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1 Introduction

Objective

• Analyze/Apply: Algorithms for problems in science, engineering, medicine, finance

• Identify possible sources of error

• Recognize conditioning of the data

• Estimate the stability of an algorithm

• Obtain a working knowledge of MATLAB: http://www.mathworks.com/moler/index_
ncm.html. Cleve Moler, Original Author of MATLAB. NCM: A library of MATLAB
functions. Website contains Moler’s book.

What is numerical analysis ? Read article by Trephethen.

1.1 Problem (Saver)

Evaluate
p(x) = 2x4 + 3x3 − 3x2 + 5x− 1

at x = 1
2

1. p(x) = 2 · 1
2 ·

1
2 ·

1
2 ·

1
2 + 3 · 1

2 ·
1
2 ·

1
2 − 3 · 1

2 ·
1
2 + 5 · 1

2 − 1 (10 multiplications and 4
additions)

2. Save 1
2 ·

1
2 = (1

2)2, (1
2)2 1

2 = (1
2)3, (1

2)3 1
2 = (1

2)4, then p(x) = 2 · (1
2)4 + 3 · (1

2)3 − 3 ·
(1

2)2 + 5 · (1
2)− 1 (7 multiplications and 4 additions)

3. Nested Multiplication

p(x) = −1 + x(5− 3x+ 3x2 + 2x3)

= −1 + x(5 + x(−3 + 3x+ 2x2))

= −1 + x(5 + x(−3 + x(3 + 2x)))

(4 multiplication and 4 additions)

This is called Horner’s rule. In general, any polynomial can be written in the nested
shifted form c1 + (x− b1)(c2 + (x− b2)(c3 + (x− b3)(c4 + (x− b4)(c5)))) = c′1 + c′2x+
c′3x

2 + c′4x
3 + c′5x

4 for a degree-4 polynomial

In MATLAB
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>>function y=nest(c, x, b)

>>d=length(c)-1 %note need not specify d

>>y=c(d+1)

>>for i =d:-1:1

y=y*(x-b(i))+c(i);

end

Consider our example

>>b=zeros(4, 1) *

>>nest([-1 5 -3 3 2], 1/2, b)

>> ans

y =1.25

* Can be included in the function by adding (before the loop):

IF nargrn< 3, b = zeros(d, 1);

Then call Function by

>> nest([-1 5 -3 3 2], 1/2)

Note: The nest command can be modified to take multiple arguments x by replicating

the multiple * by

y =y*(x -b(i))+c(i)

>>nest([-1 5 -3 3 2], [-2 -1 0 1 2])

>> ans

-1 5 -10 -1 6 53

x, y are now vectors of length = # evaluation points

2 Floating Point Numbers - Sources of errors

2.1 Binary Number

· · · , b2, b1, b0, b−1, b−2, · · · = · · ·+ b222 + b121 + b020 + b−12−1 + b−2 + · · ·
Convert 0.7 to binary:

.7× 2 = .4 + 1

.4× 2 = .8 + 0

.8× 2 = .6 + 1

.6× 2 = .2 + 1

.2× 2 = .4 + 0

=⇒ (0.7)10 = (0.10110)2
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Convert 0.10110 to decimal: x = 0.10110, 25 · x = 10110.0110, 2× x = 1.0110.

25 · x− 2 · x = 10101

30x = 21

x = 0.7

2.2 Floating point (IEEE double precision)

Sign bit, 52-bit mantissa (leading digit 1 is implies and omitted), 11-bit exponent (conver-
sion: −1022 ≤ exp ≤ 1023)

Matlab returns “inf” for biggest float (±252 · 21023 ≈ 10308). Underflow is complicated
so we ignore it NaN exists too. Rounding: if 53rd digit is 0, truncate. If 1, add 1 to the
52ed digit. Exception: if all known digits to the right of 53rd are 0, add 52nd to itself.

For example: fl(9.4) = 0001011001100110011001100110011001100 · · · = 1.0010110 ×
23 = 9.4− 0.4× 2−48 + 2−49 this is how much error there is.

>>format long \\ tell matlab to display 16 digits,

\\ this is cool because 10^15 < 2^52 < 10^16

>> x = 9.4

>> 6 = x - 9

>> z = y - 0.4

>> 3.0669072875470e-16

Decimal Examples of Roundoff

>> a = 1 + 1e-16; 1 +1e^-16 = 1 0.... 0 1, 17 decimal significant digits.

>>a - 1

>>and = 0; 17th digit got lost

>>a = 1+9e-16; also 17 decimal digits

>>a - 1

and = 8.8818e-16; 17th digit got fairly well represented

>>a =9.9 +1e-15; 16 decimal significant digits

>>a - 9.9

and 1.7764e-15; 16th digit got lost, 15th gets a bad representation

2.2.1 Roundoff Error

• Absolute: |x− fl(x)|

• Relative: |x−fl(x)|
|x|
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• εmach = smallest number above 1− 1

εmach = 1. 00 · · · 0︸ ︷︷ ︸
51 zeros

1− 1 = 0. 0 · · · 01︸ ︷︷ ︸
52 digits

= 2−52 Note:

|x− fl(x)|
|x|

=
0.0 · · ·x53 · · ·
1.x1 · · ·x52 · · ·

x = 1.x1 · · ·x52 · · · × 2m and fl(x) = 1.x1 · · ·x52 × 2m.

Note: If fl(x) involved roundoff, then

|x− fl(x)|
|x|

≤ 1

2
εmach

• Roundoff error accumulates after a sequence of operations. One particularly severe
instance is catastrophic cancellation which occurs when two nearly equal numbers
get subtracted.

Example

Evaluate (x− 1.1)30 at x = 1.2

(1.2− 1.1)30 = .130 = 10−30.

>>(1.2-1.1)^30

>>ans 1.e-30

Consider a different eval

>>c=poly(ones(30, 1)*1.1) (*)

e.g. poly([2, 3]) yields[1, -5, 6] since (x-2)(x -3) = x^2 -5x +6

>>polyval(c, 1.2)

evaluates poly c at x = 1.2

>>ans -1.79e-5!

What went wrong?

Result of (*) is [· · · , −6× 108︸ ︷︷ ︸
coefficient of x15

, · · · ] so this term is −6× 108× 1.915 ≈ −1010. Rel

error in this term is ≈ 10−16, i.e., ABS error is ≈ | − 1010|10−16 = 10−6 so ABS
error in this one term exceeds the value of the sum which is 10−30 so final answer is
overwhelmed by propagating roundoff.
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3 Nonlinear Equations

4 Linear Systems10 −7 0
−3 2.099 6
5 −1 5

x1

x2

x3

 =

 7
3.901

6


Solve the system by gauss elimination. Matlab’s command to solve the system Ax = b is
A\b, which use elimination. Never x = A−1b.

1st Elimination Step • Multiply first equation (− 3
10) (row and RHS) and subtract

from second equation replace the second equation.

• multiply the first equation by 5/10, and subtract from the third equation. Re-
place the third equation.

Result is: 10 −7 0
0 −0.001 6
0 2.5 5

x1

x2

x3

 =

 7
6.001
2.5


Create a zero here to do this, should multiply the second equation by − 2.5

0.001 and
subtract from the third equation. Replace the third equation.

Denominators of Each Elimination Step 10 for the first step −0.001 for the second
step are called pivots.

Note: that the points are the diagonal entries of A on the column we are working on
(pivot column) to produce zeros below the diagonal.

Computation − 2.5
0.001 + rest of alto leads to instability (more later)

Solution Switch the second and the third rows called pivoting. Now the pivot is 2.5 and
the second elimination step is multiplying third equation by −0.001/2.5 subtract from
the second and replace the third.

4.1 Gauss Elimination with Partial Pivoting (GEPP)

Partial: Row exchanges only (No columns)
For each column (except the last) seek the entry with largest absolute value on or

below the diagonal position. Move to the diagonal position by swapping the two rows. For
each row i below the pivotal row (row R), multiply pivotal row by AiR

ARR
, called multiplier.

Subtract from row i and replace row i. This creates zeros below the diagonal on column k.
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function [L, U, p] = lutx(A)

[n, n] = size(A)

P=(1:n)

for k=1:n-1 % Loop over columns

% Find index of largest value below diagonal

[r, m] = max(abs(A(k:n, k)));

m=m+k-1;

if (A(m, k)~=0)

%swap pivot row

if (m~=k); If largest value already on diagonal, no need for swap

A([k, m], :)=A([m, k], :)

P([k, m])=P([m k])

end

% compute multiplier

A(k+1:n, k) =A(k+1:n)/A(k, k)

%Update the remainder of the matrix

A(k+1:n, k+1:n) = A(k+1:n, k+1:n) - A(k+1:n, k)*A(k, k+1:n)

4.1.1 GEPP (Matlab function lutx, [L,U, P ] = lutx(A))

k =1:n-1 % loop over columns

%Perform Pivoting

i = k+1:n

%Compute Multipliers

A(i, k) = A(i, k)/A(k, k)

j=k+1:n

%Elimination Update

A(i, j) = A(i, j) - A(i, k) *A(k, j)

end

Last time we did not write any loops over i and j because of parallel computation -
vectorization. That Operates on all entries i, j at once. Loop over k is not vectorisable:
each elimination step depends on the previous.

Separate Result

L = tril(A,−1) + eye(n, n); where tril is the lower triangular matrix. Similarly, U =
triu(A); where trio is the upper triangular matrix. Recall, p = (1, n) records row swaps:
entries CDR to swapped rows are interchanged, P is A n × n matrix, whose rows are
interchanged accordingly.

Recall from linear algebra, PA = LU called the LU decomposition. Solution of

Ax = b
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PAx = Pb

LUx = Pb

Ux = y

Ly = Pb

Note that we need P to operate on any given right hand side b. The last two equations
are backward substitution and forward elimination respectively.

function x = forward(L, x) % Called after lute as y=forward(L,Pb)

[n, n]=size(L);

for k=1:n

j=1:k-1;

x(k)=(x(k)-L(k,j)*x(j))/L(k, k)

end

function x=backsubs(U,x) %in our notation x = backsubs(U, y)

for k=n:-1:1

y=k+1

x(k)=(x(k)-U(k, y)*x(y))/U(k, k)

end

Can look at GEPP as successive operations on matrix A, e.g., 3× 3 example.

M2P2M1A = U

where Mk produces one elimination step contains negatives of the multiplies of the kWh
elimination step.

M1 =

 1 0 0
0.3 1 0
−0.5 0 1


P2 =

1 0 0
0 0 1
0 1 0


M2 =

1 0 0
0 1 0
0 0.004 1


In general

Mn−1Pn−1 · · ·MkPk · · ·M1P1A = U

Back to the example, note that
P2M1 = N1P2
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with

N1 =

 1 0 0
−0.5 1 0
0.3 0 1


So that GEPP is M2N1P2A = U or PA = LU . where P = P2 and L = (M2N1)−1 =
N−1

1 M−1
2 . To see how this work in general, consider the same when n = 5.

M4 P4M3︸ ︷︷ ︸
N3 P4P3M2︸ ︷︷ ︸

N2P4P3P2M1︸ ︷︷ ︸
N1P4P3P2

P3M2P2M1P1A = U

Or
M4N3N2N1P4P3P2P1A = U

Nk is Mk with the negatives of the multipliers. And only those entries, not the 0’s and 1’s)
swapped according to the permutation effected by all Pn−1 · · ·Pk+1.

Note: Nn−1 = Mn−1. Then write GEPP as

PA = L′U

where P = P4P3P2P1 and L = (M4N3N2N1)−1. Note that P is unknown until the end of
the computation.

4.2 Error Analysis

Consider 2 × 2 system of equations. Let x = exact solution(∗) and x̂ = GEPP(0). The
error will be ‖x− x̂‖. The residual is ‖Ax̂− b‖.

Consider A different system of that two equations are very close to each other. Then
the numerical solution is far from the exact solution but still very close to both equations,
i.e., Ax̂ ≈ b, meaning the residual is small. Note that GEPP always gives small residual no
matter how bad the solution is. Last case corresponds to a nearly singular matrix. Error
is very large but the residual is small.

4.2.1 How Fast Is GEEP?

Bulk of the computation is

for k=1:n-1

i=k+1:n

j=k+1:n

A(i, j) =A(i, j) - A(i, k)*A(k, j)
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two operations (one multiplication and one addition) For each entry of the (n − k)2

matrix, so total count is FLOPS = 2(n−k)2 per k loop. Total flops are
∑n−1

k=1 2(n−k)2 =

2 (n−1)3

3 +O(n2) = 2
3n

3 +O(n3).

4.2.2 Continue Discussion On GEPP Error

Vector Norms

‖x‖1 = |x(1)|+ · · ·+ |x(n)|

‖x‖2 =
√
x(1)2 + · · ·+ x(n)2

‖x‖∞ = max{|x(1)|, · · · , |x(n)|}

Theorem 1. 1. ‖x‖ > 0 ⇐⇒ x 6= 0 and ‖x‖ = 0 ⇐⇒ x = 0

2. ‖αx‖ = |α|‖x‖

3. ‖x+ y‖ ≤ ‖x‖+ ‖y‖
Abstract definition of norm is any F : Rn → R satisfying 1, 2, 3 above.

4.3 Matrix Norms

‖A‖1 = max
1≤j≤ncol

nrow∑
i=1

|A(i, j)| = max
over columns

(1-norm of each colum)

‖A‖∞ = max
1≤i≤nrow

ncol∑
j=1

|A(i, j)| = max
over rows

(1-norm of each row)

‖A‖F =

√√√√nrow∑
i=1

ncol∑
j=1

A(i, j)2 Frobenius norm

2-Norm is computed through the SVD (singular value decomposition) of the matrix.

Theorem 2. All matrix norms defined above satisfy 1-3 and in addition, ‖Ax‖1 or ∞ ≤
‖A‖1‖x‖1, ‖Ax‖2 ≤ ‖A‖F ‖x‖2 and ‖AB‖ ≤ ‖A‖‖B‖

Theorem 3. All norms are related to each other by a factor which is A function of n.

Matlab: norm(x, 1), norm(A, 1)
Default for both is the 2-norm.

Definition. Define condition number of a matrix A

κ(A) = ‖A‖‖A−1‖

in some norm.
Properties:
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1. κ(A) ≥ 1

2. κ(αA) = κ(A). If κ(A) is close to 1, say A is well-conditioned, else ill-conditioned.
If A is singular, say κ(A) =∞

Example:

1.

A =

10 −7 0
0 2.5 5
0 −0.001 6


‖A‖∞ = 17

A−1 = A\I or inv(A)

Check that ‖A−1‖∞ = 0.7331

κ(A) = 17× 0.7331 = 12.4627

cond(A, inf) = 12.4627

A is a well conditioned matrix (more later as to when to be concerned)

2. A matrix’s diagonals are all 2 but the last one is 2−nThen det(D) = 2n−12n = 1/2.
For large n, the matrix is nearly singular (last row is close to 0).

‖D‖1 = 2, ‖D−1‖ = 2n, κ(D) = 2n+1

where κ(D) is a good measure of near singular whereas det(D) is not.

3. consider a Matrix D with all the diagonal 0.5. Then κ(D) = κ(I) = 1. This matrix is
very-well conditioned. d(D) = 0.5n → 0. This indicates that for large n, the matrix
is near singular (wrong conclusion).

κ(A) describes the quality (conditioning) of the data.

Theorem 4. A ∈ Rn×n, b ∈ Rn, Ax = b. Let Â, b̂ Perturbations of A, b of relative distance
at most δ > 0,

‖A− Â‖
‖A‖

≤ δ, ‖b− b̂‖
‖b‖

≤ δ

Let x solve Ax = b, x̂ solve Âx̂ = b̂. Then ‖x−x̂‖‖x‖ ≤ 4δκ(A). The following theorem is

about GEEP. The question for GEEP is how good is the solution for a good set of data (A
well conditioned matrix).
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Theorem 5. Stability: result for GEEP (Wilingson):

‖x− xGEPP ‖
‖x‖

≤ c(n)κ(A)εmach

x is the exact solution. For most (almost all matrices, c(n) = nα, α < 1, grows very slow
with n few, specially constructed matrices exists such that c(n) = 2n.

Note that with c(n) ≈ 1, and a perfect matrix A, κ(0 = 1, error of algorithm is
just εmach. GEPP is a phenomenally stable algorithm. A stable algorithm should give you
results for every set of well-conditioned data. Suppose c(n) ≈ 1, εmach = 10−16, κ(A) = 10α,
Then wilkinson says

‖x− xGEPP ‖
‖x‖

≤ 10−(16−α)

i.e., we lose α digits of accuracy (16−α instead of 16) when we use GEPP. Notice the stark
difference with catastrophic cancellation (bad result due to roundoff) which is due to an
unstable algorithm. A similar type of “overpowering” (swamping) occurs in GE without
PP. If pivot is small, then multiplier is large. This means multiplied equation overpowers.
The one, it is subtracted from large multipliers are bad. GEPP guarantees multipliers are
≤ 1.

4.4 Iterative Methods for linear systems

4.4.1 Jacobi Method

A11x
(k+1)
1 +A12x

(k)
2 + · · ·+A1nx

(k)
n = b1

...

An1x
(k)
1 +An2x

(k)
2 + · · ·+Annx

(k)
n = bn

x
(k+1)
i =

bi −
∑

i 6=j Aijx
(k)
j

Aii

Gaus-Seidel usually converges faster (accelerated) by immediate use of new terms) and
requires less storage and requires that updates be done. Successively whereas Jacobi can
be run on A parallel computer. (updates independent of each other)

Definition. We say that a sequence {Pn} converges to the value P if and only if

lim
n→∞

Pn = P

or equivalently,
lim
n→∞

|Pn − P | = 0
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Definition. Let sequence {Pn}, limn→∞ Pn = P , We say that {Pn} converges to P with
rate of convergence O(βn) if and only if ∃{βn}, limn→∞{βn} = 0 and constant λ > 0
(independent of n) such that

|Pn − P | ≤ λ|βn|

we write
Pn = P +O(βn)

i.e. O(βn) is a references of how quickly the error εn = Pn − P approaches zero.

Example:

lim
n→∞

n+ 3

n+ 7
= 1, lim

n→∞

2n + 3

2n + 7
= 1

but

|n+ 3

n+ 7
− 1| = 4

n+ 7
< 4

1

n

|2
n + 3

2n + 7
− 1| = 4

2n + 7
< 4

1

2n

Hence the second sequence converges much faster.

Definition. Let {Pn}, limn→∞ Pn = P . We say that {Pn} converges to P with order of
convergence α with asymptotic error constant λ if and only if ∃α, λ such that

lim
n→∞

|Pn+1 − P |
|Pn − P |α

= lim
n→∞

|εn+1|
|εn|α

= λ

i.e. rate of convergence examines individual error values εn = Pn − P (with the help
of another sequence {βn} → 0 whereas order of convergence examines relation between
successive error values.

Note that asymptotically:
εn+1| ≈ λ|εn|α

i.e. Linear convergence |εn+1| ≈ λ|εn|
Quadratic convergence |εn+1| ≈ λ|εn|2
Cubic convergence |εn+1| ≈ λ|εn|3
Numerical confirmation of, say, quadratic convergence is to evaluate |εn|/|εn−1|2. And

see if it approaches a constant as n increases. That would be the asymptotic error constant
λ, If P is unknown, look at

|Pn+ − Pn|
|Pn − Pn−1|

Consider the iteration xk+1 = g(xk) which solves the equation

g(x) = x

And is called a fixed point iteration.
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4.4.2 Iteration

g(x) can be a linear of nonlinear equation in one of serveral variables.

Theorem 6. Let g : R → R continuously differentiable (first derivative is continuous).
and let x∗ be the exact solution of g(x) = x. Then

1. If |g′(x∗)| < 1 and x0 is sufficiently close to x∗, then the sequence xk+1 = g(xk)
converges to x∗ with

lim
k→∞

|xk+1 − x∗|
|xk − x∗|

= |g′(x∗)|

i.e. convergence is linear can be better under special circumstances.

2. If |g′(x∗) > 1, then fixed point iteration will not converge unless by accident, g(xk) =
xk for some k.

3. If |g′(x∗)| = 1 may diverge or converge (but the convergences will be slow)

To solve Ax = b, consider splitting A = M −N , then consider g(x) = M−1Nx+M−1b.
g(x) = x is

M−1Nx+M−1b = x

Nx+ b = Mx

(M −N)x = b

or Ax = b

Art is picking M and N. For example, Jacobi: M + F diagonal entries of A and N =
−(AL+AU ) and AL is lower part of A and AU is upper part of A. A = D+AL+AU = M−N
so fixed iteration xk+1 = g(xk) is xk+1 = D−1(b− (AL +AU )xk) or

xk+1
i = ith entry of k + 1 iteration of vector x =

bi −
∑

i 6=j Aijx
(k)
j

Aii

Indicial notion:Ax is
∑

j Aijxj . Then AB is Ai|
Fixed point iteration for linear systems

Ax = b

xk+1 = M−1Nxk +M−1b

M, N splitting matrices, A = M −N .

15



4.5 Generalized Theorem of Previous Lecture to this case of multi-
dimension linear problem

Theorem 7. For the above splitting iteration and a nonsingular matrix A, limk→∞ xk =
A−1b provided

‖M−1N} < 1

for some induced matrix norm

Recall an induced matrix norm is defined through a vector norm as

‖A‖ = supx6=0
‖Ax‖
‖x‖

Does this loo anything like the singular var theorem?

Proof. Let x∗ = A−1b. To show convergence, need to establish a relationship between
xk+1 − x∗ and xk − x∗ we are looking for something like

‖xk+1 − x∗‖ ≤ λ‖xkx∗‖α

we can show that xk+1 − x∗ = M−1N(xk − x∗)

xk+1M
−1Nxk +M−1b

(M −N)x∗b

(I −M−1N)x∗ = M−1b

xk+1 − x∗ = M−1Nxk + (I −M−1N)x∗ − x∗

= M−1N(xk − x∗)‖xk+1 − x∗‖ = ‖M−1N(xk − x∗)‖

Recall that induce dorm have the property

‖Ax‖ ≤ ‖A‖‖x‖

This implies
‖xk+1 − x∗‖ ≤ ‖M−1N‖‖xk − x∗‖

It follows that for convergence. It is sufficient that the asymptotic error constant λ =
‖M−1N‖ < 1 and the order of convergence is linear (α = 1).

Remark

1. No dependence on starting point x0. Nonlinear iteration method (g(x) a non linear
function of x) usually require x0 in some neighborhood of x∗
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2. If ‖‖ is not an induced norm but it dominates an induced norm, then theorem is
still true. For example, ‖A‖F ≥ ‖A‖2 so suffices to show ‖M−1N‖F < 1 =⇒
‖M−1N‖2 ≤ 1.

3. A more relaxed condition is provided by the following theorem

Theorem 8. The a voce splitting iteration converges if ρ(M−1N) < 1 where ρ(M−1N)
is the spectral radius of M−1N , but it is harder to prove and may be harder to prove
in practice.

Definition. Spectral radius of a matrix is

ρ(A) = max{|λ| : λ ∈ λ(A)}

λ(A) = spectrum = set of all eigenvalues of A.

Note:
ρ(A) ≤ ‖A‖

where ‖A‖ any induced norm of A hence a more relaxed condition (easier to satisfy).
For Jacobi and Gauss-Seidel, if A is SROD, then these methods will converges.

Definition. A ∈ Rn×n is strictly row diagonally dominant (SROD) if

|Aii| >
∑
j 6=i
|Aij |, ∀i

.

Proof.

M = D

N = −(AU +AL)

M−1N = −D−1(AU +AL)

(M−1N)ij =

{
0 i = j

−Aij

Aii
i 6= j

‖M−1N‖∞ = max(
∑
j

|Aij
Aii
|) = max(

1

|Aii|
∑
|Aij |)

But A srod implies
∑

j |Aij | < |Aii|,∀i. This implies 1
|Aii|

∑
j |Aij | < 1, ∀i so also the max.

This implies ‖M−1N‖∞ < 1 which means convergence

Note: sets of rate and order of convergence given earlier. Assume a convergent sequence.
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4.6 Nonlinear Equations

1. Fixed point iteration (As seen already)

Example:

f(x) = cosx− x.

(a) g(x) = cosx since g(x) = x, i.e., cosx = x means f(x) = 0. g′(x) = − sinx,
g′(x∗) ≈ −0.674 so convergence is expected and the convergence will be linear

(b) g(x) = cos−1(x), g(x) = x ⇐⇒ cos−1 x = x ⇐⇒ x = cosx ⇐⇒ f(x) = 0
so the fixed point iteration solves f(x) = 0. g′(x∗) ≈ −1.48 so divergence is
expected.

(c) g(x) = x+ cosx−x
sinx+1 and g(x) = x ⇐⇒ cosx−x

sinx+1 = 0 ⇐⇒ cosx = x ⇐⇒ f(x) =
0.

Method is xk+1 = g(xk) and xk+1 = xk + cosxk−1
sinxk+1 . g′(x) = 0 which is called

super linear convergence.

Fact: quadratic convergence is a special case of super linear. Note that this fixed
point iteration is newton’s method for f(x) = cosx − x = 0. recall newton’s
method

xk+1 = xk −
f(xk)

f ′(xk)
= xk −

cosxk − xk
− sinxk − 1

4.6.1 Convergence Theorem for Newton’s Method

Let f, f ′, f ′′ defined in [x∗ − µ, x∗ + µ] where f(x∗) = 0, µ > 0, and ρ, δ > 0 such that

|f ′(x∗)| ≥ ρ, f not too flat

|f ′′(x)| ≤ δ, f not too oscillatory

µ =
ρ

2δ

1. If x0 ∈ I, then xk ∈ I, ∀k = 1, 2, · · · . I = window of convergence

2. |xk+1 − x∗| ≤ δ
ρ |xk − x

∗|2. Weaker definition of quadratic convergence.

Note This does not implies convergence.

3. |xk+1 − x∗| ≤ 1
2 |xk − x

∗| convergence.

Recall definition of quadratic convergence was

lim
k→∞

|xk+1 − x∗|
|xk − x∗|2

= λ

Convergence window I = [x∗ − µ, x∗ + µ], µ = ρ
2δ where ρ = lower bound on slope and

δ = upper bound on curvature
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Notes on convergence

1. Convergence xk → x∗ means ∀δ > 0,∃n(δ), such that ∀k ≥ n, ‖xk − x∗‖ ≤ δ.

2. |xk+1 − x∗| ≤ c|xk − x∗|, c < 1. Weak definition of linear convergence. This implies
|xk−x∗| ≤ ck|x0−x∗| = c0c

k (yet another definition of linear convergence, i.e. linear
convergence means |xk − x∗| ≤ c0c

k.

Let c0c
k ≤ δ,

ln c0 + ln c ≤ ln δ

k ln c ≤ ln δ/c0

k ≥ ln δ/c0

ln c

i.e. ∀δ ≥ 0, ∃n = d ln δ/c0
ln c e., ∀k ≥ n, c0c

k ≤ δ =⇒ |xk − x∗| ≤ δ i.e. sequence
converges.

Earlier definition

lim
n→∞

|xk+1 − x∗|
|xk − x∗|

< c, c < 1

is the strongest definition of linear convergence and gives asymptotic result εn+1| ≈
c|εn|2. does not require c < 1 and does not imply convergence.

3. |xk − x∗| ≤ c0c
k =⇒ log |xk − x∗| ≤ log c0 + k log c. Hence log |εk| < log c0 + k log c.

i.e., asymptotically log |εk| ≈ k| log c| i.e., each iteration contributes about | log c|
decimal (log10) or binary (log2) digits, for example,

logp |εk| = −6 =⇒ |εk| = 10−6

i.e. 5 correct digits.

Characteristically, an iteration that converges linearly in the sense of 1 or 2 will gain
∼ | log c| correct digits per iteration.

4. In the case of fixed point iteration these inequalities are typically tight,

xk − x∗ ≈ c0c
k, c < 1

xk+1 − xk
xk − xk−1

≈ c

5. Quadratic convergence
|xk+1 − x∗| ≤ c|xk − x∗|2

log |εn+1| ≤ log c+ 2 log |εk|
Recall log |εk|number of correct digits in kth iteration

i.e. Number of correct digits double each iteration.
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4.7 Bisection Method

Based on the intermediate value theorem: If f ∈ [a, b] and f(a)f(b) ≤ 0 and f(x) continu-
ous, then ∃x ∈ [a, b] such that f(x) = 0.

Algorithm:

while b -a >= delta

m = (a+b)/2;

if f(a)*f(m) <=0

b = m;

else

a = m;

end

end

If delta < max(|a|, |b|)*epsilon

May never terminate due to roundoff

b = 1.0 · · · 1× 2exp

a = 1.0 · · · 0× 2exp

so a+b
2 ≈ a or b.
Note on code: can improve on multiple function evaluations.

MATLAB handles

Above code if literally used in MatLab is function specific, e.g, bisef.m. Alternatively

function x = bisection f, a, b, delta)

<body as earlier>

In this case f must be defined as a handle. f can be built in function or a function that you
wrote.

For example:
f = @sin;

f = @myfunc;

f = @(x)(exp(x)− 2);

Note x is a dummy variable, i.e., x = 2. f(@(x)(exp(x)− 2) will not evaluate the function
at x = 2. Need to specify all but one variable, e.g., x = −1 : 0− : 1 and y = · · · .
f = @(u)(polyinterp(x, y, u) and p = [coeffs of polynomial],f = @(p, x)(polyval(p, x)) is
valid handle.
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Theorem 9. There is a root x∗ to f in [a(k), b(k)] such that

|x(k) − x∗| ≤ b(0) − a(0)

2k+1

where x(k) = m(k). i.e. bisection method converges linearly in the sense that

|x(R) − x∗| ≤ c0c
k

with c = 1
2 and c0 = (b(0) − a(0))/2.

Recall above inequality is a weak definition of linear convergence.

4.8 Systems of nonlinear equations

Given f : Rn → Rn find x∗ such that f(x∗) = 0. Applications: any steady state problem.
Preferred algorithm: Newton’s method

Theorem 10. Taylor theorem: f : Rsn→ Rm, f(x+h) = f(x) +J(x)h+O(‖h‖2). where

J(x) =


∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂fm
∂x1

· · · ∂fm
∂xn


is the Jacobean.

Given x(k) obtain x(k+1) from linear approximation at x(k)

f(xk + h) ≈ l(xk + h) = f(xk) + J(xk)h

Let xk+1 be the root of l(xk + h) = l(xk+1) = 0.

f(xk) + J(xk)(xk+1 − xk) = 0 =⇒ xk+1 = xk − J−1(xk)f(xk)

Midterm is up to bisection

4.9 Multivariate Newton

Note:

bisec.m

deltamin= eps*max(abs(a), abs(b))
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Recall that the closest we can represent a number x on the computer is x× eps× |x|.

eps =
x− fl(x)

|x|

xk+1 = xk − J−1
k (xk)f(xk)

Solve linear system J(xk)xk+1 = f(xk). At each iteration, i.e., O(n3) flops per iteration
often evaluate J(x) not at each iteration but not every so many iterations (Quasi-Newton)
also secant method. Obtain J(x)

1. Closed form

2. finite differences

3. Automatic Differentiation

Application: optimization (unconstrained local minima) .

Definition. x ∈ Rn is a local minimizer of f if and only if ∃r > 0 such that ‖y − x‖ ≤
r =⇒ f(x) ≤ f(y).

Theorem 11. Suppose: f : Rn → R is continuous to second derivative and x∗ satisfies

∇f(x∗) = 0

∇2f(x∗)

is positive definite. Then x∗ is a local minimizer of f.

Recall gradient

∇f = (
∂f

∂x1
, · · · , ∂f

∂xn
)T

Hessian (or Jacobean of ∇f)

∇2f =


∂2f
∂x21

· · · ∂2f
∂x1∂xn

...
. . .

...
∂2f

∂xn∂x1
· · · ∂2f

∂x2n


Theorem 12. If x∗ is a local minimizer, then ∇f(x∗) = 0 and ∇2f(x∗) is positive semidef-
inite (i.e. xT∇2fx ≥ 0 for all x).
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4.10 Newton’s Method for Optimizer

xk+1 = xk − (∇2f(xk))
−1∇f(xk)

Check that ∇2f is positive definite at each iteration! (otherwise newton may converge to
a non-minimum).

Theorem 13. Symmetric, real matrices are always diagonalizable, have real eigenvalues
& eigenvectors and eigenvalues can be made orthogonal to each other.

Power Method

x̃(k) = Ax(k−1)

normalization to avoid overflow or underflow.
Does this converge?
Recall: symmetric real matrices have real eigenvalues and eigenvectors can be taken

real and orthonormal. For example, in case of a multiple eigenvalues, eigenvectors will

span a space and can be made orthogonal in that space, orthonormal: vivj =

{
0 z 6= j

1 z 6= j
.

vi
‖vi‖ ,

vj
‖vj‖ , orthonormal (if vi, vj orthogonal).

For power method, requires |λi| 6= |λj |.

x̃(k) = Ax(k−1)

x(k) =
x̃(k)

‖x̃(k)‖
suppose that A is diagonalisable.

D =

λ1 · · · · · ·
...

. . .
...

· · · · · · λn

 , |λ1| 6= |λj |, ∀j = 2, · · · , n

Say x(0) = Φy(0) some y(0) (Recall diagonalisation A = ΦDΦ−1,Φ ∈ Cn×n, invertible and
D ∈ Cn×n linearly independent eigenvectors. Apply the algorithm:

x̃(1) = Ax(0) = ΦDΦ−1y(0) = ΦDy(0)

x(1) =
x̃(1)

‖x̃(1)‖
=

1

‖x̃(1)‖
ΦDy(0)

x̃(2) = Ax(1) = ‖x̃‖−1ΦDΦ−1ΦDy(0) = ‖x̃(1)‖−1ΦD2y(0)

x(2) = x̃(2)/‖x̃(2)‖ = ‖x̃(1)‖−1‖x̃(2)‖−1ΦD2y(0)
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x(k) = (
k∏
i=1

‖x̃(i)‖)−1ΦDky(0) = (
k∏
i=1

‖x̃(i)‖)−1λk1Φ

 1 · · · · · ·
...

. . .
...

· · · · · · λn/λ1


k

y(0)

Note:  1 · · · · · ·
...

. . .
...

· · · · · · λn/λ1


k

→

 1 · · · · · ·
...

. . .
...

· · · · · · 0


Then

Φ

 1 · · · · · ·
...

. . .
...

· · · · · · λn/λ1


k

= Φ[:, 1]y(0)

means v(k) has a finite limit, say v∗. Since ‖x(k)‖ = 1, ‖x(k)‖ = ‖β(k)v(k)‖ = 1 =⇒ |β(k)| =
1

‖v(k)‖ , (
∏k
i=1 ‖x̃(i)‖)−1λ1 = β(k) Hence |β(k)| → 1

‖v∗‖ . This implies x(k) →< some scalar >

Φ[:, 1]y(0). i.e. x(k) converges to the first column of Φ, which is the eigenvector corre-
sponding to λ1, called the dominant eigenvector. Must have y(0) 6= 0, which cannot be

guaranteed since Φ is unknown at the beginning of the algorithm. this (y
(0)
1 = 0 is a low

probable event. If y
(0)
1 = 0, then power method converges to eigenvector of the second

largest eigenvalue.

Inverse Power Method

Same, except x̃(k) = A−1x(k−1). Converges to the eigenvector corresponding to the smallest
eigenvalue of A. Recall that A,A−1 have same eigenvectors and reciprocal eigenvalues.
Implementation: use lute to obtain LU decomposition of A (PA = LU). Then use that in
each step to save, Ax̃(k) = x(k−1).

Inverse Shifted Power Method

A = ΦDΦ−1

A− µI = Φ(D − µI)Φ−1

(A− µI)−1 = Φ(D − µI)−1Φ−1

so inverse power method on A − µI converges to eigenvectors whose eigenvalue 1
λi−µ is

largest, i.e., closest to µ.
First Discretize and then find y that minimize the functional

F =

∫ xf

0

√
1 + (y′)2

−ky
dx
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Functional: A scalar function for a function y(x). Discretize such that unknown is a vector
y instead of a function y(x).

4.11 Quadrature (Numerical Integration)

Compute an approximation to
∫ b
a f(x)dx.

• Newton-Coates

• Gauss Quadrature

4.11.1 Newton-Coates

Choose m evenly spaced points x1, · · · , xm in [a, b], i.e.,

xi = a+
i− 1

m− 1
(b− a), i = 1, · · · ,m

(NC)mf
b
a = (b− a)

m∑
i=1

w
(m)
i f(xi)

where w
(m)
i = weights at m points

Obtained by requiring that polynomials up to order m−1 be integrated exactly, for
example, m = 2 should integrate exactly f(x) = 1,

f(x) = c1 + c2x

x1 = a

x2 = b

(NC)2(1)ba = (b− a)(w1 + w2) =

∫ b

a
1dx = (b− a)

(NC)2f(x)ba = (b− a)[w1(c1 + c2a) + w2(c1 + c2b)]

=

∫ b

a
(c1 + c2x)dx = c1(b− a) +

c2

2
(b2 − a2) =

1

2
(b2 − a2)

(NC)2(x)ba = (b− a)(w1a+ w2b) =
1

2
(b2 − a2) =

∫ b

a
xdx

Then we can solve above to get
w1 + w2 = 1

aw1 + bw2 =
a+ b

2
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Unique solution is

w1 = w2 =
1

2

so that two points NC integration is

(NC)2f
b
a = (b− a)(f(a) + f(b))

called trapezoidal rule.
If m = 3: x1 = a, x2 = a+ 1

2(b− a) = b+a
2 , x3 = b

Require 1, x, x2 integrate exactly =⇒ w1 = 1
6 , w2 = 2

3 , w3 = 1
6 .

(NC)3f
b
a = (b− a)(

1

6
f(a) +

2

3
f(
a+ b

2
) +

1

6
f(b))

Using Simpson ’s Rule

4.11.2 Gauss Quadrature

Gmf
b
a = (b− a)

m∑
i=1

w
(m)
i f(a+ (b− a)ξ

(m)
i )

0 < ξi < 1 interior points. Some texts take −1 < ξi < 1
m = 1:

G1f
b
a = (b− a)w1f(a+ (b− a)ξi)

G1(1)ba = (b− a)w1 = (b− a)

G1(x)ba = (b− a)w1(a+ (b− a)ξ1)

Hence ξ1 = 1
2

If m = 2:

G2(f)ba = (b− a)[w1f(a+ (b− a)ξ1) + w2f(a+ (b− a)ξ2)]

Four unknowns: w1, w2, ξ1, ξ2

Integrate exactly 1, x, x2, x3. Hence w1 = 1
2 = w2, ξ1 = 1

2 = 1√
12

and ξ2 = 1
2 + 1√

12
.

For any m, make Gauss exactly for polynomials up to order 2m−1. yields 2m equations
in unknown. wi ≥ 0 and ξi ∈ (0, 1) always gauss is more accurate than NC.
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4.11.3 Compound Integration (Mesh Refinement)

Break interval into pieces. Perform NC or Gauss in each piece∫ 1

0
f(x)dx ≈ G2(f)

3/4
0 +G2(f)1

3/4

Usually choose m first. Accuracy increases as number of segments increases: Theorems.

t =

√
1 + (y′)2

−ky

time to reach (xf , yf ).F romvx = dx
dt . Find tmin by minimizing integral (functional) with

respect to y(x). Discretize, i.e., evaluate integral by using N−1 subintervals and 1 quadra-
ture points and the midpoint rule. Minimize integral by

∑∑
w×values at integral points

(Here one integral point) with respect to vector y.
Vector y = value of y(x) at integral point. Usually, in practice pick type of integra-

tion (NC or Gauss And m) First, then take subdivisions. Above sum f(y) : RN → R
multivariate newton for optimization.

4.11.4 Multiple Newton for Optimization

xk+1 = xk − (∇2g(xk))
−1∇g(xk)

Here g(yi) =
√

1+(y′)2i
−kyi .Sample results for grad, Hessian given N, y in brachisto.mat (load

brachisto). Note: NC approximates integrand by a m − 1 degree polynomial evaluates
integral of that polynomial.The better the integrand is approximated by a polynomial the
better NC of Gauss will approximate the integral Gauss is generally faster than NC.

4.11.5 Accuracy of NC (Truncation Error)

Theorem 14.
∫ b
a f(x)dx−NCm(f)ba = cmf

(s+1)(ξ)( b−am−1)S+2, S =

{
m− 1 m even

m m odd
Proof is based on interpolation theory.

Above theorem says method is converging for b − a → 0 (point backs compound inte-
gration and, at least for polynomials, method converges with increasing m (not true for all
functions. For m = odd. Method is exact for polynomial up to order m.

Gauss: |Gm(f)ba−
∫ b
a f(x)dx| ≤ (b−a)2m+1(m!)4

(2m+1)((2m)!)3
M2m where M2m is a constant that bounds

|f (2m)(x)| on [a, b]. GS is faster (i.e. more accurate for given [a, b] - usually preferred).
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5 Interpolation

Side note: adaptive quadrature: the algorithm estimates the error for a stack of intervals
initiated to [a, b], for example, by applying quadrature of order m and m+1 in each interval.
If difference if below tolerance, proceed. Otherwise subdivide intervals.

Given discrete data points, find a continuous function, called the interplant, usually a
polynomial, that passes through them.

Theorem 15. Given (x1, y1), · · · , (xn, yn) pairs of real numbers such that all x′is are dis-
tinct. Then ∃ unique polynomial of degree at most n− 1, p(x) = an−1x

n−1 + · · ·+ a0, such
that p(x) interpolates the data.

The naive way is to solve n equations and n unknowns

a0 + a1x1 + · · ·+ an−1x
n−1
1 = y1

...

a0 + a1xn + · · ·+ an−1x
n−1
n = yn

In Matrix Form 1 x1 · · · xn−1
1

· · · . . .
...

1 xn · · · xn−1
n


 a0

...
an−1

 =

y1
...
yn


where the matrix is Vandermonde matrix.The V matrix is nonsingular but is ill-conditioned.
Also, “naive” method required O(n3) operations (flops).

5.1 Lagrange Form of Polynomial

p(x) =
∑
k

(
∏
j 6=k

x− xj
xk − xj

)yk

Theorem 16. Main accuracy theorem (Interpolation): Let I be an interval containing
x1 < x2 < · · · < xn, and f(x) an n-times differentiable function defined on I. Let p(x) be the
polynomial interplant of (x1, f(x1)), · · · , (xn, f(xn)) of degree ≤ n− 1, i.e., f(xi) = p(xi).
Then, for any x ∈ I,

f(x)− p(x) =
f (n)(ξ)

n!
(x− x1) · · · (x− xn)

where ξ is some point in I. It may happen that f (n)(ξ) grows with n faster n!. In that case,
the accuracy diminishes with growing n (order of interpolation), e.g., f(x) = 1

1+25x2
.
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Solution is piecewise polynomial functions.
Simplest: linear
Given (x1, y1), · · · , (xn, yn), x1 < x2 < · · · < xn. Define

L(x) = yi
xi+1 − x
xi+1 − xi

+ yi+1
x− xi
xi+1 − xi

, x ∈ [xi, xi+1]

Nonlinear equations: compare k, k + 1 iterates to figure tout the rate of convergence.
Adaptive compound:
Quadrature: compare order m, integration. If within tolerance interval is good else

subdivide this called a posteriori error estimation: solve the problem partly in order to
make decision. A priori: based on function properties. hard most code do a posteriori.

5.1.1 Piecewise linear interpolation

1. L(x) (the interpolant) restricted to [xi, xi+1] is a linear function.

2. L is continuous.

3. L(xi) = yi, i = 1 : n.

Theorem 17. Given (x1, y1), · · · , (xn, yn) pairs, x1 < · · · < xn, L(x) is the unique function
with properties 1-3.

xi’s are called break points or knots. Note: L(x) is generally non differentiable at
knots.

Li(x) = yi
xi+1 − x
xi+1 − xi

+ yi+1
x− xi
xi+1 − xi

, x ∈ [xi, xi+1]

which is in the form of a lagrange interpolant or

Li(x) = yi + (x− xi)
yi+1 − yi
xi+1 − xi

= yi + sδi

where s = x− xi, δi = slope.

Theorem 18. Assume f(x) twice differentiable and L(x) is piecewise linear interplant to
(x1, f(x1)), · · · , (xn, f(xn)) with x1 < x2 < · · · < xn. Then ∀x ∈ [x1, xn].

|f(x)− L(x)| ≤ max(
(xi+1 − xi)2

8
max |f ′′(ξ)|)

Proof. Apply main theorem in each interval:

|f(x)− Li(x)| = |f
′′(ξ)|
2
|x− xi||x− xi+1|
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Note max(|x− xi||x− xi+1|) = (xi+1−xi)2
4 occurs at midpoint.

|f(x)− Li(x)| ≤ max
f ′′(ξ)|

8
(xi+1 − xi)2

Then take max over all intervals.

Note:

1. Accuracy goes up with n (bound becomes smaller for smaller intervals)

2. Succest Adaptive interpolation: to reduce |f(x) − L(x)| most effectively (i.e. us-
ing smallest number of knots) use more knots where |f ′′(x)| is large. |f ′′(x)| may
be unknown may need some kind of a posteriori error estimate, for example, finite
differences.

Disadvantages

1. Low accuracy (xi+1 − xi)2.

2. visible knots.

5.1.2 Cubic Hermite Interpolate

Data is (x1, y1, d1), · · · , (xn, yn, dn) x1 < · · · < xn where yi = f(xi), di = f ′(xi), Obtain

pi(x) = Ai +Bi(x− xi) + Ci(x− xi)2 +Di(x− xi+1)(x− xi)2

where last part is for convenience of evaluating constants.
pi(xi) = yi, p

′
i(xi) = di, pi(xi+1) = yi+1, p

′
i(xi+1) = di+1

Theorem 19. Suppose f is 4-times differentiable on [xi, xi+1], pi is a cubic polynomial
such that above satisfies. Then ∀x ∈ [xi, xi+1]

|f(x)− pi(x)| ≤ max |f (4)(ξ)|(xi+1 − xi)4

384

similar to piecewise linear but now exponent is 4. Then higher accuracy.

5.1.3 Spline interpolation

Required p′′i be continuous at the knots. Solve for di’s as part of the algorithm.

p′′1(x2) = p′′2(x2)

...

p′′n−2(xn−1) = p′′n−1(xn−1)
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1. On each [xi, xi+1], p is cubic, i = 1, · · · , n− 1.

2. p(xi) = yi, i = 1, · · · , n.

3. p′(xi) = di, i = 1, · · · , n.

Given (x1, y1), · · · , (xn, yn) as above, compute d1, · · · , dn, compute cubic Hermite inter-
plant. Determine d1 to dn By insisting on second derivative continuity at knots (x1, · · · , xn)
satisfies above three bullets and in addition: p′′(xi) is well-defined, i = 2, · · · , n− 1 that is
p′′ is continues over [x1, xn]. d1, · · · , dn in general cannot be prescribed because this would
over-constrain the problem. They must be determining by the interpolation. Must write a
system of equations for d1, · · · , dn To satisfy the constraints

p′′1(x2) = p′′2(x2)

...

p′′n−2(xn−1) = p′′n−1(xn−1)

where pi, i = 1, · · · , n − 1, is cubic function on [xi, xi+1]. perform some simplification,
obtain n− 2 linear equations that d1, · · · , dn must satisfy format of these equations turns
out to be as follows

(∆x2)d1 + 2(∆x1 + ∆x2)d2 + (∆x1)d3 = RHS involving xi, yi

(∆x3)d2 + 2(∆x2 + ∆x3)d3 + (∆x2)dy = another RHS involving xi, yi

n − 2 such equation. Once d′is determined (solve linear equations). Apply cubic hermit
interpolation on each interval. Cubic spline still not uniquely determined. Two equations
still needed for di’s (n unknowns, n − 2 equations so far). Obtain two more equations by
specifying two end conditions. Three common end conditions

1. Complete spline: user specifies dL, dR such that

p′1(x1) = dL, p
′
n−1(xn) = dR

2. Natural spline: impuse constraints

p′′1(x1) = 0

p′′n−1(xn) = 0

3. Not-A-Knot spline: Requires n ≥ 4. Impose constraints p′′′(x2) = p′′′2 (x2), p′′′n−2(xn−1) =
p′′′n−1(xn−1)Thismeansthatp1, p2 are actually the same cubic and pn−2, pn−1 are ac-
tually the same cubic too. So x2, xn−1 are no linear truly knots. The n equations
obtained for d1, · · · , dn in all cases are tridiagonal. Say that A ∈ Rn×n is tridiagonal.
If A(i, j) = 0 whenever |i − j| > 1. Fact: This linear system may be solved in O(n)
operations.
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Another method to obtain d1, · · · , dn called pchip in MATLAB. First compute the
slopes of piecewise linear interplant to (x1, y1), · · · , (xn, yn), call them δ1, · · · , δn−1. If
slopes and opposite sign at a knot, i.e. at xk, δk−1 · · · δk < 0, set dk = 0. If slopes same
sign, and intervals same length, set 1

dk
= 1

2( 1
δk−1

+ 1
δk

) More general formula for unique

lengths. Another formula to determine d1 and dn once d1, · · · , dn determined, apply cubic
Hermite. In general, not a spline - no second derivative continuity. pchip interpolation
does not overshoot data, i.e. local maxima, minima always occur at original data points.
PCHIP reserve the shape but a spline is for smoothing.

6 Fourier Transform

6.1 Review of Complex numbers

Cartesian form. Polar form z = reiΘ. Polar representation is not unique since reiΘ =
rei(Θ+2π) etc. Raising to an integer power (reiΘ)m = rmeimΘ. Multiples angle by m.

6.2 nth Roots of Unity

nth roots of unity are numbers w such that wn = reiΘ, e.g., n = 5, (reiΘ)5 = 1. This
implies that r = 1 (to get the length right). Θ = k 2π

n k any integer since eiR2π = 1. Not
unique since

1, ei2π/5, ei4π/5, ei6π/5

then repeat since ei10π/5 = ei0π/5, etc. More generally nth roots of unity are

e−ik2π/n, k = 1, 2, · · ·

There are n distinct values. Note: sign is convention for fast Fourier transform.

6.3 Discrete Fourier Transform (DFT)

Given y0, · · · , yn−1 complex numbers which are coefficients of polynomial.

p(z) = y0 + y1z + · · ·+ yn−1z
n−1

Evaluate at nth roots of unity.
p(eik2π/n)

Yk =
n−1∑
l=1

yl(e
ik2π/n)l =

n−1∑
l=1

yle
ik2πl/n, k = 0, 1, · · · , n− 1

Consider inverse problem: given values Y0, · · · , Yn−1 of an initially unknown polynomial
p(z) of degree ≤ n − 1, evaluated at nth roots of unity e0, e−i2π/n, · · · , e−i2π(n−1)/n Find
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the polynomial p(z) = y0 + · · ·+ yk−1z
n−1i.e.givenpairs(e−i2πk/n, Yk) Find standard form

(i.e. coefficients) of interpolating polynomial of degree n− 1: (y0, · · · , yn−1).
Solution to this interpolation problem is

yl =
1

n

n−1∑
k=0

Yke
i2πkl/n, l = 0, · · · , n− 1

IDFT

Proof. Suffices to show that if we start with polynomial y0, · · · , yn−1 evaluate polynomial
at nth roots of unity to obtain Y1, · · · , Yn−1 and then find coefficients of interpolating
polynomial suggested by the formula above should rcover coefficients of original (recall
“background” f(x), here a polynomial, in interpolation theory). polynomials, i.e. ŷl = yl.
By IDFT,

yl =
1

n

n−1∑
k=0

Yke
i2πkl/n, l = 0, · · · , n− 1

=
1

n

n−1∑
k=0

n−1∑
j=0

yje
−i

where Yk was evaluated by DFT.
Thus it becomes

1

n

n−1∑
j=0

yj

n−1∑
k=0

ei2π(k−j)

inner sum is a geometric series of the form

β0 + β1 + · · ·+ βn−1

with β = ei2π(l−j)/n
n−1∑
k=0

βk =
βk − 1

β − 1

Provided β 6= 1.
n−1∑
k=0

Yke
i2πkl/n =

ei2π(l−j)n/n − 1

ei2π(l−j)/n − 1
= 0

since
ei2π(l−j)n/n = 1
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, l − j integer, except if β = ei2π(l−j)/n = 1, i.e., l−j
n is an integer, i.e., l − j divisible by n,

i.e., l = j, in which case, each term of the su is 1, so sum is n, i.e.,

ŷl =
1

n

n−1∑
j=0

yj

{
0 j 6= l

n j = l
=

1

n
yln = yl
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