ALGEBRA NOTE 4

JOHNEW ZHANG

1. Multiplicative Functions

Back to φ function. Recall, if gcd(n,m) = 1, then $\varphi(mn) = \varphi(n)\varphi(m)$. Note, $n = p_1^{e_1} \dots p_k^{e_k}$. Then $\varphi(n) = p^{e_1-1}(p-1) \dots$

Definition 1. $f : \mathbb{N} \to \mathbb{R}$ is multiplicative if and only if $gcd(m,n) = 1 \implies f(mn) = f(m)f(n)$.

Then $n = p_1^{e_1} \dots p_k^{e_k}$, then $f(n) = f(p_1^{e_1}) \dots f(p_k^{e_k})$.

Example: $f(n) = 1, \forall n.$ $f(n) = n, \forall n.$ Less trivial $f(n) = 2^{\text{#of distinct prime factors}}.$ Example : $f(p^e) = 2.$ $f(p_1^{e_1} \dots p_k^{e_k}) = 2^n.$ The number of prime divisor

The number of prime divisor of mn is equal to the number of prime divisor of m + the number of prime factors of n.

Theorem 1. If g is a multiplicative functions, then $f(n) = \sum_{d|n} g(d)$ is multiplicative.

Proof. If gcd(m,n) = 1, then $f(mn) = \sum_{d|mn} g(d) = \sum_{ab|mn} g(ab) = \sum_{a|n} g(a) \sum_{b|m} g(b) = f(m)f(n)$.

Example : Let d(n) = the number of divisors of n. $\sum_{g|6} g = 1 + 2 + 3 + 6 = 12, d(6) = 4.$ $d(n) = \sum_{d|n} 1.$

Lemma 1. Let gcd(m,n) = 1, and d|mn. Then d can be written in one and only one way as d = ab with a|n and b|m.

Proof. Let a = gcd(d, n) and b = gcd(d, m). Then gcd(a, b) = 1 and a|d, and b|d, so ab|d. On the other hand, d = gcd(d, mn)|gcd(d, n)gcd(d, m) = abSo d|ab, Thus d = ab. Leave the uniqueness as an exercise. \star d(n) is multiplicative. $d(p^e) = e + 1$ So then if $n = p_1^{e_1} \dots p_k^{e_k}$, then $d(n) = (e_1 + 1) \dots (e_k + 1)$. Example: $d(1000) = d(2^35^3) = (3+1)(3+1) = 16$. Example: Set $\sigma(n) = \sum_{d|n} d$. So σ is multiplicative. $\sigma(6) = 12$ $\sigma(4) = 1 + 2 + 4 = 7.$ $\sigma(5) = 1 + 5 = 6.$ If $n = p_1^{e_1} \dots p_k^{e_k}$, what is $\sigma(n)$? Well $\begin{aligned} \sigma(p^e) &= 1 + p + \ldots + p^e = \frac{p^{e+1} - 1}{p-1} \\ \text{Then } \sigma(n) &= \left(\frac{p_1^{e_1 + 1} - 1}{p_1}\right) \left(\frac{p_3^{e_3 + 1} - 1}{p_3}\right). \end{aligned}$ Example: $n = 1521 = 3^{2}13^{2}.$ Then $\sigma 1521 = (\frac{3^{2+1}-1}{3-1})(\frac{13^{2+1}-1}{13-1}) = 2379.$

2. Perfect Number

Definition 2. A number is perfect if it is the sum of its positive divisors, Other than itself, $\sigma(n) = \sum_{d|m} d = 2n$.

Example : $\sigma(6) = 2 \cdot 6, 6$ is perfect. $\sigma(28) = 2 \cdot 28.$

How many perfect numbers are there? I don't know.

Theorem 2. Let n be an even number. Then n is perfect if and only if $n = 2^{p-1}(2^p - 1)$ for some prime p such that $2^p - 1$ is also prime.

Proof. Is 2^e perfect $\sigma(2^e) = \frac{2^e - 1}{2 - 1} = 2^{e+1} - 1 \neq 2^{e+1}.$

What about other even number Write $n = 2^{e}m$, where m is odd. $\sigma(n) = \sigma(2^{e})\sigma(m) = (2^{e+1} - 1)\sigma(m)$. If n is perfect, then $\sigma(n) = 2n = (2^{e+1} - 1)\sigma(m)$.

 $\mathbf{2}$

so then $(2^{e+1} - 1)\sigma(m) = 2^{e+1}m$. and thus $2^{e+1}|\sigma(m)$, and $2^{e+1} - 1|m$. So here is a k such that $m = (2^{e+1} - 1)k$. So $\sigma(m) = 2^{e+1}k$. so $k|\sigma(m)$. m and k are both divisors of m. And $m + k = (2^{e+1} - 1)k + k = 2^{e+1}k = \sigma(m)$. So m has only two divisors and thus m is prime, which implies k = 1. Since $= 2^{e+1} - 1$ is a prime, e + 1 is a prime. Set p = e + 1 since primes should be called, p. Then e = p - 1, so $n = 2^{p-1}(2^p - 1)$.

To see the other way $\sigma(2^{p-1}(2^p-1)) = \sigma(2^{p-1})\sigma(2^p-1) = 2^p(2^p-1) = 2 \cdot 2^{p-1}(2^p-1)$

Are there any odd perfect numbers? Probably no, but we are still not able to show.

Definition 3. A number of the form $2^n - 1$ is called a Mersenne number. And if it is prime, it is called a Mersenne prime.

It is not true that if p is prime, $2^p - 1$ is prime

The answer is not all the time.

Check the properties below.

 $2^{2} - 1 = 3$ $2^{3} - 1 = 7$ $2^{5} - 1 = 31$ $2^{7} - 1 = 127$ $2^{11} - 1 = 7047 \text{ (not prime)}$ $2^{23} - 1 = 83388607 \text{ (not prime)}$

Example : If e is odd, p and prime, $\sigma(p^e) = 1 + p + \ldots + p^e = \text{even.}$ but 4 not divide 2n, at most are exponent of p; in $n = p_1^{e_1} \ldots p_3^{e_3}$ can be odd.

Conjecture: There are infinitely many Mersenne primes.

Identify a multiplicative functions, want to know when f(n) = g(n). You need only show that $f(p^k) = g(p^k)$ for all prime powers p^k .

Theorem 3. For any n, $\sum_{d|n} \varphi d = n$.

JOHNEW ZHANG

Proof. Since
$$\varphi$$
 is multiplicative, so is $g(n) = \sum_{d|n} \varphi(d)$. Well
 $g(p^k) = \sum_{d|p^k} \varphi d = 1 + \varphi(1) + \ldots + \varphi(p^k) = 1 + (p-1) + \ldots + (p^k - p^{k-1}) = p^k$

Question : If we have $f(n) = \sum_{d|n} g(d)$, can we tell what g is Yes!. For example : $\sum_{d|n} \varphi d = n$ gives us a formula for φ , and not the simple ugly one. $\varphi(n) = n - \sum_{d|n,d \neq n} \varphi d$

3. The Simplest Multiplication Function

$$I(n) = \begin{cases} 1 & \text{if } n = 1\\ 0 & \text{if } n > 1 \end{cases}$$

Find a g such that $I(n) = \sum_{d|n} g(d)$. If p is a prime, Then I(p) = 0. So we need, g(p) = -1, since $\sum_{d|n} g(d) = g(1) + g(p) = 1 + g(p) = 0$. So g(p) = -1, and g(1) = 1. $\sum_{d|n} g(d) = g(1) + g(p) + g(p^2) = 1 - 1 + 0 = 0$. So $g(p^2) = 0$. So g is given on prime power by

$$g(p^{e}) = \begin{cases} 1 & \text{if } e = 0\\ 0 & \text{if } e > 1\\ -1 & \text{if } e = 1 \end{cases}$$

This function has a name and it is called Mobins function, and is denoted as μ .

Definition 4. μ by

$$\mu(n) = \begin{cases} (-1)^s & \text{if } n = p \dots p_s \text{is } n \text{ product of } s \text{ distinct primes} \\ 0 & \text{if } p^2 | n \text{ for some prime} \end{cases}$$
$$\mu(1) = 1, \mu(2) = -1, \mu(4) = 0.$$

Lemma 2. μ is multiplicative.

Proof. Let $m, n \in \mathbb{N}$, with gcd(m.n) = 1. If $p^2|mn$, then $p^2|m$ or $p^2|n$. So that $\mu(mn) = 0 = \mu(m)\mu(n)$. Now suppose that m and n are square fine and write $m = p_1 \dots p_s$ and $m = p_1 \dots p_t$.

4

Theorem 4. $I(n) = \sum_{d|n} \mu(d)$.

Proof. n = 1 is pretty obvious. If $n = p^k$, then $I(p^k) = 0$, and $\sum_{d \mid p^k} \mu(d) = 1 + \mu(p) = 0$. then

$$\sum_{d|n} \mu(d) = \begin{cases} 1 & \text{if } n = 1\\ 0 & \text{if } n > 1 \end{cases}$$

Theorem 5. Mobins Inversion

If $f(n) = \sum_{d|n} g(d)$, then $g(n) = \sum_{d|n} \mu(d) f(\frac{n}{d})$.

Proof. Assume
$$f(n) = \sum_{d|n} g(d)$$
. Then $\sum_{d|n} \mu(d) f(\frac{n}{d}) = \sum_{d|n} \mu(d) \sum_{d|n} (\sum_{e|\frac{n}{d}} g(e)) = \sum_{e|n} g(e) \mu(d) = \sum_{e|n} g(e) (\sum_{d|\frac{n}{e}} \mu(d)) = \sum_{e|n} g(e) I(\frac{n}{e}) = g(n).$

Ex. We have
$$n = \sum_{d|n} \varphi(d)$$
, so $\varphi(n) = \sum_{d|n} \mu(d)(\frac{n}{d})$.
If $n = pq$, $\varphi(pq) = \sum_{d|pq} \mu(d)(\frac{pq}{d}) = pq - q - p + 1 = (p-1)(q-1)$.

Ex:
$$d(n) = \sum_{d|n} 1.$$

so $1 = \sum_{d|n} \mu(d) d(\frac{n}{d}).$

Why is μ interesting? $\lim_{x\to\infty} \left(\frac{\pi(x)}{\log x}\right) = 1.$ (Prime Number Theorem) This is equivalent $\lim_{N\to\infty} \left(\frac{\sum_{n=1}^{N} \mu(d)}{N}\right) = 0.$ Conjection : For any $\varepsilon > 0.$ $\lim_{n\to\infty} \left(\frac{\sum_{n=1}^{N} (\mu(d))}{N^{\varepsilon+\frac{1}{\varepsilon}}}\right) = 0.$ Riemann Hypothesis.