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Assignments, Midterm (March 4th) and Final are 10%, 25% and 65% respectively.

1 Introduction

Pricing of financial derivatives mainly invokes finding the expected present value of future
cash flows under a “risk neutral” probability measure. The expected present value concept
is not new to us; we require three ingredients: a series of cash flows, the corresponding
discount factors and probabilities. Given a series of known/estimated cash flows, the
question that now arises is how do we determine the appropriate discount factors and
probabilities?

Price = EPV = Expected Present Value =
40(0.6) + 25(0.4)

1 + interest rate

Since we have a stock models such as the CAPM or APT can be used to estimate this
interest rate. Interest rate is of the form:

Risk-free rate + Risk Premium

where risk-free rate is the base rate and risk premium is more specific to the stock/asset
in consideration.

$30

$25

$40

(40%)

60%

Consider now a call option with time to maturity of 1 year and a strike of $30. Therefore
we can transform our binomial tree into the following tree:

$?

$0

$10

(40%)

60%

Therefore, the price is going to be

Price =
10(0.6) + 0(0.4)

1 + desired return on the call option

Do not have an easy way to find the desired return on the call option. This method involves
finding the expected cash-flow and then discounting it using appropriate rate of return,
one that is adjusted for risk!.
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1.1 Another Method (Risk-Neural Pricing)

Use probabilities that are “adjusted” for risk, and the risk-free rate as our discount rate.
These “adjusted probabilities” are called risk-neutral probabilities. It is very important
to note that the risk-neutral probabilities are not real-world probabilities. Think of an
alternate world.dimension where all investors are risk-neutral and as a result, all assets
yield the risk-free rate; yet, the prices of the assets are the same as what we observe in this
world. Assume arbitrage is not possible. Suppose the following:

S0

Sd

Su

(1− p)

p

$?

Cd

Cu

(1− p)

p

Idea:

1. Create a portfolio that mimics the payoffs of the call at time. No arbitrage. This
implies price of the call if the price of the portfolio.

2. Assume that we can invest/borrow at the risk-free rate r.

3. Let
α = number of share s of stock purchased at t = 0

and
β = amount invested at t = 0 at r

Hence
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$?

αSd + β(1 + r) = Cd

αSu + β(1 + r) = Cu

(1− p)

p

Therefore, we can conclude that

α =
Cu − Cd
Su − Sd

and

β =
1

1 + r
[Cu −

Cu − Cd
Su − Sd

Su]

Therefore, the call price is just replicating portfolio price, that is,

αS0 + β =
1

1 + r
[
(1 + r)S0 − Sd)

Su − Sd
Cu +

Su − (1 + r)S0

Su − Sd
Cd]

Therefore, it is
1

1 + r
[qCu + (1− q)Cd]

If Sd−(1+r)S0 < Su, then 0 < q < 1. Here, q and 1−q are called risk-neutral probabilities
and our discount rate is our risk-free rate of return r so we have the price as EPV under
this risk-neutral probability measure.

Sd < S0(1 + r) < Su =⇒ 0 < q < 1

Therefore,
Sd − S0

S0
< r <

Su − S0

S0

1.2 Derivatives

With respect to options,

1. long position =⇒ buy the option and

2. short position =⇒ sell the option (write)

With respect to stock,

1. long position in stocks =⇒ buy shares of stock and have ownership in a company
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2. Short-sell stock - borrow stock (from a broker), sell it on the market and promise to
return it at some point in the future.

(a) Will short-sell stock if you expect the price to fall in the future

(b) If any dividends are paid over this period of time, you have to pay it to the
original lender of the stock.

1.3 Forwards and Futures Contracts

It is an obligation to buy/sell some underlying asset at some point in the future (the
expiration date, at a price determined today (forward price)

The payoff on a forward contract is

payoff =

{
spot price at expiration-Forward price, long position

Forward price - spot price at expiration, short position

Since the initial premium is zero, the profit on a forward contract equals its payoff.

1.4 Call and Put options

A call (put) option gives the owner the right (but not the obligation) to buy (sell) an
underlying asset at or before a pre-specified time (maturity or expiration date) for a price
set today (called the strike or exercise price)

Types

• European - only able to exercise at the expiration date

• American - able to exercise at any time before expiration

• Bermudan - able to exercise during specified periods.

Set-up

• Call: option to buy

• Put: option to sell

• Let ST = spot price at expiration,K = strike/exercise price

• Payoff of a purchased call option (long a call) = max(ST −K, 0)

Profit = Payoff at Expiration− Future value of Premium

• Payoff of a purchased put option (long a put) = max(K − ST , 0).

Profit = Payoff at Expiration− Future value of Premium
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• Payoff of a Written call option (short a call) = −max(ST −K, 0)

Profit = Payoff at Expiration + Future value of Premium

• Payoff of a Written put option (short a put) = −max(K − ST , 0).

Profit = Payoff at Expiration + Future value of Premium

Examples (uses of derivatives)

1. Speculating on volatility: Straddle: buy a put and a call with some strike price.
Make this investment if you believe that the stock is very volatile.

2. Floor: provides insurance against a fall in price.

Floor = Long Stock + Long Put

3. Cap: provider insurance against a rise in the price

Cap = Long Call + Short Stock

1.5 Financial Forwards and Futures Contracts

For the rest of this chapter, we will assume the price of the futures contracts is the same
asa that of a forward contract.

1. Consider the purchase/sale of a stock for possible ways

(a) Outright purchase: Pay S0 for the stock today and receive it at time 0.

(b) Fully leveraged purchase. Borrow S0 at a risk-free rate r and purchase the stock
today. Pay off the loan with interest at some time T, an amount equal to S0e

rT

(assuming r is continuously compounded)

(c) Prepaid forward contract. Pay for the stock today and receive it at time T.

(d) Forward contract: pay for the stock and receive it at time T, at a price set
today.

Interested in finding the price of c) and d). Notation:

(a) r is risk-free interest rate (continuously compounded)

(b) T is the expiration date

(c) F0,T is the price of a T -year forward contract.

(d) FP0,T is the price of a T -year prepaid forward contract.
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(e) σ = risk-adjusted interest rate. (continuously compounded)

2. Prepaid Forward (stock pays no dividends)

(a) Pricing model 1: Pays to dividends so it doesn’t matter. When the stock is
delivered to the buyer (could be at time T, at any time in (0, T ), or even at
time 0, it doesn’t matter. This implies we should have FP0,T = S0 (stock price
at time 0)

(b) Pricing method 2: Expected present value

F p0,T = e−αTE0(ST )

use risk-adjusted rate here. Now what is E0(ST )?

E0(ST ) = S0e
αT

Think of as the yield on the stock

=⇒ FP0,T = e−αT [S0e
αT ] = S0

(c) Pricing Method 3: pricing by arbitrage (risk-free profit).

portfolio =

{
buy a share of stock at S0

Sell a prepaid forward atFP0,T

i. Buy Stock: Cash flows: time 0: S0 and time 1: ST . St = time-t price of 1 share of stock.

ii. Sell prepaid forward: time 0: FP0,T and time 1: −ST .

Net: time 0: FP0,T − S0 and time 1: 0

No arbitrage implies FP0,T − S0 = 0. Then FP0,T = S0.

3. Prepaid Forward contract (stock pays dividends)

In this case, we have

FP0,T = S0 − PV (all dividends paid over (0, T))

If the stocks pays discrete dividends of Dtj at time tj , j = 1, 2, · · · , n, where tj < T ,
then

FP0,T = S0 −
n∑
j=1

PV0,tj (Dtj )

Suppose the stock pays dividend at an annualized continuously compounded dividend
yield of δ. Then, FP0,T = S0e

−δT .
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At time 0, buy 1 share of stock. Then at the end of day 1. Receive a dividend equal
to δ

365(day 1 stock price). Reinvest interest from the stock (1 + δ
365 shares of stock.

Therefore, at the end of year 1, have (1 + δ
365)365 shares of stock. At the end of year

T, it turns into (1 + δ
365)365T = eδT shares of stock.

No arbitrage argument for pricing.

portfolio :

{
buy e−δT share of stock and continuously reinvest dividends back into the stock

sell a prepaid forward at FP0,T

Consider the following cash flows

(a) buy stock: time 0: −e−δTS0, time T: ST

(b) sell prepaid forward: time 0: FP0,T , time T: −ST

Net cash flow: time 0: FP0,T − S0e
−δT , time 1: 0.

Example 1: S0 = 100, Dtj = $1, r = 10% =⇒ FP0,1 = 100 = [$1e−10% 1
4 + $1e−10% 1

2 +

$1e−10% 3
4 + $1e−10%1] = 96.2409.

Example 2: FP0,1 = S0e
−δ·1 = 95.1229

FP0,T = S0 − PV (dividends)

Discrete FP0,T = S0 −
n∑
j=1

PV0,tj (Dtj )

Continuous: annualized continuously compounded dividend yield of δ.

FP0,T = S0 − PV (ST (eδT − 1)) = S0 − (eδT − 1)PV (sT )

= S0 − S0e
−δT (eδT − 1) = S0e

−δT

1.6 Pricing Forwards on Stocks

Assume a continuously compounded risk-free rate of borrowing/lending equal to r.

F0,T = FV (FP0,T ) = FP0,T e
rT

Cases:

1. No dividends
F0,T = S0e

rT
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2. Discrete dividends:

F0,T = S0e
rT −

n∑
i=1

e−r(T−tj)Dtj

3. Continuous dividends:
F0,T = S0e

−δT erT = S0e
(r−δ)T

Example: Let F1 and F2 be the forward prices of the same underlying stock with
time to maturity T1 and T2 respectively, where T1 < T2 and let r be the annual con-
tinuously compounded risk-free interest rate. If F2 > F1e

r(T2−T1), then an arbitrage
opportunity exists . Provide one.

Cashflows

Transactions Time 0 Time T1 Time T2

Short T2 year forward 0 0 F0,T1 − ST2
Long forward T1 year forward 0 ST1 − F0,T1 0
buy one share of stock at time T1 0 −ST1 ST2
borrow F0,T1 at r at time T1 0 F0,T1 F0,T1e

r(T2−T−1)

Net Cash flow 0 0 F0,T2 − F0,T1e
r(T2−T1) > 0

4. Continuous dividends:
F0,T = S0e

−δT erT = S0e
(r−δ)T

• Sometimes, you may be given the forward premium, which is defined as the ratio
of current forward price to the current stock price,

F0,T

S0
. If you are given the for-

ward premium and the forward price, you can figure out the current stock price.
Sometimes, you may be given the annualized forward premium which is calculated
as

1

T
ln(

F0,T

S0
)

• Synthetic Forwards:

–
Long forward = ST − F0,T

Forward = Stock− Bond

No dividends, F0,T = S0e
rT

Example 4: How would you create a long synthetic forward for a stock paying con-
tinuous dividends? Show that the payoff of the synthetic forward is the same as that
of a long forward.

Long forward = ST − F0,T = ST − S0e
(r−δ)T
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Time 0 Time T
Buy e−δT share of stocks S0e

−δT ST
Borrow S0e

−rT at the risk-free rate S0e
−δT -S0e

(r−δ)T

0 ST − S0e
(r−δ)T

1.7 Currency Contracts

S0e
−δT =⇒ S0e

(r−δ)T

F0,T = x0e
(ru−rc)T

2 Option: Parity and Other Relationship

C0 + S0 = P0 +Ke−rT

Call and Put with strike K and expiration time T

Call Price− Put Price = PV0,T (Forward Price− Strike Price)

C(K,T )− P (K,T ) = PV0,T (F0,T −K)

C(K,T ) = S0 − PV (Dividends +K) + P (K,T )

Using the above equations, we can create the following synthetic securities: synthetic stock,
synthetic call option, synthetic put option, synthetic T-bill

2.1 Generalized Put-Call Parity

C(St, Qt, T )− P (St, Qt, T ) = FP0,T (St)− FP0,T (Qt)

2.2 Properties of Option Prices

European option can be exercised only at the expiration date whereas an American option
can be exercised at any time before expiration.

• Call option price

1. Cannot be negative =⇒ Call Price ≥ 0

2. Parity equation implies Call price ≥ PV (F0,T )− PV (K)

3. Call Price ≤ S0. Why? Payoff at time T is max{ST −K, 0} ≤ ST .

4. S0 ≥ CAmer(S,K, T ) ≥ CEuro(S,K, T ) ≥ max(0, PV (F0,T )− PV (K))

• Put option price:

1. Cannot be negative =⇒ Put price ≥ 0
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2. Parity equations =⇒ Put price ≥ PV (K)− PV (F0,T )

3. Put: Price ≤ K (or more strictly Ke−rT ) Why? Payoff at time T is

max(K − ST , 0) ≤ K

K ≥ PAmer(S,K, T ) ≥ Peuro(S,K, T ) ≥ max(0, PV (K)− PV (F0,T ))

Early exercise: For the American call option, at each point in time, we can

1. Hold on to the option

2. Sell it at time t for CAmer(S,K, T − t)
For a non-dividend paying stock, it is never optimal to exercise early.

3. Exercise at time t for St −K

For a non-dividend paying stock, it is never optimal to exercise early.

Proof. Want to show that CAmer(S,K, T − t) ≥ St −K. Recall the parity equation.

CEur(St,K, T−t)−PEur(St,K, T−t) = St−Ke−r(T−t) = St−K+K(1−e−r(T−t)) ≥ St−K

CEur ≥ PEur + (St −K) ≥ St −K

Since CAmer ≥ CEur, we have CAmer ≥ St −K

Strike price: K1 < K2 < K3

1. C(K1) ≥ C(K2)

2. P (K1) ≤ P (K2)

3. C(K1)− C(K2) ≤ K2 −K1

4. C(K1)− C(K2) ≤ K2 −K1 and P (K2)− P (K1) ≤ K2 −K1

(The absolute value of the slope of the option price with respect to strike is ≤ 1)
Example 5: K2 −K1 = 5. C(50)− C(55) = 6.75 (violated) and P (55)− P (50) = 7.75

(violated)

1. Sell call with K = 50

2. Buy call with K = 55.
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t = 0 ST < 50 50 ≤ ST < 55 ST > 55

16 0 −(ST − 50) −(ST − 50)
-10 0 0 ST − 55

6 0 50− ST ≥ −5 -5

Receive $6 at time 0 and lose at most $5 at time T. This implies arbitrage opportunity
does exist.

Profit at time T is ($6erT )− 5 > 0. To make a risk-free profit

1. Sell call with strike of 50

2. Buy call with strike of 55

2.3 Convexity

C(K1)− C(K2)

K2 −K1
≥ C(K2)− C(K1)

K2 −K1

P (K2)− P (K1)

K2 −K1
≤ P (K3)− P (K2)

K3 −K2

Based on the graph on the left, we should have

K3 −K2

K3 −K1
C(K1) +

K2 −K1

K3 −K1
C(K3) ≥ C(K3)

Based on the second graph, we also have

K3 −K2

K3 −K1
P (K1) +

K2 −K1

K3 −K1
P (K3) ≥ P (K2)

Remember that the option prices are convex.
Example 6:

K3 −K2

K3 −K1
=

5

25
= 0.2

0.2C(80) + 0.8C(105)− 8.4 < 9 = C(100)

0.2P (80) + 0.8P (105) = 20.64 < P (100) = 21

1. Buy 2 calls with K = 80

2. Buy 8 calls with K = 105

3. Sell 10 calls with K = 100

Time 0 ST < 80 80 ≤ ST < 100 100 ≤ ST < 105 ST ≥ 105

-44 0 2(ST − 80) 2(ST − 80) 2(ST − 80)
-40 0 0 0 8(ST − 105)
90 0 0 −10(ST − 100) −10(ST − 100)

6 0 2(ST − 80) 8(105− ST ) ≥ 0 0

13



2.4 Swaps

P (0, t) = Price of a t-year zcb = [1 + r(0, t)]−t

Forward rate is the rate locked in today to borrow/lend at some time in the future r(t, t+k)
is the forward rate (set today) for borrowing/lending over (t, t+k). Assume the swap price
is level at R.

PV of the swap obligations =
40

1.04
+

45

1.052

But this should equal
R

1.04
+

R

1.052

Overall, 40
1.04 + 45

1.052
= R

1.04 + R
1.052

=⇒ R = 42.4271

2.5 Binomial Option Pricing

One Period Binomial Tree

S0

Sd =
dS0

Su =
uS0

(1− p)

p

where S0 = 30, Su = 33 and Sd = 27.
Assume no dividends.
Objective: price a call option with a trike of $30 and maturity in one-year. Call’s

Payoffs:

$?

Cd =
0

Cu =
3

(1− p)

p

Risk-free rate: r = 5% (continuously compounded). Assume you can borrow/lend at
this rate. Construct a replicating portfolio. (to re-create the payoffs of the call)

1. Purchase ∆ shares of stock at time 0.

2. To invest an amount of money B at risk-free rate.
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3. Want to have (at time 1)

$?

∆Sd + Ber = Cu

∆Su + Ber = Cd

Solve
simultaneously to find ∆ and B. This implies

∆ =
Cu − Cd
Su − Sd

=
3− 0

33− 27
= 0.5

B = e−r[Cu − δSu] = −12.8416

This implies {
Purchase half share of stock

Borrow $12.8916 at the risk-free rate

Note: ∆ is called the delta of the option. Price (based on a no-arbitrage argument)
is (at time 0)

C0 = ∆S0 +B =
Cu − Cd
Su − Sd

S0 + e−r[Cu −∆Su] = e−r[
er − d
u− d

Cu +
u− er

u− d
Cd]

Let q = er−d
u−d . Then 1 − q = u−er

u−d . Note that 0 < q < 1 if d < er < u (No arbitrage
condition) If satisfied, q and 1− q are called risk-neutral probabilities.

Note: If er < d, we can invest in the stock (long) and lend at the risk-free rate to
make an arbitrage profit (because we can always earn a higher return on the stock
then on the bank account)

On the other hand, if er > u, then you will always earn a higher return on the bank
account than on the stock.

Example

Assume that the stock pays dividends at a continuous annualized dividend yield of δ.
Consider a call option which matures at time h. The payoff at time h is Cu if Sh = uS0

and Cd otherwise.

1. Assume a continuously compounded risk-free rate r, show that the no-arbitrage price
of this call option is

C0 = ∆S0 +B

15



where

∆ = e−δh
Cu − Cd
S0(u− d)

and B = e−rh
uCd − dCu
u− d

Portfolio consists of purchasing ∆ shares of stock and investing B in the bank account.

2. Determine the risk-neutral probabilities and the no-arbitrage condition. At time h{
∆eδhSu +Berh = Cu

∆eδhSd +Berh = Cd

Note: ∆ shares of stock at time 0 will give eδh∆ shares at time h. (assuming you
reinvest the dividends received back into the stock)

Solve simultaneously to get

∆ = e−δh
Cu − Cd
Su − Sd

= e−δh
Cu − Cd
S0(u− d)

This implies

B = e−rh[Cu −∆eδhSh] = e−rh
uCd − dCu
u− d

This implies
C0 = ∆S0 +B

Subset: ∆ and B into C0 and rearrange to get

C0 = e−rh[
e(r−δ)h − d
u− d

Cu +
u− e(r−δ)h

u− d
Cd]

Note that 0 < q < 1 if d < e(r−δ)h < u (No-arbitrage condition).
If satisfied q and 1− q are risk-neutral probabilities.

2.6 Constructing the Binomial Tree

F pt,t+h = Ste
−δh

Ft,t+h = Ste
(r−δ)h

Turns out that Ft,t+h = E[St+h] under the risk-neutral probability measure.

Proof.

E[St+h|St] = quSt + (1− q)dSt =
e(r−δ)h − d
u− d

uSt +
u− e(r−δ)h

u− d
dSt = Ste

(r−δ)h = Ft,t+h

Introduce uncertainty via a volatility coefficient σ at time t+h:

{
uSt = Ft,t+he

σ
√
h

dSt = Ft,t+he
−σ
√
h
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2.7 American Option

Replace the call option’s value under the European setting (i.e. ∆hSh +Bh) with

max(Exercise Value at h,∆hSh +Bh)

at all nodes prior to expiration (except time 0)

2.7.1 Example 15

Using the binomial model from last example, find the price on American put option with
2 year to maturity and strike price 30. The continuous compounded rate is 5%.

In this case,

q =
erh − d
u− d

= 0.7569

At time 1:

1. Stock price goes up and holding value = [q · 0 + (1 − q)(0.3)]e−r = 0.0695. Exercise
value is 0. This implies Pn = max(0.0659, 0) = 0.0695

2. Stock price goes down: holding value e−r[q ·0.3+(1− q)5.7] = 1.5369. Exercise value
is max(30− 2 ≥ 0) = 3.

2.8 Model Extension (Dividend paying stocks)

St+h = Ft,t+he
±σ
√
h

Continuous dividends then
Ft,t+h = Ste

(r−δ)h{
u · St = Ste

(r−δ)h+σ
√
h

d · St = Ste
(r−δ)h−σ

√
h

At each node, ∆ = e−δh Cu−CdSu−Sd and B = e−rh[Cu−∆eδhSu] and the option value is ∆S+B.

2.8.1 Example 16

Assume a continuous dividend paying stock S0 = 30. Using the CRR model with time
steps and length of a year, and u = 1.1 and d = 0.9. construct the binomial tree for the
stock price over the next 2 years. Find the price of a European call option on the stock,
with 2 years to maturity and strike price of $30. The continuously compounded rate is
r = 5%.

17



2.9 Discrete Dividends

Assume over (t, t+ h), receive dividends (with certainty) with a future value at time t+ h
of D.

Therefore, Ft,t+h = F pt,t+he
rh = [St −De−rh]erh = Ste

rh −D. Therefore,{
u · St = (Ste

rh −D)eσ
√
h

d · St = (Ste
rh −D)e−σ

√
h

∆ =
Cu − Cd
Su − Sd

, B = e−rh[Cu −∆(Su +D)] = e−rh[
SuCd − SdCu
Su − Sd

]−∆De−rh

Non-recombining tree

2.10 Model Analysis

Risk-neutral probabilities: for the non-dividend paying stock, the R-N probabilities are

q =
er − d
u− d

and 1− q =
u− er

u− d

Recall for one period model,

C0 = e−rh[qCu + (1− q)(−Cd)] = EPV

Can generalize to models with greater than one periods using the recursive algorithm.
In general, we want to price using the risk-neutral probabilities. It is easier than the

replicating portfolio. How can we compute them easily?
Under the risk-neutral measure, we must have

EQ[St+h|St] = Ft,t+h

under the R-IV probability measure. For the non-dividend paying stock, we have

∆ =
Cu − Cd
Su − Sd

2.11 Binomial model as an approximation of the log-normal model

A random variable is said to be log-normally distributed with parameters µ and σ. If it is
of the form eX , where X ∼ N(µ, σ2), The binomial model can be shown to approximate a
log-normal distribution (continuous). To see this, we need to consider very small time steps
(makes the model more realistic).Consider time steps of size 1

n , where n is large. Consider
an interval of time where we have n · t steps.

Snt = S0u
(number of up steps)d(number of steps down)

18



Suppose, for simplicity, that u = e
σ√
n and d = e

− σ√
n

Note: number of up steps plus number of down steps is equal to n·t. Let Nu+Nd = n·t.
This implies Snt = S0(e

σ√
n )Nu(e

− σ√
n )Nd = S0 · e

σ√
n

[Nu+(−1)Nd]
.

Suppose the R-N probabilities are q = 0.5 = 1− q. Want to re-write 1 ·Nu+ (−1)Nd

Let Xi =

{
−1 with probability 0.5

1 with probability 0.5

1 ·Nu+ (−1)Nd =

n·t∑
i=1

Xi

where Xi is i.i.d.. This implies Snt = S0e
σ√
n

∑nt
i=1Xi . Take the limit as n → ∞. Want

to use the CLT. Now, E[Xi] = 0 and V ar(Xi) = 1. This implies
∑nt
i=1Xi−0√
nt1

→D N(0, 1).

Therefore,

St = S0e
σ
√
t
∑nt
i=1Xi√
nt

as n → ∞ this R.V. tends to N(0, σ2t). This implies St is log-normally distributed with

parameters 0 and σ2t. If we change u = e(r−δ)h+σ
√
h, d = e(r−δ)h−σ

√
h where h = 1

n . We
would have St = S0e

Y where Y ∼ N((r − s)t, σ2t). Equivalently, we can write

ln(
St
S0

) ∼ N((r − s)t, σ2t)

Let t = 1 =⇒ σ2 is the variance of the continuously compounded returns over 1 year.
Now if σ2

yearly is the variance of the continuously compounded returns. Suppose we

want to find the σ2
monthly (for monthly returns)

ryearly =

12∑
i=1

rmonthly,i =⇒ V ar(ryearly) = 12V ar(rmonthly)

That is,
σ2
y = 12σ2

M

Thus
σM =

σy√
12

S0, in general σ
√
h represents one standard deviation of the continuously compounded

returns.
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3 Discrete-time Securities Market

N securities. Time-0 value: S(0) =
(
S1(0) S2(0) · · · SN (0)

)
. M possible states at time

1.

S(1,Ω) =


S1(1, w1) · · · SN (1, w1)
S1(1, w2) · · · SN (1, w2)

...
. . .

...
S1(1, wM ) · · · SN (1, wN )


θj = number of units held in the jth asset,j = 1, 2, · · · , N

e =


θ1

θ2
...
θN


Value at time 0 of your portfolio is S(0)θ = θ1S1(0) + θ2S2(0) + · · · + θNSN (0) and the
possible values at time 1 are given by

S(1,Ω)e =

 θ1S1(1, w1) + · · ·+ θNSN (1, w1)
...

θ1S1(1, wM ) + · · ·+ θNSN (1, wM )


An arbitrage opportunity will exist e if:

S(0)e ≤ 0 and S(1,Ω)e > 0

The fundamental theorem of asset pricing: The single-period securities market model
is arbitrage-free if and only if there exists a state price vector.

3.1 Price via 1 of 2 ways

1. Under the assumption of no arbitrage, the time-0 value of the security in consideration
is equal to the time-0 value of a portfolio that replicates its payoffs “disadvantage”:
need to recalculate the replicating portfolio at each node and this portfolio will differ
depending on the security you are pricing

2. Using the risk-neutral probability measure: Calculate the risk-neutral probability
from the current assets on the market store in memory and use to price any other
security.

Creating the R-N probability f(N securities, 1 period model): Assume that S1 is our bank
account earning interest at an annual effective risk-free rate of i: Example (motivating)
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Binomial model: N = 2,M = 2, then ψ1 = q
1+i , ψ2 = 1−q

1+i . Hence R-N probabilities are
q = ψ1(1 + i) and 1− q = ψ2(1 + i).

Let’s generalize this. ψ is ∃, S(0) = ψS(1,Ω). Take the first column of S(1,Ω), we have

that S1(0) = ψ

 S1(1, w1)
...

S1(1, wM )

. In scalar form, we have S1(0) =
∑n

j=1 ψjS1(1, wj). This

implies

1

1 + i
=

M∑
j=1

ψj

=⇒ 1 =

M∑
j=1

ψj(1 + i)

Define Q(w) = (1 + i)ψ(w) for w ∈ Ω. Note
∑

w∈ΩQ(w)(1 + i) = 1.
To see why these are R-N probabilities, consider the following:
By definition Sj(0) =

∑
w∈Ω ψ(w)Sj(1, w) =⇒ Sj(0) = 1

1+i

∑
w∈ΩQ(w)Sj(1, w).

Aside Binomial Model:

S1(0)

S1(1, w2) =
1 + i

S1(1, w1) =
1 + i

Stock
S2(0)

S2(1, w2) =
dS2(0)

S2(1, w1) =
uS2(0)

Let Q(w1) = q and Q(w2) = 1 − q. This implies S2(0) = 1
1+i

∑
w∈ΩQ(w)S2(1, w) =

1
1+i [quS2(0) + (1− q)dS2(0)]. This implies q = 1+i−d

u−d , 1− q = u−(1+i)
u−d

In general, Sj(0) = E[Si(1)
1+i ]

(FTAP) The following are equivalent (assuming S1 is the bank account)

1. Market is arbitrage-free

2. There exists a state price vector

3. There exists a risk-neutral probability measure.
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3.2 Pricing

Random payoff of X at time 1 X =


X(w1)
X(w2)

...
X(wM )

. Aim: find the time-0 value of X.

3.2.1 Methods

1. Method 1: find the trading strategy θ that replicates the cash-flow X. That is, find θ
such that

S(1,Ω)θ = X

in other words,
N∑
j=1

Sj(1, w)θj = X(w), ∀w ∈ Ω

If we are able to find a θ which replicates X, we say X is attainable. Then, if the
model is arbitrage-free, we compute the time-0 value of X as the time-0 value of the
portfolio that replicates X. Therefore,

S(0) · θ

gives the time-0 value of X.

2. Method 2: Suppose X is attainable and the first security is a bank account earning
interest at an annual effective risk-free rate of i. Then the time-0 value of X is

ψ ·X =
∑
w∈Ω

Q(w)X(w)

1 + i

3.3 Completeness

Completeness : An arbitrage-free securities market model is said to be complete if every
cash flow X is attainable.

Theorem An arbitrage-free securities market model is complete if and only if there is a
unique state price vector.

Corollary If the first security is a bank account, then the model is arbitrage-free and
complete if and only if the risk-neutral probability measure is unique.
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4 Stochastic Calculus

4.1 Motivation for the Itô Integral

Consider an investment horizon of length T. Invest in the stock at points 0 = t0 < t1 <
t2 < · · · < tN−1 (end of period is tN = T ).

1. δ(t) is the number of shares of stock purchased at time t

2. B(t) will denote the price per share of stock at time t. Assume B = {B(t), t ≥ 0} is
a Brownian Motion process.

3. Overall, gain over (0, T ), ignoring interest is

N−1∑
i=0

δ(ti)(B(ti+1 −B(ti))

4. Take the limit as N →∞. (equivalent to saying max(ti+1 − ti)→ 0). We have∫ T

0
δ(t)dB(t)

(sometimes, it may be written as
∫ T

0 δ(t, w)dB(t, w), w ∈ Ω, but we will omit the ‘w’
for simplicity of notation).

4.1.1 Quadratic Variation

lim
N→∞

N−1∑
i=0

|B(ti+1)−B(ti)|2

The quadratic variation for a standard BM process over (0, T ) is T.

lim
N→∞

E[
N−1∑
i=0

|B(ti+1 −B(ti)|2] = T

To show this, E[QV (0, T )] = T and V ar(QV (0, T )− L)→ 0.
Remark:

1.

QV [0, T ] =

N−1∑
i=0

(B(ti+1)−B(ti))
2 ≤ max

0≤i≤N−1
|B(ti+1)−B(ti)|×

N−1∑
i=0

|B(ti+1)−B(ti)|

2. Finite QV implies that it is not possible to have finite first/total variation

3. If QV = 0, then the first/total variation is finite.
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4.2 Conditional Expectations and Filtration

We speak of a filtration which can be thought of as the continuous-time analog of Pk. Our
conditional expectation will be written in the form E[Xt|Fs] where X = {Xt, t ≥ 0} is a
stochastic process and {Ft, t ≥ 0} is a filtration. The filtration models the information
available over time.

• P = {P0, P1, · · · , PT } is discrete time

• F = {Ft, t ≥ 0} is continuous time, called a filtration

• Each Ft is called a σ-filed, and models the information up to time t. “Given Ft” can
be thought of as being “given {Bu, 0 ≤ u ≤ t}”.

4.2.1 Properties of conditional expectation

1. E[E[X|Ft]] = E[X]

2. If X is Ft-measurable, then E[X|Ft] = X

3. E[E[X|Fs]|Ft] = E[E[X|Ft]|Fs] = E[X|Fs], s ≤ t

4.3 Martingale

Suppose the state space is Ω, and that we have a probability measure, a filtration {Ft, t ≥ 0}
and an adapted stochastic process M = {Mt, t ≥ 0}.

• E[|Mt|] <∞,∀t

• E[Mt|Fs] = Ms,∀s ≤ t.

then M is a martingale. Note: from the second property, if s = 0, we have E[Mt|F0] = M0.
Example 36: Show that the standard Brownian motion W = {Wt, t ≥ 0} is a continuous

martingale with respect to its own filtration.

E[Wt|Fs] = E[Wt−Ws|Fs]+E[Ws|Fs], (s < t) = E[Wt−Ws]+Ws = E[Wt]−E[Ws]+Ws = Ws

where Wt = Wt −Ws +Ws

Example 37, Show that {W 2
t − t, t ≥ 0} is a martingale with respect to the filtration

generated by {Wt, t ≥ 0}.

E[W 2
t − t|Fs] = E[{(Wt −Ws) +Ws}2 − t|Fs]

= E[(Wt −Ws)
2|Fs] + E[W 2

s |Fs] + 2E[(Wt −Ws)Ws|Fs]− t
= V ar(Wt −Ws) +W 2

s + 2WsE[Wt −Ws|Fs]− t
= t− s+W 2

s + 0− t = W 2
s − s
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Example 38, Let X be a random variable and define Mt = E[X|Ft], 0 ≤ t ≤ T , show
that {Mt, 0 ≤ t ≤ T} is a martingale with respect to {Ft, 0 ≤ t ≤ T}. (s < t)

E[Mt|Fs] = E[E[X|Ft]|Fs] = E[X|Fs] = Ms

from the last property of C.E.

4.4 Itô Integral

Properties of I(T ) =
∫ T

0 δ(t)dW (t)

1. Adapted w.r.t. F = {F , t ≥ 0}

2. Linerity

3. Martingale property:

E[

∫ T

0
δ(t)dB(t)|Fs] =

∫ s

0
δ(t)dB(t)

Proof.

E[

∫ T

0
δ(t)dB(t)|Fs] = E[

∫ s

0
δ(t)dB(t)|Fs] + E[

∫ T

s
δ(t)dB(t)|Fs]

=

∫ s

0
δ(t)dB(t) + E[

∫ T

s
δ(t)dB(t)] =

∫ s

0
δ(t)dB(t)

Remark: E[I(T )] = I(0) = 0 =⇒ E[
∫ T

0 δ(t)dB(t)] = 0.

4.5 Itô’s Lemma

If Yt = f(t,Xt),

dYt = ft(t,Xt)dt+ fX(t,Xt)dXt +
1

2
fXX(t,Xt)(dXt)

2

dWtdt = dtdWt = dtdt = 0

dWtdWt = dt

4.6 Vasicek Model

dr(t) = a(b− r(t))dt+ σdW (t)

Problem possible to have two interest rates.
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4.7 Cox-Ingersoll-Ross Model (CIR)

dr(t) = a(b− r(t))dt+ σ
√
r(t)dW (t)

where
√
r(t) is the extra term compared to the Vasicek Model. Model has the mean rever-

sion feature and keeps the interest rate positive (will not show, but it can be shown that
r(t) will have a non-central χ2 distribution. When r(t) is small, the volatility is also small,
but the drift will be positive and relative large.

What is the mean of r(t)?
Integral form :

r(t) = r(0) + a

∫ t

0
(b− r(u))du+ σ

∫ t

0

√
r(u)dW (u)

Take expectations:

E[r(t)] = r(0) + a

∫ t

0
(b− E(r(u)))du+ 0

(mean of the Itô integral is zero)

=⇒ d

dt
E[r(t)] = a[b− E[r(t)] = ab− aE[r(t)]

=⇒ d

dt
E[r(t)] + aE[r(t)] = ab

=⇒ d

dt
[eatE[r(t)]] = eatab

By integrating throughout, we have

eatE[r(t)]− r(0) = b(eat − 1)

=⇒ E[r(t)] = r(0)e−at + b(1− e−at

If we look at E[r(t)] as t→∞ we have E[r(t)]→ b.

4.8 Black-Sholes Merton Model

St = S0e
(µ− 1

2
σ2)t+σWt , t ≥ 0

(see the geometric brownian motion last class)
where S0 > 0, and

• µ is the instantaneous mean

•
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