then coefficient of $x^{i_{0}+j_{0}}$ is $\sum_{i+j=i_{0}+j_{0}=k_{0}} a_{j} b_{i}$.
This $=\left(a_{0} b_{k_{0}}+a_{1} b_{k_{0}-1}+\ldots\right)+a_{j_{0}} b_{i_{0}}+\left(a_{j_{0}+1} b_{i_{0}-1}+\ldots+a_{k_{0}} b_{0}\right)$.
Therefore, this expression is not divisible by p.
So the coefficient of $x^{i_{0}+j_{0}}$ in $f \cdot g$ is not divisible by p.
Since p was any prime, $f \cdot g$ is primitive.
Theorem 4. Gauss Lemma : if $f(x) \in \mathbb{Z}[x]$ and $f(x)$ is reducible in $\mathbb{Q}[x]$, then $f(x)$ is reducible in $\mathbb{Z}[x]$.

Proof. Let $f(x) \in \mathbb{Z}[x]$. and suppose that $f=g h$, for $g, h \in \mathbb{Q}[x], \operatorname{deg}(g), \operatorname{deg}(h)<\operatorname{deg}(f)$. Choose $M, N \in \mathbb{Z}$ such that $M g(x), N h(x) \in \mathbb{Z}[x]$.
Also, of , os the gcd of the coefficients of $M g(x)$, then $M g(x)=m g_{1}(x)$,for $g_{1}(x) \in \mathbb{Z}[x]$ primitive.

Similarly, $N h(x)=n h_{1}(x)$ where $h_{1}(x) \in \mathbb{Z}[x]$ is primitive.
Now, $g_{1} h_{1} \in \mathbb{Z}[x]$ is primitive, and $m n\left(g_{1} h_{1}\right)=\left(m g_{1}(x)\right)\left(n h_{1}(x)\right)=M g(x) N h(x)=$ $M N f(x)$.

If d is the gcd of the coefficients of f , then $m n=M N d$.
$M N d g_{1}(x) h_{1}(x)=M N f(x)$
and so $\left(d g_{1}(x)\right)\left(h_{1}(x)\right)=f(x) . d g_{1}(x), h_{1}(x) \in \mathbb{Z}[x]$.
(degrees haven't changed).
Corollary 2. Let $f(x)=\sum_{i=0}^{d} a_{i} x^{i} \in \mathbb{Z}[x]$.,
and suppose that
$f\left(\frac{b}{c}\right)=0, b, c \in \mathbb{Z}, \operatorname{gcd}(b, c)=1$.
Then $c\left|a_{d}, b\right| a_{0}$.
Proof. Suppose that $f\left(\frac{b}{c}\right)=0$. Then in $\mathbb{Q}[x], \left.\left(x-\frac{b}{c}\right) \right\rvert\, f(x)$.
So in fact there is some integer N such that if $N\left(x-\frac{b}{c}\right) \in \mathbb{Z}[x]$ is primitive and $N(x-$ $\left.\frac{b}{c}\right) \mid f(x)$

So $(c x-b) \mid f(x)$ in $\mathbb{Z}[x]$.
That means $(c x-b)\left(g_{e} x^{e}+\ldots+g_{0}\right)=\left(a_{d} x^{d}+\ldots+a_{0}\right)\left(c g_{e} x^{e+1}+\ldots-b g_{0}\right)=\left(a_{d} x^{d}+\right.$ $\left.\ldots+a_{0}\right)$.

So $a_{0}=-b g_{0}$ Then $b\left|a_{0}, c\right| a_{d}$.
Example :
Show that $f(x)=3 x^{5}+2 x-2$ has no rational roots.
Solution: If $f\left(\frac{b}{c}\right)=0, \frac{b}{c} \in \mathbb{Q}$ in least terms.
The corollary says that $b|2, c| 3, \mathrm{~b}= \pm 1, \pm 2$.
$c= \pm 1, \pm 3$.
Then list it,

None of these is a root.
Theorem 5. Eisenstein's Criterion :
Let $f(x) \mathbb{Z}[x]$.
$f(x)=\sum_{i=0}^{d} a_{i} x^{i}, a_{i} \in \mathbb{Z}, a_{j} \neq 0$.
If there is a prime p such that

1) $p \nmid a_{d}$.
2) $p \mid a_{i}$ for $0 \leq i<d$.
3) $p^{2} \nmid a_{0}$.

Then $f(x)$ is irreducible.
Example : $f(x)=2 x^{10}-10 x^{3}+5$
Is irreducible, since $5 \nmid 2,5|10,5| 5,5^{2} \mid 5$.
Proof. Suppose $\mathrm{f}(\mathrm{x})$ is reducible and write $f(x)=g(x) h(x)=\left(\sum_{i=0}^{m} b_{i} x^{i}\right)\left(\sum_{j=0}^{n} c_{j} x^{d}\right)$.
$\operatorname{deg}(g), \operatorname{deg}(h)<\operatorname{deg}(f), b_{i}, c_{j} \in \mathbb{Z}$.
$a_{d}=b_{m} c_{n}$ (assuming $\left.m=\operatorname{deg}(g), n=\operatorname{deg}(h)\right)$
So $p \nmid b_{m}, p \nmid c_{n}$.
Also $a_{0}=b_{0} c_{0}$
So $p \mid b_{0} c_{0}$ but $p^{2} \nmid b_{0} c_{0}$
Thus, exactly one of c_{0}, b_{0} is divisible by p .
We will suppose that $p \mid b_{0}, p \nmid c_{0}$.
Let i_{0} be the least value of i such that $p \nmid b_{i}$.
Look at $a_{i_{0}} .\left(i_{0} \leq m<d\right)$.
By the assumption, $p \mid a_{i_{0}}$ since $i_{0}<d$.
$a_{i_{0}}=\sum_{j+k=i_{0}} b_{k} c_{j}=b_{i_{0}} c_{0}+b_{i_{0}-1} c_{1}+\cdots+b_{0} c_{i_{0}}$.
Divisible by p, since $p \mid b_{i}$ for $i<i_{0}$.
So $p \mid b_{i_{0}} c_{0}$ but $p \nmid b_{i_{0}}, p \nmid c_{0}$.
This is a contradiction, so $f(x)$ does not factor in $\mathbb{Q}[x]$.

2. Algebraic Numbers

A number $a \in \mathbb{C}$ is algebraic if there is some polynomial $f(x) \in \mathbb{Q}[x]$ such that $f(a)=0$.
Example : $\sqrt{2}$ is the positive solution to $x^{2}-2=0$.
If $f(x) \in \mathbb{Q}[x]$, the roots of $\mathrm{f}(\mathrm{x})$ (in \mathbb{C} or in \mathbb{R}) are somehow described.
In terms of $\mathbb{Q}, f(x)=10 x^{7}-3 x-1$.
$f(a)=0$.
If $a \in \mathbb{C}$ is not algebraic, then it is transcendental.
Theorem 6. If $a \in \mathbb{C}$ us algebraic, then there is a unique monic polynomial $f(x) \in \mathbb{Q}$ such that $f(a)=0$ and $f(x) \mid g(x)$ for any non-zero $g(x) \in \mathbb{Q}[x]$ such that $g(a)=0$.

Proof. We know that a is the root of some non-zero polynomial. Let $\mathrm{f}(\mathrm{x})$ be apolynomial of lowest degree in $\mathbb{Q}[x]$ which is monic, and $f(a)=0$.

Suppose that $g(a)=0$, for $g(x) \in \mathbb{Q}[x]$.
Write $g(x)=q(x) f(x)+r(x), q, r \in \mathbb{Q}[x]$ and $\operatorname{deg}(r)<\operatorname{deg}(f)$.
Then $0=g(a)=q(a) f(a)+r(a)=r(a)$, since $f(a)=0$.
If $\mathrm{r}(\mathrm{x})$ is not the zero polynomial then dividing by the leading coefficient, give a polynomial $r_{2}(x) \in \mathbb{Q}[x]$. which is monic, and $\left.r_{[2}\right](a)=0, \operatorname{deg}\left(r_{2}\right)<\operatorname{deg}(f)$.

It contradicts, so $r(x)=0, g(x)=q(x) f(x)$.
In other words, $f(x) \mid g(x)$.
If $f_{1}(x), f_{2}(x)$ both have this property.
$f_{2}(a)=0$ so
$\left.f_{1}(x) \mid f_{2}\right)(x)$
$f_{1}(a)=0, f_{2}(x) \mid f_{1}(x)$
This means that $f_{1}(x)=c f_{2}(x)$ for some non-zero $c \in \mathbb{Q}$.
But both are monic, $c=1$.
The polynomial in the theorem is the minimal polynomial for a.
Corollary 3. If $a \in \mathbb{C}$ is the root of a polynomial $f(x) \in \mathbb{Q}[x]$ which is non-zero and irreducible, then a is irrational. (unless $\operatorname{deg}(f)=1$)

Proof. If a is rational, then $(x-a) \mid f(x)$. (given that $f(a)=0)$.
So $f(x)$ is not irreducible.
Example :
$f(x)=x^{n}-2 \in \mathbb{Q}[x]$ is irreducible by the Eisenstein's Criterion .
So if $n>1$, then $2^{\frac{1}{n}} \notin \mathbb{Q}$.
Example:
$\sqrt{2}+\sqrt{3}$ is algebraic, but what is the minimal polynomial $f(x) \in \mathbb{Q}[x]$. such that $f(\sqrt{2}+\sqrt{3})=0$.
Solution 1. Need some $a_{d} w^{d}+a_{d-1} w^{d-1}+\ldots+a_{0}=0, a_{d} \in \mathbb{Q}$.
$w=\sqrt{2}+\sqrt{3}$
$w^{2}=(\sqrt{2}+\sqrt{3})^{2}=5+2 \sqrt{6}$.
$w^{3}=11 \sqrt{2}+9 \sqrt{3}$.
$w^{4}=49+20 \sqrt{6}$.
$w^{4}-10 w^{2}=(49+20 \sqrt{6})-10(5+2 \sqrt{6})=-1$
$w^{4}-10 w^{2}+1=0$.
$f(x)=x^{4}-10 x^{2}+1$.
$f(w)=0$.
Done but is $f(x)$ the minimal polynomial?
If not, $\mathrm{f}(\mathrm{x})$ factors in $\mathbb{Z}[x]$.
If $f(x)$ factors, then either it has a root in \mathbb{Q}, or else if factors as (quadratic)(quadratic).

By Gauss Lemma Corollary, the only possible roots of $\mathrm{f}(\mathrm{x})$ in \mathbb{Q} are $x= \pm 1$.
$\mathrm{f}(\mathrm{x})$ has no root in \mathbb{Q}, so if it is reducible, it factors as $f(x)=x^{4}-10 x^{3}+1=\left(x^{2}+\right.$ $a x+b)\left(x^{2}+c x+d\right)=x^{4}+(a+c) x^{3}+(d+b+a c) x^{2}+(a d+b c) x+b d$.

There is no solution for this equation group.

3. Transcendental Numbers

$a \in \mathbb{C}$ is transcendental if and only if it is not algebraic.
Examples (without proof)
e, $\pi \ldots$
How do you show that specific number is transcendental?
Theorem 7. Liouville : Suppose that $a \in \mathbb{R}$ is a root of the irreducible polynomial $f(x) \in$ $\mathbb{Q}[x]$. Then there is a $\delta>0$ such that $\left|a-\frac{p}{q}\right|>\frac{\delta}{q^{d}}$ for any rational number $\frac{p}{q} \in \mathbb{Q}$ in lowest terms $d=\operatorname{deg}(f)>1$.

For any real number a, you can find rational $\frac{p}{q}$ with $\left|a-\frac{p}{q}\right|$ as small as you want.
For example, just cut off the decimal expression of a at some point.
$a=1.362187 \ldots, \frac{p}{q}=1.362187$
If I want $\left|a-\frac{p}{q}\right|<\varepsilon$, a algebraic and irrational.
$\frac{\delta}{q^{d}}<\ldots<\varepsilon$.
so $\left(\delta \varepsilon^{-1}\right)^{\frac{1}{d}}<q$.
Proof. We have $f(x) \in \mathbb{Q}[x]$ of degree $d>1$, irreducible. $f(a)=0$.
Without loss of generality, $f(x) \in \mathbb{Z}[x]$.
so $f(x)=a_{d} x^{d}+\ldots+a_{1} x+a_{0}, a_{i} \in \mathbb{Z}$.
What a lower bound on $|x-a|$ for $x \in \mathbb{Q}$.
If x is not in $[a-1, a+1]$, then $|x-a|>1$.
On the other hand, if x is in $[a-1, a+1]$, then for some c in $[a-1, a+1]$ we have $|f(x)|=\left|f^{\prime}(c)\right||x-a|$.
$\left|f^{\prime}(c)\right| \leq M$ for c on the interval for some M.
$|x-a| \geq \frac{1}{M}|f(x)|$.
Now we want a lower bound on $|f(x)|$ for $x \in \mathbb{Q}$.
Write $x=\frac{p}{q}, p, q \in \mathbb{Z}$.
$f\left(\frac{p}{q}\right)=a_{d} \frac{p_{d}}{q_{d}}+\ldots+a_{0}$.
$q^{d} f\left(\frac{p}{q}\right)=a_{d} p^{d}+\ldots+a_{d-1} q p^{d-1}+\ldots+a_{1} p q^{d-1}+a_{0} q^{d}$.
So $q^{d} f\left(\frac{p}{q}\right) \in \mathbb{Z}$.
and it is not 0 , so $\left|q^{d} f\left(\frac{p}{q}\right)\right| \geq 1$.
$\left|f\left(\frac{p}{q}\right)\right| \geq \frac{1}{q^{d}}$.
$\left|\frac{p}{q}-a\right| \geq \frac{1}{M} \cdot \frac{1}{q^{d}}$.
So if $\frac{p}{q}$ is not in $[a-1, a+1],\left|a-\frac{p}{q}\right|>1 \geq \frac{1}{q^{d}}$ and of $\frac{p}{q}$ is in $[a-1, a+1]$.
$\left|a-\frac{p}{q}\right| \geq \frac{M^{-1}}{q^{d}}$
So $\left|a-\frac{p}{q}\right| \geq \frac{\min \left\{1, M^{-1}\right\}}{q^{d}}>\frac{\min \left\{1, M^{-1}\right\}}{2 q^{d}}$

Construction transcendental construct $a \in \mathbb{R}$ with very good approximation in \mathbb{Q}.
For $\frac{p}{q} \in \mathbb{Q},\left|\sqrt{2}-\frac{p}{q}\right|>\frac{\delta}{q^{2}}$ for some $\delta>0$.
Want to use this to show that certain numbers are transcendental.
Example : Let
$a=\sum_{m=1}^{\infty} 10^{-10!}$.
Then a is transcendental.
Proof. First of all, $a=\frac{1}{10}+\frac{1}{10^{2}}+\frac{1}{10^{6}}+\frac{1}{10^{24}}+\frac{1}{10^{120}}+\frac{1}{10^{220}} \ldots=0.11000100 \ldots 010 \ldots 010 \ldots$.
Point : the partial sums are rational numbers that are extremely close to a.
Let $\frac{p_{n}}{q_{n}}=\sum_{m=1}^{n} 10^{-10!} \in \mathbb{Q}$.
$q_{n}=10^{n!}$
$p_{n}=\sum_{m=1}^{n} 10^{n!-m!}=1+10^{?}+10^{?}+\ldots$.
$\frac{p_{1}}{q_{1}}=\sum_{m=1}^{1} 10^{-m!}=\frac{1}{10}$.
$\frac{p_{2}}{q_{2}}=\sum_{m=1}^{2} 10^{-m!}=\frac{11}{100}$.
$\frac{p_{3}}{q_{3}}=\sum_{m=1}^{3} 10^{-m!}=\frac{110001}{1000000}$.
$\left|a-\frac{p_{n}}{q_{n}}\right|=\left|\sum_{m=1}^{\infty} 10^{-m!}-\sum_{m=1}^{n} 10^{-m!}\right|=\sum_{m=n+1}^{\infty} 10^{-m!}=10^{-(n+1)!}+10^{-(n+2)!}+\ldots<$
$2 \cdot 10^{-(n+1)!}$
$\left|a-\frac{p_{n}}{q_{n}}\right|<2 \cdot 10^{-(n+1)!}=2\left(10^{n!-(n+1)}=2 \cdot q_{n}^{-(n+1)}\right.$, for all n .
Now, suppose that a is algebraic. So
$f(a)=0$. for some irreducible $f(x) \in \mathbb{Q}[x]$. of degree $d \geq 2$.
By Liouville's Theorem, there is a $\delta>0$ such that $\left|a-\frac{p}{q}\right|>\frac{\delta}{q^{d}}$, for all $\frac{p}{q} \in \mathbb{Q}$.
So $\frac{\delta}{q_{n}^{d}}<\left|a-\frac{p_{n}}{q_{n}}\right|<\frac{2}{q_{n}^{n+1}}$.
So $\delta q_{n}^{n+1}<2 q_{n}^{d}$.
As soon as $n \geq d$, we get
$10^{-n!}=q_{n} \leq q_{n}^{n+1-d}<\frac{2}{\delta}$, for all $n \geq d$.
$\frac{2}{\delta}$ is some real numbers.
This is impossible. So a is not algebraic.
Can use this to show that $\sum_{m=1}^{\infty} b^{-m!}$ is transcendental for any integer $b \geq 2$.
Lots of transcendental numbers.
e is transcendental.

