
ALGEBRA NOTE : 3

JOHNEW ZHANG

1. Cryptography

Problem 1. Send a message from person A(Alice), B(Bob), in such a way that no-
one else can read the message but the message, but the message cannot be read by
anyone else if intercepted.

Once-time pad : Shift each character by some amount, given by the pad, and that
is the encrypted message.

Application 1. Deffie-Hellman Key Exchange (the way to generate common secret
:

Use a large prime p and some g (mod p).
Alice chooses a and publish ga (mod p)
Bob choose b and publish gb (mod p).
Both know gab (mod p). �

For someone else to find out what gab (mod p) is, they need to solve ga (mod p).

To solve this compute gk (mod p) for 0 ≤ k < p− 1.
We hope that the computations Alice and Bob need to do are a lot faster than the

one Eve needs to do.

Successive Squaring : Very fast way to compute ga (mod p).

The Algorithm to compute ga (mod p) :
(1) Write a as a sum of distinct powers of 2:

a = b0 + 2b1 + 2kbk

b1 = 0, or, 1

(2) To compute:

Date: Oct. 18.
1



2 JOHNEW ZHANG

g2 (mod p)

(g2)2 ≡ g2 (mod p)

. . .

(g2)k (mod p)

(3) ga ≡ gb0+2·b1++bk·2k ≡ gb0...(b
2k )bk (mod p)

Example : Compute 510275 (mod 22447)
10275 = 213 + 211 + 25 + 21 + 20

52 ≡ 25 (mod 22447)
54 ≡ 252 ≡ 625 (mod 22447)
. . .
5213 ≡ 10583 (mod 22447)

510275 ≡ 5213+211+25+21+20 ≡ (10583)(18470)(12253)(25)(5) ≡ 10009 (mod 22447)

Suppose you have a function (on a computer) multiply-mod-p(x, y), which takes a
fixed amount of time (depending on p).

Calculating ga (mod p) by repeated multiplication takes about a uses of this func-
tion.

For successive squaring, we need to square k times, where 2k is largest power of
two less than (or equal to) a.

2k ≤ a =⇒ k ≤ log2 a = log a
log 2

.

To construct ga (mod p) from this, we have to do at most k more multiplications.
Total number of times calling ”multiplication” is ≤ 2 log2 a.

The graph is on the notes.

For Alice and Bob set up the key takes about 4 log2 a multiplications (if a is roughly
equal to b). For Eve to break the key, about a multiplications.

Increasing p has about the same effect,
Alice and Bob takes roughly 4 log2 a (a is the largest number evolved).
Eve takes the largest number evolved.
Assume that multiplication takes about 10−3 s.



ALGEBRA NOTE : 3 3

a Alice + Bob Eve

1000 0.053s 1s

106 0.079s 17min

108 0.106s 28hrs

1020 0.2657s 3, 170, 000, 000years

Conclusion for Encryption : The Diffie-Hellmon key exchange generates the com-
mon secret. Using successive squaring, Alice and Bob can generate a key vey quickly.
Eve takes a long time to figure out the key.

Reasonable for communication between two equal parties, Alice and Bob less rea-
sonable for things like e-commerce.

It would be nice if Alice, say, could set things up just once.
Alice should be able to post a ”public key” which people can use to send to her

messages.

Application 2. RSA (Rivest-Shamir-Adelman) :
(1) Alice choose 2 large primes, p and q, and compute
m = pq
ϕ(m) = (p− 1)(q − 1)
She then chooses 1 ≤ e ≤ ϕ(m) with gcd(e, p − 1) = 1. (helpfully not e = 1, or

e = ϕ(m)− 1 ).
Then compute d such that ed ≡ 1 (mod ϕ(m)), (Bezout, and Euclidean Algorithm)

Public key : m and e
Private key : ϕ(m) and d (forget p and q).

If Bob wants to send a message, a, (first check that gcd(a,m) = 1), Bob needs his
message to satisfy 1 ≤ a < m.

Bob computes ae (mod m) (by successive squaring), and sends that.

Public : ae (mod m)

Alice gets ae (mod m), SHe computes (ae)d ≡ aed ≡ a (mod m) by Euler’s Theo-
rem, since ed ≡ 1 (mod ϕ(m)).

How can Eve, using m, e, and ae (mod m) to find a (mod m)?

Eve knows she needs to solve ex ≡ 1 (mod ϕ(m)).



4 JOHNEW ZHANG

She needs to know ϕ(m).
If you factor m, you can write down ϕ(m).

How do you factor m?
Just find a prime p|m.
In fact, if m = pq, it turns out that computing ϕ(m) is just as hard as as factoring.

Suppose we know m and ϕ(m).

Why?

The pq = m, and (p− 1)(q − 1) = ϕ(m).
(p− 1)(m

p
− 1) = ϕ(m).

then (p− 1)(m− p) = ϕ(m)p.
pm− p2 −m + p = ϕ(m)p,
or p2 + (ϕ(m)−m− 1)p + m = 0, solve for p.
We suspect that it is hard (not polynomial time) to factor integers.

m
p

possible, a which are divisible by p and m
q

which are divisible b yq, so m −
m
p
− m

q
= m(1− 1

p
− 1

q
and ok (have no common factor with m). The proportion of

message which will work is ≥ 1− 1
p
− 1

q
.

Example : Alice chooses p = 31, q = 37, ϕ(m) = 30 · 36 = 1080.
The public key is m = 1147, e = 419.
d = 299 because 299 · 419 ≡ 1 (mod 1080).
Bob wants to send a message ”917”.
Bob computs 917419 ≡ 763 (mod 1147)
763 (mod 1147)
Then Alice gets this and computes 763299 ≡ 917 (mod 1147).

? Creating the key and encrypting/decrypting use
(1) successive squaring,
(2) Euclidean Algorithm.

Successive squaring is fast (polynomial time). The time it takes is roughly pro-
portional to the number of bits or digits of the numbers involved (linear time).

The Euclidean Algorithm is also polynomial time.
Breaking the key requires factoring which is slow.

How do you factor?



ALGEBRA NOTE : 3 5

Application 3. Pollard p− 1 ”Algorithm :
Idea : want to factor m = pq (or anything).
Pick 1 < a < m, if gcd(a,m) 6= 1, we are done.
If (p− 1)|k, then ak ≡ 1 (mod p).
so p|ak − 1, if we compute b ≡ ak − 1 (mod m).
p|gcd(ak − 1,m) = gcd(b,m).
In general, it is possible that ak ≡ 1 (mod p) for some k smaller than p− 1,
For example, 23 ≡ 1 (mod 7).
We choose a ”likely candidate” k, compute b ≡ ak − 1 (mod m),and gcd(ak −

1,m) = gcd(b,m).
This is a divisor of m if it is 1 or m, this tells us nothing, but maybe it isn’t.

What kind of k that we should choose?
This works best if k has a lot of small prime factors.
k = lcm(2, 3, 4, 5 . . .).

Example : m = 143, a = 2, k = lcm(2, 3, 4) = 12
Calculate b ≡ 212 − 1 (mod 143).
212 ≡ 92 (mod 143)
so b ≡ 92 (mod 143)
gcd(212 − 1, 143) = gcd(91, 143) = 13.
So 143 = 13 · 11.

Example : m = 391, a = 2, k = lcm(2, 3, 4) = 12.
Compute
212 − 1 (mod 143)
212 ≡ 185 (mod 391)
gcd(185, 391) = 1 (fail)
Change k = lcm(2, 3, 4, 5, 6, 7) = 420.
Compute
2420 − 1 (mod 143)
2420 ≡ 49 (mod 391)
gcd(49, 391) = 1 (fail)
Change k = lcm(2, . . . 8) = 840.
so 2420 ≡ 153 (mod 391)
gcd(153, 391) = 17


