ALGEBRA NOTE : MODULAR ARITHMETIC

JOHNEW ZHANG

1. DIOPHANTINE EQUATION

An equation with integer coefficients that one wants to solve over \mathbb{Z} , like 2x + 3y = 7.

Observation ax + by = c has a solution if and only if gcd(a, b)|c, and then if x_0, y_0 is one solution, all other solutions are the form:

$$x = x_0 + k \frac{b}{gcd(a,b)} k \in \mathbb{Z}$$
$$y = y_0 + k \frac{a}{gcd(a,b)} k \in \mathbb{Z}$$

2. Congruence

Definition 1. Let $a, b \in \mathbb{Z}$ and $N \in \mathbb{N}$, we say that a and b are congruent modulo n if and only if n|a - b, write

$$a \equiv b \pmod{n}$$

Properties if $a_1, a_2, b_1, b_2 \in \mathbb{Z}$ and $n \in \mathbb{N}$ with $a_1 \equiv a_2 \pmod{n}$ and $b_1 \equiv b_2 \pmod{n}$.

Then $a_1 + b_1 \equiv a_2 + b_2 \pmod{n}$ and $a_1b_1 \equiv a_2b_2 \pmod{n}$.

Definition 2. The congruence or residue class of $a \in \mathbb{Z}$ modulo n is the set $[a] = \{b \in \mathbb{Z} : a \equiv b \pmod{n}\}.$

Definition 3. The ring \mathbb{Z}_n is the set of $\{[0], [1] \dots [n-1]\}$ with the operation "+" and "." defined by [a] + [b] = [c] if and only if $a + b \equiv c \pmod{n}$ and [a][b] = [c] if and only if $ab \equiv c \pmod{n}$. The "zero" element will be [0], and the "one" element is [1].

JOHNEW ZHANG

3. Group

Definition 4. A group \mathbb{G} is a set with a binary operation *,

1) (associativity) a * (b * c) = (a * b) * c

2) (the existence of identity) : there exists an $e \in \mathbb{G}$ such that for all $a \in \mathbb{G}$, a * e = e * a = a.

3) (inverse) : there is an $a^{-1} \in \mathbb{G}$ such that $a * a^{-1} = e$

Definition 5. A group $(\mathbb{G}, *, e)$ is commutative (or "Abelian") if for all $a, b \in \mathbb{G}$, a * b = b * a.

Example : $S_N = \{ \text{ permutations of } \{1, 2, 3 \dots N\} \}.$ A permutation of a set is a function from the set to itself which is: (1) injective (one-to-one) $x = y \iff f(x) = f(y)$ (2) surjective (onto) for every $y \in \{1, 2, 3 \dots N\}$ there is an x with f(x) = y.

In other words, a permutation of $\{1, 2, 3...N\}$ is a function, $f: \{1, 2, 3...N\} \rightarrow \{1, 2, 3...N\}$ which is invertible.

4. The Ring \mathbb{Z}_n

Proposition : \mathbb{Z}_n is a commutative ring, where \mathbb{Z}_n is the set of congruence classes.

Lemma : Suppose that a, b and n are integers such that gcd(a, b) = 1. Then the equation

$$ax \equiv b \pmod{n}$$

has exactly one integer solution modulo n. In other words, [a][x] = [b] has exactly one solution in \mathbb{Z}_n .

Proposition : $[a] \in \mathbb{Z}_n$ is a unit if and only if gcd(a, n) = 1.

Theorem : If p is a prime or 1, then \mathbb{Z}_n is a field.

Proof. If N is a prime, then gcd(a, N) = 1 unless $N|a \implies [a]$ is a unit unless [a] = [0]. If there is some $1 \le a \le N - 1$ Such that [a] is not a unit.

 $\mathbf{2}$

the $gcd(a, N) \neq 1$ but $gcd(a, N) \leq a < N$. so N is not prime.

5. Equivalence Relation

6. Chinese Remainder Theorem

CRT, V1: If gcd(N, M) = 1, and $a, b \in \mathbb{Z}$ then we solve $(x \in \mathbb{Z})$:

 $x \equiv a \pmod{N}$ $x \equiv b \pmod{M}$

is just the congruence class of x modulo MN :

$$x \equiv c \pmod{MN}$$

CRT, V2: Let M_1, \ldots, M_k be natural numbers with $gcd(M_i, M_j) = 1$ for all $i \neq j$. And Let $a_1, \ldots, a_k \in \mathbb{Z}$, Then there is a solution $x\mathbb{Z}$:

 $x \equiv a_1 \pmod{M_1}$ \dots $x \equiv a_k \pmod{M_k}$

If x_0 is one solution, then x is another if and only if

$$x \equiv x_0 \pmod{M_1 \dots M_k}$$

7. Congruence Equations

Question : How many solutions are there to $x^2 \equiv 1 \pmod{N}$? Take N = p, p is a prime greater than 2. $x^2 \equiv 1 \pmod{p}$ $\implies x^2 - 1 \equiv 0 \pmod{p}$ $\implies (x-1)(x+1) \equiv 0 \pmod{p}$ $\therefore, x \equiv \pm 1 \pmod{p}$ is two solutions. $\mathbf{3}$

JOHNEW ZHANG

Now consider $N = p^2$, p is a prime greater than 2 and $e \ge 1$, and if $x \in \mathbb{Z}$ satisfies $x^2 \equiv 1 \pmod{p^e}$

 $\iff p^e|(x+1)(x-1)$

By unique factorization, write these two things :

$$\begin{aligned} x + 1 &= cp^a \\ x - 1 &= dp^b \end{aligned}$$

 $a+b \ge e$ if $a, b \ne 0$. then p|(x-1), p|(x+1), so p|(x+1) - (x-1) = 2. This is impossible, so $\min\{a, b\} = 0$. Then we could know $b \ge e$ or $a \ge e$ $\therefore, x \equiv \pm 1 \pmod{p^e}$. For odd prime, p, $e \ge, x^2 \equiv 1 \pmod{p^e}$ if and only if $x \equiv \pm 1 \pmod{p^e}$.

Consider $e \ge 1$, how many solutions to $x^2 \equiv 1 \pmod{2^e}$? $e = 1 \implies x \equiv 1 \pmod{2}$ $e = 2 \implies x \equiv \pm 1 \pmod{4}$ $e \ge 3$: Suppose $x^2 \equiv 1 \pmod{2^e}$ Write

$$x + 1 = c2^a$$
$$x - 1 = d2^b$$

 $\begin{array}{l} a+b \geq e \\ \therefore 2^{\min\{a,b\}} | (x+1) - (x-1) = 2 \\ \text{so } \min\{a,b\} \leq 1. \\ \text{Case 1: } a = 0 \text{ or } b = 0 \\ \text{Then } x \equiv \pm 1 \pmod{2^e} \\ \text{Case 2: } a = 1, \text{ then } b \geq e-1 \\ \text{So } 2^{e-1} | (x-1), x = 1+2^e k. \\ \text{If } k \text{ is even, then } x \equiv 1 \pmod{2^e} \\ \text{If } k \text{ is odd, then say } k = 2m+1 . \\ \text{Then } x \equiv 1+2^{e-1} \pmod{2^e} \\ \text{Case 3: } b = 1, \text{ then } x \equiv -1+2^{e-1} \pmod{2^e} \\ \text{Above all there are four solutions.} \end{array}$

In conclusion, the number of solutions to $x^2 \equiv 1 \pmod{2^e}$ is

4

one for e = 1, two for e = 2, four for $e \ge 3$.

Lemma If p is prime, $e \ge 1$, then $x^2 \equiv 1 \pmod{p^e}$ has exactly 2 solutions, except

 $p = 2, e = 1 \implies 1$ solution $p = 2, e \ge 3 \implies 4$ solutions

Theorem Let $N = 2^e p_1^{d_1} \dots p_k^{d_k}$, with p_i distinct odd primes. Then the number of solutions to $x^2 \equiv 1 \pmod{N}$ is exactly 2^k if $e = 0, 1, 2^{k+1}$ if $e = 2, 2^{k+2}$ if $e \ge 3$.

8. Fermat's Little Theorem

 \pmb{FLT} : Let p be a prime, and $a\in\mathbb{Z}$ with gcd(a,p)=1 then, $a^{p-1}\equiv 1\pmod{p}$

Proof. It is easy using the idea of the permutation of a set, or the idea of function. \Box

9. Euler's Theorem

Definition 6. Euler's totient function : for $m \ge 1$, $\varphi(m) = number \text{ of values } 0 \le k < m \text{ such that } gcd(k,m) = 1$ $= number \text{ of units in the Ring } \mathbb{Z}_n.$

Euler'sTheorem : Let $m \ge 1$ and a be an integers with gcd(a, m) = 1, then $a^{\varphi m} \equiv 1 \pmod{m}$

Theorem : Suppose gcd(n,m) = 1, then $\varphi(nm) = \varphi(n)\varphi(m)$.

Lemma : If p is a prime, $e \ge 1$, then $\varphi(p^e) = p^{e-1}(p-1)$.