
ACTSC 331 Note : Life Contingency

Johnew Zhang

December 3, 2012

Contents

1 Review 3
1.1 Survival Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Insurance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Annuities - same idea as insurance . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Increasing contract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.6 Premium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Policy values 5
2.1 Retrospective Policy Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Thiele Differential Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Advanced topic: Asset shares and analysis of surplus . . . . . . . . . . . . . 16
2.4 Advanced topics: Contracts where benefit is a% of tV . . . . . . . . . . . . 18
2.5 Advanced topics: policy alternations . . . . . . . . . . . . . . . . . . . . . . 19
2.6 Review for Test 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Multiple state models 21
3.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Kolmogorov forward equations . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Benefits in MSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4 Premiums a Policy Values in MSM . . . . . . . . . . . . . . . . . . . . . . . 28
3.5 Thiele DE for MSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Multiple decrement model, multiple life model 30
4.1 Multiple Decrement Models (MDM) . . . . . . . . . . . . . . . . . . . . . . 30

4.1.1 KFEs for a MDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2 Premiums and Policy Value in MDM . . . . . . . . . . . . . . . . . . . . . . 33

4.2.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1



4.3 Dependent and Independent Probabilities . . . . . . . . . . . . . . . . . . . 33
4.3.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.4 Building a MDM from SDMs . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.4.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.5 Multiple Life Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.6 Benefits for Multiple Lives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.7 Gompertz and Makeham Mortality . . . . . . . . . . . . . . . . . . . . . . . 38
4.8 Common Shock Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.8.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5 Advanced Topics 41
5.1 Interest Rate Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2 Profit Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6 Final Review 45

2



1 Review

1.1 Survival Model

This part of notes is in the study note for mlc.

1.2 Insurance

bTx = benefit payable if the life dies at time Tx

Z = present value random var = PV of any payments on a contract

Z depends on Tx or Kx or K
(m)
x where Kx = bTxc and K

(m)
x = 1

mbmTxc
For insurance, we always have a max of one payment, such as, for benefits payable on

death

1. Z = vTx = e−δTx for whole life

2. Z =

{
vTx if Tx < n

0 if Tx ≥ n
for term

3. Z =

{
0 if Tx < n

vn if Tx ≥ n
for pure endowment

4. Z =

{
vTx if Tx < n

vn if Tx ≥ n
for endowment insurance

5. Z =

{
0 if Tx < n

something depends on the contract if Tx ≥ n
for a deferred contract

If we annual benefits (payable at end of the year), use Kx + 1. For benefits paid of the

end of the 1
m year of death, useK

(m)
x + 1

m . For any Z, we can always find E[Z] = EPV = AV
by first principle (E[Z] =

∑
zP (Z = z) =

∫
vttpxµtdt) - the sum or integral over all dates

of the amount paid x discount factor x probability of part.
If we have a discrete survival model given by a life table, it is tedious to calculate EPVs

of whole life or long term contracts , so the values for whole life insurance are often included
in the table.

E[Z] =
∞∑
k=0

1 · vk+1
k|qx = Ax

Also, the relationship between Ax’s in the table is a recursion:

Ax = A1
x:n + nEx ·Ax+n = vqx + ExAx+1

Trivial relationships could be observed
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• term + pure endowment = Endowment

• term + deferred whole life = whole life

• deferred = pure endowment× the contract

The relationships all hold within payment timing options. Relationship between differ-
ent timing (UDD) (pretty intuitive)

1.3 Annuities - same idea as insurance

Y = PVRV as before , a function of Tx,Kx or K
(m)
x . We can also have annuities payable

at the end (due) or start (immediate) of each period. We can evaluate the EPVs with

• first principles,

• amount × discount× probability over all dates

• use the relationship to A’s recall än = 1−vn
d . Then Y = äKx+1 = 1−vKx+1

d . Hence

EPV äx = 1−Ax
d .

Similarly, äx:n = 1−Ax:n
d .

Relationships:

1. annuity due = 1 + annuity immediate. In other words, äx = 1 + ax, ä
(m)
x = 1

m + a
(m)
x

2. Term: äx:n = 1 + ax:n − vnnpx

3. whole life = term + deferred, äx = äx:n + n|äx

4. deferred = nEx × any contract for age x+ n

To get relationship between annual, and mthly cases, we need UDD. Idea: convert

ä
(m)
x to A

(m)
x , use UDD on that, convert back to äx. Result: ä

(m)
x = α(m)äx − β(m),

ä
(m)
x:n = α(m)äx:n − β(1− nEx) where α(m) = id

i(m)d(m) , β = i−i(m)

i(m)d(m)

1.4 Variance

• For insurance, it’s easy to find the second moment of Z.

E[Z2] = same calculation as E[Z] but with v2 instead of v = 2Asomething. Then V ar(Z) =
2A−A2

• for annuities, it’s not easy to do this way because payments are not independent
relationship. Instead, we use Y = 1−Z

d

V ar(Y ) = 1
d2
V ar(Z) =

2A−A2

d2
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1.5 Increasing contract

• (IA)x pays $k if they die in the kth year.

• (Iä)x pays $k + 1 at the kth year.

1.6 Premium

Loss-at-issue RV L0 = PV future benefits− PV future premiums
To find P by the equivalence principle, set E[L0] = 0, i.e. set P so that EPV premiums

is equal to the EPV benefits. We can also include expense and profit margin.
Lg0 = PV future benefits + expenses− PV future premiums
Then set P g such that the EPV premium is equal to EPV benefits plus EPV expenses.

Apparently, the gross premium is always higher than the net premium. Expenses can be
fixed or as a percentage of the premiums

2 Policy values

Definition. The time t future loss RV is Lt = PV at t of future benefits−PV at t of future premiums
conditional on the contract being in force at time t.

If the contact has annual payments and t is an integer, then there may be a payment
at t. The convention is to consider premium payment at time t to be in the future and
benefits in the past. (i.e. P at t is in future premiums. S at t is not in future benefits.)

For annuities (where benefit is a series of payments) it can be either way. For endowment
insurance or pure endowment, the payment is at time n. But Ln does not include the time
n payment as future benefit so Lt = 0.

But what we do have is
lim
t→n−

Lt = S − 0 = S

for endowment insurance and pure endowment insurance. For term

lim
t→n−

Lt = 0

Example

5-year endowment insurance with annual premiums P, sum insured S payable at the end
of year issued to (x).

L0 =

{
SvKx+1 − P äKx+1 if Kx < 5

Sv5 − P ä5 if Kx ≥ 5
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We also know L5 = 0. What about L1? If the policy is in forced at that point, the
person is alive and age x+ 1. They have 4 years of benefit and 4 premiums left to pay.

L1 =

{
SvKx+1+1 − P äKx+1+1 if Kx+1 ≤ 3

Sv4 − P ä4 if Kx+1 ≥ 4

Similarly we can define L2, L3 and L4. Now let’s put in some number Makeham rule
ω = 120, A = 0.0001, B = 0.00035, c = 1.075, i = 6%, x = 50

With these parameters, we get P50 = 0.986493, A50 = 0.335868, A51 = 0.347203, A55 =
0.394409, 5E50 = 0.690562, 4E51 = 0.742018.

To find P , set E[L0] = 0 = S(A50 − 5E50A55 + 5E50)− P (ä50 − 5E50ä55).
Solving P + 1735.55
Then E[L1|K50 ≥ 1] = SA51:4−P ä51:4 = S(A51−4E51A55+4E51)−P (ä51−4E51ä55) =

1727.95
If x + 1 is alive, their remaining premiums are not sufficient to cover their remaining

benefits. The insurance company should hold 1727.95 capital in reserve to make up the
short fall. Each year the expected value of Lt goes up for an endowment insurance.

Insurer can build up capital from early premium payments to cover the later ben-
efit payments. Logically, the policy value at time t is the amount which, when com-
bined with future premiums, will exactly cover the future benefits. In other words, tV +
EPV at tfuture premiums = EPV at t future benefits.

Mathematically, tV = E[Lt|Tx > t]

It’s the amount that will, along with future premiums, cover future benefits. Where
does the $ come from? From other policies. say we have N identical policies (from last
example - 5 year insurance). We collect 1735.55N at 0. It earns 6% → 1839.68N at 1, but
some people die in age 50− 51 and each get 10, 000 at 1. The number who die on average
is Nq50 = 0.013507N so we have 1839.68N − 135.07N = 1704.61N . There are 0.986493N
policyholders still in force at time 1, so each has 1704.61N

0.986493N = 1727.95 which is exactly what
we had for E[L1|T50 > 1]. Fomr this to work at, we needed

• the same interest rate earned as assumed

• mortality experience to be the same as expected.

In reality, there are two versions of the policy value

• Net Premium Policy Value (NPPV) - EPV of the future benefits minus the premiums
on the policy value basis with an artificial premium recalculated using the equivalence
principle (no exp) and the policy value basis

• Gross Premium Policy Value (GPPV) - EPV of future benefits minus premiums on
the policy value basis with actual gross premiums and including expenses
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Two differences for these two versions could be expenses vs non-expenses and actual vs
artificial premiums

Basis : the set of interest, mortality, and expense assumptions used in an actuarial calcu-
lation.

Premium Basis - used to calculate P

Policy Value basis - used to calculate tV

If they are, and they assume no expenses, then GPPV = NPPV . In general, the
policy value basis is more conservative than the premium basis. Premium basis needs to
be realistic but competitive. Policy values are about ensuring solvency so the basis is more
pessimistic. (worse mortality, lower interest rates, higher expenses)

Example

Whole life $10,000 issued to (50). Premiums payable for 15 years max. Basis: Markham
rule, ω = 120, A = 0.001, B = 0.00035, C = 1.075, 6% interest rate, 1% of premium plus
$100 initial.

P: 10000A50 + 100 + 0.01P ä50:15 = P ä50:15 then

P =
10000A50 + 100

0.99ä50:15

= 377.41

L10 =

{
10, 000vK60+1 − P äK60+1 K60 ≤ 4

10, 000vK60+1 − P ä5 L60 ≥ 5

L20 = 10, 000vK70+1 since no more premiums are due

For gross,

Lg10 =

{
10, 000vK60+1 − 0.99P äK60+1 K60 ≤ 4

10, 000vK60+1 − 0.99P ä5 K60 ≥ 5

If policy value basis is the same

10V
g = E[Lg10|T50 > 10] = 10, 000A60−0.99P ä60:5 = 4568.085−0.99×377.41×4.22367 = 2989.97

The gross for Lg20 is the same as the net.

20V
g = E[Lg20|T50 > 20] = 10, 000A70 = 5861.87

Now instead, assume the policy value basis is: same mortality, same expense, 5%
interest. Then 10V

g = 10, 000A60:5% − 0.99× 377.41× ä60:5 = 5107.311− 0.99× 377.41×
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4.29763 = 3501.56 > 10V
g

5%. More cautious assumption is going to result in higher policy
values. Similarly, 20V

g = 10, 000A70:5% = 7687.99
Back to Net, if we use policy value basis of 5%, we need to calculate P (artificial

premium).P’ is the theoretical premium that would have been charged at time 0 if we had
used the policy value basis, and no expenses. We need 10, 000A50 = P ′ä50:155%. Then

P ′ =
3908.23

9.764268
= 400.26

Then 10V
n = E[L10|T50 > 10] = 10, 000A60 − P ′ä60:5 = 3387.15; 20V

n = same =
7687.99 Again if policy value basis is premium basis,

20V
n = 5861.87

10V
n = 10, 000A60 − P ′′ä60:5

where

P ′′ =
10, 000A50

ä50:15

Why artificial premiums? Consider E[L10|T5 > 10] where there were never any expenses
is equal to

SA60 − P ä60:5 = SA60:5% −
SA60:6%

ä50:56%

ä60:55%

There is no way to simplify this because the interest rates don’t match. Theoretically, it’s
nicer if that the basis used to calculate P in the policy value is the same.

i.e

E[L10|T60 > 10] = SA60 −
SA50

ä50:15

a60:5

Take a general case of $1 whole life issued at (X). tV = E[Lt|TX > t] = AX+t− Ax
äx
äx+t

If everything is on the same basis

= (1− däx+t)− (
1− däx
äx

)äx+t = 1− äx+t

äx

Similarly for endowment insurance.

tV = Ax+t:n−t −
Ax:n

äx:n
äx+t:n−t = 1− äx+t:n−t

äx:n

We can only use these simplifications if with the same basis and premium assumption with
no expenses.
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2.1 Retrospective Policy Value

If the policy value basis is equal to the premium basis and the experience matches the
assumptions (actual interest, mortality, and expenses are as predicted) then we can also
express tV in terms of cash flows from time 0 to time t.

tV =
0V + EPV at 0 of premiums in (0, t)− EPV at 0 of benefits in (0, t)

tEx

Compare to prospective policy value

tV = EPV at t of future benefits− EPV at t of future premiums

We don’t actually use retrospective policy values much. We use asset shares instead which
are based on the actual experience in time 0 to t.

Proof.

0V = EPV B0 − EPV P0

= EPV at 0 of (0, t) benefits + EPV at 0 of (t,∞) benefits− EPV at 0 of (0, t) premiums

− EPV at 0 of (t,∞) premiums

= EPV at 0 of (0, t) benefits− (0, t) premiums

+ (policy value at t brought back to time 0 for interest and survival = tExtV )

Solving for tV gives the result.

Recursion: we know Ax = vqx + vpxAx+1 and äx = 1 + vpxäx+1

tV = EPV at t of benefits− Premiums

= EPV at t of (t, t+ s) benefits − premiums + EPV at t of (t+ s,∞) benefits− premiums

= EPV at t of (t, t+ s) benefit− Premiums + xEx+tt+sV

In particular , let s = 1,

tV = EPV at t of next year of benefits− premiums + vpx+tt+1V

In general terms, let Pt = Premium at t, et = premium-related expenses at t, St+1 =
sum insured payable at if Kx = t at t + 1, Et+1 = benefit-related expenses at t + 1, it =
interest rate earned in (t, t+ 1). then we can obtain the recursion

(tV + Pt − et)(1 + it) = qx+t(St+1 + Et+1) + Px+tt+1V

Policy value at t plus net income at t accumulated for 1 year is exactly enough to provide
the death benefit for those who die and the t+ 1 policy value for survivors.
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Proof. Assume whole life, no expense, constant interest rate i.

tV = SAx+t − P äx+t

t+1V = SAx+t+1 − P äx+t+1

but we also know
Ax+t = vqx+t + vpx+tAx+t+1

äx+t = 1 + vpx+täx+t+1

so

tV = S(vqx+t + vpx+tAx+t+1)− P (1 + vpx+täx+t+1)

tV + P = Sqx+tV + vpx+t(SAx+t+1 − P äx+t+1)

divide both sides by v. Hence we get the recursion formula.

In general for any contract, we can always derive the recursive relationship by splitting
out the cash flow in the next year (or 1

m year) from the cash-flow from the onwards.
What we have at t + what we get at t, accumulated for one period must equal what

we need to provide then.
At time t+ 1 we must provide

• Policy value for t+ 1 (t+1V )

• enough extra to increase that to the benefit payable if the life dies

The extra amount is St+1 + Et+1 − t+1V which is called NAAR (net amount at risk)
or DSAR (death strain at risk). The NAAPt+1 can be thought at as the sensitivity to
mortality in the year t→ t+ 1.

Example: 5-year discrete endowment insurance to (50) usual mortality and 6% interest,
no expenses. P was 1735.55 and 1V was 1727.95. (Calculated between 10000A51:4 −P ä51:4

but we could also get 1V using recursion

(0V + 1735.55)(1.06) = q50(10000) + p501V

so 1V = 1727.95. Also then NAAR1 = 10000− 1V = 8272.05. Then for time 2,

(1V + 1735.55)(1.06) = q51(10000) + p512V

Hence 2V = 3578.16 and NAAP2 = 6421.81. Policy value is higher than NAAR is lower
in the second year. Similarly NAAR3 = 4436.57, 3V = 5563.43, 4V = 7698.41, NAAR4 =
2301.59, 5V = 0 but 5−V = 10000, so over the entre contract, reserve goes up and NAAR
goes down. For a 5-year term insurance instead, P = 146.16, 1V = 20.14, 2V = 31.69, 3V =
33.27, 4V = 23.31, 5V = 0 = 5−V ; NAAR’s are huge compared endowment insurance.
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Term insurance is much more sensitive to mortality risk then endowment insurance.
Cash flow more frequent than usual. We could calculate (or approximate using UDD), the
premium and the policy value at any payment date. At time t+ s (t ∈ Z, 0 ≤ s < 1),

t+sV = EPV at t+ sof future benefits− premiums (e.g.) = SA
(m)
x+t+s − P ä

(m)
x+t+s

but we don’t usually have A’s and ä for non-integer ages. This is where recursions are
useful.

(tV + Pt − et)(1 + it)
1/m = 1

m
qx+t(St+ 1

m
+ Et+ 1

m
) + 1

m
px+t(t+ 1

m
V )

so that gives us t+ 1
m
V then

(t+ 1
m
V + Pt+ 1

m
− et+ 1

m
)(1 + i)

1
m = 1

m
qx+t+ 1

m
)(St+ 2

m
+ Et+ 2

m
) + 1

m
px+t+ 1

m
(t+ 2

m
V )

For endowment insurance, NAAR decreased over time (same for whole life). For term,
NAAR is always large. Endowment insurance is less sensitive to mortality risk than term
insurance is. On the other hand, endowment insurance is more sensitive to interest rate
risk than term insurance is, because the reserves hold are much larger. In any year of a
contract at time t, suppose there are N policies in force. The insurer has N tV in reserves
(they get N(Pt−et)) The expected extra amount needed at time t+1 to pay death benefits
is Nqx+tNAARt+1

The actual amount needed is the actual number of dollars × NAARt+1 .The difference
Nqx+tNAARt+ 1(actual number of dollars − Nqx+t) is the mortality loss (gain) in the
year t→ t+ 1. We looked at 1

m ly payment contracts and everything is the same as annual.
Recursion was

(t+ 1
m
V + Px+ 1

m
− ex+ k

m
)(1 + i)

1
m = 1

m
qx+t+ k

m
(St+ k+1

m
+ Et+ k+1

m
+ 1

m
Px+t+ k

m
(t+ k+1

m
V )

But if benefit and premium payment frequencies are different, we need to leave out the
corresponding term from the recursion on dates where no payment is made. e.g. premiums
semiannual, benefits monthly

(tV + Pt)(1 + i)
1
12 = 1

12
qx+tSt+ 1

12
+ 1

12
px+t(t+ 1

12
V )

(t+ 1
12
V + 0)(1 + i)

1
12 = 1

12
qx+t+ 1

12
St+ 1

12
+ 1

12
px+t+ 1

12
(t+ 2

12
V )

· · ·
What if m→∞ and we have continuous payment. No new principles! At any time t,

tV = EPV at time t of future benefits− premiums given in force at time t

We don’t need to worry about when benefits or premiums are payable since it’s all contin-
uous Tx is continuous =⇒ P (Tx = t) = 0.
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Example

Whole life, no expenses, continuous

tV = SĀx+t − P āx+t

Lt|Tx ≥ t = SvTx+t − P āTx+t
= SvTx+t − P (

1− vTx
δ

) = (S +
P

δ
)vTx+t − P

δ

Hence we can find P (Lt > l|Tx ≥ t)

P ((S +
P

δ
)vTx+t − P

δ
> l) = P (vTx+t >

l + P
δ

S + P
δ

)

= P (−δTx+t > ln (
l + P

δ

S + P
δ

))

= P (Tx+t <
ln (l + P

δ )− ln (S + P
δ )

δ
) = k∗qx+t

We could do a similar procedure for a discrete contract but it’s not as nice. Also

V ar(Lt|Tx ≥ t) = (S +
P

δ
)2(2Āx+t − Ā2

x+t)

This approach also works for endowment insurance. But not for term, deferred, or other
cases where the RV governing the premiums is different from the RV for benefits.

Similarly, for n-year endowment insurance with premiums for n . Let

Hx+t = min{Tx+t, n− t}

and then Lt|Tx ≥ t = SvHx+t−P āHx+t
so V ar(Lt|Tx ≥ t) = (S+ P

δ )2(2Āx+t:n−t−Ā2
x+t:n−t )

and
P (Lt > l|Tx ≥ t) = P (Hx+t ≥ k∗) = P (Tx+t ≥ k∗ and n− t ≥ k∗)

Hence it is ended up with

{
k∗qx+t if k∗ ≤ n− t
0 if k∗ > n− t

But if benefits and premiums have different RVs, it’s more complicated. For example,
term insurance

Lt|Tx ≥ t =

{
SvTx+t − P āTx+t

Tx+t ≤ n
0− P ān Tx+t > n

deferred

Lt|Tx ≥ t =

{
0− P āTx+t

Tx+t < n− t
vTx+t − P ān−t Tx+t ≥ n− t

12



Then for V ar(Lt|Tx ≥ t) we could need V ar(PV benefits), V ar( PV Premiums) and their
covariance

Lt = SZt − PYt|Tx ≥ t

Then

V ar(Lt|Tx ≥ t) = S2V ar(Zt|Tx ≥ t) + P 2V ar(Yt|Tx ≥ t)− 2SPCov(Zt, Yt|Tx ≥ t)

Cov(Zt, Yt) = E[ZtYt|Tx ≥ t]− E[Zt|Tx ≥ t]E[Yt ≥ t]

We can now find the policy value (mean of Lt) or any payment date (integer t for annual,
multiple of 1

m for 1
m ly, and any real t for continuous contract. But what about in between

payment date? No new principles! Still PV at time t of future benefits− premiums. But

Ax:t or ax:t don’t exist if t /∈ Z nor do A
x:t (m) or a

(m)
x:t

for t not a multiple of 1
m .

We can use the policy value at the nearest payment date. Two approaches

1. start with t+1V , discount back (1 − s) of a year for interest and survival; adjust for
any income or outgo due to events in (t+ s, t+ 1].

t+sV = t+1V v
1−s

1−spx+t+s + Sv1−s
1−sqx+t+s

2. start with tV and accumulate for S of a year for interest and survival and adjust due
to events in (t, t+ s]

t+sV =
(tV + Pt)

sEx+t
− Sv1−s

sqx+tv
1−s

spx+t

equivalently

t+sV =
(tV + Pt)(1 + i)s

spx+t]
− Ssqx+tV

1−s

spx+t

In both cases we use an adjacent policy value, bring it to the correct time, and adjust
for what did/did not happen in the time between.

Example

Use illustrative life table 6%. Whole life insurance for (40). Fully discrete S = 1000.
P = 1000A40

ä40
, Find 20.25V .

21V = 1000A61 − P ä61 = 264.061, 20V = 247.78.

20.25V = 264.061v0.75
0.75p60.25 + 0.75p60.251000v0.75 = 260.065

Under UDD 0.75p60.25 = p60
0.25p60

= 1−0.01376
1−0.25×0.0376 = 0.989644 and 0.75q60.25 = 0.010356

or

20.25V =
(20V + P )− 0.25q601000v

v0.25
0.25p60

= 260.065

13



Under UDD 0.25p60 = 1− 0.25× 0.01376 = 0.99656 and 0.25q60 = 0.00344

20V assumes that the P at time 20 is in the future 20+εV assumes it is in the past. Over
an entire whole life contract, the overall trend is increasing but there are discontinuities at
every payment date.

We can approximate t+sV by using interpolation between tV and t+1V . But we need
to take into account the discontinuities caused by the premiums

(tV + P )(1− s) + (t+1V )s = t+sV

In our example,

20.25V ≈ 0.75(20V + P ) + 0.25(21V ) = 260.016

For more accuracy, we can also incorporate interest in our interpolation.

t+sV = (tV + P )(1 + i)s(1− s) + (t+1V v
1−s)s

In our example

20.25V = 0.75(20V + P )(1.06)0.25 + 0.25(21V )(
1

1.06
)0.75 = 260.04

2.2 Thiele Differential Equation

We can calculate tV for any t in continuous integer t in annual t+ k
m in 1

m ly. Any time t
in annual or 1

m ly, we also have 2 approximations. Discrete contracts have discontinuities
due to payments, but not for the continuous case. We can derive a differential equation to
find the rate of change of tV . We can then use the DE to approximate the change in tV
for a small interval (t, t+ dt).

Use the principle that tV = EPV of benefits− premiums

tV =

∫ ∞
0

(St+n + Et+n)e−
∫ t+u
t δsds

upx+tµx+t+udu−
∫ ∞

0
(Pt+u − et+u)e−

∫ t+u
t δsds

upx+tdu

Note this allows δ to be a function of time if δs = δ, ∀s then it’s e−δu. But if not,

e−
∫ t+u
t δsds = v(t+u)

v(t) . Substitute r = t + u and du = dr, t = r − u. u = 0 → r =
t, u =∞→ r =∞.

upx+t : tpxupx+t = t+upx = rpx so upx+t =
rpx

tpx

tV =

∫ ∞
t

((Sr+Er)µx+r−(Pr−er))
v(r)

v(t)
rpx

tpx
dr =

1

v(t)tpx
(

∫ ∞
t

((Sr+Er)µx+r−(Pr−er))v(r)rpxdr

Differentiate tV v(t)tpx with respect to t and it will be equal to

v(t)tpx(pt − et − (St + Et)µx+t)

14



If we assume compound interest, v(t) = e−δt = vt

d

dt
e−δttpxtV = (−e−δttpx(δ + µx+t))tV + e−δttpx(

d

dt
tV )

equate, cancel out e−δttp− x

d

dt
tV = δtV + (Pt − et)− (St + Et − tV )ux+t

Above represent the rat eof change of policy value at t. δtV is the amount held x instant
interest rate and (Pt − et) is the premium income instant rate minus expenses. For last
part, if death occurs, provide NAAR to pay benefits. If we also have boundary conditions
for the DE (0V =?) then we can identify all the contract details. There is a one to one
relationship between contracts and Thiele’s DE’s.

Example:

1. d
dt tV = −(1000 − tV )µx+t + δtV with 0V = P . This is a whole life insurance with
single premium of P at time 0.

2. d
dt tV = −(10000− tV )µx+t+δtV +P if 0 ≤ t < n. tV = 0 for t ≥ n and limt→n− tV =

n−V = 20000. continuously paid P throughout n years and benefit of 10,000 if dies
before n , benefit of 20,000 if they survive.

Identify DE from contact details and identify contract from DE and boundary condi-
tions. If the De was identical except n−V = 0, it would be a term insurance contract
with 10,000 on death within n .

3. d
dt tV = (S − tV )µx+t = δtV − X with 0V = P . There is a single premium paid at
time 0 and death benefit of S paid on death. X is an annuity payment.

Using Thiele to approximate tV , since a derivative is

d

dt
tV = lim

h→0

t+hV − tV

h

We can choose a small h and then use the right side of the DE to approximate the change
in policy value over any interval of length h for a continuous contract.

This gives us:

(1 + δh)tV + (Pt − et)h ≈ t+hV +NAARthµx+t

(more accurate if h is smaller)
It is essentially the continuous recursion for a small step size h. We can isolate tV or

t+hV (whichever we don’t know) and solve. We need a starting point (usually either 0 or
time n in a term/endowment insurance contract) and then we can work iteratively to find
the tV at any time that is a multiple of h.
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Example: $10000 10 endowment insurance contract to (40), 6% interest Usual Makeham
mortality

µx+t = A+Bcx+t

where A = 0.0001, B = 0.00035, c = 1.075
We know the DE is

d

dt
tV = δtV + P − (10, 000− tV )µ40+t

10−V = 10, 000

where δ = log(1.06). However for P, we will set P so that 0V = 0. Each step,

t+hV − tV

h
≈ δtV + P − (10, 000− tV )× µ40+t

Solving for tV ,

tV =
t+hV − Ph+ 10, 000h× µ40+t

hδ + 1 + hµ40+t

2.3 Advanced topic: Asset shares and analysis of surplus

Retrospective policy value(based on an assumptions) is

tV
R =

0V + EPV at 0 of premiums in (0, t)− EPV at 0 of benefits in (0, t)

tEx

If policy value basis = premium basis and equivalence P is used, then it equals tV
P =

EPV of future benefits − EPV of future premium. It represents the amount the insure
needs ti have per policy to cover future obligations.

Asset share is similar but based on actual experience in time (0, t) and represents the
amount the insurer actually has per policy. If ASt < tV , we have a loss. If ASt > tV , we
have a profit. ASt = tV is possible but it would only happen if experience exactly matched
assumptions (unlikely).

Example: Usual Makeham model, 6% interest 15-year deferred discrete whole life insur-
ance of $100, 000 is issued to (50). Death benefit in deferred period is return of premiums
without interest. Expense, 15% of first P and 2% of other premiums and $100 on payment
of benefit.

First, calculate P using equivalence principle

EPV premiums = EPV benefits + Expense

P ä50:15 = 100, 000− 10015|A50 + 13%P + 2%P ä50:15 + P (IA)1
50:15 + 100A50

Hence P = 2038.16. Next find 5V (some basis)
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• retrospective

• prospective

• recursion

5V = 11, 612.70

Retrospective:

0.98P ä50:5 − 0.13P − P (IA)1
50:50

− 100A1
50:5

5E50
= 11, 612.70

Prospective:

P (IA)1
55:10 + SPA1

55:10 + 100, 00010E55A65 + 0.02P a :55:10 +100A55 − P ä55:10

Recursively:
(0V + P − 0.13P )(1 + 0.06) = q50(P + 100) + P501V

(1V + P − 0.02P )(1.06) = q51(2P + 100) + p512V

Keep doing the same process. We will get the value for the year-5 reserve.
Now suppose actual interest was 6%, 5.5%, 6.5%, 6%, 7% per year. Actual expense

were 10% of first P, 1% of rest, and $50 on death. Actual mortality was qx = 0.014 for
x = 50, 51, · · · , 54. Then we can calculate AS5 = 11, 979.98. In total, profit of 365.28 per
policy.

t amount
at t−1

policy
value
at t−1

expenses
at at
t− 1

acc value
at t

amount paid at
t

remaining survivors ASt

1 0 P × 1 10%P1 ×
1

(a1 + P1 −
e1)(1 +
6%)

(P + 50)× 0.014 accv1− db1 1−0.014 rem1
surv1

2 rem1 P ×
surv1

1%P2 (a2 + P2 −
e2)(15.5%)

(2P +
50)(surv1) ×
(0.014)

accv2 − db2 surv1(1−
0.014)

rem2
surv2

...
...

...
...

...
...

...
...

...

We have a surplus of AS5 − 5V = 365.28. Interest was higher, expense were lower,
mortality was close. Analysis of surplus can tell us how much of the surplus (or loss) is
caused by each of: expenses, mortality, interest. The idea is to change one factor at a time
from assumed to actual. Order matters!.
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tV (all assumed ) =⇒ ASexpense
5 (actuall expense assumed, mort, int)

=⇒ ASmortality expense
5 (actuall expense, mort assumed int) =⇒ AS5

ASexpense
5 =⇒ 5V = effect of expense andASmortality expense

t −ASexpense
5 = effect of mortality.

Lastly AS5 −ASmortality expense
5 = effect of interest.

By calculation, 365 surplus = 250 expenses− 10 mortality + 125 interest.

2.4 Advanced topics: Contracts where benefit is a% of tV

Sometimes the benefit in an insurance contract be a percentage of the policy value at
the time of death. We can’t calculate P directly so we have to use recursion (or Thiele).
Example: fully discrete, death benefit is ct+1V for t = 0, 1, · · · , n− 1, premium Pt payable
at times t = 0, 1, · · · , n− 1. Benefit in the very last year is nV = S.

Recursion:

(tV + P )(1 + i) = qx+t(ct+1V ) + px+t(t+1V ) = p∗x+tt+1V

where p∗x+t = px+t + cqx+t

p∗x+tvt+1V − tV = P

multiply by tE
∗
x = vtp∗xp

∗
x+1 · · · p∗x+t−1

vt+1
t+1p

∗
xt+1V − tE

∗
xtV = P tE

∗
x

Sum from t = 0 to n− 1, middle terms cancel.

nE
∗
xnV − 0E

∗
x0V = P

n−1∑
t=0

vttp
∗
x

then

tV =
0V + P ä∗x:n

tE∗x

If nV = known number, then

P =
nV nE

∗
x

ä∗x:n

If c = 1,

tV =
P ät
vt

(p∗x = 1)
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2.5 Advanced topics: policy alternations

Sometime ofter inception, the policyholder may request to

• cancel (lapse) the policy.

• change premium terms

• Change the sum insured

• change the benefit type (from whole life/endowment insurance to something else)

By law, if the policy has been in force for 2+ years, the insurer must provide some
surrender value if the policy is lapsed. The surrender value (or cash value) can be

• agreed upon ahead of time (at t = 0)

• some calculation based on the policy value at time t

For example some% of tV (< 100%) possibly fixed expense subtracted. Some % of
ASt. Let the cash value at time t be Ct. If the policy lapses, policyholder receives Ct at t.
Otherwise, we ca easily calculate the new (modified) terms of the contract using:

Ct+EPV t of future (modified) premiums = EPV t of future (modified) benefit+expense

Example

Whole life to (40) S = 10, 000, interest rate in the long term is 6%. No expenses
(fully discrete). From the ILT, A40 = 0.161324, A60 = 0.369131, A65 = 0.4397965, l60 =
81880.73, l65 = 75339.64. Find P = 10,000A40

ä40
= 108.8. Suppose at time 20, policyholder

wants to modify the policy by

1. Surrender

2. stop policy premium but keep whole life

3. turn it into a 5 deferred annuity of X per year with a 10, 000 death benefit in deferred
period, and pay 5 more premium.

The insurer calculates surrender value as Ct = 90% of tV − $100 expense.

20V = 10, 000A60 − 108.88ä60 = 2477.8

C20 = 90%× 24778− 100 = 2130.02

1. They get $2130.02 (not great for policyholder, less than contributors)
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2. C20 + 0 = S′A60 + 0 (have now + future premiums = future benefit + future expense)

∴ S′ =
C20

A60
= 5770.36

3. C20 + 108.88ä60:5 = 10, 000A1
60:5

+X5|ä60 + 0

C20 = 108.88(ä60 − 5E60ä65) = 10, 000(A60 − 5E60A65) +X(5E60ä65)

Solving for X, we get 284.39.

2.6 Review for Test 1

• time t loss rv Lt = PV at t of future benefit− premiums

• E[Lt|Tx > t] = tV = EPV at t of benefits− premiums

• gross v.s. net policy value. If the policy value basis = Premium basis and P is
equivalence principle premiums, then net policy value has simplified calculation tV =
1− äx+t

ät

• Prospective v.s. Retrospective

tV =
EPV of premium (0, t)− EPV of benefit (0, t)

tEx

equal to prospective if same basis and equivalence principle

• recursive equation

(tV + Pt − et)(1 + i) = qx+t(St+1 + Et+1) + px+t(t+1V )

or
(tV + Pt − et)(1 + i) = t+1V +NAARt+1qx+t

where NAARt+1 = St+1 + Et+1 − t+1V is mortality risk. Some principles if 1
m ly

contract.

• Values between payment dates.

– accurate method

– linear interpolation with or without interest

• Continuous contracts: same principles for everything. easier to find the distance of
Lt differential equation instead of recursion

d

dt
tV = δtV + (Pt − et)−NAARtµx+t

use as approximation for a small h:

t+hV − tV

h
= · · · same RS
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3 Multiple state models

We are used to the model

Alive0 Dead1

We use the RV Tx = time until death of (x). But really, we have a continuous process

Y (t) =

{
0 if (x) is alive at time t

1 if (x) is dead at time t
. Then Tx = max{t : Y (t) = 0} (i.e. latest time

t where Y (t) is still in the “alive” state). In general, there are policies that cannot be
modelled with 2 states.

Examples:

1. Insurance which pays a different amount for “accidental” death than other death.
We need

Alive0

Other Death2Accidental Death1

2. Disability (permanent)/ Critical illness insurance pays a lump sum benefit on becom-
ing permanently disabled or diagnosis. We need

Alive0 Disabled/Ill1

Dead2

3. Disability income policy may pay (non-permanent) or annuity while policyholder is
disabled. We need

Healthy0
Sick1

Dead2
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4. Joint life insurance that depends on the survival or death of more than one policy-
holders. We need

x&y alive0 y alive1

x alive2 both death3

5. Pension plan - employees may entitled to different benefits base on how they exit the
plan. We need

Active0

Retired1 Dead2 Withdrawn3

Disability Retirement4

...5

Assumptions

1. Always in star 0 when the policy is purchased. All possibilities are counted in the
sates of the model. (i.e. it’s not possible to leave the model entirely). Can’t be in 2
states at once. That means at any time t, Y (t) = {0, 1, · · · }.

2. Markov property (future movements of Y (t) depend only on the present state, not on
the history before the presents). In some cases, this assumption may not be realistic.

3. P (2 or more transitions in (t, t + h)) = o(h) (a function is o(h) if limh→0
o(h)
h = 0).

can’t have 2 transitions at exactly the same time.

4. time until transition for all states is differentiable functions.
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3.1 Notations

tp
ij
x = P (Y (x+ t) = j|Y (x) = i)

= P (policyholders in state j at age x+ t given that they were in state i at x)

i can be = j or 6= j

tp
ii
x = P (Y (x+ s) = i, 0 ≤ s ≤ t|Y (x) = i)

= P (policyholder stays in state i throughout age x→ x+ t given in i at x )

depending on the model and the nature of state i, tp
ii
x may or may not = tp

ii
x

They would be equal if

• It is impossible to leave state i (i is an absorbing state e.g. death), then tp
ii and

tp
ii
x = 1.

• It is impossible to re-enter state i after leaving it.

Hazard Rate:

µijx = lim
h→0+

tp
ij
x

h
for i 6= j

= force of transition from state i to state j at age x

In the alive-dead model, tp
00
x = tpx = tp

00
x ; tp

01
x = tqx; tp

11
x = 1 = tp

11
x ; tp

10
x = 0;

µ01
x = µx. At any time t, Y (t) must equal one of its states, so

∑n
j tp

ij
x = 1 for any i.

Lemma 1. np
ij
x = hµijx + o(h)

Proof. µijx = np
ij
x
h = hp

ij
x −o(h)
h since o(h)

h → 0, so hµijx = np
ij
x − o(h) so for a small h, the

probability of going from i to j in a time interval of length h is hµijx plus some error.

Lemma 2. tp
ii
x = tp

ii
x + o(t).

Proof.

tp
ii = P ( in i at age x+ t|in i at x)

= P (stay in i|in i at x) + P (leave and not come back|in i at x)

= tp
ii
x + P (2+ transitions in (0, t))

= tp
ii
x + o(t)

If we cannot leave i or cannot reenter i, then we don’t need the o(t) since tp
ii
x = tp

ii
x
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Lemma 3. hp
ii
x = 1− h

∑
j 6=i µ

ij
x + o(h) where

∑
j 6=i µ

ij
x is the total force of exit from i.

Proof.

1− hp
ii
x = 1− P (do not leave i | in i at x)

= P (do leave i by x+ t|in i at x)

=
∑
j 6=i

hp
ij
x + P (leave and come back|in i at x)

=
∑
j 6=i

[hµijx + o(h)] + P (2+ transitions in (0, h))

= h
∑
j 6=i

µijx + o(h)

so hp
ii
x = 1− h

∑
j 6=i µ

ij
x + o(h).∑

j 6=i µ represents the total force of transition at of state i at age x.
Recall in the 2-state model that

tpx = e−
∫ t
0 µx+rdr

Similarly for MSM, to start, Notice

t+np
ii
x = tp

ii
x hp

ii
x+t

t+hp
ii
x = tp

ii
x (1− hµi·x+t + o(h)

t+hp
ii
x − tp

ii
x

h
= −tpiixµi·x+t +

tp
ii
xo(h)

h
Let h→ 0

d

dt
tp
ii
x = −tpiixµi·x+t + 0

using the chain rule

d
dt tp

ii
x

tpiix
=

d

dt
(log(tp

ii
x )) = −µi·x+t

integrate from 0 to t and exponentiate

tp
ii
x = e−

∫ t
0 µ

i·
x+rdr+c

but since 0p
ii
x = 1, so c = 0.

Make sure when compared to the 2-state model because with tp
ii
x , we only care about

i and “not i”.
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3.2 Kolmogorov forward equations

In a general MSM for any two states i and j (where i can equal to j)

t+hp
ij
x = tp

ij
x hp

ij
x+t +

∑
k 6=j

tp
ik
x hp

kj
x+t

Apply those lemmas

t+hp
ij
x = tp

ij
x (hp

jj
x + o(h)) +

∑
k 6=j

tp
ik
x (hµkjx+t + o(h))

= tp
ij
x (1− hµj·x+t + o(h)) + h

∑
k 6=j

(tp
ik
x xµ

kj
x+t + o(h))

= tp
ij
x − htpijx xµ

j·
x+t + h

∑
k 6=j

tp
ik
x µ

kj
x+t + o(h)

t+hp
ij
x − tp

ij
x

h
=
−htpijx µj·x+t

h
+
h
∑

k 6=j tp
ik
x µ

kj
x+t

h
+
o(h)

h
d

dt
tp
ij
x = −tpijx µ

j·
x+t +

∑
k 6=j

tp
ik
x µ

kj
x+t

but µj·x+t =
∑

k 6=j µ
jk
x+t by definition so we can write

d

dt
tp
ij
x =

∑
k 6=j

(tp
ik
x µ

kj
x+t − tp

ij
x µ

jk
x+t)

where this measures the change in probability i to j; for tp
ik
x µ

kj
x+t, it measures that go

somewhere other than j and then transition to j; for tp
ij
x µ

jk
x+t, it goes to j but transition

elsewhere at last second.
Let’s consider the healthy-disabled-and-death example.

t+hp
01
x = tp

01
x hp

11
x+t + tp

00
x hp

01
x+t

Since 0 and 1 cannot be re-entered once left,

tp
00
x = tp

00
x

and

tp
11
x = tp

11
x

so

t+hp
01
x = tp

01
x hp

11
x+t + tp

00
x (hµ01

x+t + o(h))
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t+hp
01
x = tp

01
x (e−

∫ h
0 µ12x+t+rdr) + (e−

∫ t
0 µ

0·
x+rdr)hµ01

x+t + o(h)

where µi·x = µ12
x and 01 + 01.

d

dt
tp

02
x =

1∑
k=0

(tp
0k
x µ

k2
x+t − tp

02
x µ

2k
x+t)

= tp
00
x µ

02
x+t + tp

01
x µ

12
x+t

d

dt
tp

11
x =

2∑
k=0,k 6=1

(tp
1k
x µ

k1
x+t − tp

11
x µ

1k
x+t) = −tp11

x µ
12
x+t

but tp
10
x = µ21

x = 0, µ10
x = 0.

Similarly, we can find the KFEs for any probability and solve the DEs simultaneously
for the tp

ij
x ’s. This is double but tedious. So we can use another approach =⇒ condition

on the time of first transition (say r) and then integrate r from 0 to t.
Let 0 to 1 be σ = 0.05, 1 to 2 be ν = 0.01 and 0 to 2 be µ = 0.02. Constant force do

not depend on age x.

tp
00
x = tp

00
x = e−

∫ t
0 (σ+µ)dr = e−t(σ+µ) = e−0.07t

tp
11
x = tp

11
x = e−tν = e−0.01t

Obviously, tp
22
x = 1 and tp

20
x , tp

21
x , and tp

10
x = 0. Since at time t, the policyholder must

be in some state {0, 1, 2}, tp12
x = 1− e−0.01t

tp
01
x =

∫ t

0
rp

00
x σt−rp

11
x+rdr =

∫ t

0
e−0.07r0.05e−0.01(t−r)dr = 0.05e−0.01t

∫ t

0
e−0.06rdr =

5

6
(e−0.01t−e−0.07t)

so again since we must be in some state at time t, tp
00
x + tp

01
x + tp

02
x = 1 so tp

02
x =

1−e−0.07t− 5
6(e−0.01t−e−0.07t) or we could calculate tp

02
x directly tp

02
x = P (0 to 2 directly)+

P (0 to 1 to 1) =
∫ t

0 rp
∞
x µ · 1dr + P (0→ 1→ 2).

P (0→ 1→ 2) =

∫ t

0
rp

00
x σt−rp

12
x+rdr or

∫ t

0
rp

01
x ν · 1dr

both integrals must evaluate to the same thing.then P (0 → 2 directly ) + P (0 → 1 → 2)
adds up to the same thing we had before for tp

02
x .

With some models, we can get expressions for tp
1j
x by conditioning on the time of first

transition. We can find an analytical expression in terms of t if the transition forces are
constant, but with more complex models and or transition forces that depends on x + t,
the KFEs give us valuable info.

Example:
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Healthy0
Disabled1

Dead2

because we can renter state 0 and 1.

tp
00
x 6= tp

00
x

tp
11
x 6= tp

11
x

then tp
01
x =

∫ t
0 sp

00
x µ

01
x+st−sp

11
x+sds =

∫ t
0 rp

00
x µ

01
x+rt−rp

11
x+rdr

Instead we use KFEs

d

dt
tp

01
x =

2∑
k=0, 6=1

(tp
0k
x µ

k1
x+t − tp

01
x µ

1k
x+t) = tp

00
x µ

01
x+t − tp

01
x (µ10

x+t + µ12
x+t)

Similarly, we can obtain the KFEs for other tp
ij
x ’s and solve. We can use the KFs and a

small time step h to approximate tp
ij
x ’s.

(Why? If mortality was Makeham or other models that depend on age, we could need
to use numerical integration to evaluate the integrals) We have

d

dt
tp
ij
x =

∑
k 6=j

(tp
ik
x µ

k+j
x+t − tp

ij
x µ

jk
x+t)

approximate with t+hp
ij
x −tp

ij
x

h for some h so

t+hp
ij
x = tp

ij
x + h

∑
k 6=j

(tp
ik
x µ

kj
x+t − tp

ij
x µ

jk
x+t)

Start at t = 0, 0p
ii
x = 1 and 0p

ij
x = 0 for j 6= i. then we can find hp

ij
x if we have the µijx ’s.

Hence we can get 2hp
ij
x from those hp

ij
x ’s and the µijx+h’s, and then for 3h, 4h, · · · .

Smaller h =⇒ more accurate, well h = 1
12 gives decent accuracy.

3.3 Benefits in MSM

āijx = EPV of an annuity that pays 1 per year payable continuously whenever in state j,
given that they start at age x in state i.

Āijx = EPV of 1 paid at the instant of each transition into state j, given that they start
at age x in state i.

27



We could modify these benefits by making them discrete (annual or 1
m ly) or add a term

of n to either benefit (no payments after time n) or add require payment only on the first
transition to j for A or only on the first visit to j (for a).

To calculate the EPV of any benefit in a MSM, we use the same principle∫
(
∑

)amt paid at t× discount factor× prob of payment at t

āijx =

∫ ∞
0

e−δttp
ij
x dt

A1
x:n

ij =
n−1∑
k=0

vk
∑
i 6=j

kp
il
xp

lj
x+k

Ā1
x:n

ij =

∫ n

0
e−δt

∑
l 6=j

(tp
il
xµ

lj
x+t)dt

In both cases for A, we start in i but the transition into j (that triggers payment) can be
from any state l 6= j.

3.4 Premiums a Policy Values in MSM

Some principles

• set P so EPV premiums = EPV benefits + expenses (at inception)

• tV is EPV of future benefits + expense − EPV of future premiums (at time t).

In alive and dead, tV was conditional on the policy being in force at t. Which is just
being alive at age x + t, but with MSM, there may be more than one way for a policy to
be in force at time t. so tV

(1) = EPV benefits − premiums at t, given policyholder is in
state i at t.

tV
(i) = 0 if i is an absorbing state such as dead.

Example

consider the health, disable and dead model again. From 0 to 1, σ = 0.05; from 1 to 2,
ν = 0.1; from 0 to 2, µ = 0.02 for age x to x+ 20.

We had expressions for all tp
ij
x ’s. Contract: premiums P payable continuously while

healthy; annuity of B payable while disabled.
death benefit S = 100, 000 payable on death from either state 0 or 1. All 20 year term.

δ = 6% no expense.
Calculate P:

P ā00
x:20 = Bā01

x:20 + SĀ1
x:20

02
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ā00
x:20 =

∫ 20

0
e−δttp

00
x dt =

∫ 20

0
e−0.06te−0.07tdt = 7.120972

āx:20 =

∫ 20

0
e−δttp

01
x dt =

5

3

∫ 20

0
e−0.06t(e−0.07t − e−0.1t)dt = 1876227

Ā1
x:20

02 =

∫ 20

0
e−δt(tp

00
x µ

02
x+t + tp

01
x µ

12
x+t)dt = 0.330042

so

P =
Bā01

x:20
+ SĀ1

x:20
02

ā00
x:20

= 7269.58

at time 10, calculate tV
(i) for all i.

10V
(2) = 0

10V
(0) = Bā01

x+10:10 + SĀ1
x+10:10

02 − P ā00
x+10:10

10V
(1) = Bā11

x+10:10 + SĀ1
x+10:10

12

ā11
x+10:10 =

∫ 10

0
eδttp

11
x+10dt = 4.988147

Ā1
x+10:10

12 =

∫ 10

0
e−δttp

11
x+10µ

12
x+10+tdt = 0.4988147

10V
(0) = −9229.35

10V
(1) = 99762.94

Huge difference in 10V depending on the state of the policyholder healthy lives are subsi-
dizing disabled lives.

3.5 Thiele DE for MSM

d

dt
tV

(i) = δtV
(i) + (P

(i)
t − e

(i)
t )−B(i)

t −
∑
j 6=i

µijx+t(S
(ij) + tV

(j) − tV
(i))

In our example we have from last time,

d

dt
tV

(0) = δtV
(0) + 7269.58− 0− µ01

x+t(0 + tV
(1) − tV

(0))− µ02
x+t(100, 000 + 0− tV

(0))

d

dt
tV

(1) = δtV
(1) + 0− 10, 000− µ12

x+t(100, 000 + 0− tV
(1))

Just like before, we might be able to solve analytically for tV
(i)’s, or we can use a small

time interval h and use the DEs to approximate. Boundary conditions usually at the end
of contract.
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4 Multiple decrement model, multiple life model

4.1 Multiple Decrement Models (MDM)

Special case of MSM, one active state (state 0) and n absorbing states (1, · · · , n). So only
one transition (max) can occur!

Active

1

2 3

n

...

At time t, policyholder must still be in 0 or have made one transition to j (1, 2, · · · , n)
and then still be in d.

tp
00
x = tp

00
x = e−

∫ t
0 µ

0·
x+rdr = e−

∫ t
0

∑n
j=1 µ

0j
x+tdr

tp
0j
x =

∫ t

0
sp

00
x µ

0j
x+sds

and as always, 0p
ii
x = 1, 0p

ij
x = 0

4.1.1 KFEs for a MDM

d

dt
tp

00
x = −

n∑
i=1

tp
00
x µ

0i
x+t

(we can solve this DE to get tp
00
x = e−

∫ t
0

∑n
j=1 µ

0j
x+rdr).

d

dt
tp

0j
x = tp

00
x µ

0j
x+t

We define tp
0·
x = 1− tp

00
x =

∑n
j=1 tp

0j
x (not in 0 at t) (similar to µ0·

x+t =
∑n

j=1 µ
0j
x+t)

tp
0·
x is the total probability of leaving active state by t. if the transition forces are

simple enough, we can evaluate the integrals and get exact expressions tp
0j
x . But if we

want accuracy, we can use a life table just like in alive → dead.
Recall: x0 = starting age(integer), lx0 = number of starting lives, lx = number of still alive at age x =

lx0x−x0px0 and dx = lx − lx+1

From the MDM case, we need

lx = avg number of still in state 0 at age x = lx0(x−x0p
00
x0)
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d(j)
x = lxp

0j
x = number who go to j in age x and x+ 1 = lx0(x−x0|p

0j
x0)

Then dx =
∑n

j=1 d
(j)
x = lx − lx+1. We need a fractional age assumption to use the table.

1. UDD: Assume that for each decrement in the table, tp
0j
x = tp0j

x , 0 ≤ t ≤ 1 for
j = 1, 2, · · · , n.

2. CFT: Assume that each force of transition within each year is constant.

µ0j
x+t = µ0j

x , 0 ≤ t < 1

for j = 1, 2, · · · , n. With CFT,

µ0·
x+t =

n∑
j=1

µ0j
x+t =

n∑
j=1

µ0j
x , 0 ≤ t < 1 = µ0·

x

Thus, tp
0·
x = 1− tp

00
x = 1− e−

∫ t
0 µ

0·
x+rdr = 1− e−tµ0·x

In particular, p0·
x = 1− e−µ0·x . Consider

sp
0j
x =

∫ s

0
rp

00
x µ

0j
x+rdr =

∫ s

0
e−rµ

0·
x µ

0j
x dr =

µ0j
x

µ0·
x

(1− e−sµ0·x )

0 ≤ s ≤ 1, j = 1, · · · , n

But if we let e−sµ
0·
x = sp

00
x from before, so we have sp

0j
x = µ0jx

µ0·x
(1− (1p

00
x )s) (logically,

it makes sense to be proper trivial to the force from 0 to j)

If we let s = 1, we get

tp
0j
x =

µ0j
x

µ0·
x

(1− p00
x )

p0j
x =

µ0j
x

µ0·
x

(p0·
x )

So finally,

sp
0j
x =

p0j
x

p0·
x

(1− (p00
x )s)

We can obtain p0j
x , p0· and p00

x from the MD table since they are annual.

p00
x =

lx+1

lx
, p0·
x = 1− p00

x =
lx − lx+1

lx
=
dx
lx

p0j
x =

djx
lx
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Awesomely, we get the exact same result for sp
0j
x if we assume UDD in the MDM

(proof is in the supplementary notes). Compare to CFM result in Alive to Dead.

sp
00
x = spx = (px)s = (p00

x )s

sp
01
x = sqx = 1− (px)s = (1− (p00

x )s)

Example: Suppose we have n = 2

In force0

Dead1 Lapes2

x lx d1
x d2

x dx
65 1000 20 50 70

66 930 27.9 55.8 83.7

67 846.3 33.9 59.2 93.1

68 753.2

Find

1. probability (65) is still in force at 67

2p
00
65 =

l67

l65
= 0.8463

2. probability (65) lapses between 66 and 67

1|p
02
65 = (p00

65)(p02
66) = 0.0558

3. contract over by 68

3p
01
65 = 3p

01
65 + 3p

02
65 = 1− 3p

00
65 = 1− l68

l65
= 0.2468

4. (65) dies before age 66.2

1.2p
01
65 = p01

65 + (p00
65)(02p

01
66) =

d1
65

l65
+
l66

l65

From UDD, 0.2p
01
66 = 0.2(p01

66) and From CFT, 0.2p
01
66 =

p0166
p0·66

(1− (p00
66)0.2)
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4.2 Premiums and Policy Value in MDM

Some principles, policy values are the same as in the alive-dead model since there is only
one active state.

4.2.1 Example

3 year fully discrete contract for (65), 10,000 at the end of year of dead. If they lapse or
survive 3 years, return of 1

2 of total premiums paid. Calculate the annual premium P.
No expenses, multiple decrement table given, i = 8%

EPV of premiums = P (
l65 + l66v + l67v

2

l65
) = 2.5867P

EPV of benefits = 10, 000(
d

(1)
65 v + d

(1)
66 v

2 + d
(1)
67 v

3

l65
= 693.4918

EPV ROP benefit =
P
2 d

(2)
65 v + Pd

(2)
66 v

2 + 3P
2 (d

(2)
67 + l68)v3

l65
= 1.03835P

so using the equivalent principle,

2.5867P = 693.4918 + 1.03835P

Hence P = 447.90.

4.3 Dependent and Independent Probabilities

tp
0j
x ’s are known as dependent probability since they assume that the other decrements are

present in the MDM
Define the independent probability

tp
j
x = e−

∫ t
0 µ

0j
x+rdr

(the exact result you should get in a model with only decrement j)
Also define tp

j
x = 1 − tp

j
x Comparing tq

j
x and tp

0j
x ; both are the probability of going

from 0 to j in t years but tp
0j
x depends on the other decrements being available whereas

tq
j
x as sues j is the only possible decrement. If we have expressions for µ0j

x ’s, we can obtain
exact independent probabilities.

But to go from a discrete MD table to associated Single Decrement Tables, we need a
fractional age assumption. Assume CFT, we know

sp
0j
x

sp0·
x

=
µ0j
x

µ0·
x
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where 0 ≤ s ≤ 1 and with respect to SDMs

tp
00
x =

n∏
d=1

tp
d
x

(Another justification

tpx = e−
∫ t
0 µ

0·
x+rdr =

n∏
d=1

tp
d
x

)

Let t = 1, p00
x = e−µ

0·
x and pjx = e−µ

0j
x , thus

µ0j
x

µ0·
x

=
− log pjx
log p00

x

=
sp

0j
x

sp0·
x

so
pjx = (p00

x )p
0j
x /p

0·
x

4.3.1 Example

q1
65 = 1− p1

65 = 1− (
l66

l65
)
(
d
(1)
65
l65

)/(1− l66
l65

)
= 1− 0.97947

4.4 Building a MDM from SDMs

We can get exact expressions if we know µ0j
x+t’s for all j, but if we have discrete tables, we

need a fractional age assumption.
Recall

tp
j
x = e−

∫ t
0 µ

0j
x+rdr

tq
j
x = 1− tp

j
x

tp
0j
x =

∫ t

0
rp

00
x µ

0j
x+rdr

tp
0·
x = 1− tp

00
x = 1− e−

∫ t
0 µ

0·
x+rdr

If we assumed UDD in the multiple secrete table or CFT, we got

pjx = (p00
x )p

0j
x /p

0·
x

so we can take apart a MDM. To assemble a MDM from SDMs, we can just reverse the
relationship

p0j
x =

log pjx
log p00

x

p0·
x
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but remember tp
00
x =

∏n
i=1 tp

j
x so in particular p00

x =
∏n
j=1 p

j
x and p0·

x = 1−
∏n
i=1 p

i
x so

p0j
x =

log pjx
log

∏n
i=1 p

i
x

(1−
n∏
i=1

pix

This relationship holds if we assume CFT or UDD in the MDM. On the other hand, we
can assume each SDM has the UDD property. (i.e. tq

j
x = tqjx =⇒ tp

j
xµ

0j
x+t = qjx)

Then

tp
0j
x =

∫ t

0
tp

00
x µ

0j
x+rdr =

∫ t

0
rp

1
xrp

2
x · · · rpnxµ

0j
x+rdr = qjx

∫ t

0

n∏
i=1

rp
i
xdr

= qjx

∫ t

0

∏
i 6=j

(1− rq
i
xdr = qjx

∫ t

0

∏
i 6=j

(1− rqix)dr

tp
0j
x = depends on n, qjx× degree n polynomial with coefficients from qix’s

4.4.1 Example

Take apart the MDM into two SDMs and increase lapses by 20%. Lastly, reassemble into
a MDM.

We have been assuming that the time until transition was differentiable (hence con-
tinuous), but it’s possible in real life to have transitions occur discretely. For example,
retirement at age 65 exactly lapses at policy anniversary etc.

How do we incorporate discrete transitions into a MDM? Easy! The discrete decre-
ment(s) is not “competing” with other decrements for lives during each year. So if we have
the independent probabilities for the discrete decrement, we include them at the end of the
year based on the lives remaining from continuous decrements.

Use the same example and the same decrement table, but we are adding a third decre-
ment retirement with the following probabilities: 50% of people reaching age 66 retire
exactly then. 70% of people reaching 67 retire exactly then; the rest definitely will retire
reaching age of 68.

x lx d1
x d2

x d3
x

65 1000 20 50 0

exact 66 930 0 0 465

66 465 13.95 27.9 0

exact 67 423.15 0 0 296.205

67 126.945 5.08 8.89 0

exactly 68 112.98 0 0 112.98

68 0 0 0 0
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4.5 Multiple Life Functions

x&y alive0 y alive1

x alive2 both death3

We have tp
11
xy = tp

1̄1
xy for all state i because no state can be reentered but it is possible

to have 0, 1, or 2 transitions in a time period of length t. Future lifetime RV framework,

Tx = time until death of (x)

Ty = time until death of (y)

Define Txy = min{Tx, Ty} (the joint life status (earliest death of (x) and (y)))

Sxy(t) = Pr(Txy > t) = tpxy = P (min{Tx, Ty} > t) = P (Tx > t, Ty > t)

If we assume Tx and Ty are independent, then tpxy = tpxtpy
We have tpxy (both survive t years) and tqxy = 1− tpxy (at least one dies within t years)

u|tqxy = (upxy)(tqx+u:y+u) (both survive to u, at least one dies by u+ t)

Note that “xy” is a status.
Define Txy = max{Tx, Ty} (the last survivor status (latest death of (x) and (y)))
Notice that Tx + Ty = Txy + Txy so tpxy = tpx + tpy − tpxy and tqxy = tqx + tqy − tqxy

tpxy = tp
00
xy

tqxy = tp
01
xy + tp

02
xy + tp

03
xy = tp

0·
xy

tpxy = tp
00
xy + tp

01
xy + tp

03
xy

tqxy = 1− tp
03
xy

Also some new probabilities based on the order in which the deaths occur

tq1
xy

=⇒ x dies first within t =

∫ t

0
tp

00
xyµ

02
x+r:y+rdr

tq2
xy

=⇒ x dies second within t =

∫ t

0
tp

01
xyµ

13
x+r:y+rdr
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tq1
xy

+ tq2
xy

= tqx

tq
x
1
y

+ tq
x
2
y

= tqy

tq1
xy

+ tq
x
2
y

= tqxy

tq2
xy

+ tq
x
2
y

= tqxy

tpxy = tpx + tpy − tpxy

for p’s, q’s, A’s, a’s, etc.

4.6 Benefits for Multiple Lives

Insurance: Joint lit insurance (pays an first death); last survivor insurance (pays on second
death); contingent insurance (depends on order).

(all can be whole life, term, endowment insurance, and continuous, annual, or 1
m ly)

Annuities: joint life annuity (pay until the first death); last survivor annuity (pays until
second death); reversionary annuity (pays to x while alive, starting after the death of y)

In the continuous case, we can develop expression for the EPVs of any of these benefits.

joint whole life annuity āxy =
∫∞

0 e−δttpxydt =
∫∞

0 eδttp
00
xydt

last survivor whole life annuity āxy =
∫∞

0 e−δttpxydt =
∫∞

0 e−δt(tp
00
xy+tp

01
xy+tp

02
xy)dt =∫∞

0 eδttp
00
xydt+

∫∞
0 eδttp

01
xydt+

∫∞
0 eδttp

02
xydt = −āxy + āx + āy

Logical Explanation āxy pays until the last death, i.e. pays while either is alive. āx+ āy
pays to each while alive (2 while both are alive) so subtract the extra āxy

Reversionary annuity āx|y (means to pay to y after death of x) =
∫∞

0 e−δttp
02
xydt (x

must be dead and y alive to get paid) =
∫∞

0 e−δt(tp
02
xy + tp

00
xydt −

∫∞
0 e−δttp

00
xydt.

Hence āx|y = āy − āxy

Logical Explanation āx|y pays y after x is dead. āy pays while y is alive (1 while both
alive) so subtract the extra āxy.

Joint life insurance Āxy =
∫∞

0 e−δttp
00
xy(µ

01
x+t:y+t + µ02

x+t:y+t)dt (either x or y dying trig-
gers payment)

Last survivor insurance Āxy =
∫∞

0 e−δt(tp
01
xyµ

13
x+t+ tp

02
xyµ

23
y+t)dt (either x or y dying last

triggers the payment)

But if we have the 2-life model with a “common shock” (the force of transition from
0 → 3 directly). We would just add tp

00
xyµ

03
x+t:y+t to the probability of payment at t

inside both the integrals.
Āxy = Āx + Āy − Āxy
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Contingent Insurance Ā1
xy

=
∫∞

0 e−δttp
00
xyµ

02
x+t:y+tdt. Similarly, Ā

x
1
y

=
∫∞

0 tp
00
xyµ

01
x+t:y+tdt.

We can see
Ā1
xy

+ Ā
x
1
y

= Āxy

and Ā2
xy

=
∫∞

0 e−δttp
01
xyµ

13
x+tdt and Ā

x
2
y

=
∫∞

0 e−δttp
02
xyµ

23
y+tdt. We can see

Ā2
xy

+ Ā
x
2
y

= Āxy

We can add a term to any of these benefits t integrate up to n instead of ∞. We can
have annual or 1

m ly payments to sum instead of integrals.

Special Case independent lives; not necessarily realistic because spouses usually have
similar health and activity habits; also they spend more time together than any 2
random people, so they can be subject to accidents.

If lives are independent, that means µ03
xy = 0 (no common shock).

µ01
xy = µy = µ23

y

µ02
xy = µx = µ13

x

Then µxy = µ0·
xy = µ01

xy + µ02
xy = µx + µy so tpxy = tp

00
xy = e−

∫ t
0 µ

0·
x+r:y+rdr =

e−
∫ t
0 (µx+r+µy+r)dr = tpxtpy

Example: qx = 0.02, qx+1 = 0.025, qx+2 = 0.03, qy = 0.03.qy+1 = 0.035, qy+2 = 0.04.
Assuming (x) and (y) are independent, calculate

1. 2pxy = 2px2py = (1− 0.02)(1− 0.025)(1− 0.03)(1− 0.035) = 0.8944

2. 2pxy = 2px + 2py − 2pxy = 0.9972

3. 1|qxy = pxyqx+1:y+1 = 0.0526

4. 1|qxy = 0.0022

4.7 Gompertz and Makeham Mortality

Gompetz µx = Bcx so if (x) and (y) are independent with same mortality, then µxy =

µx + µy = Bcx + Bcy. Define w such that cw = cx + cy (i.e. w = log(cx+cy)
log c then

µxy = Bcw and the joint life status xy can be replaced by the single life status w. w
is the equivalent single age)

Makeham µx = A+Bcx so µxy = A+Bcx +A+Bcy = 2A+B(cx + cy). Define v such
that cx + cy = 2cv. Hence µxy = 2(A + Bcv) = µv + µv so v is the equivalent equal
age xy can be replaced with vv.
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These simplification assume that x and y are independent. If x and y independent, we
have tpxy = tpxtpy. The assumptions behind independence may not hold in practice so we
ned ways to cover the dependence situation.

4.8 Common Shock Model

Assume lives are independent except for a common probability of accident which affects
both lives. We use the same state model for joint life but for the transition from both alive
to both dead will be a constant, λ, no matter what ages they are.

µ∗x - unshocked force of mortality for (x)

µ∗y - unshocked force of mortality for (y)

λ - force of accident/shock (constant)

T ∗x - future lifetime unshocked of (x)

T ∗y - future lifetime unshocked of (y)

Z- time until death from shock ∼ Exp(λ)

Tx = min{T ∗x , Z} and T ∗y = min{T ∗y , Z}

Since (x) and (y) can each die from mortality or shock, the min of those two times will be
the actual time of death.

Txy = min{Tx, Ty} = min{Tx, Ty, Z}

or we can think of the MSM probabilities tp
00
xy = e−

∫ t
0 µ

0·
x+r:y+rdr

We have µ0·
xy = µ∗x + µ∗y + λ. Therefore tp

00
xy = tp

∗
xtp
∗
ye
−λt

From this relationship we can get the others

tpx = tp
∗
xe
−λt

Same for (y).

tpxy = e−λt(tp
∗
x + tp

∗
y − tp

∗
xtp
∗
y) = e−λttp

∗
xy

but unfortunately, there is dependency on both lives.
Commonly used with Makeham mortality for both life. Sometimes we consider A to be

the shock so µ∗x = Bc∗ and µ∗y = Bcy and λ = A then we would have µxy = A+Bcx+Bcy.
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4.8.1 Example

(x) and (y) have unshocked mortality as follows q∗x = 0.02, q∗x+1 = 0.025, q∗x+2 = 0.03, q∗y =
0.03.q∗y+1 = 0.035, q∗y+2 = 0.04. In addition both lives experience a shock with constant
force λ = 0.0005.

Recalculate

1. 2pxy

2. 2pxy

3. 1|pxy

4. 1|pxy

Now for EPVs

āxy =

∫ ∞
0

e−δttpxydt =

∫ ∞
0

e−δttp
∗
xtp
∗
ye
−λtdt =

∫ ∞
0

e−(δ+λ)t
tp
∗
xdt =

∫ ∞
0

e−δ
′t
tp
∗
xydt = ā∗xy

where δ′ = δ + λ. We can evaluate common shock EPVs by using independent unshocked
mortality EPVs and a modified interest rate

i′ = eδ+λ − 1

Will ā∗xy be higher or lower than ā∗xy? Lower because the shock could cause the lives to die
sooner → lower EPV.

Āxy =

∫ ∞
0

e−δt(tpxy(µ
01
x+t:y+t + µ02

x+t:y+t + µ03
x+t:y+t)dt =

∫ ∞
0

e−δt−tp∗xtp∗ye−λt(µ∗y+t + µ∗x+t + λ)dt

=

∫ ∞
0

e−(δ+λ)t
tp
∗
xy(µ

∗
y+t + µ∗x+t)dt+

∫ ∞
0

e−(δ+λ)t
tp
∗
xyλdt

so Āxy = Ā∗xy@δ′ + λā∗xy@δ′ or we can use the following result for any status “u” that is
either whole life or endowment insurance type.

Āu = E[vTu ]

where Tu = time until “u” expires

āu = E[āTu = E[
1− vTu

δ
] =

1− E[vTu ]

δ

so āu = 1−Āu
δ and Āu = 1− δāu so in particular for the common shock model

Āxy = 1− δāxy = 1− δā∗xy@δ′

Examples: Interpret the following EPV and express it as a combination of simple EPVs:
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1. Āxyz = Āxy + Āxz − Āxyz

2. āx|y:n means that y gets paid if x dies within n years

āy:n − āxy:n

and āx:n |y means that if x dies before n then y get paid; if n years passed and x is
still alive, y will still get paid too

āy − āxy:n

5 Advanced Topics

(MLC material - not on or final)

5.1 Interest Rate Risk

We have been implicitly assuming a flat yield curve for our interest rates. i.e. the same
annual effective rate i applies to all future cash flow regardless of when they occur.

v(t) = vt = e−δt

In practice, we actually have a “term structure of interest rate” where there are different
rates for different lengths of investment.

• Spot rates: yt is t-year spot rate means $1 at time 0 grows to (1 + yt)
t if invested for

t years

• then $1 at time t is worth 1
(1+yt)t

at time 0

v(t) =
1

(1 + yt)t

Typically, the yield curve will be concave increasing.

• implied forward rates

f(t, t+ k) = k-year forward rate for an investment in t years

$1 at time t grows to (1 + f(t, t+ k)k) by time t+ k.

Thus (1 + f(t, t+ k))k =
(1+yt+k)t+k

(1+yt)t
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In the context of insurance, we replace the discount factor vt with the more realistic
1

(1+yt)t
. Tus a discrete annuity due to (x) under the yield curve y would have EPV

a(x)y =

∞∑
k=0

v(k)tpx =

∞∑
k=0

1

(1 + yt)k
kpx

Similarly a continuous insurance has EPV

Ā(x)y =

∫ ∞
0

v(t)tpxµx+tdt

Diversifiable vs non-diversifiable risks usually an insurer relies on large numbers of
identical/similar policies that are independent. By the “law of large numbers”, things
will tend to turn out as expected as the number of policies gets larger. Say we have N
policies and some r.v. Xi (i = 1, · · · , N) that we are interested in for each policy. Then
E[

∑N
i=1Xi] =

∑N
i=1E[Xi] = Nµ where µ is the mean of the Xi’s.

V ar(
N∑
i=1

Xi) =
N∑
i=1

V ar(Xi) +
∑∑

i<j

Cov(Xi, Xj)

. Let σ2 be the variance ofXi and ρ be the correlation betweenXi andXj . Hence it becomes

Nσ2 +N(N − 1)ρσ2. If the Xi’s are independent, we just have V ar(
∑N

i=1Xi) = Nσ2 and
SD = σ

√
N . By the CLT ∑N

i=1Xi −Nµ

σ
√
N

∼ N(0, 1)

as N →∞.
The average risk would be

∑N
i=1Xi

N . As N →∞, V ar → 0 if V ar(
∑

i=1]NXi)
is a linear

function of N.

Definition. A risk Xi is diversifiable if limN→∞
SD(

∑N
i=1Xi)
N = 0 and non-diversifiable if

not.

Mortality risk is diversifiable. Hence N increase will decrease risk but interest rate risk
is non-diversifiable.

5.2 Profit Testing

With computers, we can easily project the cash-flows for portfolios of contracts and possibly
incorporate more flexible. Assumptions (yield curve, changes in mortality, etc.).

Uses

• identify where profits come from
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• set premiums (explicitly loading for profit).

• stress test (see how profits are affected by worsening assumptions)

• determine how much reserve to hold

• measure profitability

• for more complex contracts, determine dividends paid to policyholders

Profit testing is done on the profit testing basis

1. basis: set of mortality, interest, and expense assumptions

2. profit testing basis could be the same or different from the premium basis and the
policy value basis.

Example:
10 year annual term insurance to (60) P = 1500, S = 100, 000. Policy basis, 5.5%

interest, 400 plus 20% of first premium at inception and 3.5% of premiums 2-10 and
q60+t = 0.01 + 0.0001t

• Generally assume initial expenses happen before first premium so surplus at time 0
is generally negative

• each line is only looking at income/outgo in that year.

• each line assumes the contract is in force of the beginning of period. so all cash flows
(Pt−1, DBt, etc) are assuming the policyholder is alive at t− 1.

We had surplus at t Pt−1 −Et−1 + It −DBt year (t− 1, t) is in isolation and assuming
contract in force at t − 1, but cash flows are not isolated since we do hold reserves. We
want to incorporate them into the profit test. Suppose we hold reserves equal to NPPV on
the basis. 4% interest, q60+t = 0.011+0.001t (worse mortality, worse interest, no expense).

To incorporate reserves,

1. in first year there is no reserve.

2. for row 2 and on, we add a column to include the reserve held at the start of the
year (“income” of t−1V at the start of the tth year, which accrues interest so It =
i(t−1V + Pt−1 − Et−1))

3. For line 1 and onwards, we have to add a column for the “cost” of setting up next
year’s reserve but we only need the reserve for the policy holder who are alive at time
t. Therefore, the cost in the year t row is

tV p60+t−1
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Now the surplus at time t is

t−1V + Pt−1 − Et−1 + It −DBt − tV p60+t−1

4. The collected surplus values for t = 0, 1, · · · , 10 is known as the profit vector Pr.

Pr0 = initial setup cost

Pr1 = surplus at t|alive at t− 1

5. If we want to have profits that are not conditional on anything, we can just multiply
each element by t−1p60 (probability of being alive at t − 1). The resulting vector is
called the profit signature, π.

π0 = Pr0 = initial setup cost

π1 = Pr1 = surplus at time 1

πt = Prtt−1P60 = surplus at time t

With the profit signature, we can do any analysis we like to assess the profitability,
such as

• NPV at the company’s interest rate for future cash flows.

NPV =
n∑
k=0

πkv
k

• IRR of cash flows, (the rate such that NPV is zero)

• Partial NPV’s (each year t, find

t∑
k=0

πkv
k

for some t they will be positive. (pay back period)
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6 Final Review

ACTSC 232 • Survival Models including life tables

• EPV of insurances and annuities

• Premium calculation including expense

Policy Values • definition of Lt

– future benefits - expenses given alive at t.

• Policy value tV = E[Lt|Tx ≥ t]
• NPPV v.s. GPPV (artificial premium with no expense v.s. actual premium

including expenses). Both are calculated on P.V. basis.

• Simplified formula for NPPV tV = 1− ax+1

ax
for whole life etc.

• prospective v.s. retrospective (EPV of future benefits - premiums v.s. EPV at
0 of premium-benefits in (0, t) divided by tEx)

• Recursive relationship

(tV + P )(1 + i) = qx+tS + px+tt+1V

for annual. Similar for 1
m ly.

• NAARt+1 = S − t+1V measures mortality risk.

• Policy value between payment dates at t+ s

– exact (forwards from t or backwards from t+ 1
m

– interpolation

– interpolation with interest

tV + P

– Continuous payments

∗ Lt has nice distribution

∗ can calculate tV exactly for t ∈ R
∗ graphs have no discontinuities

∗ Thiele DE
d

dt
tV = δtV + P − (S − tV )µx+t

boundary condition matter.

• Can use as an approximation for small h

d

dt
tV =≈ t+hV − tV

h
= δtV + P −NAARtµx+t
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• Asset sharesASt = amount per policyholder in force at t the company has. tV =
amount they need

• analysis of surplus - split ASt− tV into pieces caused by interest, mortality and
expenses.

• policy alternations, cash value Ct. Determine unknowns using equivalence prin-
ciple

Ct + EPV future premiums = EPV future benefits

MSM • assumptions and notations: µijx , tp
ij
x , tp

ii
x

• tp
ii
x = e−

∫ t
0 µ

i·
x+rdr

• calculate other tp
ij
x ’s by fixing the time of first transition at r, and

∫ t
0 dr

• KFE’s
d

dt
tp
ij
x =

∑
k 6=j

(tp
ik
x µ

kj
x+t − tp

ij
x µ

jk
x+t)

• can useKFE as approximation for small h

• benefit EPVs āijx and Āijx

sum/integral over pmt dates of amt paid× discount function× prob of pmt

• premiums and policy values are the same but policy value can depend on current
state.

• tV
(i) = EPV at t of future benefits− premiums given in i at time t. Thiele DE

for tV
(i) in MSM

• MDM

– one active state, n absorbing states

– tables

– fractional age assumptions

– EPVs, premiums, policy values similarly

– dependent is independent probability

– assumptions for splitting/reassembling MD Tables into SD tables.

Multiple Lives • “xy” and “xy”
xy = x+ y − xy

for p’s and q’s, A’s, ä’s.

• reversionary annuities (pay to x after death of y)

• contingent insurances (order of death matters)

• independent lives

• Common Shock
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