
ALGEBRA NOTE 4

JOHNEW ZHANG

1. Multiplicative Functions

Back to ϕ function.
Recall, if gcd(n,m) = 1, then
ϕ(mn) = ϕ(n)ϕ(m).
Note, n = pe11 . . . pekk .
Then ϕ(n) = pe1−1(p− 1) . . ..

Definition 1. f : N → R is multiplicative if and only if gcd(m,n) = 1 =⇒ f(mn) =
f(m)f(n).

Then n = pe11 . . . pekk , then f(n) = f(pe11 ) . . . f(pekk ).

Example:
f(n) = 1,∀n.
f(n) = n, ∀n.
Less trivial
f(n) = 2#of distinct prime factors.
Example :
f(pe) = 2.
f(pe11 . . . pekk ) = 2n.
The number of prime divisor of mn is equal to the number of prime divisor of m + the

number of prime factors of n.

Theorem 1. If g is a multiplicative functions, then f(n) =
∑

d|n g(d) is multiplicative.

Proof. If gcd(m,n) = 1, then f(mn) =
∑

d|mn g(d) =
∑

ab|mn g(ab) =
∑

a|n g(a)
∑

b|m g(b) =

f(m)f(n).
�

Example : Let d(n) = the number of divisors of n.∑
g|6 g = 1 + 2 + 3 + 6 = 12, d(6) = 4.

d(n) =
∑

d|n 1.

Lemma 1. Let gcd(m,n) = 1, and d|mn. Then d can be written in one and only one way
as d = ab with a|n and b|m.
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Proof. Let a = gcd(d, n) and b = gcd(d,m).
Then gcd(a, b) = 1 and a|d, and b|d, so ab|d.
On the other hand, d = gcd(d,mn)|gcd(d, n)gcd(d,m) = ab
So d|ab, Thus d = ab.
Leave the uniqueness as an exercise. �

? d(n) is multiplicative.
d(pe) = e+ 1
So then if n = pe11 . . . pekk , then d(n) = (e1 + 1) . . . (ek + 1).
Example: d(1000) = d(2353) = (3 + 1)(3 + 1) = 16.
Example: Set σ(n) =

∑
d|n d. So σ is multiplicative.

σ(6) = 12
σ(4) = 1 + 2 + 4 = 7.
σ(5) = 1 + 5 = 6.
If n = pe11 . . . pekk , what is σ(n)?
Well
σ(pe) = 1 + p+ . . .+ pe = pe+1−1

p−1

Then σ(n) = (
p
e1+1
1 −1
p1

)(
p
e3+1
3 −1
p3

).

Example:
n = 1521 = 32132.
Then σ1521 = (3

2+1−1
3−1 )(13

2+1−1
13−1 ) = 2379.

2. Perfect Number

Definition 2. A number is perfect if it is the sum of its positive divisors, Other than itself,
σ(n) =

∑
d|m d = 2n .

Example :
σ(6) = 2 · 6, 6 is perfect.
σ(28) = 2 · 28.

How many perfect numbers are there?
I don’t know.

Theorem 2. Let n be an even number. Then n is perfect if and only if n = 2p−1(2p − 1)
for some prime p such that 2p − 1 is also prime.

Proof. Is 2e perfect
σ(2e) = 2e−1

2−1 = 2e+1 − 1 6= 2e+1.

What about other even number
Write n = 2em, where m is odd.
σ(n) = σ(2e)σ(m) = (2e+1 − 1)σ(m).
If n is perfect, then σ(n) = 2n = (2e+1 − 1)σ(m).
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so then (2e+1 − 1)σ(m) = 2e+1m.
and thus 2e+1|σ(m), and 2e+1 − 1|m.
So here is a k such that
m = (2e+1 − 1)k.
So σ(m) = 2e+1k.
so k|σ(m).
m and k are both divisors of m.
And m+ k = (2e+1 − 1)k + k = 2e+1k = σ(m).
So m has only two divisors and thus m is prime, which implies k = 1. Since = 2e+1 − 1

is a prime, e+ 1 is a prime.
Set p = e+ 1 since primes should be called, p. Then e = p− 1, so n = 2p−1(2p − 1).

To see the other way σ(2p−1(2p−1)) = σ(2p−1)σ(2p−1) = 2p(2p−1) = 2·2p−1(2p−1) �

Are there any odd perfect numbers?
Probably no, but we are still not able to show.

Definition 3. A number of the form 2n − 1 is called a Mersenne number. And if it is
prime, it is called a Mersenne prime.

It is not true that if p is prime, 2p − 1 is prime

The answer is not all the time.
Check the properties below.
22 − 1 = 3
23 − 1 = 7
25 − 1 = 31
27 − 1 = 127
211 − 1 = 7047 (not prime)
223 − 1 = 83388607 (not prime)

Example : If e is odd, p and prime, σ(pe) = 1 + p+ . . .+ pe = even.
but 4 not divide 2n, at most are exponent of p;
in n = pe11 . . . pe33 can be odd.

Conjecture: There are infinitely many Mersenne primes.

Identify a multiplicative functions, want to know when
f(n) = g(n).
You need only show that f(pk) = g(pk) for all prime powers pk.

Theorem 3. For any n,
∑

d|n ϕd = n.
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Proof. Since ϕ is multiplicative, so is g(n) =
∑

d|n ϕ(d). Well

g(pk) =
∑

d|pk ϕd = 1 + ϕ(1) + . . .+ ϕ(pk) = 1 + (p− 1) + . . .+ (pk − pk−1) = pk

�

Question : If we have
f(n) =

∑
d|n g(d),

can we tell what g is Yes!.
For example :

∑
d|n ϕd = n gives us a formula for ϕ, and not the simple ugly one.

ϕ(n) = n−
∑

d|n,d 6=n ϕd

3. The Simplest Multiplication Function

I(n) =

{
1 if n = 1
0 if n > 1

Find a g such that I(n) =
∑

d|n g(d) .

If p is a prime,
Then I(p) = 0.
So we need, g(p) = −1, since∑

d|n g(d) = g(1) + g(p) = 1 + g(p) = 0.

So g(p) = −1, and g(1) = 1.∑
d|n g(d) = g(1) + g(p) + g(p2) = 1− 1 + 0 = 0.

So g(p2) = 0.
So g is given on prime power by

g(pe) =

 1 if e = 0
0 if e > 1
−1 if e = 1

This function has a name and it is called Mobins function, and is denoted as µ.

Definition 4. µ by

µ(n) =

{
(-1)s if n = p . . . psis n product of s distinct primes
0 if p2|n for some prime

µ(1) = 1, µ(2) = −1, µ(4) = 0.

Lemma 2. µ is multiplicative.

Proof. Let m,n ∈ N, with gcd(m.n) = 1.
If p2|mn, then p2|m or p2|n.
So that µ(mn) = 0 = µ(m)µ(n).
Now suppose that m and n are square fine and write m = p1 . . . ps and m = p1 . . . pt.
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Since gcd(m,n) = 1, pi 6= pj , for any i ∈ {1, 2, . . . s} and i ∈ {1, 2, . . . t}. Then µ(mn) =
(−1)s+t = (−1)t(−1)s = µ(m)µ(n). �

Theorem 4. I(n) =
∑

d|n µ(d).

Proof. n = 1 is pretty obvious. If n = pk, then I(pk) = 0, and
∑

d|pk µ(d) = 1 + µ(p) = 0.

then ∑
d|n

µ(d) =

{
1 if n = 1
0 if n > 1

�

Theorem 5. Mobins Inversion
If f(n) =

∑
d|n g(d), then

g(n) =
∑

d|n µ(d)f(nd ).

Proof. Assume f(n) =
∑

d|n g(d). Then
∑

d|n µ(d)f(nd ) =
∑

d|n µ(d)
∑

d|n(
∑

e|n
d
g(e)) =∑

ed|n g(e)µ(d) =
∑

e|n g(e)(
∑

d|n
e
µ(d)) =

∑
e|n g(e)I(ne ) = g(n). �

Ex. We have n =
∑

d|n ϕ(d), so ϕ(n) =
∑

d|n µ(d)(nd ).

If n = pq, ϕ(pq) =
∑

d|pq µ(d)(pqd ) = pq − q − p+ 1 = (p− 1)(q − 1).

Ex: d(n) =
∑

d|n 1.

so 1 =
∑

d|n µ(d)d(nd ).

Why is µ interesting?

limx→∞( π(x)x
log x

) = 1.

(Prime Number Theorem)

This is equivalent limN→∞(
∑N

n=1 µ(d)
N ) = 0.

Conjection : For any ε > 0.

limn→∞(
∑N

n=1(µ(d)

Nε+1
ε

) = 0.

Riemann Hypothesis.


