
ALGEBRA NOTES : CHAPTER 1

JOHNEW ZHANG

1. The Introduction toAbstract Algebra

The integers: Z = {0, 1, 2, . . .}
[S1] The integers consist of the set Z and the operations ”+” and ”·”.
[A1] ∀ a, b ∈ Z, a + b = b + a (commutativity of addition)
[A2] ∀ a, b, c ∈ Z, (a + b) + c = a + (b + c) (associativity of addition)
[A3] There is an element 0 ∈ Z, such that a + 0 = a, ∀ a ∈ Z (additive identity)
[A4] ∀ a ∈ Z, there is an element -a ∈ Z, so that a + (−a) = 0 (additive inverse

property)
[M1] ∀ a, b ∈ Z, ab = ba (commutativity of multiplication)
[M2] ∀ a, b, c ∈ Z, (ab)c = a(bc) (associativity of multiplication)
[M3] There is a and 1 ∈ Z, so that 1 ·a = a ·1 = a, ∀ a ∈ Z (multiplicative identity)
[D1] ∀ a, b, c ∈ Z, (a + b) · c = ac + bc, (distributivity of multiplication)

Other things that satisfy these properties
R (the set of real numbers) with usual ”+” and ”·”.
Q (the set of rational numbers)

A set R with the operations ”+” and ”·”satisfies all of these properties is called a
commutative rings. �

E.G., let F2(orZ2) be the set {0,1}

+ 0 1
0 0 1
1 1 0

· 0 1
0 0 0
1 0 1

This is a commutative ring. �

Sometimes we will study rings with an additional property.
1
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[M4] ∀ a 6= 0, there is an element a−1 such that a · a−1 = 1 (multiplicative inverse)
A commutative ring satisfying M4 is called a field.
E.G., Q is a field. R is a field. Z is not a field. F2 is a field.

Let M be the set of 2× 2 matrices with integers entries[
a b
c d

]
+

[
e f
g h

]
=

[
a + e b + f
c + g d + h

]
[
a b
c d

]
·
[
e f
g h

]
=

[
ae bf
cg dh

]
[
1 1
0 1

] [
2 1
0 1

]
6=
[
2 0
0 1

] [
1 1
0 1

]
It is not commutative rings.

[D2] ∀a, b, c ∈ Z, a(b + c) = ab + ac

2. Induction Principle

Induction Some statement about nature number n, suppose that P(1) holds and
suppose that whenever P(k) is true for (1 ≥ k < n), then P(n) is true. Then P(n)
holds for all n. �

InductionSteps 1. Check the base case.
2. Assume that P(K) holds ∀k ∈ [1, n)
3. Prove that P(k + 1) holds
4. Conclusion

WellOrderingPrinciple : Every non-empty subset of N contains a least ele-
ment.

Proof. Contrapositive
Let P(n) be ”n /∈ S”, where S has no least element.
1. Base Case P(1) holds since if 1 ∈ S, S has a least element.
2. Assume P(k) ∀k ∈ [1, n) (n here is at least 2), so k /∈ S. Then n /∈ S. Therefore

P(n) holds.
By induction, P(n) holds for all n, so n /∈ S,∀n /∈ N, S = ∅. In conclusion, the

well ordering principle holds. �

3. Primes and Divisibility

Definition In a commutative rings, R, if a, b ∈ R, we say a|b (”a divides b”), if
and only if there exists c ∈ R such that b = ac.
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Definition A prime (integer) is a positive integer p 6= 1, such that the only
divisors of p in Z are ±1, ±p.

UniqueFactorization Every integer can be written in the form±1·pa11 pa22 . . . parr ,
where ai > 0, the pi are primes. And this representation is unique to reordering.

Proof. (of existence)
Let n ≥ 1, P(n) be the statement that there exists a way of writing n = 1 ·

pa11 pa22 . . . parr .
Base case, P(1) is true, since 1= 1.
Suppose P(k) holds ∀k ∈ [1, n) (n ≥ 2).
If n is prime, then P(n) holds, ∵ n = n.
If n is not prime, we can write n = ab, where 1 ≤ a, b < n. We can write a and

b as products of prime powers since P(a) and P(b) holds. Therefore we can write
n = ab as a product of prime powers. �

Theorem There are infinitely many primes.

Proof. Suppose not, and list all of the primes p1, p2, . . . , pn. Then p1p2p3 . . . pn + 1 is
divisible by any prime.

If p1|p1 and p1|p1p2p3 . . . pn + 1, then p1|(p1p2p3 . . . pn + 1) + (−p2p3 . . . pn)p1 = 1
Contradiction, so there are infinitely many primes. �

Definition 1. Let Π(x) = the number of primes less than x. Π(x) : R→ N ∪ {0}

Theorem Let Pn be the nth prime. Then Pn ≤ 22n−1
.

Proof. Base case : n = 1, then P1 = 2 < 221−1
. it holds.

Suppose Pk ≤ 22k−1
, then

p1p2p3 . . . pk−1 + 1 ≤ 220221 . . . 22k−1

+ 1

= 2
1−2k−1

1−2 + 1

= 22k−1−1 + 1

=
1

2
22k−1

+ 1

≤ 22k−1

so p1p2p3 . . . pk−1 + 1 ≤ 22n−1
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But p1p2p3 . . . pk−1 + 1 is divisible by some prime q ≥ Pn so that Pn ≤ q ≤
p1p2p3 . . . pk−1 + 1 ≤ 22k−1

.
By induction, the theorem holds. �

In particular, Π(x) ≥ log2(log2(x)) (for x > 1) �

Theorem For primes,
∑

1
p

diverges.

Proof. Suppose that
∑∞

n−1
1
pn

converges.

(pn = nthprime) If this is true, then there exists k ≥ 1 such that
∑∞

n=k+1
1
pn

< 1
2
.

Let N = 4k+1, we’ll count the elements of 1, 2, 3, 4, . . . , N .
Let X = {1 ≤ a ≤ N : Pi|a for some i ≥ k + 1}.
Let Y = {1 ≤ a ≤ N : a is not in X}.
It should be clear that #X + #Y = Y .
Each element of X is divisible by some prime pi, ∀i ≥ k + 1
The number of integers from 1 to N.
Divisible by pi is at most N

pi
.

Reason: If pi|x, x = pim, and 1 ≤ m ≤ N
pi

.

∴#X ≤
∑∞

i=k+1(# of 1 ≤ x ≤ N , divisible by pi)≤
∑∞

i=k+1
N
pi

= N
∑∞

i=k+1
1
pi
< N

2

Now we count the element of Y.
Every element of Y can be written as peii p

e2
2 . . . pekk . . . for some ei ≥ 0.

It follows that every element of Y can be written as paii p
a2
2 . . . pakk b2, where ai = 0,

or 1 for all i.
If paii p

a2
2 . . . pakk b2 ≤ N , certainly b ≤

√
N since b is an integer, this leaves at most√

N choices for b.
Since each ai is either 0 or 1, there are only 2k choices for a1, a2, . . . ak.
Therefore the number of integers 1 ≤ x ≤ N , which can be written in the form

x = paii p
a2
2 . . . pakk b2, for b ∈ N and ai = 0 or 1, is at most 2k

√
N , ∴# Y≤ 2k

√
N

2k
√
N = 2k

√
4k+1 = 22k+1 = 1

2
4k+1 = N

2

#Y ≤ N
2

We assumed that
∑∞

i=1
1
pi

converges and shows that for some N, N = #X +#Y <
N .

Contradiction, the theorem holds.
�

Theorem Let a ≥ 1 and b be integers, then there exist integers q and 0 ≤ r < a
such that b = aq + r .

Proof. Let S = {s : s = b− aq for some q ∈ Z and s ≥ 0}
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This is non-empty, since a ≥ 0.
So we can choose q with b− aq ≥ 0
S ⊆ {0, 1, 2, 3, . . .}
So if S 6= ∅, S has a least element, call r ∈ S.
r = b− aq for some q ∈ Z
Also, r ≥ 0,
Suppose r ≥ a
Then r − a ≥ 0, and b = aq + r = a(q + 1) + (r − a)
∴r-a∈ S. But r − a < r.
contradiction, r < a.

�

Definition 2. Let a, b ∈ Z be non-zero. Then gcd(a, b) is the large d ∈ Z such that
d|a and d|b.

Remarks :
1. If d|a, and a 6= 0, then d ≤ |a|.
2. We can define gcd(a, 0) if a 6= 0, just by gcd(a, 0) = gcd(0, a) = a. gcd(0, 0)

does not make sense.
EuclideanAlgorithm :
1. (gcd(a, b)), Set things up so that b > a > 0.
2. If a = 0, gcd(b, a) = b
3. Write b = aq + r, 0 ≤ r < a, and repeat to compute gcd(a, r).

Bezaut′sidentity :If a and b are positive integers, then there exists integers s
and t so that as+ bt = gcd(a, b). (note, this is called an ”integer linear combination”
of a, b ∈ Z).

FatoringIntegers:
lemma: If a and b are non-zero integers with gcd(a, b) = 1 and a|bc, then a|c.
lemma: Let p be a prime and suppose that p|a1a2 . . . an (ai ∈ Z). Then p|ai for

some i.

UniqueFactorizationOfIntegers :We have show that every n ≥ 2 can be
written as n = p1p2p3 . . . pr for some primes (they may repeat).


