ALGEBRA NOTE : MODULAR ARITHMETIC

JOHNEW ZHANG

1. Diophantine Equation

An equation with integer coefficients that one wants to solve over \mathbb{Z}, like $2 x+3 y=$ 7.

Observation $a x+b y=c$ has a solution if and only if $\operatorname{gcd}(a, b) \mid c$, and then if x_{0}, y_{0} is one solution, all other solutions are the form:

$$
\begin{aligned}
& x=x_{0}+k \frac{b}{\operatorname{gcd}(a, b)} k \in \mathbb{Z} \\
& y=y_{0}+k \frac{a}{\operatorname{gcd}(a, b)} k \in \mathbb{Z}
\end{aligned}
$$

2. Congruence

Definition 1. Let $a, b \in \mathbb{Z}$ and $N \in \mathbb{N}$, we say that a and b are congruent modulo n if and only if $n \mid a-b$, write

$$
a \equiv b \quad(\bmod n)
$$

Properties if $a_{1}, a_{2}, b_{1}, b_{2} \in \mathbb{Z}$ and $n \in \mathbb{N}$ with $a_{1} \equiv a_{2}(\bmod n)$ and $b_{1} \equiv b_{2}$ $(\bmod n)$.

Then $a_{1}+b_{1} \equiv a_{2}+b_{2}(\bmod n)$ and $a_{1} b_{1} \equiv a_{2} b_{2}(\bmod n)$.

Definition 2. The congruence or residue class of $a \in \mathbb{Z}$ modulo n is the set $[a]=$ $\{b \in \mathbb{Z}: a \equiv b(\bmod n)\}$.

Definition 3. The ring \mathbb{Z}_{n} is the set of $\{[0],[1] \ldots[n-1]\}$ with the operation "+" and "." defined by $[a]+[b]=[c]$ if and only if $a+b \equiv c(\bmod n)$ and $[a][b]=[c]$ if and only if $a b \equiv c(\bmod n)$. The "zero" element will be $[0]$, and the "one" element is [1].

3. Group

Definition 4. A group \mathbb{G} is a set with a binary operation *,

1) (associativity) $a *(b * c)=(a * b) * c$
2) (the existence of identity) : there exists an $e \in \mathbb{G}$ such that for all $a \in \mathbb{G}$, $a * e=e * a=a$.
3) (inverse) : there is an $a^{-1} \in \mathbb{G}$ such that $a * a^{-1}=e$

Definition 5. A group $(\mathbb{G}, *, e)$ is commutative (or "Abelian") if for all $a, b \in \mathbb{G}$, $a * b=b * a$.

Example :
$S_{N}=\{$ permutations of $\{1,2,3 \ldots N\}\}$.
A permutation of a set is a function from the set to itself which is:
(1) injective (one-to-one) $x=y \Longleftrightarrow f(x)=f(y)$
(2) surjective (onto) for every $y \in\{1,2,3 \ldots N\}$ there is an x with $f(x)=y$.

In other words, a permutation of $\{1,2,3 \ldots N\}$ is a function, $f:\{1,2,3 \ldots N\} \rightarrow\{1,2,3 \ldots N\}$ which is invertible.

4. The Ring \mathbb{Z}_{n}

Proposition : \mathbb{Z}_{n} is a commutative ring, where \mathbb{Z}_{n} is the set of congruence classes.

Lemma : Suppose that a, b and n are integers such that $\operatorname{gcd}(a, b)=1$. Then the equation

$$
a x \equiv b \quad(\bmod n)
$$

has exactly one integer solution modulo n . In other words, $[a][x]=[b]$ has exactly one solution in \mathbb{Z}_{n}.

Proposition : $[a] \in \mathbb{Z}_{n}$ is a unit if and only if $\operatorname{gcd}(a, n)=1$.
Theorem: If p is a prime or 1 , then \mathbb{Z}_{n} is a field.
Proof. If N is a prime, then $\operatorname{gcd}(a, N)=1$ unless $N \mid a$
$\Longrightarrow[a]$ is a unit unless $[a]=[0]$.
If there is some $1 \leq a \leq N-1$
Such that $[a]$ is not a unit.
the $\operatorname{gcd}(a, N) \neq 1$ but $\operatorname{gcd}(a, N) \leq a<N$. so N is not prime.

5. Equivalence Relation

6. Chinese Remainder Theorem

$\boldsymbol{C R T}, \boldsymbol{V} 1:$ If $\operatorname{gcd}(N, M)=1$, and $a, b \in \mathbb{Z}$ then we solve $(x \in \mathbb{Z})$:

$$
\begin{array}{ll}
x \equiv a & (\bmod N) \\
x \equiv b & (\bmod M)
\end{array}
$$

is just the congruence class of x modulo MN :

$$
x \equiv c \quad(\bmod M N)
$$

$\boldsymbol{C R T}, \boldsymbol{V} 2$: Let M_{1}, \ldots, M_{k} be natural numbers with $\operatorname{gcd}\left(M_{i}, M_{j}\right)=1$ for all $i \neq j$. And Let $a_{1}, \ldots, a_{k} \in \mathbb{Z}$, Then there is a solution $x \mathbb{Z}$:

$$
\begin{array}{rr}
x \equiv a_{1} & \left(\bmod M_{1}\right) \\
& \ldots \\
x \equiv a_{k} & \left(\bmod M_{k}\right)
\end{array}
$$

If x_{0} is one solution, then x is another if and only if

$$
x \equiv x_{0} \quad\left(\bmod M_{1} \ldots M_{k}\right)
$$

7. Congruence Equations

Question : How many solutions are there to $x^{2} \equiv 1(\bmod N)$?
Take $N=p, \mathrm{p}$ is a prime greater than 2 .
$x^{2} \equiv 1(\bmod p)$
$\Longrightarrow \mathrm{x}^{2}-1 \equiv 0(\bmod p)$
$\Longrightarrow(\mathrm{x}-1)(\mathrm{x}+1) \equiv 0(\bmod p)$
$\therefore, x \equiv \pm 1(\bmod p)$ is two solutions.

Now consider $N=p^{2}$, p is a prime greater than 2 and $e \geq 1$, and if $x \in \mathbb{Z}$ satisfies $x^{2} \equiv 1\left(\bmod p^{e}\right)$
$\Longleftrightarrow p^{e} \mid(x+1)(x-1)$
By unique factorization, write these two things :

$$
\begin{aligned}
& x+1=c p^{a} \\
& x-1=d p^{b}
\end{aligned}
$$

$a+b \geq e$
if $a, b \neq 0$. then $p|(x-1), p|(x+1)$, so $p \mid(x+1)-(x-1)=2$.
This is impossible, so $\min \{a, b\}=0$.
Then we could know $b \geq e$ or $a \geq e$
$\therefore, x \equiv \pm 1\left(\bmod p^{e}\right)$.
For odd prime, $\mathrm{p}, e \geq, x^{2} \equiv 1\left(\bmod p^{e}\right)$ if and only if $x \equiv \pm 1\left(\bmod p^{e}\right)$.
Consider $e \geq 1$, how many solutions to $x^{2} \equiv 1\left(\bmod 2^{e}\right)$?
$e=1 \Longrightarrow x \equiv 1(\bmod 2)$
$e=2 \Longrightarrow x \equiv \pm 1(\bmod 4)$
$e \geq 3:$ Suppose $x^{2} \equiv 1\left(\bmod 2^{e}\right)$
Write

$$
\begin{aligned}
& x+1=c 2^{a} \\
& x-1=d 2^{b}
\end{aligned}
$$

$a+b \geq e$
$\therefore 2^{\min \{a, b\}} \mid(x+1)-(x-1)=2$
so $\min \{a, b\} \leq 1$.
Case 1: $a=0$ or $b=0$
Then $x \equiv \pm 1\left(\bmod 2^{e}\right)$
Case $2: a=1$, then $b \geq e-1$
So $2^{e-1} \mid(x-1), x=1+2^{e} k$.
If k is even, then $x \equiv 1\left(\bmod 2^{e}\right)$
If k is odd, then say $k=2 m+1$.
Then $x \equiv 1+2^{e-1}\left(\bmod 2^{e}\right)$
Case $3: b=1$, then $x \equiv-1+2^{e-1}\left(\bmod 2^{e}\right)$
Above all there are four solutions.
In conclusion, the number of solutions to $x^{2} \equiv 1\left(\bmod 2^{e}\right)$ is
one for $e=1$, two for $e=2$, four for $e \geq 3$.
Lemma If p is prime, $e \geq 1$, then $x^{2} \equiv 1\left(\bmod p^{e}\right)$ has exactly 2 solutions, except

$$
\begin{aligned}
& p=2, e=1 \Longrightarrow 1 \text { solution } \\
& p=2, e \geq 3 \Longrightarrow 4 \text { solutions }
\end{aligned}
$$

Theorem Let $N=2^{e} p_{1}^{d_{1}} \ldots p_{k}^{d_{k}}$, with p_{i} distinct odd primes. Then the number of solutions to $x^{2} \equiv 1(\bmod N)$ is exactly 2^{k} if $e=0,1,2^{k+1}$ if $e=2,2^{k+2}$ if $e \geq 3$.

8. Fermat's Little Theorem

$\boldsymbol{F L T}$: Let p be a prime, and $a \in \mathbb{Z}$ with $\operatorname{gcd}(a, p)=1$ then, $a^{p-1} \equiv 1(\bmod p)$

Proof. It is easy using the idea of the permutation of a set, or the idea of function.

9. Euler's Theorem

Definition 6. Euler's totient function : for $m \geq 1$,
$\varphi(m)=$ number of values $0 \leq k<m$ such that $\operatorname{gcd}(k, m)=1$
$=$ number of units in the Ring \mathbb{Z}_{n}.
Euler'sTheorem: Let $m \geq 1$ and a be an integers with $\operatorname{gcd}(a, m)=1$, then $a^{\varphi m} \equiv 1(\bmod m)$

Theorem: Suppose $\operatorname{gcd}(n, m)=1$, then $\varphi(n m)=\varphi(n) \varphi(m)$.
Lemma: If p is a prime, $e \geq 1$, then
$\varphi\left(p^{e}\right)=p^{e-1}(p-1)$.

