ALGEBRA NOTE 4

JOHNEW ZHANG

1. Multiplicative Functions

Back to φ function.
Recall, if $\operatorname{gcd}(n, m)=1$, then
$\varphi(m n)=\varphi(n) \varphi(m)$.
Note, $n=p_{1}^{e_{1}} \ldots p_{k}^{e_{k}}$.
Then $\varphi(n)=p^{e_{1}-1}(p-1) \ldots$.
Definition 1. $f: \mathbb{N} \rightarrow \mathbb{R}$ is multiplicative if and only if $\operatorname{gcd}(m, n)=1 \Longrightarrow f(m n)=$ $f(m) f(n)$.

Then $n=p_{1}^{e_{1}} \ldots p_{k}^{e_{k}}$, then $f(n)=f\left(p_{1}^{e_{1}}\right) \ldots f\left(p_{k}^{e_{k}}\right)$.
Example:
$f(n)=1, \forall n$.
$f(n)=n, \forall n$.
Less trivial
$f(n)=2^{\# \text { of distinct prime factors }}$.
Example :
$f\left(p^{e}\right)=2$.
$f\left(p_{1}^{e_{1}} \ldots p_{k}^{e_{k}}\right)=2^{n}$.
The number of prime divisor of mn is equal to the number of prime divisor of $\mathrm{m}+$ the number of prime factors of n.

Theorem 1. If g is a multiplicative functions, then $f(n)=\sum_{d \mid n} g(d)$ is multiplicative.
Proof. If $g c d(m, n)=1$, then $f(m n)=\sum_{d \mid m n} g(d)=\sum_{a b \mid m n} g(a b)=\sum_{a \mid n} g(a) \sum_{b \mid m} g(b)=$ $f(m) f(n)$.

Example : Let $d(n)=$ the number of divisors of n .

$$
\begin{aligned}
& \sum_{g \mid 6} g=1+2+3+6=12, d(6)=4 . \\
& d(n)=\sum_{d \mid n} 1 .
\end{aligned}
$$

Lemma 1. Let $\operatorname{gcd}(m, n)=1$, and $d \mid m n$. Then d can be written in one and only one way as $d=a b$ with $a \mid n$ and $b \mid m$.

Proof. Let $a=g c d(d, n)$ and $b=g c d(d, m)$.
Then $\operatorname{gcd}(a, b)=1$ and $a \mid d$, and $b \mid d$, so $a b \mid d$.
On the other hand, $d=\operatorname{gcd}(d, m n) \mid g c d(d, n) \operatorname{gcd}(d, m)=a b$
So $d \mid a b$, Thus $d=a b$.
Leave the uniqueness as an exercise.
$\star \mathrm{d}(\mathrm{n})$ is multiplicative.
$d\left(p^{e}\right)=e+1$
So then if $n=p_{1}^{e_{1}} \ldots p_{k}^{e_{k}}$, then $d(n)=\left(e_{1}+1\right) \ldots\left(e_{k}+1\right)$.
Example: $d(1000)=d\left(2^{3} 5^{3}\right)=(3+1)(3+1)=16$.
Example: Set $\sigma(n)=\sum_{d \mid n} d$. So σ is multiplicative.
$\sigma(6)=12$
$\sigma(4)=1+2+4=7$.
$\sigma(5)=1+5=6$.
If $n=p_{1}^{e_{1}} \ldots p_{k}^{e_{k}}$, what is $\sigma(n)$?
Well
$\sigma\left(p^{e}\right)=1+p+\ldots+p^{e}=\frac{p^{e+1}-1}{p-1}$
Then $\sigma(n)=\left(\frac{p_{1}^{e_{1}+1}-1}{p_{1}}\right)\left(\frac{\left(p_{3}^{e_{3}+1}-1\right.}{p_{3}}\right)$.
Example:
$n=1521=3^{2} 13^{2}$.
Then $\sigma 1521=\left(\frac{3^{2+1}-1}{3-1}\right)\left(\frac{13^{2+1}-1}{13-1}\right)=2379$.

2. Perfect Number

Definition 2. A number is perfect if it is the sum of its positive divisors, Other than itself, $\sigma(n)=\sum_{d \mid m} d=2 n$.

Example :
$\sigma(6)=2 \cdot 6,6$ is perfect. $\sigma(28)=2 \cdot 28$.

How many perfect numbers are there?
I don't know.

Theorem 2. Let n be an even number. Then n is perfect if and only if $n=2^{p-1}\left(2^{p}-1\right)$ for some prime p such that $2^{p}-1$ is also prime.
Proof. Is 2^{e} perfect
$\sigma\left(2^{e}\right)=\frac{2^{e}-1}{2-1}=2^{e+1}-1 \neq 2^{e+1}$.
What about other even number
Write $n=2^{e} m$, where m is odd.
$\sigma(n)=\sigma\left(2^{e}\right) \sigma(m)=\left(2^{e+1}-1\right) \sigma(m)$.
If n is perfect, then $\sigma(n)=2 n=\left(2^{e+1}-1\right) \sigma(m)$.
so then $\left(2^{e+1}-1\right) \sigma(m)=2^{e+1} m$.
and thus $2^{e+1} \mid \sigma(m)$, and $2^{e+1}-1 \mid m$.
So here is a k such that
$m=\left(2^{e+1}-1\right) k$.
So $\sigma(m)=2^{e+1} k$.
so $k \mid \sigma(m)$.
m and k are both divisors of m .
And $m+k=\left(2^{e+1}-1\right) k+k=2^{e+1} k=\sigma(m)$.
So m has only two divisors and thus m is prime, which implies $k=1$. Since $=2^{e+1}-1$ is a prime, $e+1$ is a prime.

Set $p=e+1$ since primes should be called, p . Then $e=p-1$, so $n=2^{p-1}\left(2^{p}-1\right)$.
To see the other way $\sigma\left(2^{p-1}\left(2^{p}-1\right)\right)=\sigma\left(2^{p-1}\right) \sigma\left(2^{p}-1\right)=2^{p}\left(2^{p}-1\right)=2 \cdot 2^{p-1}\left(2^{p}-1\right)$
Are there any odd perfect numbers?
Probably no, but we are still not able to show.

Definition 3. A number of the form $2^{n}-1$ is called a Mersenne number. And if it is prime, it is called a Mersenne prime.

It is not true that if p is prime, $2^{p}-1$ is prime
The answer is not all the time.
Check the properties below.
$2^{2}-1=3$
$2^{3}-1=7$
$2^{5}-1=31$
$2^{7}-1=127$
$2^{11}-1=7047$ (not prime)
$2^{23}-1=83388607$ (not prime)
Example : If e is odd, p and prime, $\sigma\left(p^{e}\right)=1+p+\ldots+p^{e}=$ even.
but 4 not divide 2 n , at most are exponent of p ;
in $n=p_{1}^{e_{1}} \ldots p_{3}^{e_{3}}$ can be odd.
$\underline{\text { Conjecture: }}$ There are infinitely many Mersenne primes.
Identify a multiplicative functions, want to know when
$f(n)=g(n)$.
You need only show that $f\left(p^{k}\right)=g\left(p^{k}\right)$ for all prime powers p^{k}.

Theorem 3. For any $n, \sum_{d \mid n} \varphi d=n$.

Proof. Since φ is multiplicative, so is $g(n)=\sum_{d \mid n} \varphi(d)$. Well
$g\left(p^{k}\right)=\sum_{d \mid p^{k}} \varphi d=1+\varphi(1)+\ldots+\varphi\left(p^{k}\right)=1+(p-1)+\ldots+\left(p^{k}-p^{k-1}\right)=p^{k}$

Question: If we have
$f(n)=\sum_{d \mid n} g(d)$,
can we tell what g is Yes!.
For example : $\sum_{d \mid n} \varphi d=n$ gives us a formula for φ, and not the simple ugly one.
$\varphi(n)=n-\sum_{d \mid n, d \neq n} \varphi d$

3. The Simplest Multiplication Function

$$
I(n)= \begin{cases}1 & \text { if } n=1 \\ 0 & \text { if } n>1\end{cases}
$$

Find a g such that $I(n)=\sum_{d \mid n} g(d)$.
If p is a prime,
Then $I(p)=0$.
So we need, $g(p)=-1$, since
$\sum_{d \mid n} g(d)=g(1)+g(p)=1+g(p)=0$.
So $g(p)=-1$, and $g(1)=1$.
$\sum_{d \mid n} g(d)=g(1)+g(p)+g\left(p^{2}\right)=1-1+0=0$.
So $g\left(p^{2}\right)=0$.
So g is given on prime power by

$$
g\left(p^{e}\right)= \begin{cases}1 & \text { if } e=0 \\ 0 & \text { if } e>1 \\ -1 & \text { if } e=1\end{cases}
$$

This function has a name and it is called Mobins function, and is denoted as μ.
Definition 4. μ by

$$
\begin{aligned}
\mu(n) & = \begin{cases}(-1)^{s} & \text { if } n=p \ldots p_{s} \text { is } n \text { product of } s \text { distinct primes } \\
0 & \text { if } p^{2} \mid n \text { for some prime }\end{cases} \\
\mu(1)=1, \mu(2) & =-1, \mu(4)=0 .
\end{aligned}
$$

Lemma 2. μ is multiplicative.
Proof. Let $m, n \in \mathbb{N}$, with $\operatorname{gcd}(m . n)=1$.
If $p^{2} \mid m n$, then $p^{2} \mid m$ or $p^{2} \mid n$.
So that $\mu(m n)=0=\mu(m) \mu(n)$.
Now suppose that m and n are square fine and write $m=p_{1} \ldots p_{s}$ and $m=p_{1} \ldots p_{t}$.

Since $\operatorname{gcd}(m, n)=1, p_{i} \neq p_{j}$, for any $i \in\{1,2, \ldots s\}$ and $i \in\{1,2, \ldots t\}$. Then $\mu(m n)=$ $(-1)^{s+t}=(-1)^{t}(-1)^{s}=\mu(m) \mu(n)$.
Theorem 4. $I(n)=\sum_{d \mid n} \mu(d)$.
Proof. $n=1$ is pretty obvious. If $n=p^{k}$, then $I\left(p^{k}\right)=0$, and $\sum_{d \mid p^{k}} \mu(d)=1+\mu(p)=0$. then

$$
\sum_{d \mid n} \mu(d)= \begin{cases}1 & \text { if } n=1 \\ 0 & \text { if } n>1\end{cases}
$$

Theorem 5. Mobins Inversion
If $f(n)=\sum_{d \mid n} g(d)$, then
$g(n)=\sum_{d \mid n} \mu(d) f\left(\frac{n}{d}\right)$.
Proof. Assume $f(n)=\sum_{d \mid n} g(d)$. Then $\sum_{d \mid n} \mu(d) f\left(\frac{n}{d}\right)=\sum_{d \mid n} \mu(d) \sum_{d \mid n}\left(\sum_{e \left\lvert\, \frac{n}{d}\right.} g(e)\right)=$ $\sum_{e d \mid n} g(e) \mu(d)=\sum_{e \mid n} g(e)\left(\sum_{d \left\lvert\, \frac{n}{e}\right.} \mu(d)\right)=\sum_{e \mid n} g(e) I\left(\frac{n}{e}\right)=g(n)$.

Ex. We have $n=\sum_{d \mid n} \varphi(d)$, so $\varphi(n)=\sum_{d \mid n} \mu(d)\left(\frac{n}{d}\right)$.
If $n=p q, \varphi(p q)=\sum_{d \mid p q} \mu(d)\left(\frac{p q}{d}\right)=p q-q-p+1=(p-1)(q-1)$.
Ex: $d(n)=\sum_{d \mid n} 1$.
so $1=\sum_{d \mid n} \mu(d) d\left(\frac{n}{d}\right)$.
Why is μ interesting?
$\lim _{x \rightarrow \infty}\left(\frac{\pi(x)}{\log x}\right)=1$.
(Prime Number Theorem)
This is equivalent $\lim _{N \rightarrow \infty}\left(\frac{\sum_{n=1}^{N} \mu(d)}{N}\right)=0$.
Conjection : For any $\varepsilon>0$.
$\lim _{n \rightarrow \infty}\left(\frac{\sum_{n=1}^{N}(\mu(d)}{N^{\varepsilon+\frac{1}{\varepsilon}}}\right)=0$.
Riemann Hypothesis.

