ALGEBRA NOTES : CHAPTER 1

JOHNEW ZHANG

1. The Introduction toAbstract Algebra

The integers: $\mathbb{Z}=\{0,1,2, \ldots\}$
$\left[S_{1}\right]$ The integers consist of the set \mathbb{Z} and the operations "+" and ".".
$\left[A_{1}\right] \forall \mathrm{a}, \mathrm{b} \in \mathbb{Z}, a+b=b+a$ (commutativity of addition)
$\left[A_{2}\right] \forall \mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathbb{Z},(a+b)+c=a+(b+c)$ (associativity of addition)
$\left[A_{3}\right]$ There is an element $0 \in \mathbb{Z}$, such that $a+0=a, \forall \mathrm{a} \in \mathbb{Z}$ (additive identity)
$\left[A_{4}\right] \forall \mathrm{a} \in \mathbb{Z}$, there is an element $-\mathrm{a} \in \mathbb{Z}$, so that $a+(-a)=0$ (additive inverse property)
$\left[M_{1}\right] \forall \mathrm{a}, \mathrm{b} \in \mathbb{Z}, a b=b a$ (commutativity of multiplication)
$\left[M_{2}\right] \forall \mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathbb{Z},(a b) c=a(b c)$ (associativity of multiplication)
$\left[M_{3}\right]$ There is a and $1 \in \mathbb{Z}$, so that $1 \cdot a=a \cdot 1=a, \forall \mathrm{a} \in \mathbb{Z}$ (multiplicative identity)
$\left[D_{1}\right] \forall \mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathbb{Z},(a+b) \cdot c=a c+b c$, (distributivity of multiplication)
Other things that satisfy these properties
\mathbb{R} (the set of real numbers) with usual " + " and ".".
\mathbb{Q} (the set of rational numbers)
A set \mathbb{R} with the operations "+" and "." satisfies all of these properties is called a commutative rings.
E.G., let $\mathbb{F}_{2}\left(o r \mathbb{Z}_{2}\right)$ be the set $\{0,1\}$

$$
\begin{array}{ccc}
+ & 0 & 1 \\
\hline 0 & 0 & 1 \\
1 & 1 & 0 \\
. & 0 & 1 \\
\hline 0 & 0 & 0 \\
1 & 0 & 1
\end{array}
$$

This is a commutative ring.
Sometimes we will study rings with an additional property.
$\left[M_{4}\right] \forall a \neq 0$, there is an element a^{-1} such that $a \cdot a^{-1}=1$ (multiplicative inverse)
A commutative ring satisfying M_{4} is called a field.
E.G., \mathbb{Q} is a field. \mathbb{R} is a field. \mathbb{Z} is not a field. \mathbb{F}_{2} is a field.

Let M be the set of 2×2 matrices with integers entries
$\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]+\left[\begin{array}{ll}e & f \\ g & h\end{array}\right]=\left[\begin{array}{ll}a+e & b+f \\ c+g & d+h\end{array}\right]$
$\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \cdot\left[\begin{array}{ll}e & f \\ g & h\end{array}\right]=\left[\begin{array}{ll}a e & b f \\ c g & d h\end{array}\right]$
$\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}2 & 1 \\ 0 & 1\end{array}\right] \neq\left[\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ It is not commutative rings.
$\left[D_{2}\right] \forall a, b, c \in \mathbb{Z}, a(b+c)=a b+a c$

2. Induction Principle

Induction Some statement about nature number n, suppose that $P(1)$ holds and suppose that whenever $\mathrm{P}(\mathrm{k})$ is true for $(1 \geq k<n)$, then $\mathrm{P}(\mathrm{n})$ is true. Then $\mathrm{P}(\mathrm{n})$ holds for all n .

InductionSteps 1. Check the base case.
2. Assume that $\mathrm{P}(\mathrm{K})$ holds $\forall k \in[1, n)$
3. Prove that $\mathrm{P}(\mathrm{k}+1)$ holds
4. Conclusion

WellOrderingPrinciple : Every non-empty subset of \mathbb{N} contains a least element.

Proof. Contrapositive
Let $\mathrm{P}(\mathrm{n})$ be " $n \notin S$ ", where S has no least element.

1. Base Case $\mathrm{P}(1)$ holds since if $1 \in S$, S has a least element.
2. Assume $\mathrm{P}(\mathrm{k}) \forall k \in[1, n)$ (n here is at least 2), so $k \notin S$. Then $n \notin S$. Therefore $\mathrm{P}(\mathrm{n})$ holds.

By induction, $\mathrm{P}(\mathrm{n})$ holds for all n , so $n \notin S, \forall n \notin \mathbb{N}, S=\emptyset$. In conclusion, the well ordering principle holds.

3. Primes and Divisibility

Definition In a commutative rings, \mathbb{R}, if $a, b \in \mathbb{R}$, we say $a \mid b$ ("a divides b"), if and only if there exists $c \in \mathbb{R}$ such that $b=a c$.

Definition A prime (integer) is a positive integer $p \neq 1$, such that the only divisors of p in \mathbb{Z} are $\pm 1, \pm p$.

UniqueFactorization Every integer can be written in the form $\pm 1 \cdot p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{r}^{a_{r}}$, where $a_{i}>0$, the p_{i} are primes. And this representation is unique to reordering.

Proof. (of existence)
Let $n \geq 1, \mathrm{P}(\mathrm{n})$ be the statement that there exists a way of writing $n=1$. $p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{r}^{a_{r}}$.

Base case, $\mathrm{P}(1)$ is true, since $1=1$.
Suppose $\mathrm{P}(\mathrm{k})$ holds $\forall k \in[1, n)(n \geq 2)$.
If n is prime, then $\mathrm{P}(\mathrm{n})$ holds, $\because n=n$.
If n is not prime, we can write $n=a b$, where $1 \leq a, b<n$. We can write a and b as products of prime powers since $\mathrm{P}(\mathrm{a})$ and $\mathrm{P}(\mathrm{b})$ holds. Therefore we can write $n=a b$ as a product of prime powers.

Theorem There are infinitely many primes.

Proof. Suppose not, and list all of the primes $p_{1}, p_{2}, \ldots, p_{n}$. Then $p_{1} p_{2} p_{3} \ldots p_{n}+1$ is divisible by any prime.

If $p_{1} \mid p_{1}$ and $p_{1} \mid p_{1} p_{2} p_{3} \ldots p_{n}+1$, then $p_{1} \mid\left(p_{1} p_{2} p_{3} \ldots p_{n}+1\right)+\left(-p_{2} p_{3} \ldots p_{n}\right) p_{1}=1$
Contradiction, so there are infinitely many primes.
Definition 1. Let $\Pi(x)=$ the number of primes less than $x . \Pi(x): \mathbb{R} \rightarrow \mathbb{N} \cup\{0\}$
Theorem Let P_{n} be the nth prime. Then $P_{n} \leq 2^{2^{n-1}}$.
Proof. Base case : $n=1$, then $P_{1}=2<2^{2^{1-1}}$. it holds.
Suppose $P_{k} \leq 2^{2^{k-1}}$, then

$$
\begin{aligned}
p_{1} p_{2} p_{3} \ldots p_{k-1}+1 & \leq 2^{2^{0}} 2^{2^{1}} \ldots 2^{2^{k-1}}+1 \\
& =2^{\frac{1-2^{k-1}}{1-2}}+1 \\
& =2^{2^{k-1}-1}+1 \\
& =\frac{1}{2} 2^{2^{k-1}}+1 \\
& \leq 2^{2^{k-1}}
\end{aligned}
$$

so $p_{1} p_{2} p_{3} \ldots p_{k-1}+1 \leq 2^{2^{n-1}}$

But $p_{1} p_{2} p_{3} \ldots p_{k-1}+1$ is divisible by some prime $q \geq P_{n}$ so that $P_{n} \leq q \leq$ $p_{1} p_{2} p_{3} \ldots p_{k-1}+1 \leq 2^{2^{k-1}}$.

By induction, the theorem holds.
In particular, $\Pi(x) \geq \log _{2}\left(\log _{2}(x)\right)($ for $x>1)$
Theorem For primes, $\sum \frac{1}{p}$ diverges.
Proof. Suppose that $\sum_{n-1}^{\infty} \frac{1}{p_{n}}$ converges.
($p_{n}=n$ thprime) If this is true, then there exists $k \geq 1$ such that $\sum_{n=k+1}^{\infty} \frac{1}{p_{n}}<\frac{1}{2}$.
Let $N=4^{k+1}$, we'll count the elements of $1,2,3,4, \ldots, N$.
Let $X=\{1 \leq a \leq N: P i \mid a$ for some $i \geq k+1\}$.
Let $Y=\{1 \leq a \leq N: \mathrm{a}$ is not in $X\}$.
It should be clear that $\# X+\# Y=Y$.
Each element of X is divisible by some prime $p_{i}, \forall i \geq k+1$
The number of integers from 1 to N .
Divisible by p_{i} is at most $\frac{N}{p_{i}}$.
Reason: If $p_{i} \mid x, x=p_{i} m$, and $1 \leq m \leq \frac{N}{p_{i}}$.
$\therefore \# \mathrm{X} \leq \sum_{i=k+1}^{\infty}\left(\#\right.$ of $1 \leq x \leq N$, divisible by $\left.\mathrm{p}_{i}\right) \leq \sum_{i=k+1}^{\infty} \frac{N}{p_{i}}=N \sum_{i=k+1}^{\infty} \frac{1}{p_{i}}<\frac{N}{2}$
Now we count the element of Y.
Every element of Y can be written as $p_{i}^{e_{i}} p_{2}^{e_{2}} \ldots p_{k}^{e_{k}} \ldots$ for some $e_{i} \geq 0$.
It follows that every element of Y can be written as $p_{i}^{a_{i}} p_{2}^{a_{2}} \ldots p_{k}^{a_{k}} b^{2}$, where $a_{i}=0$, or 1 for all i.
If $p_{i}^{a_{i}} p_{2}^{a_{2}} \ldots p_{k}^{a_{k}} b^{2} \leq N$, certainly $b \leq \sqrt{N}$ since b is an integer, this leaves at most \sqrt{N} choices for b .

Since each a_{i} is either 0 or 1 , there are only 2^{k} choices for $a_{1}, a_{2}, \ldots a_{k}$.
Therefore the number of integers $1 \leq x \leq N$, which can be written in the form $x=p_{i}^{a_{i}} p_{2}^{a_{2}} \ldots p_{k}^{a_{k}} b^{2}$, for $b \in \mathbb{N}$ and $a_{i}=0$ or 1 , is at most $2^{k} \sqrt{N}, \therefore \# \mathrm{Y} \leq 2^{k} \sqrt{N}$
$2^{k} \sqrt{N}=2^{k} \sqrt{4^{k+1}}=2^{2 k+1}=\frac{1}{2} 4^{k+1}=\frac{N}{2}$
$\# Y \leq \frac{N}{2}$
We assumed that $\sum_{i=1}^{\infty} \frac{1}{p_{i}}$ converges and shows that for some $\mathrm{N}, N=\# X+\# Y<$ N.

Contradiction, the theorem holds.

Theorem Let $a \geq 1$ and b be integers, then there exist integers q and $0 \leq r<a$ such that $b=a q+r$.

Proof. Let $S=\{s: s=b-a q$ for some $q \in \mathbb{Z}$ and $s \geq 0\}$

This is non-empty, since $a \geq 0$.
So we can choose q with $b-a q \geq 0$
$S \subseteq\{0,1,2,3, \ldots\}$
So if $S \neq \emptyset$, S has a least element, call $r \in S$.
$r=b-a q$ for some $q \in \mathbb{Z}$
Also, $r \geq 0$,
Suppose $r \geq a$
Then $r-a \geq 0$, and $b=a q+r=a(q+1)+(r-a)$
$\therefore \mathrm{r}-\mathrm{a} \in S$. But $r-a<r$.
contradiction, $r<a$.

Definition 2. Let $a, b \in \mathbb{Z}$ be non-zero. Then $\operatorname{gcd}(a, b)$ is the large $d \in \mathbb{Z}$ such that $d \mid a$ and $d \mid b$.

Remarks :

1. If $d \mid a$, and $a \neq 0$, then $d \leq|a|$.
2. We can define $\operatorname{gcd}(a, 0)$ if $a \neq 0$, just by $\operatorname{gcd}(a, 0)=\operatorname{gcd}(0, a)=a . \operatorname{gcd}(0,0)$ does not make sense.

EuclideanAlgorithm :

1. $(\operatorname{gcd}(a, b))$, Set things up so that $b>a>0$.
2. If $a=0, \operatorname{gcd}(b, a)=b$
3. Write $b=a q+r, 0 \leq r<a$, and repeat to compute $\operatorname{gcd}(a, r)$.
$\boldsymbol{B e} \boldsymbol{z a u t}$ sidentity :If a and b are positive integers, then there exists integers s and t so that $a s+b t=\operatorname{gcd}(a, b)$. (note, this is called an "integer linear combination" of $a, b \in \mathbb{Z}$).

FatoringIntegers:

lemma: If a and b are non-zero integers with $\operatorname{gcd}(a, b)=1$ and $a \mid b c$, then $a \mid c$.
lemma: Let p be a prime and suppose that $p \mid a_{1} a_{2} \ldots a_{n}\left(a_{i} \in \mathbb{Z}\right)$. Then $p \mid a_{i}$ for some i.

UniqueFactorizationOfIntegers :We have show that every $n \geq 2$ can be written as $n=p_{1} p_{2} p_{3} \ldots p_{r}$ for some primes (they may repeat).

