
ALGEBRA NOTE 5

JOHNEW ZHANG

1. Polynomials

If R is a commutative ring, then let R[x] be the set of polynomials with coefficients in
R.
f(x) = adx

d + ad−1x
d−1 + . . .+ a1x+ a0=

∑d
i=0 aix

i, ai ∈ R.

Adding and multiplying polynomials.∑d
i=0 aix

i+
∑d

i=0 bix
i=

∑d
i=0(ai + bi)x

i.∑d
i=0 aix

i
∑d

i=0 bix
i=

∑
(
∑

j+k=1 ajbk)x
i.

Check that R[x] is also a commutative ring, with 0 and 1, being the constant polynomials
0 and 1.

The degree of a polynomial
∑m

i=0 aix
i is the largest d such that ad 6= 0.

The zero polynomial has degree −∞
If F is a field, andf(x), g(x) ∈ F[x],
then deg(fg) = deg(f) + deg(g).

Example : of a ring, where that doesn’t work.
R = Z6,
f(x) = 3x2 + 1, g(x) = 2x5 + x.
f(x)g(x) = (3x2 + 1)(2x5 + x) = 2x5 + 3x3 + x.
Therefore the degree is 5.

Why does it work in a field?
(ajx

d+ (lower degree terms))(bex
e+(lower terms))= ajbex

d+e + lower degree terms.
If the coefficients are in a field F, and aj 6= 0, be 6= 0, then ajbe 6= 0, also. (integral

domain)

Application:
Let F be a field, and f(x) ∈ F[x] is a unit. Then f(x) is constant.

Proof. If g(x) ∈ F[x] with fg = 1, then deg(f) + deg(g) = deg(fg) = 0.
f 6= 0, g 6= 0, so deg(f), deg(g) ≥ 0,
So deg(f) + deg(g) = 0.
f(x) =

∑m
i=0 aix

i, deg(f) is the largest d such that ad 6= 0.
1
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So f(x) = a0 ∈ F.g(x) = b0 ∈ F. �

AKA: If F is a field, then algebra in F[x] is a lot like algebra in Z.
We really need F to be a field, or things are not like Z.

Example: In Z, if a2 = 1, then a = ±1.
If f(x) ∈ Z4[x], then (2f(x) + 1)2 = 4f(x)2 + 4f(x) + 1 = 1.

Lemma 1. Let F is a field, and f(x), g(x) ∈ F[x] (non-zero). Then there are polynomials
q(x) and r(x),

such that, g(x) = q(x)f(x) + r(x) and deg(r) < deg(f). Also, q(x) and r(x) are unique.

Proof. We can assume that deg(g) ≤ deg(f). Otherwise, q = 0, r = q works.
We are going to proceed by induction on the degree of g.
If deg(g) = 0, then either deg(g) < deg(f) (done!) or else.
f(x) and g(x) are both constant.

If f(x) = a0, g(x) = b0, then g(x) = b0
a0
f(x) + 0

Induction step: Assume that for any g2(x) ∈ F[x] with deg(g2) < deg(g)
we can write
g2(x) = q2(x)f(x) + r2(x), deg(r2) < deg(f)
Write g(x) = adx

d+ other terms of lower degree.
And f(x) = bex

e+ lower order terms. be 6= 0.
Let g2(x) = g(x)− ad

be
f(x)xd−e.

Write out the first term
g2(x) = (adx

d+ . . .)− ad
be
f(x)xd−e(bex

e+ . . .) = (adx
d+ . . .)− (adx

d+ . . .) = 0 ·xd+ . . . =

something of degree less than d = deg(g).
deg(g2) < deg(g).
By the induction hypothesis, we can write g2(x) = q2(x)f(x) + r(x) with q2, r ∈ F[x],

deg(r) < deg(f).
Since g(x) = g2(x) + ad

be
f(x)xd−ef(x),

we get
g(x) = ad

be
xd−ef(x)+ q2(x)f(x)+ r(x) = (adbe f(x)xd−e+ q2(x))f(x)+ r(x). with deg(r) <

deg(f),
So take
q(x) = ad

be
f(x)xd−e + q2(x).

By induction, we can do this for all polynomials.
Secondly, for the uniqueness,
Suppose that g(x) = q1(x)f(x) + r1(x) and g(x) = q2(x)f(x) + r2(x)
with deg(r1), deg(r2) < deg(f).
Then 0 = (q1(x)f(x) + r1(x))− (q1(x)f(x) + r1(x))
So r1 − r2 = f(q2 − q1).
Since F is a field,
deg(r1 − r2) = deg(f) + deg(q2 − q1)
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If q2 − q1 6= 0, then deg(r1 − r2) ≥ deg(f)
But deg(r1), deg(r2) < deg(f).
So deg(r1 − r2) < deg(f)
Useful fact deg(f + g) ≤ max{deg(f), deg(g)}
So we have a contradiction.
∴, q1 = q2, r1 = r2.

�

The proof shows how to do the division algorithm.

Example: Long divide x2 + 1 into x3− 2x2 + 1 and find the quotient q(x) and remainder
r(x).
x3 − 2x2 + 1 = x(x2 + 1) + (−2x2 − x+ 1)
−2x2 − x+ 1 = 2(x2 + 1) + (−x+ 3).
So the remainder is (−x+ 3).
Therefore x3 − 2x2 + 1 = (x2 + 1)(x− 2) + (−x+ 3).

Proposition 1. If F is a field, f(x) ∈ F[x], and c ∈ F, then f(c) = 0, if and only if
(x− c)|f(x).

Proof. By the division algorithm, we can write f(x) = q(x)(x−c)+r(x) where deg(r(x)) <
deg(x− c) = 1.

Since deg(r) < 1, then r ∈ F is a constant.
So f(c) = q(c)(c− c) + r = r.
In fact, f(x) = q(x)(x− c) + f(c)
If f(c) = 0, then f(x) = q(x)(x− c), so x− c|f(x).
On the other hand, if f(x) = (x− c)h(x),
then f(c) = (c− c)h(c) = 0

�

Definition 1. For a commutative ring R, we say that a divides b, (for a, b ∈ R) if and
only if b = ac for some c ∈ R, a|b.

If F is a field, and f(x), g(x) ∈ F[x], then f(x)|g(x) means c1f(x)|c2g(x) for any c1, c2 ∈
F, (they are not 0)

For example, (x− 1)|(x3 − 1)(inQ[x])
but also (2x− 2)|(x3 − 1).

Theorem 1. (Euclidean Algorithm for Polynomials)
Let F be a field, f(x), g(x) ∈ F [x]. non-zero, then f(x), g(x) have a greatest common

divisor.
I.e., there is a polynomial d(x) so that
(1) d|f, d|g.
(2) if e(x) ∈ F [x] with e|f, e|g then e|d.
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(3) Bezout’s Properties: There exists s(x), t(x) ∈ F [x], with d = fs+ gt.
d is not unique, but if d2 is another polynomial with all the same properties, then d(x) =

cd2(x) for some non-zero c ∈ F .

Observation: If F is a field and f, g ∈ F [x] then f |g, g|f if and only if f = cg for some
c ∈ F, c 6= 0.

Proof. If f = cg then g|f , and g = c−1f , so f |g.
If g|f, f |g, deg(f) = deg(g).
So g = fh for some h ∈ F [x], deg(h) = 0.
Then h = c ∈ F . �

If d has those properties in the theorem of the gcd of polynomials, then so does cd for
any c ∈ F, c 6= Q.

On the other hand, if d2 also has all of these properties, then d|d2 and d2|d, so d2 = cd.

Definition 2. f(x) ∈ F [x] is monic if f(x) = xd+smaller terms.
So for f(x), g(x) ∈ F [x] there is a unique monic d satisfying the condition d|f, d|g.
We call that the gcd of f(x), g(x).

Proof of the theorem:

Proof. We can suppose that deg(f) ≥ deg(g),
Using the division algorithm, write
f = q1g + r1, deg(r1) < deg(g).
g = q2r1 + r2, de(r2) < deg(r1)
Eventually, rj = 0.
rj−3 = qj−1rj−2 + rj−1 (?)
rj − 2 = qjrj−1 + 0.
Then take d = rj−1.
d = rj−1|rj−2
d|rj−3
Continuing, d|f, d|g.
Then want to show that d = sf + tg for some s, t ∈ F [x].
By the ?, d = (1)rj−3 + (−qj−1)rj−2.
but rj−4 = qj−2rj−3 + rj−2
so d = (1)rj−3 + (−qj−1)(rj−4 − qj−2rr−3) = (?)f + (?)g.
Now, if e|f, e|g, then e|sf + tg = d.

�

Example: Find the gcd of f(x) = x4 − 2x3 + x2 − 2x, g(x) = x4 + 3x3 + 2x2 + 3x+ 1.
Go through the Euclidean Algorithm and the long division,
you get the gcd is d = x2 + 1. x2 + 1 = ( 5

11x+ 14
11)f(x) + (−511 x+ 1)g(x).

GCDs for polynomial over F VS GCDs for integers.
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1.1. Unique factorization for polynomials.

Definition 3. A polynomial f(x) ∈ F [x] is irreducible if and only if whenever f(x) =
g(x)h(x),g, h ∈ F [x], then g or h is constant.

Theorem 2. Any non-zero polynomial f(x) ∈ F [x] can be written as
f = ape11 . . . pekk
where a ∈ F ,
pi ∈ F [x] are distinct monic and irreducible, and ei ≥ 1.
This representation is unique (up to order).

Lemma 2. If p, q, r ∈ F [x], and gcd(p, q) = 1 and p|qr, then p|r

Proof. Choose s, t ∈ F [x] so that sp+ tq = 1.
r = r · 1 = r(sp+ tq) = prs+ rqt
Therefore the whole thing is divisible by p. �

Corollary 1. If p is irreducible, and p|q1q2 . . . qr, then p|qi for some i.

Proof. (For r = 2) Suppose that p is irreducible and p|q1q2.
gcd(p, q1) is a divisor of p(n).
So gcd(p, q1) = 1 or cp, for some c ∈ F .
If gcd(p, q1) = cp, then cp|q1, so p|q1.
If gcd(p, q1) = 1, then the previous lemma gives p|q2.
If r > 2, just do induction:
p|q1q2 . . . qr = q1(q2 . . . qr).
Then either p|q1 or p|q2 . . . qr.

�

Theorem 3. Unique factorization for polynomial:
If F is a field and f(x) ∈ F[x] is non-zero, then f can be written as
f(x) = ape11 p

e2
2 . . . perr with a ∈ F.

pi monic irreducible, ei ≥ 1.
Uniquely (up to reordering the product).

Proof. If f(x) = axd + . . ., then 1
af(x) is monic.

So we’ll assume that f(x) is monic.
Want to show that f(x) can be written as a product of irreducible monic polynomials.
By induction on the degree.
Base case: deg(f) = 1.
Then f(x) = x+ b for some b ∈ F .
f(x) is irreducible.
Suppose that the statement is true for polynomials of degree less than degree of f.
If f is irreducible, we are done.
If not, we can write f(x) = g(x)h(x) with deg(g), deg(h) < deg(f). .
Say g(x)bxe + . . . , h(x) = cxe . . .
f(x) = bcxe+w + . . ..
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So bc = 1.
Then f(x) = g(x)h(x) = (cg(x))(c−1h(x)) = (xe + . . .)(xw + . . .) .
By the induction hypothesis, both cg(x) and c−1h(x) can be written as a product of

monic, irreducible polynomials, So f(x) can, too.
By the induction, any monic polynomial can be written as a product of monic irreducible

polynomials.
If f(x) ∈ F[x] is non-zero (possibly not monic) then f(x) = ape11 p

e2
2 . . . perr as in the

theorem.
For uniqueness, suppose that

ape11 p
e2
2 . . . perr = bqw1

1 . . . qwr
r with a, b ∈ F non-zero, pi, qi monic and irreducible, and

ei, wi ≥ 1.

Multiplying out, a is the coefficient of the higher power of x in ape11 p
e2
2 . . . perr . and b is

the coefficient of the highest power of x in bqw1
1 . . . qwr

r .
So a = b.
Now we want to show that
ape11 p

e2
2 . . . perr = bqw1

1 . . . qwr
r

=⇒ pi are the qj (in some order).
Induction on the number of factors n = e1 + e2 + . . .+ er.
Base case : n = 1 LHS = p = qw1

1 . . . qwr
r

RHS should not be the product of two monic irreducible polynomials. So RHS = q,
and p = q.

So we are done if n = 1.
Now suppose that this is true for products of factor than n monic, irreducible polyno-

mials.
If pe11 p

e2
2 . . . perr = qw1

1 . . . qwr
r with n = e1 + e2 + . . . + er, then p1 is monic, irreducible,

and p1|qw1
1 . . . qwr

r

By the corollary, p|qj for some j. But the qj are irreducible, so p1 = cqj for some c ∈ F.
Since p and q are monic, c = 1,

Therefore, p1 = qj . so pe1−11 pe
2

2 . . . perr = qw1
1 . . . q

wj−1
j . . . qerr

By the induction hypothesis, the polynomials on the LHS are the same as the polyno-
mials, on the RHS, up to the order.

By the induction, the representation is unique.
�

We’ve been looking at polynomials in F[x] where F is a field. What about polynomials
in Z[x].

Irreducible polynomial in Z[x].
Question : When can f(x) ∈ Z[x] be factored (in Z[x]).
A polynomial f(x) ∈ Z[x] is primitive if the gcd of the coefficients is 1. I.E. if there is

no prime dividing all of the coefficients.

Lemma 3. If f and g∈ Z[x] are primitive, then so is f · g.
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Proof. Let p be a prime, and f(x) =
∑d

i=0 aix
i, ai ∈ Z,

f(x) =
∑e

i=0 bix
i, bi ∈ Z,

By hypothesis, there is at least one i with p - bi. Let i be the smallest i such that p - bi.
Similarly, let j0 be the least j such that p - aj .
Now, fg = (

∑d
i=0 aix

i)(
∑d

i=0 bix
i) =

∑d+e
i=0 (

∑
i+j=k ajbi)x

k.

Then coefficient of xi0+j0 is
∑

i+j=i0+j0=k0
ajbi.

This = (a0bk0 + a1bk0−1 + . . .) + aj0bi0 + (aj0+1bi0−1 + . . .+ ak0b0).
Therefore, this expression is not divisible by p.
So the coefficient of xi0+j0 in f · g is not divisible by p.
Since p was any prime, f · g is primitive. �

Theorem 4. Gauss Lemma : if f(x) ∈ Z[x] and f(x) is reducible in Q[x], then f(x) is
reducible in Z[x].

Proof. Let f(x) ∈ Z[x]. and suppose that f = gh, for g, h ∈ Q[x], deg(g), deg(h) < deg(f).
Choose M,N ∈ Z such that Mg(x), Nh(x) ∈ Z[x].
Also, of , os the gcd of the coefficients of Mg(x), then Mg(x) = mg1(x),for g1(x) ∈ Z[x]

primitive.
Similarly, Nh(x) = nh1(x) where h1(x) ∈ Z[x] is primitive.
Now, g1h1 ∈ Z[x] is primitive, and mn(g1h1) = (mg1(x))(nh1(x)) = Mg(x)Nh(x) =

MNf(x).
If d is the gcd of the coefficients of f, then mn = MNd.
MNdg1(x)h1(x) = MNf(x)
and so (dg1(x))(h1(x)) = f(x). dg1(x), h1(x) ∈ Z[x].
(degrees haven’t changed). �

Corollary 2. Let f(x) =
∑d

i=0 aix
i ∈ Z[x].,

and suppose that
f( bc) = 0, b, c ∈ Z, gcd(b, c) = 1.
Then c|ad, b|a0.

Proof. Suppose that f( bc) = 0. Then in Q[x], (x− b
c)|f(x).

So in fact there is some integer N such that if N(x − b
c) ∈ Z[x] is primitive and N(x −

b
c)|f(x)

So (cx− b)|f(x) in Z[x].
That means (cx− b)(gexe + . . .+ g0) = (adx

d + . . .+ a0)(cgex
e+1 + . . .− bg0) = (adx

d +
. . .+ a0).

So a0 = −bg0 Then b|a0, c|ad. �

Example :
Show that f(x) = 3x5 + 2x− 2 has no rational roots.
Solution : If f( bc) = 0, b

c ∈ Q in least terms.
The corollary says that b|2, c|3, b= ±1,±2.
c = ±1,±3.
Then list it,
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None of these is a root.

Theorem 5. Eisenstein’s Criterion :
Let f(x)Z[x].

f(x) =
∑d

i=0 aix
i, ai ∈ Z, aj 6= 0.

If there is a prime p such that
1) p - ad.
2) p|ai for 0 ≤ i < d.
3) p2 - a0.
Then f(x) is irreducible.

Example : f(x) = 2x10 − 10x3 + 5
Is irreducible, since 5 - 2, 5|10, 5|5, 52|5.

Proof. Suppose f(x) is reducible and write f(x) = g(x)h(x) = (
∑m

i=0 bix
i)(

∑n
j=0 cjx

d).

deg(g), deg(h) < deg(f), bi, cj ∈ Z.
ad = bmcn (assuming m = deg(g), n = deg(h))
So p - bm, p - cn.
Also a0 = b0c0
So p|b0c0 but p2 - b0c0
Thus, exactly one of c0, b0 is divisible by p.
We will suppose that p|b0, p - c0.
Let i0 be the least value of i such that p - bi.
Look at ai0 . (i0 ≤ m < d).
By the assumption, p|ai0 since i0 < d.
ai0 =

∑
j+k=i0

bkcj = bi0c0 + bi0−1c1 + · · ·+ b0ci0 .

Divisible by p, since p|bi for i < i0.
So p|bi0c0 but p - bi0 , p - c0.
This is a contradiction, so f(x) does not factor in Q[x].

�

2. Algebraic Numbers

A number a ∈ C is algebraic if there is some polynomial f(x) ∈ Q[x] such that f(a) = 0.

Example :
√

2 is the positive solution to x2 − 2 = 0.
If f(x) ∈ Q[x], the roots of f(x) (in C or in R) are somehow described.
In terms of Q, f(x) = 10x7 − 3x− 1.
f(a) = 0.

If a ∈ C is not algebraic, then it is transcendental.

Theorem 6. If a ∈ C us algebraic, then there is a unique monic polynomial f(x) ∈ Q
such that f(a) = 0 and f(x)|g(x) for any non-zero g(x) ∈ Q[x] such that g(a) = 0.
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Proof. We know that a is the root of some non-zero polynomial. Let f(x) be apolynomial
of lowest degree in Q[x] which is monic, and f(a) = 0.

Suppose that g(a) = 0, for g(x) ∈ Q[x].
Write g(x) = q(x)f(x) + r(x), q, r ∈ Q[x] and deg(r) < deg(f).
Then 0 = g(a) = q(a)f(a) + r(a) = r(a), since f(a) = 0.
If r(x) is not the zero polynomial then dividing by the leading coefficient, give a poly-

nomial r2(x) ∈ Q[x]. which is monic, and r[2](a) = 0, deg(r2) < deg(f).
It contradicts, so r(x) = 0, g(x) = q(x)f(x).
In other words, f(x)|g(x).
If f1(x), f2(x) both have this property.
f2(a) = 0 so
f1(x)|f2)(x)
f1(a) = 0, f2(x)|f1(x)
This means that f1(x) = cf2(x) for some non-zero c ∈ Q.
But both are monic, c = 1. �

The polynomial in the theorem is the minimal polynomial for a.

Corollary 3. If a ∈ C is the root of a polynomial f(x) ∈ Q[x] which is non-zero and
irreducible, then a is irrational. (unless deg(f) = 1)

Proof. If a is rational, then (x− a)|f(x). (given that f(a) = 0).
So f(x) is not irreducible. �

Example :
f(x) = xn − 2 ∈ Q[x] is irreducible by the Eisenstein’s Criterion .

So if n > 1, then 2
1
n /∈ Q.

Example :√
2 +
√

3 is algebraic, but what is the minimal polynomial f(x) ∈ Q[x]. such that
f(
√

2 +
√

3) = 0.

Solution 1. Need some adw
d + ad−1w

d−1 + . . .+ a0 = 0, ad ∈ Q.
w =

√
2 +
√

3
w2 = (

√
2 +
√

3)2 = 5 + 2
√

6.
w3 = 11

√
2 + 9

√
3.

w4 = 49 + 20
√

6.
w4 − 10w2 = (49 + 20

√
6)− 10(5 + 2

√
6) = −1

w4 − 10w2 + 1 = 0.
f(x) = x4 − 10x2 + 1.
f(w) = 0.

Done but is f(x) the minimal polynomial?
If not, f(x) factors in Z[x].
If f(x) factors, then either it has a root in Q, or else if factors as (quadratic)(quadratic).
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By Gauss Lemma Corollary, the only possible roots of f(x) in Q are x = ±1.
f(x) has no root in Q, so if it is reducible, it factors as f(x) = x4 − 10x3 + 1 = (x2 +

ax+ b)(x2 + cx+ d) = x4 + (a+ c)x3 + (d+ b+ ac)x2 + (ad+ bc)x+ bd.
There is no solution for this equation group.

3. Transcendental Numbers

a ∈ C is transcendental if and only if it is not algebraic.
Examples (without proof)
e, π . . ..
How do you show that specific number is transcendental?

Theorem 7. Liouville : Suppose that a ∈ R is a root of the irreducible polynomial f(x) ∈
Q[x]. Then there is a δ > 0 such that |a− p

q | >
δ
qd

for any rational number p
q ∈ Q in lowest

terms d = deg(f) > 1.

For any real number a, you can find rational p
q with |a− p

q | as small as you want.

For example, just cut off the decimal expression of a at some point.
a = 1.362187..., pq = 1.362187

If I want |a− p
q | < ε, a algebraic and irrational.

δ
qd
< . . . < ε.

so (δε−1)
1
d < q.

Proof. We have f(x) ∈ Q[x] of degree d > 1, irreducible. f(a) = 0.
Without loss of generality, f(x) ∈ Z[x].
so f(x) = adx

d + . . .+ a1x+ a0, ai ∈ Z.
What a lower bound on |x− a| for x ∈ Q .
If x is not in [a− 1, a+ 1], then |x− a| > 1.
On the other hand, if x is in [a − 1, a + 1], then for some c in [a − 1, a + 1] we have

|f(x)| = |f ′(c)||x− a|.
|f ′(c)| ≤M for c on the interval for some M.
|x− a| ≥ 1

M |f(x)|.
Now we want a lower bound on |f(x)| for x ∈ Q.
Write x = p

q , p, q ∈ Z.

f(pq ) = ad
pd
qd

+ . . .+ a0.

qdf(pq ) = adp
d + . . .+ ad−1qp

d−1 + . . .+ a1pq
d−1 + a0q

d.

So qdf(pq ) ∈ Z.

and it is not 0, so |qdf(pq )| ≥ 1.

|f(pq )| ≥ 1
qd

.

|pq − a| ≥
1
M ·

1
qd

.

So if p
q is not in [a− 1, a+ 1], |a− p

q | > 1 ≥ 1
qd

and of p
q is in [a− 1, a+ 1] .
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|a− p
q | ≥

M−1

qd

So |a− p
q | ≥

min{1,M−1}
qd

> min{1,M−1}
2qd

�

Construction transcendental construct a ∈ R with very good approximation in Q.

For p
q ∈ Q, |

√
2− p

q | >
δ
q2

for some δ > 0.

Want to use this to show that certain numbers are transcendental.

Example : Let
a =

∑∞
m=1 10−10!.

Then a is transcendental.

Proof. First of all, a = 1
10 + 1

102
+ 1

106
+ 1

1024
+ 1

10120
+ 1

10720
. . . = 0.11000100...010...010....

Point : the partial sums are rational numbers that are extremely close to a.
Let pn

qn
=

∑n
m=1 10−10! ∈ Q.

qn = 10n!

pn =
∑n

m=1 10n!−m! = 1 + 10? + 10? + . . . .
p1
q1

=
∑1

m=1 10−m! = 1
10 .

p2
q2

=
∑2

m=1 10−m! = 11
100 .

p3
q3

=
∑3

m=1 10−m! = 110001
1000000 .

|a− pn
qn
| = |

∑∞
m=1 10−m!−

∑n
m=1 10−m!| =

∑∞
m=n+1 10−m! = 10−(n+1)!+10−(n+2)!+. . . <

2 · 10−(n+1)!

|a− pn
qn
| < 2 · 10−(n+1)! = 2(10n!−(n+1) = 2 · q−(n+1)

n , for all n.

Now, suppose that a is algebraic. So
f(a) = 0. for some irreducible f(x) ∈ Q[x]. of degree d ≥ 2.
By Liouville’s Theorem, there is a δ > 0 such that |a− p

q | >
δ
qd

, for all p
q ∈ Q.

So δ
qdn
< |a− pn

qn
| < 2

qn+1
n

.

So δqn+1
n < 2qdn.

As soon as n ≥ d, we get
10−n! = qn ≤ qn+1−d

n < 2
δ , for all n ≥ d.

2
δ is some real numbers.
This is impossible. So a is not algebraic. �

Can use this to show that
∑∞

m=1 b
−m! is transcendental for any integer b ≥ 2.

Lots of transcendental numbers.
e is transcendental.


